RESIDUES OF HOLOMORPHIC SECTIONS AND
LELONG CURRENTS

MATS ANDERSSON

ABSTRACT. Let Z be the zeroset of a holomorphic section f to a
hermitian vector bundle. It is proved that the current of integration
over the irreducible components of Z of top degree, counted with
multiplicities, is a product of a residue factor R and a “Jacobian
factor”. There is also a relation to the Monge- Ampere expressions
(dd°log | f|)*, which we define for all positive powers k.

1. INTRODUCTION

Let f = (f1,..., fm) be a holomorphic mapping on a complex man-
ifold X of dimension n and let Z = {f = 0}. If f is a complete
intersection, i.e., codim Z = m, and

-1
A R
ch [ fm fl}
is the classical Coleff-Herrera current, then
df 1 A df m
(1.1) RS A @ = a7,

where Z; are the irreducible components of Z and «; are multiplicities
related to the mapping f.

Let ' — X be a holomorphic hermitean vector bundle of rank
m. Given f € O(X,F), we defined in [1] the residue current R/,
which is a section to @, &j (X, A’F*) (considered as a subbundle to
E(X,ANT*(X)® F¥))) w1th support on Z. If p = codim Z, then

(1.2) RN =Rl +---+RI,

where R/ is the component in & ,(X, A’F*), see Section 2.
If f is a complete intersection, then locally

(1.3) Rf—Rf—[a—/\ Aél}/\ef/\.../\e:n,
fm fl

if e; is a local holomorphic frame for F, e} is the dual frame and

f = fier +---+ fiem. Notice that the duality of F and F* induces

a duality between the exterior algebra bundles A*F and A*F*. If D
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is any connection on F, then the factorization (1.1) can be written
invariantly as

(1.4) I (Df)2mi)™/m! = Za][Z

In fact, in a local holomorphic frame Df = > df; Nej + O(f), the

latter expression denoting smooth terms that contain some factor f;; it

is well-known that f; R/ = 0, and so (1.4) follows from (1.1) and (1.3).

(In [5] is found a factorization like (1.4) when Z locally is complete

intersection but not necessarily the zero set of a holomorphic section.)
Our main result is the following more general statement.

Theorem 1.1. Let f be a holomorphic section to the hermitean vector
bundle F — X and let p = codim Z. If RY is the residue current and
D the Chern connection, then

(1.5) S (Dff2mi)P/pl =D oyl ZP),

where Z;’ are the irreducible components of top dimension (codimension
p) of Z and o are the multiplicities of Z;.

Let a be a given point on the regular part of some Zf. If fi,..., fp are
the first p coefficients with respect to a generic holomorphic frame at a,
then «; is the multiplicity of the restriction of the mapping (f1,..., fp)
to a generic complex p-plane through a (with respect to some local
holomorphic coordinates), see, e.g., [4].

Corollary 1.2. Under the hypothesis in the theorem it follows that Rg,p
18 not identically zero.
Given a local frame e; and its dual frame e}, then
!
RI = (Rl)ine, A...nej,.
[7|=p
If F'is a trivial bundle equipped with the trivial metric then Df =

D(fie1 + -+ -+ fmem) = df1 A e1 + Adfm A em, and the theorem then

means that
!

Z(R,]:)I A dfp, N... Ndfy, _ Z [Zp]

s (27Tz)

It follows from Remark 2 in Section 3 that one can replace D by any
Chern connection associated with some hermitean metric, but unlike
the case with a complete intersection, the theorem is (probably) not
true with any (holomorphic) connection. In the case X = P" and f
homogeneous polynomials, a formula related to (1.5) appeared in [3].

For the proof of Theorem 1.1 we use King’s formula, [6], [4], which
states that if f is as above and we have the trivial metric, then

(1.6) (ddlog |f[)P1z = ay[2].
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Recently Meo, [8], proved (1.6) and some related formulas for an ar-
bitary hermitean metric. As a by-product of the proof of our main
theorem we obtain new proofs of these results. We also introduce a
meaning to the Monge-Ampere expression (dd®log|f|)* for any pos-
itive power k, and discuss its connection to the residue current R/
as well as to some other related currents. In particular we have the
factorization

(ddlog |f|)*1, = R] - (Df/2mi)* /k!
for any k if the bundle F' is trivial and equipped with the trivial metric.

2. THE RESIDUE CURRENT OF A HOLOMORPHIC SECTION

Given the vector bundle F' — X we consider the exterior algebra
A=AT*(X)® F®F*). Any section v to AT*(X) ® (F @ F*) induces
a section 4 to A, just by identifying elements like £ @ n with £ A n
and extending bilinearly (one just have to keep track of the order). A
connection Dy on F induces a natural connection D on A(F & F*),
and it induces a mapping on (X, A(T*(X) & F & F*)) which we also
denote by D, via

DE = DE.
It is an antiderivation, i.e., D(é An) = DE A n + (—1)%8¢E A Dn,
where deg ¢ refers to the total degree of £ (with respect to both F', F*,
and 7%(X)). A form-valued endomorphism a € &, (X, End(F')) can be
identified with

a= Zajk/\ej/\e};,

ik
if e; is a local frame, €] is its dual frame, and a = ij ajr ® e Q e
with respect to these frames. For instance, if I is the identity mapping

on FE. then I= e A e;. If Dgyq(ry denotes the induced connection
on the bundle End(F’), then

(21) DEndFa = Da.

If © = D?is the curvature tensor, then by Bianchi’s identity, Dgn,qr® =
0. Thus,

(2.2) DO =0 and DI=0.

Assume now that F' is a hermitean vector bundle and let D be the
associated Chern connection. Given the holomorphic section f to F',
we let 6;: (X, A1 F*) — £(X, A¥F*) be interior multiplication (con-
traction) with f. It clearly extends to a mapping on £(X,A) and it
anti-commutes with 9. If we let V} = 6; — @ we therefore have that
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(V'})? = 0. Let s be the section to F* that is dual to f with respect to
the hermitean metric, so that in particular d;s = |f[%. Then

s s +8/\(58) L sA(9s)™!
Ry ATl P
in X \ Z. Since (V})? =0,

" $

=1
fV’;s

in X \ Z. The form |f|**s/V'ls is welldefined in X if Re\ is large, it
has an analytic continuation as a current to Re A > —e, see [1], and

S

f 12
U _|f| /\vI;S|A:O'

is a current extension of s/V's across Z. Moreover, ViU/ =1 — R/,

where
s

VI;S ‘/\:0

(therefore) is a current with support on Z, which we call the residue of
f- Tt turns out that the components of degree less than (0, p) vanishes,
o (1.2) holds, see [1]. It is also proved there that R = RI  is
independent of the metric when f is a complete intersection. When
the metric is trivial, RJ, ., is the so-called Bochner-Martinelli residue
current, and it was first proved in [9] that it coincides with the Coleff-
Herrera current, i.e., (1.3). A simplified proof appeared in [1].

Now let

R =8| A

Since D is the Chern connection,
Ds = 0s,

see, e.g., [1], and it is also pointed out there that one can replace 9| f|**

by d|f|** in the definition of R/; thus we have

2, = dlfP A= .
3 R =P n o

However, it is not true that V3 = 0; in fact, [1],
(2.4) V2s = 6,(Df — ©),
where §; denotes contraction with s. Moreover,

(2.5) Vi(Df-0)=0, Vi=—f and 46,I=s.



3. PROOF OF THE MAIN THEOREM

We are primarily interested in the current Rf - (Df/2ri),, but to
begin with we have to consider a somewhat more general current. We
let I, = I"™/m!, and we use the same notation for other forms in
the sequel. Any form « with values in A can be uniquely written as
o =cAI,+ o, where o/ does not have full degree in e;j and e;. If we

define
/ a=c,

then this integral is of course linear and

(3.1) d [a= [Da==[Vsa.

We can now define the current
(3.2) M= /Rf/\ e(Df—é)/27ri+I~.

Since © has bidegree (1,1), a simple consideration of degrees, using
(1.2), reveals that

M =M+ + M,
where M/ is the (k, k)-current

M;f:/ZRfe/\ Df/27r1,)g/\(2 @)kfe/\im,k.

{=p
For degree reasons no factors © occur in the term MI{ and therefore
(3.3) MJ =R/ - (Df/2ni),.

Proposition 3.1. The current M7 is closed and has order zero (mea-
sure coefficients).

Proof. Let
S —0)/2mi+I
M = /ed|f|2’\/\ & p POy,

Then each term is like
s A (0s)1 A (Df)* Asmooth
| f]2¢ ’

and after an appropriate (double) desingularization, cf., [1], we may
assume that there is a holomorphic function f; such that f fof' and
f'#0. Then s = fos' and thus s A (9s)*"! = f¢s' A (0s')*"L. Moreover,
(Df)t = fi ', where « is smooth, and |f| = | fo|u, where u is smooth
and strictly positive, so we get

d| foul**

d|f[** A

smooth
A

fo
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which is locally integrable for Re A > 0 and a current of order zero
when A = 0.

For large Re A we have, by (2.5), that
dM){ _ /dmz\/\ Vf(vi) /\e(fo(:))/2m'+I~+
. s
s .
4 [dfPa S nePrOmI A gt

The expression I is a sum of terms like
sA(0s) P A f A(DF) Asmooth

bk ’
after the desingularization, f A (Df)t = f¢f' A(Df')71, so the entire
singularity in the denominator is cancelled and therefore I, vanishes
when A = 0. Now,

Vi =1- =" V2s=1-—"5,(Df — )
Vys (Vys)2 (Vys)?

by (2.4), so I; gives rise to two terms. The first one contains no singu-

larities at all and it therefore vanishes when A\ = 0. The second term
1S

5 Q —0)/2mi+1
/ d| f[* A (st)Qas(Df — ©) A e(PI=8) 2T _

dlf|** A

. 2X S Df—0)/2mi A I
+27Tz/ed|f| /\W(Sse( )2 el
where we have used (2.5) again. An integration by parts puts ds on the
factor el , which yields a factor s, and thus the integral vanishes since
sAs=0. Thus dM' = dM}f\,\:o = 0 as claimed. O

Remark 1. Let Dp;s be the Chern connection on the vector bundle
F/S — X \ Z, where F/S is equipped with the induced metric, and
let ¢(Dpys) be the Chern form. It turns out that its natural extension
C = c(Dp;s)1x\z is locally integrable in X and that

(3.4) C = /Uf A ezr OFTHDI/2mi p ¢
If

(3.5) Af — /Uf A eﬁé+f+Df/2m"
then

dAk = Ck(D) — Ck - M]{,
where ¢ (D) is the k:th Chern form of D. This is proved in [2]; see also
[8] for a related formula. Since ¢,,(Dp/s) = 0 we have that Cy, = 0, so
it follows in particular that M/ represents the top Chern class c,,(F);
this was proved already in [1]. d



Let _
Olf > A (90]f*)*!

(2mi) | f|2*
Proposition 3.2. If the metric is trivial, then for any k, the form .A,’;/\
18 locally integrable in X for each A > 0, and

M} =Rl - (Df/2ri)*/k! = lim Al,.
A—0t+ ’

AL =01 A

Since |f|? is plurisubharmonic when the metric is trivial, it follows
that M/ is a positive (k, k)-current.
Proof. Since © = 0 for a trivial metric, M/ = RI - (Df/2mi)*/k!. From
(the proof of) Proposition 3.1 it follows that

B Hs)k1
o)l =alpa [P0

is locally integrable for each A > 0 and by definition M, I = M,{)\| A=0-

Thus actually M,f = limy_,q M,{,/\. If f =" fje; in a trivial holomor-
phic frame for F', then

(3.7) s = ije;, 0s = dej Ne;, Df = dej/\ej,
and
(3.8) OfP = fydfy, 0fP ="y df; ndf.

Moreover, a simple combinatorical argument yields that

6:9) [ S de A (S dh A A (S Aes)e A T =

SR A dfy Adf)E
Combining (3.9) and (3.7) we get that
> fidfs A YD Fidfy A (D df; Adfy)F!
(2ma)k| f |2k :

In view of (3.8) we therefore have that M,{,)\ = .A,’;)\, and hence the
proposition follows. O

A (Df/QTf’L)k A im—k

(3.10) ML, =0[f* A

It is easy to see now that sz is positive even for a general metric
and we give a direct argument here, although it is also a consequence
of the main theorem.

Proposition 3.3. The current M] is positive (p = codim Z as usual)
for any hermitean metric.

Proof. With the formula (3.6) for MI{,/\ it follows, cf., (3.3), that M]f =

limy o+ le, y- In a neighborhood of a fixed point 0 we can choose a

local holomorphic frame e; such that the metric h;z(2) is d;, + O(]z[?).
Then s = Y fie; + O(|z[?). Moreover, Dy = d + h™'0h = d + O(|z]),
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and hence Dpf = ) df; Aej + O(|z|). Thus (3.10) holds at z = 0 (for

k = p) as in the previous case, and therefore ng , 1s positive there.
Since the point is arbitrary, the form is positive, and letting A — 0 we
conclude that Mpf is a positive current. O

As mentioned in the introduction, our proof of Theorem 1.1 will rely
on King’s formula which we now recall. Let d° = 5-(0 — 9). If we
have the trivial metric, so that log|f| is plurisubharmonic, then it is
well-known that log | f|(ddlog|f|)* *1x\z is locally integrable for all
k < p, and that

(3.11) dd*(log|f[(dd°log | f)* *1x\7) = (dd°log | f[)*1x\z
for k < p. Moreover, for k = p we have King’s formula, [6] and [4],

(3.12) dde(log ||(dd"log |f[}""Lx\7) =
(ddlog |f[)" Lz + 3 (23],

J

where Z;-’ are the irreducible components of Z of codimension p, and
a; are the multiplicity numbers described after Theorem 1.1 above.

Lemma 3.4. For the trivial metric we have that
c c p—1 1 f
dd(log | |(dd"log | {1’ ™)1, = lim Af
Proof. Since log|f|(dd®log |f|1x\z)?~'1x\z is locally integrable in X,

and A — (|f|* — 1) is increasing for A > 0 we have by dominated
convergence that

/mmﬂwfmmﬂV1Aw%:

lim /%(m”—1)(ddclog|f|)p‘1/\ddc¢.

A—=0t+

The current (dd®log | f|)P '1x\z is closed in the current sense according
to (3.11), and an integration by parts therefore gives

[ zieon, O (5 0L\
. (5 0lf " P
[ G2 e

which proves the lemma since the second term in (3.13) is precisely

[ tad10g 771512 10
(the finiteness of the limit is ensured by King’s formula). g

It is now a simple matter to obtain our main result.
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Proof of Theorem 1.1. Let ZP be the union of all irreducible compo-
nents of Z of codimension p. Then Z\ Z? is a union of regular subman-
ifolds of codimensions more than p. Since sz is a closed (p, p)-current
of order zero it must vanish there, and thus sz has support on ZP.
Therefore, see, e.g., [4],

(3.14) M= o2

for some nonnegative numbers o’. It is easy to see that these numbers
a; are independent of the metric on F'. In fact, the definition of M]f
in a neighborhood of a given point only depends on the metric in that
neighborhood. In view of (3.14), M/ will not be affected if we change
the metric locally on some given irreducible component Z;’ . Since we
can choose a metric which is equal to any two prescribed metrics close
to two given distinct points on Z; it follows that actually (3.14) is
independent of the metric. For a direct argument, see Remark 2 below.
However, when we have the trivial metric, Proposition 3.2, Lemma 3.4
and King’s formula together show that o) actually are equal to the
multiplicities ;. Thus the theorem is proved. O

Remark 2. Here we provide a direct argument for that MI{ = RIJ: .

(Df/2mi), is independent of the metric. Let R/ be the residue current
with respect to another metric. It is enough to show that

A:/(R;,‘—Rg)/\(Df)p/\im,,:o.

Let u = s/Vys (here V; = 7 —0) and let @ be the corresponding form
with respect to the other metric. Then

R — R =V, (0| f|* AuAd)|rzo
(here | f| can be the norm with respect to any metric), and therefore

Rl —R] = 6;(0If* Aund) ., |rmo

(lower indices denote degrees in e} and dz;, respectively). This is be-
cause terms of lower degree than p in dz; of the current Olf P Auni|y=o
must vanish, see [1] Proposition 2.2. Therefore,

A= /(sf(5|f|2A NuAa) A (Df)y A Iy =

/ @IFP* Auna) ., ADF A ALy,

[
where the equality follows from an integration by parts. After desingu-
larization, (9] f|** /\u/\ﬂ)pHp is a smooth form times 9| f[>*/f2*', but
on the other hand (Df), A f is like f§ *1 50 the singularity is cancelled
out, and hence the expression vanishes when A = 0. U
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For any metric and any k, R/ - (Df/2mi)*/k! is a positive (k, k)-
current (it is proved as Proposition 3.3) and M is a closed (k, k)-
current, but in general they do not coincide.

It was recently proved by Meo, [8], that (p = codim Z as usual)
(3.15) Zaj ] = dd“(log | f|(dd°log | f|1x\2)P )1z = Jim, ALy

for an arbltrary metric. In view of Theorem 1.1, they are also all equal
to MI{ . In the general case log|f| is no longer plurisubharmonic so
one cannot rely on the usual theory for the Monge-Ampere operator
acting. In fact, it is not clear a priori that any of the last two currents
in (3.15) is well-defined, let alone positive. The equalities (3.15) are
consequences of more general results in the next section.

4. THE MONGE-AMPERE OPERATOR AND RESIDUE CURRENTS

A crucial point in the proof of the main theorem was the relation
between the currents (dd®log|f|)? and R} - (Df/2mi),. In this section
we discuss their relation for general k. To begin with we introduce a
meaning to the Monge-Ampere expression (dd¢log|f|)* for an arbitrary
positive power k.

Proposition 4.1. Let f be a holomorphic section to a hermitean vector
bundle ' — X and let Z = {f = 0}. Then the form

log | f|(dd°log | f|)F " 1x\z

is locally integrable in X for any k, (dd°log|f|)F '1x\z is closed, and
dd°(log | f|(ddlog | f|1x\z)*") is a current of order zero. Morever,

OLf* A (001 £ %)

L =0fP A
Aer = O = i e
is locally integrable in X for each X > 0, and
(4.1) dd°(log |f|(dd*log | f)* '1x\z))1z = lim Af,

Proof. Since the statement is local in X we may assume that f =
> fje; in some local holomorphic frame in U. By a desingularization
we may assume that f = fyf’, where f; is a holomorphic function and
f" # 0. Then outside the zero set,

dd°log| | = dd° log| "

since dd‘log|fo| = 0 there. Therefore, outside the singularity we have
that

log | f|(dd°log | f)*~" = (log | fo +log | f'|)(dd"log | f')*~".

The right hand side is integrable since since log |fy| is integrable and
log|f'| is smooth. Since the desingularization is a biholomorphism
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outside a set of measure zero it follows that the original form is locally
integrable as well.

In particular, (ddlog|f])* '1x\z is locally integrable, and in the
desingularization it is just (dd®log|f’|)*~! outside the singularity, and
therefore it is closed. It follows that (dd®log|f|)*~'1x\ is closed in
X.

We have that dd°(log | f|(ddlog |f|)*'1x\z) is equal to

(4.2) dd°[(log|fo| + log |f'|)(dd®log | f'|)*~" + (ddlog | f'|)* =
[fo = 0] A (dd®log | f')* " + (ddlog | f'])F,

where [fo = 0] = dd°log]| fy| is the current of integration over the zero
set of f counted with multiplicities. Notice that

OUf[* A (0L/%)! oUP (5.0 )

(2mi )] f[2 2mil f12 0\ 2mil f2)
which in the desingularization becomes

5 alfl* | Ol 5 OLf'PP \kt

4.3 (| ol £ 1) A N, :
43) AP A i * 5map) * Oamire)
It is locally integrable since
| fol* A 0| fol? _ dfo A dfy

| fo 420 | fol2~ 2
is locally integrable for A > 0. Moreover, it is wellknown that (4.4)
tends to [fo = 0] when A — 0T, and hence (4.1) follows from (4.2) and
(4.3). O

olf I A =0|f** A

(4.4)

If we think of log | f| as being equal to zero on Z, then the proposition
says that the usual iterative definition

(dd°log | f|)* = dd“(log |f|(dd"log | f|)* ")
can be extended to all k£, and that
(dd°log|f)* = (dd®log|f|)* 1x\z + lim A ».
A—0t

When we have the trivial metric, so that log |f| is plurisubharmonic, it
follows that (dd®log|f|)* is a positive (k, k)-current.

Remark 3. There are other ways to express the residue current (dd®log | f|)*1.

With essentially the same proof it follows that
(90| f[*)*
(2ma)*[ £
is locally integrable for each A > 0 and that (dd®log | f|)*¥1; = lim,_,q+ B,’;/\.
One can also deduce the equality

A
Bl =TI A

4.5 li = lim B
49) 25, Asa = Jim, B
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directly, in the following elementary way. For large A we have

A OIFPA*R AOIFIP A (0B FP)F T

fo_
A= X E (2mi)" -
e (007 P20l 2 A Q0LF2)) = 122 @),

The second term within the brackets gives rise to the limit limy_,o+ By »
when A — 0F. The first term is 9 of O(\)|f|2* 29| f|*> A (00 f|?)F 1
and it follows easily by a desingularization that this form tends to zero.
Thus (4.5) follows. O

From Propositions 4.1 and 3.2 we get
Corollary 4.2. If the metric is trivial, then (dd°log|f|)* is a positive
(k, k)-current for any k, and
(dd°log |f)F1, = R - (Df/2mi)* k.

It is now easy to obtain (3.15).
Proposition 4.3. For any metric, if k = p = codim Z, then

(dd°log |f)P17 =Y a;[Z;] = RY - (Df /2mi)? /pl.

Proof. The second equality is precisely Theorem 1.1 so it remains to
prove the first one. However, from Proposition 4.1 we know that
(dd°log|f|)?1z is a closed (p,p)-current of order zero with support
on Z, and by the corollary the equalities hold when the metric is triv-
ial. As in the proof of Theorem 1.1 we can vary the metric locally and
conclude that the equalities hold everywhere. ]

The current (dd®log|f|)* is robust and it can also be defined as a
limit of smooth forms in the following way.

Proposition 4.4. If f is as in Proposition 4.1, then
(dd°log | f)* = lim (dd°log(|f|* +€)"/*)".
e—0
Proof. By a desingularization as before we may assume that f = fof,

where fy is holomorphic, even a monomial, and f’ is nonvanishing. In
view of (4.2) we are to prove that then

1 _
(4.6)  lim (5 -00log(f|* + )" =
[fo = 0] A (ddlog | f'|)"~* + (dd°log | £'))*.
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To simplify notation we let h = fy and a = | f’|?. We will only use that
« is a strictly positive smooth function. A straight-forward computa-
tion gives that

|h|?0a = adlh”

\h|2a+€ T |h2a+e

O|h|? A Da daAOh)?  |h|?00a  |h|*Oa A Oa

(hPa+e2 T “(hPa+e? " h2ate  (hPa+e)?
adh A dh

“UhlPa+ o2

(4.7) 00log(|h*a+¢€) =0

€

Notice that the last two terms on the second line are bounded. Some
further calculations give

(4.8) (Olog(|h]*a+ €)* =
o [h*-2dh A dh D

k—1
ke ppa s g MO T
|h|2k o ‘h‘2k+2 - o
d|h|? A da |h|? A da
(hPa+ o2 Dters—y 1).
6(‘h\2a+e)2 NO( )+€(|h|20z+e)2 AO(1)

The last two terms vanish when € tends to 0, and the terms on the

middle line tends to (0(0a/))* = (dd¢log |f'|)* by dominated conver-

gence. Moreover, if, say, h(z) = 21" - -- 2,, then terms occuring from

dh A dh with “mixed variables” will vanish when ¢ — 0. In view of the
simple Lemma 4.5 below, the expression on the first line tends to
~0

(mafer = 0]+ -+ mglze = 0)) A (3—),

and since o = log|f’|, the equality (4.6) follows. This concludes the

proof. O

Lemma 4.5. If a is a strictly positive smooth function in C and h(z) =
Z™, then

ek oF|h|*2dh A dh
21 (|h?a+ €)kt!

m]0].

Proof. The form on the left hand side is positive and tends to zero
outside the origin. Therefore it is enough to see that the total mass
tends to 1. By the m-to-one change of coordinates z — w = h(z) in C
we have that

k[ofh*2dhnANdh Kk / o |w|*2dw A dw

omi ), (hPa+ ekt — om (Jw|?a + €)k+1
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The non-holomorphic change of variables w = /& now gives
k[ ICPR2dC A dC
2mi Jo (| + e)kt!

and thus the lemma follows. O

+ O0(e) =14 O(e),

5. FURTHER REMARKS AND EXAMPLES

We begin with a simple example.
FEzxample 1. Suppose that p = 1, that we have the trivial metric and
that (locally somewhere) there is a function fy such that f = f, f' with
f' # 0. Thus the ideal is generated by fo. Now, s = > fje; = fos' and

s' A (0s')L ~- 1 A s' A (0s')!

S _ 3| f|2A =Y R S
Rﬁ - a‘f| A fguz ‘/\20 - a[foe] ue )

where u = | f’|?. Since

[fo = 0] = 00 log | fo|?/2mi = 5[%] A fEYdfy ) 2mi,
0

we have
Mf = [RIA @ /2ri)e T =

= [fo =0] /\/SI A (0s) U N FI A (df)e-1 A Im—é.

u2£

It £ =1 we get the current [f, = 0] as expected. For higher ¢ we find
that M/ is equal to [fo = 0] A o where of is smooth. In view of (4.2)
we have that

af = (dd°log |f')*".

In general, M, tf is nonvanishing on Z = Z! even for £ > 1. If we take,
for instance, f = (2, zw), then f; = z and |f'|> = 1 + |w|?>. Thus

dw A dw
M{=[z=0A—""u
2 =l =0A S T
and this current is nonvanishing on Z = {z = 0}. O

The example shows that M,{ is not necessarily vanishing on Z? for
k > p. When the metric is non-trivial it is not even positive in general.
However, in X \ ZP (recall that Z” is the union of the irreducible
components of Z of codimension p) we have that Mg 41 1s closed and
positive by the same arguments as before. Therefore we can apply
Theorem 1.1 in X \ Z? and conclude that MJH = MI{HIX\Zp is equal

to Zaf’Ll[Z;’H] in X \ Z?. In general, if we let

M,{ = M,flx\(zpuzﬁl...uzk—l)’
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then M ,{ is positive closed (k, k)-current on X and more precisely
y k[ 7k
M =} oflZ]],

where Z]’-C are the irreducible components of Z of codimension precisely
k. From our previous results it follows that

(dd°log | f])*1 41 = Zak[Zk]

Thus we have a full description of current M/ on X \ (2P U ZPt!. ..U
Zlc—l)_

Let I/ be the ideal generated by f and let I7 = J; N ...N Jy be
a minimal decomposition of I/ in primary ideals J,. Then the prime
ideals \/J and the corresponding irreducible varieties Y; (i.e., their
zero loci) are unique (except for the order). A prime ideal whose zero
locus is a proper subvariety of some irreducible component Z]’-C is said
to be embedded.
Ezample 2. Again we take the trivial metric and let f = (22, 2120) =
21(21,22). Then the ideal (2%, z,) is the intersection of the primary
ideals (z) and (22, 2). Let us determine M/ and M by direct com-
putation. B

Let U be a neighborhood of the origin in C? and let U be the blow
up of U at the origin and let II: U — U be the natural map. The
manifold U is covered by the coordinate systems 7, 75 and o1, 09, where
21 = TiTe,29 = T and 21 = 01,20 = 0109. Notice that in the 7-
coordinates,

log [IT* f|* = log |71 75| + log(1 + |71 [*),
so that
00 log |IT* f|?/2mi = [11 = 0] + 2[r» = 0] + log(1 + |7 ?).
Thus
/Mf/\¢ /aalog|f| [2mily AT =
/~([T1 = 0] -+ 2[7’2 = 0]) A\ H*(b = / ¢(0,7’2),
U T2
since the pullback of IT*¢ to {r, = 0} vanishes. Thus M{ = [z, = 0],
which is in accordance with Theorem 1.1.

To compute MJ we choose a test function ¢. In view of (4.2) we
have

/U Mg = /[7 (Ir1 = 0] + 2]r> = 0))80log(1 + |r1[2) /2mic (717, 72) =
0)/ 001og(1 + |1 |?)/2mi = 26(0),



16 MATS ANDERSSON

and thus MJ = 2[0]. d
We do not know if it is true for any embedded prime ideal with zero
locus Y7 and codimension k that M/ = a[Y7] locally.
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