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1. Introduction
Throughout this paper let v, be the canonical Gaussian measure in R",

that is J
22 ax
dv,(z) =€ 2 —,
let ®(a) = v,(]—o0,a]) if a €RU{£o0}, and let A € |0, 1[. Furthermore, for
any A,B C R",

M+ A-NB={x+(1-)Ny; r€ Aand y € B}.
In [2] Antoine Ehrhard proves that
O (7,(AM + (1= N)B)) 2 A (7, (4)) + (1 = )@ (7,(B))

for all convex bodies A and B in R". Moreover Latala in [6] shows that
Ehrhard’s inequality is true if A is a convex body and B an arbitrary Borel
set. This special case of Ehrhard’s inequality, combined with some short
but clever arguments, implies several well-known inequalities for Gaussian
measures such as the isoperimetric inequality, the Bobkov inequality, and



the Gross logarithmic Sobolev inequality. The Latata paper [7] gives an
excellent account on these implications.

The purpose of this paper is to prove Ehrhard’s inequality for all Borel
sets. This solves Problem 1, p 456, in the Ledoux and Talagrand book [8].
We here follow the convention that co — 0o = —00 4+ 00 = —¢.

THEOREM 1.1. The Ehrhard inequality is true for all Borel sets A and B
i R™.

Our proof of Ehrhard’s inequality is inspired by a concavity maximum
principle initiated by Korevaar in his study of elliptic and parabolic boundary
value problems [5] further developed by Greco and Kawohl [3]. In contrast
to [3] and [5] the space domain in this paper is unbounded.

It follows from the Ehrhard paper [2] that Theorem 1.1 is true in all
dimensions if it is true in one dimension. Since a restriction to one dimension
would not really simplify our proof below we will make no restriction on the
dimension.

Let P o
A=V’=_S+.+4+5
0x? ox2
be Laplace operator in R™. Given a positive solution u of the heat equation
ou 1
— =-Au
ot 2

the first point in our proof of Ehrhard’s inequality is to introduce the inverse
Gaussian transformation

U=o"(u).
As u = ®(U),
ou ou
Vu=oU)VU
and

Au = p(U)(AU — U | VU |?)



where ¢(a) = ®'(a) if a €R. Thus

U 1 1 ,
5% 2AU— 2U | VU | (1.1)
Let us note that —U is a solution of (1.1) if U is. Moreover if U(0,z) =
az + b, where a and b are real constants, the function U(t,z) = a(a®t +
1)"2z 4 b(a2t + 1)~ 2 solves (1.1).
Our proof of Theorem 1.1 is based on an application of the methods in
[3] and [5] to the parabolic differential equation in (1.1). In this context the
Feynman-Kac formula fits very well as will be seen below. We are very
grateful to Professor Stanislaw Kwapien for pointing out an alternative to
the use of the Feynman-Kac formula in the proof of Theorem 1.1 and sketch
his line of reasoning at the very end of Section 2.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we assume without loss of generality that A and B
are non-empty compact subsets of R™. Let € € |0, 1] be fixed and choose an
infinitely many times differentiable function F' € C*°(R™) such that 0 < F' <
I, F=1o0on Aand F =0 off A, = A+ B(0,¢), where B(0,¢) is the closed
Euclidean in ball R™ with centre 0 and radius €. Let 6 € ]0,¢[ and define
f=6d+(1—¢)F. Set « =+ 1 — ¢ and observe that @ < 1. In particular,
feC®R"),6< f<a f=aon A and f =6 off A, . In a similar way,
choose a function g € C*°(R™) such that § < g <o, g=a on B,and g =§
off B, . Set

k= max(®(A®™ () + (1 = N)@7(4)), (AP (8) + (1 — N) @ (a))).
The construction shows that Kk — 0 as § — 0. Next we choose a function
h € C*(R") such that Kk < h < «a, h=aon A, + (1 — \)B,, and h =  off
(M, + (1 — M) B.).. The definitions give

7 (h(Az+ (1= N)y)) > A7 (f(2) + (1 - N2 (9(y)) if 2,y € R". (2.1)

Now consider the inequality

o7 ([ hdy) 2207 ([ fay)+ (1-Ne7([ gdv) . (22)



By first letting 6 — 0 and then ¢ — 0 in (2.2) we obtain the Ehrhard
inequality for A and B. The inequality (2.2) will follow from a slightly more
general inequality. Let for every t > 0 and x € R",

uq(t, ) = /R g(z + Vt2)dr,(2), = f.g,h.
Clearly, (2.2) follows if
O M up(t, Az + (1= N)y)) > A0 Hup(t,x)) + (1 — NP (uy(t,y)) (2.3)

for all t > 0 and z,y € R". The special case t = 0 reduces to (2.1) and the
special case t = 1 and x = y = 0 is the same as (2.2). To prove (2.3) let ¢ be
any of f, g, or h and define the inverse Gaussian transformation of u, by

Uy = qu(uq)-
Note that

sup | U, |< o0.
£>0,z€R™

Moreover, if iy, ..., 1, € N it is readily seen that

sup | 52— Uy [< 00 2.4
tZO,ng" ozrh...0xin | (2.4)

We now introduce the function
C(t,,y) = Un(t, Aa + (1= A)y) = AU (t,2) — (1 = Uy (£, )

for all ¢ > 0 and z,y € R™. The inequality C(¢,z,y) > 0 is equivalent to
(2.3). To simplify notation, from now on let

§= (t’ .T), n= (ta y)a and ¢ = (ta Az + (1 - /\)y)

so that
VoC = M{(VUL)(c) = (VUf)(E)}, (2.5)
Vy,C = (1 =N {(VU)() — (VU,)(n)}, (2.6)
ALC = N*(AU)(s) = MAU) (),
AyC = (1= AN (AUL)(S) — (1 = N)(AUy) ()



and
0*C
0z;0y;

=M1 = N (AUL)(9).

2

1<i<n

Thus introducing the differential operator

E=-(A;+2 ,
{ lgnax ayz }

&0 = % {(AUL)() = MAUF)(€) — (1 = A)(AU,)(n)} -

Now using (1.1)

oU 1

EC = o — () + §Uh(§) | (VUL)(s) PP
2% () 2Us() | (VU(E) I

0= (0) 22U, 0) | (V) ) P

or

oC

&C = ot + U(t,z,y)

with

1 9 A , 1= ,
U(t,z,y) = §Uh(§) | (VUL)(s) | —§Uf(§) | (VU (€) | —TUg(n) | (VU,) () 2.
Here
e P o P 3 (G0 G50~ 52o)
and
o = o 2+ 5 {5+ S0 H{ G - SR}

From these equations and (2.5) and (2.6) it follows that

\Il(t,:c,y) = | (VUh)(C) ‘2 C - b(t,l‘, y) ) v(w,y)c

N —



for an appropriate continuous function b(¢, z, y), which, depending on (2.4),
for fixed t is Lipschitz continuous in the space variables with a Lipschitz
constant uniformly bounded in ¢. Moreover,

oc 1

In what follows we interpret (V,,V,) as an 2n by 1 matrice with the
transpose matrice (V,, V,)* and have

1
£ = E(Vz’ Vy) 00" (Vy, Vy)

for an appropriate 2n by 2n matrice 0. Let T € ]0, oo[ be fixed and denote
by (X,Y) the solution of the stochastic differential equation

d(X(1),Y(t)) = b(T — t, X (£),Y(£))dt + odW (t), 0 <t <T

with the initial value (X (0),Y(0)) = (z,y), where W is a normalized Wiener
process in R?". The Feynman-Kac theorem ([4], p 366) yields

C(T,2,y) = E |C(0, X (T), Y (T))e™ Jo (FUNT-02X @12y @) "0

and, since C(0,X(T),Y(T)) > 0, we get C(T,z,y) > 0. This completes the
proof of Theorem 1.1.

The Feynman-Kac formula can be avoided in the proof of Theorem 1.1.
To explain this, again let 7" € 0, oo[ be fixed. The definitions of the functions
f,9, and h imply that the lower limit of the function info<;<r C(¢,2,y) as
| z | + | y |— oo is non-negative. Therefore, if C(¢,z,y) < 0 at some point
(t,z,y) € [0,T] x R™ x R™ there exists a strictly positive number & such
that the function et + C(¢,x,y) possesses a strictly negative minimum in
[0, 7] x R™ x R™ at a certain point P = (tg, 2o, ¥o) with ¢y > 0. Now

ac
at

which contradict (2.7). Thus C(¢,z,y) > 0.

C(P) <0, =(P) < —¢, V(z»C(P) =0, and EC(P) > 0

3. The Ehrhard inequality in infinite dimension



Let FE be a real, locally convex Hausdorff vector space and denote by
B(E) the Borel o-algebra in E. A Borel probability measure v on E is
a Gaussian Radon measure if each bounded linear functional on E has a
Gaussian distribution relative to v and if 7, = v on B(FE), where for any
ACE, v, (A) =sup{v(K); K compact subset of A}.

THEOREM 3.1. If v is a Gaussian Radon measure on E,
O (7, (M + (1= X)B)) > A7 (y(4)) + (1 = )2~} (v(B))
for all A, B € B(E).

Theorem 3.1 follows from Theorem 1.1 using the same line of reasoning
as in the author’s paper [1].

References

[1] Ch. Borell, Convex measures on locally convex spaces, Ark. Mat. 12
(1974), 239-252.

[2] A. Ehrhard, Symétrisation dans 'espace de Gauss, Math.Scand 53
(1983), 281-301.

[3] A. Greco and B Kawohl, Log-concavity in some parabolic problems.
Electronic J. of Differential Equations 19 (1999), 1-12.

[4] I. Karatzas and E. Shreve, Brownian Motion and Stochastic Calculus,
2:nd edition. Springer 1991.

[5] N. J. Korevaar, Convex solutions to non-linear elliptic and parabolic
boundary value problems. Indiana Univ. Math. J. 32 (1983), 603-614.
[6] R. Latala, A note on the Ehrhard inequality. Studia Math. 118 (1996),
169-174.

[7] R. Latala, On some inequalities for Gaussian measures, Proceedings
of the ICM, 2 (2002), 813-822

[8] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer,
1991.

School of Mathematical Sciences, Chalmers University of Technology and
Goteborg University, SE-412 96 Goteborg, Sweden

telephone: +46 (0)31 772 35 53

fax: +46 (0)31 16 19 73

e-mail: borell@math.chalmers.se



