AN EFFECTIVE NULLSTELLENSATZ IN TERMS OF RESIDUE CURRENTS

MATS ANDERSSON

ABSTRACT. We prove an effective Nullstellensatz for complex polynomials where the polynomial degree of the solution is related to the vanishing of a certain residue current in \(\mathbb{P}^n \). We also provide explicit integral representations of the solutions.

1. INTRODUCTION

If \(P_1, \ldots, P_m \) are given polynomials in \(\mathbb{C}^n \) with no common zeros, then by Hilbert’s Nullstellensatz there are polynomials \(Q_j \) such that

\[
\sum_{j=1}^{m} P_j Q_j = 1.
\]

An analytic proof can be obtained in the following way. Since the homogenizations of \(P_j \) are holomorphic even across the hyperplane at infinity in \(\mathbb{P}^n \) it follows that

\[
\sum_{j=1}^{m} \frac{|P_j(z')|^2}{(1 + |z'|^2)^{d_j}} \geq c \frac{1}{(1 + |z'|^2)^M},
\]

for some integer \(M \) (here \(z' = (z_1, \ldots, z_n) \) and \(d_j = \deg P_j \)). One can then use an explicit integral formula, see [6], [5], to obtain a solution \(Q = (Q_1, \ldots, Q_m) \) to (1.1). One can also use the Koszul complex to reduce to a sequence of \(\bar{\partial} \)-equations in \(\mathbb{C}^n \) which are to be solved by polynomial growth, or one can apply Skoda’s \(L^2 \)-estimate for vector bundle homomorphisms, [15].

It is sometimes of interest to get some bound of the degree of the resulting solution. The breakthrough was in the paper [8] where Brownawell proved that (1.2) holds with \(M = (n - 1)d_{\min(m,n)} - 1 + d \) (assuming \(\deg P_j \leq d \)) and by applying theorem he obtained a solution \(Q \) with \(\deg Q_j \leq n \min(m, n) d_{\min(m,n)} + \min(m, n) d \). Soon after that Kollár [13] obtained by purely algebraic methods the optimal bound

\[
\deg P_j Q_j \leq N(d_1 \cdots d_m),
\]

where \(N(d_1 \cdots d_m) = d_1 = \cdots d_m \) if \(m \leq n \); for the case when \(m > n \), see [13]. More generally he proved

\[
\text{Date: September 13, 2003.}
\]

The author was partially supported by the Swedish Natural Science Research Council.
Theorem 1.1 (Kollár). Let P_1, \ldots, P_n and Φ be polynomials in \mathbb{C}^n of degrees d_j, and r, respectively, and assume that Φ vanishes on the common zero set of P_j. Then (if $d_j \neq 2$), one can find polynomials Q_j and a natural number s such that $\sum P_j Q_j = \Phi^s$, and such that $s \leq N(d_1 \cdots d_m)$ and $\deg(P_j Q_j) \leq (1 + r) N(d_1 \cdots d_m)$.

The bounds of the degrees here are optimal. From this theorem he deduces the best possible constant M in (1.2) which is $M = N(d_1 \cdots d_m)$. On the other hand, if we start with this estimate, the analytic tools only give back $\deg P_j Q_j \leq \min(m, n) N(d_1 \cdots d_m)$ cf. Corollary 1.4 below. This is thus weaker than the optimal result due to Kollár. The factor $\min(m, n)$ is related to the Briançon-Skoda theorem, [7]; see [5] for a further discussion. Thus, as long as we only consider the degrees of the polynomials P_j the problem is completely solved by Kollár. However, in more specialized situations one can obtain sharper results.

In this paper we formulate a sufficient condition, in terms of a global residue current, to have a solution Q satisfying $\deg(P_j Q_j) \leq r$.

Remark 1. In this paper we only consider polynomials over \mathbb{C}. However, Kollár’s theorem holds for an arbitrary field. Berenstein and Yger, [4], have obtained variants of Brownawell’s result for subfields of \mathbb{C}, by means of explicit integral formulas; see also [5] for a thorough discussion and more references.

In [9] Brownawell has given a prime power version of the Nullstellensatz which shed more geometric light on Kollár’s theorem, and there is a generalization to smooth algebraic manifolds in [11].

Let P_1, \ldots, P_m be polynomials in \mathbb{C}^n. If p_j denote homogenizations of P_j, i.e., $p_j(z) = z_0^{d_j} P_j(z'/z_0)$, where $d_j \geq \deg P_j$, then each p_j defines a global holomorphic section to the line bundle $L^{d_j} \to \mathbb{P}^n$, and hence $p = p_1 + \cdots + p_m$ is a section to the rank m bundle $E^* = L^{d_1} \oplus \cdots \oplus L^{d_m}$ over \mathbb{P}^n. If E^* is equipped with the natural hermitian structure, then

$$
||p(z)||^2 = \sum_1^m \frac{|p_j(z)|^2}{|z|^{2d_j}}.
$$

Following [2] we can define the residue current R^p to the section p, which is an element in $\bigoplus_t \mathcal{D}_{0,t}(\mathbb{P}^n, \Lambda^t E)$ and with support on the zero set

$$
Z^p = \{[z] \in \mathbb{P}^n; p(z) = 0\}.
$$

If we assume that the polynomials P_j have no common zeros in \mathbb{C}^n, then of course Z^p is a subset of the hyperplane at infinity. If $\text{codim} Z^p = m$, i.e., p is a complete intersection, then R^p is a $(0, m)$-current with values in $\text{det } E = L^{-\Sigma d_j}$; more precisely a Coleff-Herrera current which formally can be written

$$
R^p = \left[\overline{\partial} \frac{1}{p_1} \wedge \ldots \wedge \overline{\partial} \frac{1}{p_m} \right],
$$

see Section 2.
Theorem 1.2. Let P_1, \ldots, P_m be polynomials in \mathbb{C}^n, $\deg P_j \leq d_j$, let $p = p_1 + \cdots + p_m$ be the corresponding section to $E^* = L^1 \oplus \cdots \oplus L^m$ over \mathbb{P}^n, and let R^p be its residue current. Moreover, assume that

\begin{equation}
\tag{1.4}
m \leq n \quad \text{or} \quad r \geq \sum_{j=1}^{m} d_j - n.
\end{equation}

Let Φ be a polynomial, $\deg \Phi \leq r$, and let $\phi \in \mathcal{O}(\mathbb{P}^n, L')$ denote its r-homogenization. If

\begin{equation}
\tag{1.5}
\phi R^p = 0,
\end{equation}

then there are polynomials Q_j such that

$$
\Phi = \sum_{j=1}^{m} P_j Q_j
$$

and $\deg(P_j Q_j) \leq r$. If p is a complete intersection (then the condition (1.4) is fulfilled) and there are such polynomials Q_j, then the condition (1.5) holds.

It is clear that the conclusion about $\deg P_j Q_j$ cannot be improved. If $\Phi = 1$ the condition (1.5) means that P_j have no common zeros in \mathbb{C}^n and that z_0^r annihilates the residue R^p at infinity. If Z^p is empty and $m = n + 1$ we get a solution to (1.1) such that $\deg P_j Q_j \leq \sum d_j - n$; this is a classical theorem of Macauley, [14].

If

\begin{equation}
\tag{1.6}
\|\phi\| \leq C\|p\|,
\end{equation}

then, see [2], $\phi \min\{m, n\} R^p = 0$, and hence we have

Corollary 1.3. Let P_j and Φ be as in Theorem 1.2 and assume that

$$
m \leq n \quad \text{or} \quad r \min\{m, n\} \geq \sum_{j=1}^{m} d_j - n.
$$

If (1.6) holds, then there are polynomials Q_j such that

$$
\sum_{j=1}^{m} P_j Q_j = \Phi \min\{m, n\}
$$

and $\deg(P_j Q_j) \leq r \min\{m, n\}$.

Since there are examples where p is a complete intersection and the full power of $\min\{m, n\}$ of ϕ is needed to kill R^p, this result is then sharp.

In particular, (1.2) means that P_j have no common zeros in \mathbb{C}^n and that

$$
\|z_0\|^M \leq C\|p\|.
$$

Thus $z_0^M \min\{m, n\} R^p = 0$ so we have

Corollary 1.4. Let P_1, \ldots, P_m be polynomials in \mathbb{C}^n of degrees d_j such that (1.2) holds for some number M, and assume that

$$
m \leq n \quad \text{or} \quad M \min\{m, n\} \geq \sum_{j=1}^{m} d_j - n.
$$

Then there is a solution to $\sum P_j Q_j = 1$ with $\deg(P_j Q_j) \leq \min(m, n) M$.

Example 1. Let M be a given positive integer. In \mathbb{C}^n we take $P_j = \zeta_j^{Mm}$ for $j = 1, \ldots, m$ and let $\Phi = (\zeta_1 + \cdots + \zeta_m)^{Mm}$. Then Z^p is just the origin, thus p is a complete intersection, and $\|\Phi\| \leq C\|P\|$. It is easily checked that $\Phi^n R^p = 0$ but $\phi^{m-1} R^p \neq 0$. One can just as well see that $\sum Q_j P_j = \Phi^n$ is solvable whereas $\sum Q_j P_j = \Phi^{m-1}$ is not. Thus the statement in Corollary 1.3 is optimal.

Taking $z_0 = \zeta_1 + \cdots + \zeta_m$, $z_j = -\zeta_j$ for $j < m$, $p_j = z_j^{Mm}$ for $j < m$ and $p_m = (z_0 + z_1 + \cdots + z_{m-1})^{Mm}$, we have that $\|z_0\|^M \leq C\|p\|$. We need the power $Mm - m + 1$ of z_0 to kill R^p, which is close to $Mm = M\min(m, n)$ if M is large, and thus Corollary 1.4 is almost optimal.

Remark 2. The condition (1.6) means that ϕ locally on \mathbb{P}^n belongs to the integral closure of p. In [12], Hickel proves that if Φ is in the integral closure of P in \mathbb{C}^n, then one can solve (assuming $m \leq n$ for simplicity) $\Phi^n = \sum P_j Q_j$ with $\deg(P_j Q_j) \leq m\deg \Phi + md_1 \cdots d_m$. This result would follow from Theorem 1.2 if one could prove that the current $z_0^{m(d_1 \cdots d_m)} \phi^m R^p$ vanishes (ϕ is the deg Φ homogenization of Φ). In \mathbb{C}^n it vanishes since $|\Phi| \leq C|P|$ locally. If the zero set is contained in $\{z_0 = 0\}$ the current vanishes there by Kollár’s theorem. We do not know how one can see the general case.

Theorem 1.2 is a special case of the following more general result, for which we formulate only the homogeneous version. Let δ_p denote the mapping $\mathcal{E}(\mathbb{P}^n, \Lambda^{\ell+1} E \otimes L') \to \mathcal{E}(\mathbb{P}^n, \Lambda^p E \otimes L')$ defined as interior multiplication with the section p to E^*. Thus for instance, if $q = q_1 + \cdots + q_m$ is a section to $E \otimes L'$, then $\delta_p q$ is equal to the section $\sum_j p_j q_j$ to L'.

Theorem 1.5. Let p be holomorphic section to $E^* = L^{d_1} \oplus \cdots \oplus L^{d_m}$ and assume $\ell \geq 0$ is given and that

$$m - \ell \leq n \quad \text{or} \quad r \geq \sum_{i=1}^m d_i - n.$$

If $\phi \in \mathcal{O}(\mathbb{P}^n, \Lambda^{\ell+1} E \otimes L')$, then $\phi = \delta_p \psi$ for some $\psi \in \mathcal{O}(\mathbb{P}^n, \Lambda^\ell E \otimes L')$ if and only if

$$\nabla_p (w \wedge R^p) = \phi \wedge R^p$$

for some smooth w defined in a neighborhood of Z^p.

If $\ell > m - p$ then (1.7) is void; if $\ell = m - p$, then (1.7) just means that $\phi \wedge R^\ell = 0$. If p is a complete intersection, then $m \leq n$ and therefore we have

Corollary 1.6. Let p be a holomorphic section to $E^* = L^{d_1} \oplus \cdots \oplus L^{d_m}$ that is a complete intersection, and assume that $r \geq 0$. If $\phi \in \mathcal{O}(\mathbb{P}^n, L')$, then $\phi \cdot q$ is solvable with $q \in \mathcal{O}(\mathbb{P}^n, E \otimes L')$ if and only if $\phi R^p = 0$.
AN EFFECTIVE NULLSTELLENSATZ IN TERMS OF RESIDUE CURRENTS 5

Proof of Theorem 1.2. If the hypotheses in Theorem 1.2 are fulfilled, then Theorem 1.5 provides a section \(q = q_1 + \ldots + q_m \) to \(E \otimes L^r \) such that \(\sum p_j q_j = \delta_p q = \phi \); here \(q_j \) are sections to \(L^{-a_j} \). After dehomogenization this means that \(Q_j \) are polynomials such that \(\deg P_j Q_j \leq r \). □

In Section 2 we recall the necessary background from [2] about the residue currents, and present a general result about the image of a holomorphic morphism \(f \). Combined with well-known vanishing results for the line bundles \(L^r \to \mathbb{P}^n \) it leads to a proof of Theorem 1.5.

In the last section we construct explicit integral representations of the solutions in Theorem 1.2. They give essentially the same results except for a small loss of precision. The construction is based on the ideas in [2] and [3].

2. THE RESIDUE CURRENT OF A HOLOMORPHIC SECTION

Let \(E \to X \) be a holomorphic hermitean vector bundle and let \(f \) be a holomorphic section to the dual bundle \(E^* \), or in other words, a holomorphic morphism \(f : E \to X \times \mathbb{C} \). Let

\[
\mathcal{L}^r = \bigoplus_{\ell} \mathcal{D}_{0,\ell+1}(X, \Lambda^\ell E);
\]

we consider \(\mathcal{L}^r \) as a subbundle to \(\Lambda(T_0^* \oplus E) \), so that \(\delta f \) (i.e., interior multiplication with \(f \)) and \(\bar{\partial} \) anticommutes. Then \(\nabla_f = \delta_f - \bar{\partial} \) induces the complex \(\to \mathcal{L}^{r-1} \to \mathcal{L}^r \to \cdots \). Let \(s \) be the dual section to \(E \) of \(f \) so that in particular \(\delta_f s = |f|^2 \). In [2] we defined the current

\[
R^f = \bar{\partial}|f|^{2\lambda} \wedge s \frac{s}{\bar{s}}|_{\lambda-0};
\]

for large \(\Re \lambda \) the right hand side is integrable and therefore a well-defined current, and by a nontrivial argument based on Hironaka’s theorem one can make an analytic continuation to \(\lambda = 0 \). The resulting current is an element in \(\mathcal{L}^0 \) with support on \(Z^f = \{ z; f(z) = 0 \} \) and it satisfies the basic equality

\[
\nabla_f U^f = 1 - R^f,
\]

where \(U \in \mathcal{L}^{-1} \) is defined as

\[
U_f = |f|^{2\lambda} \frac{s}{\bar{s}}|_{\lambda-0}.
\]

Moreover,

\[
R^f = R^f_{c,c} + \ldots + R^f_{m,m},
\]

where \(c = \text{codim} Z^f \); here lower index \(p,q \) means a \(\Lambda^p E \)-valued \((0,q) \)-form. It was also proved in [2] that \(h^{\min(m,n)} R^f = 0 \) if \(h \) is holomorphic.
and $|h| \leq C|f|$. Let $L \to X$ be a holomorphic line bundle and let ϕ be a holomorphic section to $\Lambda^k E \otimes L$.

Theorem 2.1. Let $\ell \geq 0$ and suppose that $H^{0,s}(X, \Lambda^{s+\ell+1} E \otimes L) = 0$ for all $1 \leq s \leq m - \ell - 1$. Moreover, let $\phi \in \mathcal{O}(X, \Lambda^\ell E \otimes L)$. Then $\delta_f \psi = \phi$ has a solution $\psi \in \mathcal{O}(X, \Lambda^{\ell+1} E \otimes L)$ if and only if there is a smooth solution w, defined in a neighborhood of Z^I, to

$$\nabla_f (w \wedge R^I) = \phi \wedge R^I. \tag{2.3}$$

In view of (2.2), the condition (2.3) is void if $\ell > m - c$, since $w = w_{\ell+1,0} + w_{\ell+2,1} + \cdots$ the condition means precisely that $\phi \wedge R^I = 0$ if $\ell = m - c$.

Proof. Suppose that the holomorphic solution ψ exists. Then $\nabla_f \psi = \phi$ and hence $\nabla_f (\psi \wedge R^I) = \phi \wedge R^I$ since $\nabla_f R^I = 0$. Conversely, if (2.3) holds, then $\nabla_f v = \phi$, where

$$v = (-1)^\ell \phi \wedge U^I + w \wedge R^I;$$

this means that

$$\delta v_{m,m-\ell-1} = 0 \quad \text{and} \quad \delta_f v_{k+1,k-\ell} = \delta v_{k,k-\ell-1}. \tag{2.4}$$

By the assumption on the Dolbeault cohomology, we can successively solve the equations

$$\delta v_{m,m-\ell-2} = v_{m,m-\ell-1}, \quad \delta f v_{k,k-\ell-2} = v_{k,k-\ell-1} + \delta f v_{k+1,k-\ell-1}, \quad k \geq \ell,$n

and then finally $\psi = v_{\ell,0} + \delta_f v_{k+1,0}$ is the desired holomorphic solution.

Example 2. Suppose that X is a compact and L is a strictly positive line bundle. Then there is an $r_0 > 0$ such that $H^{0,k}(X, \Lambda^k E^* \otimes L^*) = 0$ for all $k \geq 1$ if $r \geq r_0$. If f is a holomorphic section to E^*, then a holomorphic section $\phi \in \mathcal{O}(\Lambda^\ell E \otimes L^*)$, $r \geq r_0$, is in the image of the morphism

$$\mathcal{O}(X, \Lambda^{\ell+1} E \otimes L^*) \to \mathcal{O}(X, \Lambda^\ell E \otimes L^*) \tag{2.4}$$

if $\phi \wedge R^I = 0$. If $\ell = m - c$ the condition is necessary. □

We shall now focus on the case when $X = \mathbb{P}^n$ and E is the hermitean vector bundle from Section 1. Let E_1, \ldots, E_m be trivial line bundles over \mathbb{P}^n with basis elements e_1, \ldots, e_m, and let E_j^* be the dual bundles, with bases e_j^*. Then we have that

$$E^* = L^{d_1} \otimes E_1^* \oplus \cdots \oplus L^{d_m} \otimes E_m^*, \quad E = L^{-d_1} \otimes E_1 \oplus \cdots \oplus L^{-d_m} \otimes E_m,$$

and for instance our section p can be written

$$p = \sum_{j=1}^m p_j e_j^*.$$
Its dual section s is then, cf., (1.3),
\[
s = \sum_j \frac{p_j(z)}{|z|^{2d_j}} e_j,
\]
so
\[
R^p = \partial ||p||^{2\lambda} \wedge \sum_{\ell+1}^{m} s \wedge (\partial s)^{\ell-1}_{|p|^{2\ell}} |_{\lambda=0}^{-}.
\]
In $\mathbb{C}^n = \{z_0 \neq 0\} \subset \mathbb{P}^n$ we have the coordinates z' and the natural holomorphic frame $e_j = z_0^{-d_j} e_j$ and its dual $e_j^* = z_0^{d_j} e_j^*$. If $p_j'(z') = p_j(1,z')$ then
\[
p = \sum_1^m p_j' e_j^*
\]
and
\[
s = \sum_1^m \frac{p_j(z')}{(1 + |z'|)^{d_j}} e_j.
\]
When codim $Z^p = m$, the residue current R^p is independent of the metric, it just contains the top degree term $R^p_{m,m}$, and in fact, see [2],
\[
R^p = [\partial^{-1}_{p'_m} \wedge \ldots \wedge \partial^{-1}_{p'_1}] \wedge e_1 \wedge \ldots \wedge e_m,
\]
where the expression in brackets is the Coleff-Herrera residue current which we can rewrite formally as
\[
(2.5) \quad [\partial^{-1}_{p'_m} \wedge \ldots \wedge \partial^{-1}_{p'_1}] \wedge e_1 \wedge \ldots \wedge e_m.
\]

Proof of Theorem 1.5. It is wellknown, see, e.g., [10], that $H^{0,k}(\mathbb{P}^n, L^\nu) = 0$ for all ν if $1 \leq k \leq n - 1$ and that $H^{0,n}(\mathbb{P}^n, L^\nu) = 0$ if $\nu \geq -n$. Since $E = L^{-d_1} \oplus \ldots \oplus L^{-d_m}$ we have that
\[
\Lambda^r E \oplus L^r = \bigoplus_{|J| - \nu} L^{-d_{j_1}} \otimes \ldots \otimes L^{-d_{j_\nu}} \otimes L^r = \bigoplus_{|J| - \nu} L^{-d_{j_1}, \ldots, d_{j_\nu}}.
\]
Thus $H^{0,s}(\mathbb{P}^n, \Lambda^{s+\ell+1} E \otimes L^r) = 0$ for $1 \leq s \leq m - \ell - 1$ if either $m - \ell - 1 \leq n - 1$ or $r - \sum d_j \geq -n$. Now Theorem 1.5 follows from Theorem 2.1 with $f = p$.
\[\square\]
3. Integral Representation

The aim of this section is to present an explicit integral representation of the solution Q_j to the division problem in Theorem 1.2. We have

Theorem 3.1. Let P_1, \ldots, P_m, Φ be polynomials in \mathbb{C}^n, let p and R^p be as before, and let ϕ be the r-homogenization of Φ (deg $\Phi \leq r$). Then there is an explicit decomposition

$$
\Phi(z') = \sum_{1}^{m} P_j(z') \int_{\mathbb{P}^n} T^j(\zeta, z') \phi(\zeta) + \int_{\mathbb{P}^n} S(\zeta, z') \wedge R^p(\zeta) \phi(\zeta),
$$

where $T^j(\zeta, z'), S(\zeta, z')$ are smooth forms (in $|\zeta|$) on \mathbb{P}^n and holomorphic polynomials in z', such that

$$
deg_{z'}(P_j(z') T^j(\zeta, z')) \leq d_1 + d_2 + \cdots + d_{\mu+1} + r,
$$

if $\mu = \min(n, m - 1)$ and $d_1 \geq d_2 \geq \cdots \geq d_m$.

Thus, if $\phi R^p = 0$ we get back the conclusion of Theorem 1.2 but with the extra term $d_1 + \cdots + d_{\mu+1}$ in the estimate of the degree.

For fixed $z \in \mathbb{C}^n$,

$$
\eta = 2\pi i \sum_{0}^{n} \frac{z_j \partial}{\partial \zeta_j}
$$

is an $L_z \otimes L^{-1}_{\zeta}$-valued $(1,0)$-form on \mathbb{P}^n, and if δ_{η} denotes interior multiplication with η, then

$$
\delta_{\eta} : \mathcal{D}'_{\ell+1,0}(\mathbb{P}^n, L_{r+1}) \to \mathcal{D}'_{\ell,0}(\mathbb{P}^n, L^r).
$$

Remark 3. When we say that η is a section to $L_z \otimes L^{-1}_{\zeta}$ rather than $L^{-1} = L^{-1}_{\zeta}$, we just indicate that it is 1-homogeneous in z; it would be more correct, but less convenient, to consider η as a section to the bundle $L_z \otimes L^{-1}_{\zeta} \otimes (T^*_\zeta)_{0,1}$ over $\mathbb{P}_z \times \mathbb{P}^n$.

Let $\nabla_{\eta} = \delta_{\eta} - \bar{\partial}$. Notice that if

$$
\alpha = \alpha_0 + \alpha_1 = \frac{z \cdot \bar{\zeta}}{|\zeta|^2} - \frac{\bar{\partial} \zeta \cdot d\zeta}{2\pi i |\zeta|^2},
$$

then the first term, α_0, is a section to $L_z \otimes L^{-1}_{\zeta}$ and the second term, α_1, is a projective form (since $\delta_\zeta \alpha_1 = 0$); moreover

$$
\nabla_{\eta} \alpha = 0.
$$

We have the following basic integral representation of global holomorphic sections to L^r.

Proposition 3.2. Assume that $r \geq 0$ and that $\phi \in \mathcal{O}(\mathbb{P}^n, L^r)$. Then

$$
\phi(z) = \int_{\mathbb{P}^n} \alpha_{n+r} \phi.
$$
For degree reasons, actually
\[
\phi(z) = \frac{(n+r)!}{n!r!} \int_{\mathbb{P}^n} \alpha_0^r \wedge \alpha_1^n;
\]
this formula has appeared at several places, and expressed in affine coordinates it is a well-known representation formula for polynomials in \(\mathbb{C}^n \). However, we prefer to supply a direct proof on \(\mathbb{P}^n \), following the ideas in [1].

Proof. Let \(\sigma \) be the \(L_z^{-1} \otimes L_\zeta \otimes T^*_1(\mathbb{P}^n) \) valued \((1,0)\)-form on \(\mathbb{P}^n \) that is dual, with respect to the natural metric, to \(\eta \). Then, since \(\eta \) has a first order zero at \([z]\) (and no others), it follows (see, e.g., [1]) that
\[
\nabla_{\eta} \frac{\sigma}{\nabla_{\eta} \sigma} = 1 - [[z]].
\]
The rightmost term is the \(L_z^{n} \otimes L_\zeta^r \)-valued \((n,n)\)-current point evaluation at \([z]\) for sections to \(L_z^{-n} \). If \(\phi \) is a global holomorphic section to \(L' \) it follows by (3.2) that
\[
\nabla_{\eta} \left(\frac{\sigma}{\nabla_{\eta} \sigma} \wedge \alpha_1^{n+r} \phi \right) = \phi \alpha_1^{n+r} - \phi[[z]],
\]
where this time the last term is \(\phi \) times the \(L_z' \otimes L_\zeta'^r \)-valued current point evaluation at \([z]\). If we integrate this equality over \(\mathbb{P}^n \) we get the desired representation formula. \(\square \)

Let \(E_1, \ldots, E_m \) be the trivial line bundles over \(\mathbb{P}^n \) with basis elements \(\epsilon_1, \ldots, \epsilon_m \), so that \(E = L^{-d_1} \otimes E_1 \oplus \cdots \oplus L^{-d_m} \otimes E_m \) as in Section 2. We also introduce disjoint copies \(\bar{E}_j \) of \(E_j \) with bases \(\bar{\epsilon}_j \) and the bundle
\[
\bar{E} = L^{-d_1} \otimes \bar{E}_1 \oplus \cdots \oplus L^{-d_m} \otimes \bar{E}_m.
\]
Let \(\Lambda \) be the exterior algebra bundle over the direct sum of all the bundles \(E, \bar{E}, E^*, \) and \(T^*(\mathbb{P}^n) \). Any form \(\gamma \) with values in \(\Lambda \) can be written uniquely as \(\gamma = \gamma' \wedge \left(\sum \epsilon_j^* \wedge \epsilon_j \right)^m / m! + \gamma'' \) where \(\gamma'' \) denotes terms that do not contain a factor \(\left(\sum \epsilon_j^* \wedge \epsilon_j \right)^m / m! \), and we define
\[
\int_\epsilon \gamma = \gamma'.
\]
We have a globally defined form
\[
\tau = \sum_j \epsilon_j^* \wedge (\epsilon_j - \bar{\epsilon}_j).
\]

From now on we consider \([z]\) as a fixed arbitrary point in \(\mathbb{C}^n \subset \mathbb{P}^n \), and let \(z = (1, \bar{z}') \). We also introduce the section
\[
p_z = \sum_j \zeta^d_j p_j(1, z) \epsilon_j^* = \sum \zeta^d_0 P_j(z') \epsilon_j^*
\]
to \(E^* \) and let \(\bar{p}_z \) be the corresponding section to \(\bar{E}^* \).
Lemma 3.3. There is a holomorphic section $H = \sum H_j \wedge \epsilon_j$ to $E^* \otimes L \otimes T^*_{1,0}$, thus H_j are sections to $L^{d_j} \otimes L \otimes T^*_{1,0}$, such that

$$\delta_\eta H = p - p_z,$$

and such that the coefficients in H_j are polynomials in z'/z_0 of degrees (at most) $d_j - 1$.

Proof. For each $P_j(z')$ we can find Hefer functions $h_j^k(\zeta', z')$, polynomials of degree $d_j - 1$ in (ζ', z'), such that

$$\sum_{k=1}^n h_j^k(\zeta', z')(\zeta_k - z_k) = P_j(\zeta') - P_j(z').$$

If we then take

$$H_j = \frac{\zeta_0^{d_j+1}}{2\pi i} \sum_{k=1}^n h_j^k(\zeta'/\zeta_0, z')d(\zeta_k/\zeta_0),$$

then clearly H_j is a projective $(1,0)$-form, and moreover,

$$\delta_\eta H_j = p_j(\zeta) - \zeta_0^{d_j} P_j(z')$$

as wanted.

Let δ_F denote interior multiplication with the section $F = p + p_z$ to $E^* \oplus \tilde{E}^*$. Then $\delta_F\tau = p - p_z = -\delta_\eta H$. If

$$\nabla = \delta_F + \delta_\eta - \bar{\partial},$$

thus

$$\nabla(\tau + H) = 0.\quad(3.3)$$

We are now ready to define the explicit division formula.

Proof of Theorem 3.1. From (3.3) it follows that

$$(\nabla_\eta + \delta_F)(e^{\tau + H} \wedge U^p) = e^{\tau + H} \wedge (1 - R^p).\quad(3.4)$$

We can rewrite this as

$$\delta_F(e^{\tau + H} \wedge U^p) + e^{\tau + H} \wedge R^p = e^{\tau + H} - \nabla_\eta(e^{\tau + H} \wedge U^p).\quad(3.5)$$

We claim that the component of full bidegree (n, n) of

$$\int_\epsilon [e^{\tau + H} - \nabla_\eta(e^{\tau + H} \wedge U^p)] \wedge \alpha^\tau \phi$$

is equal to

$$\frac{(n + r)!}{n!r!} \alpha_0^r \alpha_0^r \phi + \check{\delta}(\cdots)$$

where (\cdots) is a scalar valued $(n, n - 1)$-form. In fact, since α^{n+r} has bidegree (\ast, \ast) the factor $U_{k, k-1}$ must be combined with H_k, and then it follows that τ can be replaced by $\omega = \sum_{j} \epsilon_j^* \wedge \epsilon_j$. Observe that the component of $U_{k, k-1}$ with basis element $\epsilon_{j_1} \wedge \ldots \wedge \epsilon_{j_k}$ takes values in $L^{-\left(d_{j_1} + \cdots + d_{j_k}\right)}$, whereas the component of H_k with basis element $\epsilon_{j_1} ^* \wedge$
\[\mathcal{S}(\zeta, z') \cap \mathbb{R}^p(\zeta) = \int e^{\omega + H} \cap \mathbb{R}^p \cap \alpha^{n+r} = \sum_{k=0}^{m-1} e^{\omega_{m-k-1} \cap H_k \cap U_{k+1, k} \cap \alpha_1^{n-k} \alpha_0^{k+r}} \]

and

\[T^j(\zeta, z') = \int e^{\omega + H} \cap \mathbb{R}^p(\zeta) = \sum_{k=0}^{m-1} e^{\omega_{m-k-1} \cap H_k \cap U_{k+1, k} \cap \alpha_1^{n-k} \alpha_0^{k+r}} \]

Both \(\alpha \) and \(H \) are polynomials in \(z' \) so it just remains to check the degrees of \(T^j \). The worst case occur when \(k \) is as large as possible which is \(k = \mu = \min(m-1, n) \). Then the factor \(\alpha_0^{k+r} \) has degree \(k+r \). Recall that \(H = \sum H_j \cap e^\ast_j \) and that \(\deg H_j = d_j - 1 \). The term \(H_j \) cannot occur, because of the presence of \(e^\ast_j \), and thus we get that \(d_j + \deg Q_j \) is at most \(d_1 - 1 + d_2 - 1 + \cdots + d_{\mu+1} - 1 + 1 + \mu + r = d_1 + \cdots + d_{\mu+1} + r \). \(\square \)
The main novelty with these formulas is that they contains the global residues R^p and U^p. However, even if we suppress the residues by assuming ϕ is vanishing enough, and consider them as formulas in \mathbb{C}^n, they differ from the formulas from [6] and admit sharper estimates of the degrees, see the discussion in [3].

REFERENCES

Department of Mathematics, Chalmers University of Technology and the University of Göteborg, S-412 96 GÖTEBORG, SWEDEN
E-mail address: matsa@math.chalmers.se