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Abstract

In the field of particle systems and growths models simulation is an
important tool. When explicit calculations are too complex or impossi-
ble to perform we may use simulations instead. In this situation it is
important to have a technique for doing simulations for every possible
parameter value, since we can have different probabilistic behaviour at
certain parameter values. When such situations occur ordinary fixed
parameter simulation does not suffice. In this thesis we design an om-
niparametric simulation algorithm, that is, a simulation algorithm gen-
erating samples for all parameter values within the same sample. The
technique is used to study the problem of asymmetric simultaneous
survival in the two-type Richardson model.

Keywords: growth model, Markov chain, omnithermal simulation, om-
niparametric simulation, percolation, two-type Richardson model

MSC 2000 subject classifications : 60C35, 65K35, 82C22
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Preface

The thesis
My studies as a graduate student are mainly focused on simulations
and the technique for doing simulations for all parameter values of a
model at the same time, so called omniparametric simulation. This the-
sis presents the work done on omniparametric simulation for a certain
growth model, the two-type Richardson model. The project was intro-
duced to me around Christmas 2000 by my supervisor, professor Olle
Häggström.
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Notation

The lattice��� The integer lattice in � -dimensions.� �
The graph having � �

as vertex set, and edges between
vertices with distance 1.��� The box �
	������� � in � �

� � �
The boundary of box � �

,
� � ��� � ������� � �

.

The two-type Richardson model������ �"! The state of vertex #%$ ��� at time � when the intensity
of the type two infection is &��� � �"! The configuration of �'� at time � .( �) �*�"! The subset of ��� having type + at time � , + �-, /. .0��) The subset of � �

having type + at � �21
, + �3, /. .

The omniparametric two-type Richardson model4 � � �"! The state of vertex #%$ ��� at time � .4 � �"! The configuration of � �
at time � .

Measures5 �76�8 �:9; 6 8 ; 9 The probability measure for the two-type Richardson model
with starting configuration � 0 �

 0=< ! having intensities & �
and

& < respectively for the two infection types.5>�; 6 8 ; 9 The probability measure for the two-type Richardson model
with starting configuration � 0 �

 0 < ! having intensities
,

and
& respectively for the two infection types.
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Special events
� �) 8 � Then event that infection type + �-, /. survives until reaching

the boundary of a box � � .
� �� Then event that both infection types survives until reaching

the boundary of a box � � .
� � Then event that both infection types grows to infinity.
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CHAPTER 1

Introduction

Stochastic models may be simple to formulate, and natural questions
may come easily to mind. Strikingly often these questions are, when
formulated into theorems, as hard to give an exact answer to as they
are easily formulated. Models in the field of statistical physics are no ex-
ceptions, neither are stochastic growth models. When analysing these
models we have at our disposal a number of theorems, often giving us
information about the asymptotic case, when time, or space in terms
of finite regions, tends to infinity. In real world applications however,
we deal with finite models and the asymptotic results has to be com-
plemented by such things as convergence rates. When no results are
available we may turn to simulations trying to extract some behaviour
from the output of our computer programs.

When using simulation we traditionally fix all parameter values and
run the simulation. In general this is no problem, but if we are going to
study a phenomenon like phase transitions or probabilistic behaviour
at a certain critical parameter value we may be in trouble. A rather new
technique is omniparametric simulation, which enables us to simulate
for all parameter values, at the same time. This allows us to simulate
for every parameter value in a continuous space, something which is
otherwise not possible.

In this article we will take into consideration a growth model, the
two-type Richardson model, and address the question regarding simul-
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CHAPTER 1. INTRODUCTION

taneous survival as time tends to infinity. This question has been par-
tially answered so far, and today we know that simultaneous survival
cannot happen when the infections are not equally strong, for almost
all parameter values. There is however a strong belief that both types
cannot survive to infinity if they are not equally strong. What remains
is to rule out simultaneous survival for a countable set of parameter
values. We use omniparametric simulation and see how far towards an
answer the simulations bring us.

The rest of this thesis is organised as follows. In section 1.1 we
briefly describe the growth models in use, the Richardson model and
its extension, the two-type Richardson model. Section 1.2 describes
the simulation with a focus on the use of parameters, both fixed pa-
rameter simulation and omniparametric simulation are described. We
end the first chapter with an example of omniparametric simulation for
the independent percolation model. In chapter 2 we properly introduce
the two-type Richardson model and give some results. Chapter 3 in-
troduces the omniparametric two-type Richardson model and describe
its relation to the ordinary fixed parameter model. Chapter 4 describe
simulations. First a the theoretical base is established, then we do sim-
ulations, and finally perform the analysis. In chapter 5 we discuss the
main topics of this thesis with a focus on omniparametric simulation.
We describes the present state,try to see what may happen in the future,
and of course discuss open questions.

1.1 Growth models
1.1.1 The Richardson model

The Richardson model [Ric73] is a stochastic growth model in � -
dimensions, where � is any finite number. We can think of the volume
on which the models grows as a volume divided into cells. From the
beginning all the cells have the same state, all but one which has a
certain interesting property, for example an infection. When time passes
this infection will spread, as infected cells affect uninfected ones.

In mathematical terms the Richardson model is a Markovian growth
process in continuous time. At time � � 1

only one cell is infected. The
infected area grows as infected cells infect uninfected ones, one by one.
It is crucial for the model that two different cells cannot be infected
at the same time. The rate by which uninfected cells are infected is
proportional to the number of infected neighbours an uninfected cell
have. Let �����������
	 denote the state of the infection at time � and let
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1.1. GROWTH MODELS

��� �*�"! denote the number of infected neighbour cells of the cell � . For
a certain cell � the probability for being infected during a small time
interval � �  ����� � is given by the following

5 �	� � � ���
� !�� � � � �"!� ! � ��� , �
� � , !"! � � � �"!  as ��� 1
where � � � �"! is the event that � is infected at time � . In fig 1.1 we see a
simple example of the Richardson growth process on the square tessel-
lation. The difference between the middle picture and the right one is
the extra infected cell.

k inclusions k+1 inclusions
Start configuration Configuration after Configuration after

Figure 1.1: The Richardson model on the square tessellation

In his article from 1973 Richardson studied and stated a theorem
regarding the shape of the infected region. The result states that as����� the shape of the infected area tends to some non-random shape.
The question regarding the exact shape remains unanswered.

Instead of studying the model in continuous space, one could use a
graph, replacing cells with nodes and each neighbour relation between
two cells with an edge.

1.1.2 The two-type Richardson model

The two-type Richardson model extends the Richardson model by
adding another type of infection. It was introduced by Häggström and
Pemantle [HP98] in 1998 and somewhat extended by the same authors
in 2000.

The process starts with every vertex in
� �

having type zero (white),
except for vertices in a region of type one (grey) and vertices in a region
of type two (black). For theoretical purposes it is enough to let the initial
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CHAPTER 1. INTRODUCTION

Figure 1.2: The two-type Richardson model. Initial configuration and configu-
ration after some time.

configuration be the simple configuration in figure 1.2 (left) and study
how the model evolves through time.

As time passes each coloured (black or grey) vertex colour its un-
coloured (white) neighbours in a Poisson process with a colour depen-
dent intensity. After being coloured a vertex keeps its colour for all
times. See section 2.1 for a more precise description of the model.

1.2 Simulation
In situations where mathematical models are too complicated for a

theoretical treatment or when there is no available theory, simulation is
an alternative. There are numerous methods for performing computer
simulations and many books have been written about the subject, but
this is neither the place nor the time for a review.

We will consider one aspect of simulation though, which is of special
interest in this thesis, the treatment of parameters.

1.2.1 Fixed parameter simulation

A mathematical model has a number of parameters, for example
temperature or infection rate or both. Traditionally the simulation is
done for fixed values of these parameters, and inference done based
on the simulation results. Results for such an analysis are valid for
the chosen parameters only. In some cases the general behaviour of
the model is the same for all parameters values, in other cases not.
With this approach simulation of models with a continuous parameter
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1.2. SIMULATION

can only be done for a finite number of parameter values. Hopefully
these parameter values are spread throughout the parameter space, or
at least over interesting regions.

The approach poses no problem if the model has a nice behaviour
over the represented parameter space, and any interesting behaviour of
the model is captured by a reasonable choice of parameter values.

There are a lot of models in this field, and they all live on graphs
where edges and vertices can have different states. Let us focus on the
simulation of particle systems like independent Bernoulli percolation or
the Potts model. These models changes their behaviour if the parameter
values are changed, in some cases quite drastically. This drastic change
in behaviour is called a phase transition, and the different regimes for
the models are called phases .

In the independent Bernoulli percolation model we have a critical
value �  of the parameter � . Below this value there are almost surely
no infinite clusters, while above �  there is almost surely one unique
infinite cluster.

For the Potts model phase transition has a different meaning. As-
sume for the moment that the parameter for this model is � , and that
there is a critical value �  . Then for �����  we have a unique probabil-
ity measure determining the behaviour of the model. For �����  there
are a number of valid probability measures all resulting in different be-
haviour. For these models phase transition means loss, or gain, of a
unique probabilistic behaviour.

The parameter range for these different phases however small they
are in the parameter space, consists of a continuous set of values, and
could be detected by a proper choice of parameter values. However if
the model has a different phase for a single parameter value this cannot
easily be detected. Let’s call such values of the parameter exceptional
values , since the behaviour of the model at these parameter values is
exceptional when comparing with ordinary probabilistic behaviour. If
this set of exceptional values are unknown it cannot be discovered by
ordinary fixed parameter simulation. If the exceptional value is known
the problem is reduced to the problem of representing this exceptional
value in the computer, this happens if the parameter value is contained
in the available representation of the parameter space. The problem
with exceptional values occurs when they are not known, and we want
to use computer simulations to find them, or indications of their exis-
tence. We cannot by increasing the set of simulated parameter values
hope to find exceptional behaviour, since any continuous parameter can
only be simulated for a finite number of different values. The solution of
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CHAPTER 1. INTRODUCTION

this problem is to simulate over the entire parameter space at the same
time.

1.2.2 Omniparametric simulation

Coupling of processes over the parameter space

The basic idea behind omniparametric simulation is a coupling of
the model in use over all parameter values in the parameter space. We
start with the concept coupling. This is just a brief presentation of
the technique, for a general description of the coupling technique see
[Lin92].

Consider two stochastic processes, � and � defined on probability
spaces � 5�� �� � �� � ! and � 5�� 	� � �� � ! respectively. A coupling of � and �
is a probability measure 
 on the measurable space � � ��� � � �� �� � � !
such that 5�� � 
������ �� and 5�� � 
������ �� , where � ��� � ��� � � � � �
and � ��� � ��� � � � � � . So the coupling is a probability measure on a
product space, with certain marginals. This definition is given for a pair,
but there is nothing keeping us from performing a coupling of several
(even an uncountable number) processes simultaneously. We use this
when doing omniparametric simulation.

Consider a set of stochastic processes parametrised by a parameter� $ � 1  , � taking values in the set � 1  , � . Let � � � ��� � � $ � 1  , � � the
class of processes and assume that ��� �� 
�� . A coupling of all processes
in � is a measure 
 on the product space � 1  , �! 	 8 �#" such that 
�� � 
$���� �� , for

� $3� 1  , � , where � � is a projection from � 1  , �% 	 8 �&" to � 1  , � . One
important result regarding such measures is Strassen’s theorem [Str65]
from 1965.

When using this coupling to do omniparametric simulation we will
simulate the probability measure 
 on the space � 1  , �! 	 8 �&" , and represent
a configuration in this space by a partition of �(' 	  ' � ! of � 1  , � such that
the following holds.

�)� �+* ,  � $ ' �
1  � $ ' 	

If we manage to do the coupling in a ”nice” way we can represent this
partition with a single number, a threshold

� � , such that for
� � � � we

have � � � 1
, and whenever

�  � � we have � � �3,
.

Consider a stochastic model parametrised by a possibly multidimen-
sional parameter

4 � � � �  � � �  � � ! . When generating samples from this
model we use a fixed parameter simulation algorithm with parameter

4
.

When performing an omniparametric simulation of the same model we
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1.2. SIMULATION

use a parameter with lower dimension,
��� � � � � �>�  � � � <  � � �  � � ! for some1 ��� � � . Let us assume that the “unused” part of the parameter,� � �  � � �  � � ! , takes values in a finite subset � of � � . Instead of generating

samples according to some distribution 
 fix we generate a partition of
� according to some other distribution 
 omni. Given any � $	� we can
easily generate a sample as if we from the beginning used the param-
eter

� � � �  � � ! , and this sample is distributed according to 
 fix. For a
particle system the omniparametric simulation algorithm generates, for
each particle, a partition of � , giving us the state for this particle for
any parameter value. One may think of the omniparametric sample as
a random projection � � � � � , such that � � � ! �� 
 fix, for any � $
� .

A brief history

The ideas behind omniparametric simulation are not new, already in
1965 Strassen proved his theorem [Str65] about the existence of prob-
ability measures with specified marginals, and since then coupling has
been an important tool in probability theory.

In 1991 Higuchi [Hig91] presents what he calls a level set repre-
sentation of the ferromagnetic Ising model. In coupling terms this is
a coupling of the Ising ferromagnet for all values of the external field,
while the interaction parameter is kept constant. The purpose of the
coupling is to study the percolation probability as a function of external
field. To our knowledge this is the first encounter of a coupling hav-
ing the ingredients of a omniparametric model. The kind of coupling
Higuchi used was however not new at that time,since it was introduced
by Holley in 1974, [Hol74].

In 1995 Grimmet [Gri95] used the ideas of Higuchi to introduce a
coupling of random-cluster processes for all values of the edge proba-
bility, while the the parameter relating to cluster size, � , is fixed above 1.
Grimmett also makes two notes about extending the model. The first is
to couple the processes for all parameter values of the two-dimensional
parameter making it fully omniparametric. The other one is concerned
with the fixed parameter � , letting it take values below 1. The last ex-
tension requires some redefinition of involved Poisson processes and as
a consequence some results are lost.

To our knowledge the level set representations of stochastic particle
systems was used for theoretical purposes only until 1996, when Propp
and Wilson published their work [PW96] on perfect simulation using
coupling from the past (CFTP). They propose an omniparametric simu-
lation algorithm for the random cluster model, though they named the
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CHAPTER 1. INTRODUCTION

method ”omnithermal” instead of ”omniparametric”.

1.2.3 Percolation example

Consider independent bond percolation on the . -dimensional lattice,� <
, with parameter � . Every edge is ”on” with probability � and ”off” with

probability
, 	 � , independently of each other. Let � � � ��� � �� � ! where

� � � � < 
 �
	������� <  � � � ��� � � � �� ! � � �� $ �'�  � � 	�� � �-, �
be a finite subgraph of � <

. We let � <
be the grid on � <

defined by
� < � � � <  ��� � � ���� ! � ���� $ � <  � �%	�� � �-, � !

See fig. 1.3 (below) for an example of how the boundary of a box relates
to the box itself.

Simulation of this model on � � is done as follows.

1. Fix the parameter � to some values between 0 and 1.

2. Generate independently for each edge � a random number �
	
��

� � 1  , � .
3. Assign edge � the value 1 (”on”) if ��	 � � and 0 (”off”) otherwise. Do

this for all edges in � � .

The configuration  fix $ � 1  , ����� is a sample of the independent bond
percolation model for parameter � .

Figure 1.3: The box ��� (white) with its boundary ����� (black).

A different approach to this problem is to couple the process for all
values of � .

8



1.2. SIMULATION

1. Generate independently for each edge a random number � 	
��

� � 1  , � , and assign this values to the edge.

The configuration  omni $ � 1  , � ��� is an omniparametric sample of the
independent bond percolation model. To generate an ordinary configu-
ration with 0’s and 1’s for a fixed � we do step 3 above for all edges.

As mentioned, the omniparametric simulation approach is a cou-
pling of the process for all values of the parameter � . Given any edge
� and the associated threshold value  omni � � ! we see that if this edge
is ”on” for some � 	 it is also ”on” for all ����� 	 . Let � � 	 is ”on” � � � ! be the
indicator function for this edge, then it is monotone as a function on � .

Given  omni and some fixed � we can generate the configuration  fix.
Corresponding to this configuration is a subgraph of � � having � � as
vertex set, and ��� $ � � �

 fix � � ! � , � as edge set, this is the remaining
graph when all ”off” edges has been removed. The problem we shall
study below is the connection properties of this subgraph for larger
and larger � , and hopefully get an estimate of the probability that two
vertices are connected as � � � . We shall also take a closer look at
the difference between the two simulation approaches, both in results
and simulation execution time.

x

y

u v

Figure 1.4: A small rectangle of � � , where there is a path between vertices �
and � but not between � and � . On a larger rectangle however
there could be an open path between � and � .

Connection probabilities

Given two vertices ���� $ � <
we let � �	� �
� denote the event that there

is a path of open edges between the two vertices. In graph theoretic
terms they are in the same connected component after we have removed

9



CHAPTER 1. INTRODUCTION

all ”off” edges from the original graph. The connection probabilities for
different pairs of vertices are often difficult or impossible to treat by
ordinary analysis so simulation is the tool to use. Let ��� 8 � � � ! � 5�� � � � � !
be the connection probability for vertices � and � as a function of � .
This function is monotone so an estimate ���� 8 � � � ! of this function should
(hopefully) be monotone as well.

As seen in figure 1.4 the connection probability for a vertex pair
could depend on a large, but finite, number of edges. To see why this is
the case we use the following argument, given any vertices � and � .

If � � � �
� happens then there is some finite path between these
vertices, on which the event � � � � � depend, so there is some number�

such that � �	� � � depends only on box
�
	

.
If � � � �
� does not happen � and � are located in two disjoint con-

nected components, of which only one can be infinite since the infinite
connected component in the percolation model is unique. For a proof
of this result see [Aiz87]. The smaller one is finite and contained in
some finite box � 	 so the event � � � �
� depend on this box only. This
number � is a random variable depending of �  � and  fix, from the ar-
gument above it follows that � � � almost surely. During simulation
we simulate larger and larger boxes, and stop when reaching box � 	 .
This process will then terminate with probability 1.

Weather or not the available computer resources will be enough to
simulate the model on � 	 is a totally different question, but it will play
an important role in any implementation.

For most pairs we do not know how to calculate these connection
probabilities exactly, but there is one exception. For nearest neighbours
� and � we can, by using the dual � < � (see fig 1.5) of � <

, calculate 5 � �	� � !
in the special case when � �-, � . .

For any two vertices �  � $ � <
let � � ���� ! denote a path between � and

� not containing the edge � �  � ! , and let ��� � �  � ! � , � and �� � ���� ! � 1 �
denote the events that this path is open or closed, respectively.

�� � ���� ! � + � � �� fix
�
 fix � � ! � + ���� $�� � �  � ! �  + �-, /.

Consider two nearest neighbour vertices � and � , see fig 1.6.
If � � � �
� happens the the edge � �  � ! is either open or if � ���� ! is

closed then some path � � �  � ! is open. If � ���� �
� happens then the edge� ���� ! is closed and there exists some closed path � � �>"# ! in the dual,
keeping � and � apart. See fig 1.6. We express this as follows.

� + ! 5�� � � � � ! � 5�� � � �3, ! � 5�� � � � 1 ! 5�� ��� � � �  � ! � � � �  � ! �3, !
� + + ! 5�� � ���� � ! � 5�� � � � �21 ! 5�� ��� � � ���� ! � � � �>"# ! � , !
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ed

e

Figure 1.5: A subset of the grid � � (solid) and its dual � �� (dashed). For every
edge � in the lattice there is one unique corresponding (and cross-
ing) edge � � in the dual. Whenever � is ”off” in � � its companion � �
is ”off” if � �� .

For � � , � . we have
5 ��� < ��� � � ���� ! � � � ���� ! � , ! � 5 ��� < ��� � � ���# ! � � � ���# ! � 1 !

giving 5 ��� < � � � � ! ��� �	� . This argument is well known but we have
not been able to trace its roots. For any other value of � we need some
constant 
 , depending on � , such that

5 � ��� � � ���� ! � � � ���� ! �-, ! � 
 5 � ��� � � ���# ! � � � ���# ! � 1 !
something we do not have.

A fixed parameter simulation scheme

Let � and � be two arbitrary vertices in � <
. Given any configuration

there is some largest box � 	 within which we can determine the event
� �	� �
� . This number � is random but finite.

We start with a rather small box � �2� � 	���"��� < and see if � � � �
�
happens or not. Three different situations can occur on a finite box,
as described in figure 1.7. We can decide weather � � � �
� happens or
not in the two pictures to the left. The situation in the right picture in
not determined yet, for this we need to look at larger boxes. For any� $ � <

let 
 � � ! be the cluster containing � . The algorithm continues
and we increase the box size � until 
 � � ! � 
 � � ! , or if 
 � � ! �� 
 � � ! until

 � � !� �'� � � or 
 � � !�� �'� � � .

11
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ed

ρ(x,y)

ρ(u,v)e

v

u

v
x

u
y

Figure 1.6: To the left the edge � is on and � and � are connected. In the right
picture � and � are connected by a closed path not containing � � .
Both � and therefore � � is ”off” and if the path ��� ��� ��� in the dual is
closed so there can be no open path in � � connecting � and � .

This give us a simple simulation algorithm. Given �  � $ � <
we start

with a small box, if we can determine � �	� �
� we do this and return the
answer, if not, we increase the box size until we can, and then return
the answer.

Algorithm for fixed p

The proposed algorithm is simple to use for a fixed value of � . In
every step we keep track of the graph consisting of vertices and edges
� with  fix � � ! � ,

. When increasing the box � �
to � �=�>�

we only need
to keep track of the cluster information for vertices on the edge

� � � � �
,

since the interior of � �
remains the same for all larger boxes. This gives

the algorithm linear complexity, regarding memory usage, instead of
quadratic.

Termination of the algorithm is a consequence of uniqueness of the
infinite cluster in the supercritical phase. This follows from an argu-
ment by Burton and Keane in 1989, [Bur89].

Omniparametric algorithm

The omniparametric simulation algorithm returns, instead of just
a ”1” or ”0”, a threshold � � we can use to determine the connection
property for different values of � , as described by the indicator function

12



1.2. SIMULATION

?x yx y y

y

x

x

xx

y
y

Figure 1.7: On a finite box one out of three events will happen. In the first
both � and � are in the same cluster. In the middle � and � are
in different connected components of which at least one is fully
contained in the box. To the right � and � are contained in different
components in the box, but we cannot decide weather or not these
components will connect on a larger box, to do this we have to
increase the box size sufficiently.

� � ��� � � � � ! .
� � ��� � � � � ! � * ,  �  � �1  � � � �

In the omniparametric model we have at our disposal a threshold value,
 omni � � ! , for each edge � . Whenever  omni � � ! � � the edge is ”on”, and
otherwise ”off”. Any path � between two vertices � and � of � <

has a
finite set of such thresholds. If the path is open or not for any particular
value of � is determined by the largest threshold value in this path. For
any path � we denote this largest threshold value by � � � � ! . Let

� �
� 8 � be

the set of all paths between � and � contained within the finite box
� �

,
and define � � � �  � ! as follows.

� � � �  � ! �����	� 
��
���� � � � � � ! � �%$ � �

� 8 � ���
For any finite subset '�� � <

we define � � � �  '�! as follows

� � � �  '�! �����	� �
� �� � � � � �� !

and this is the smallest � for which there is an open path between � and
any of the vertices in ' .

We can now formulate the omniparametric simulation algorithm as
follows. Given ���� $ � <

we start with a small box � and compute

13



CHAPTER 1. INTRODUCTION

� � � ���� !  � � � �  � � ! and � � � �  � � ! . If � � � ���� ! ������� � � � � �  � � !  � � � �� � � !"! we
stop and return � � � �  � ! . We are then done since given any � vertices �
and � are either connected or at least one of them is disconnected from
the boundary

� � . If

� � � ���� ! � ����� � � � � �  � � !  � � � �� � � !"!
we increase the box size, compute � � � ���� ! , � � � �� � � ! , � � � �  � � ! , and check
again. This process continues until � � � ���� ! ������� � � � � �  � � !  � � � �� � � !"! .

For fixed parameter simulation, termination is a consequence of
uniqueness of the infinite cluster in the supercritical phase. This fol-
lows from an argument by Burton and Keane in 1989, [Bur89].

For the omniparametric simulation algorithm, termination will not
follow directly from the argument by Burton and Keane. We need some-
thing stronger, namely uniqueness of the infinite cluster simultaneous
for all values of � , and that is established by Alexander in 1995, [Ale95].

n
c

t
p (x,B  ) n

cp (y,B  )
t t

p (x,y)0

determined undetermined determined

1

Figure 1.8: The event
	
��
 �� is determined for ������� � � � ��������� � since there is

no path between � and � , and at lest on of them is not connected
to the boundary by an open path. For ����� � � ��� � � there is an open
path between � and � . For ����� ��� � ��� ��������� � ��� � � ��� � � � there there are
open paths between both � and � and the boundary, but no path
between them within the box. For � in this interval we have to look
at a larger box to determine the situation.

When running the algorithm we need access to all edges of the box to
determine the three thresholds. There is no easy ”update”-strategy here
as in the fixed parameter case. The situation is too complex for storing
threshold information on just the boundary

� � � � �
, and use this when

extending � �
to � �=���

. This makes the simulation of the omniparamet-
ric model computationally more demanding. Another important conse-
quence of this is the amount of needed computer memory. Here the
omniparametric algorithm has quadratic complexity, compared to the
linear complexity of the the fixed parameter algorithm.

We will now proceed with simulations and see how we can use the
omniparametric algorithm when analysing connection probabilities.
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1.2. SIMULATION

Simulation results

(0,1) (0,5)(0,0)

Figure 1.9: Connection probabilities are simulated between the origin and one
of its neighbours, and between the origin and vertex ������� � .

Simulations are done for two pairs of vertices, as shown in fig. 1.9. In
fig. 1.10 we see the results of the simulations, the estimated connection
probabilities.
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Figure 1.10: Simulated connection probabilities for events
	 ��� ��� ��
 ��� ��� � �

and
	 ������� � 
 ������� � � . The solid curves are the probabilities es-

timated by ordinary simulation and the dashed curves are esti-
mates from omniparametric simulations. In the left picture both
curves closely approximate the probability � �	� � � ��
 � ��
����� . All
curves are based on 1000 simulations.

As expected the curves originating from omniparametric simulations
are monotone, while the others are not. Using ordinary simulation there
is nothing in the algorithm suggesting that the result should be mono-
tone. For a certain set of values for � say

1  1 � 1 ,  1 � 1 .  � � �  1 � ���  , � 1�1
one
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CHAPTER 1. INTRODUCTION

could perhaps achieve this by running more simulations, but the prob-
lem itself remain. No matter how many simulations we do, there will
always be possible to find an estimate which is not monotone by divid-
ing the interval for � into finer and finer intervals.

The omniparametric simulation algorithm however has the mono-
tonicity built in, since it is a coupling of the process for all parameter
values designed to have this property. No matter how small the number
of simulations is the estimated curve originating from omniparametric
samples will always be monotone.

There is a large difference in speed. The two simulation techniques
are used to generate 1000 samples for each � . The fixed parameter
algorithm does 1000 simulations for every value of � , while the omni-
parametric algorithm does a total of 1000 simulation, independent of
the number of values for � . The extra computation for the fixed param-
eter algorithm becomes critical when � is in a small interval around its
critical value, � 

�-, � . . In this interval we expect large clusters, making
both algorithms slow. Though there is no theoretical difference between
the two approaches there is a practical one. While the omniparamet-
ric algorithm may encounter large clusters in every simulation, with a
certain probability, the ordinary algorithm has the same probability of
suffering from a slowdown in 1000 ' simulations, where ' is the num-
ber of � -values in the critical interval.

Since there is a small probability for the simulations to use larger
boxes than the computer can handled we use a fixed largest box size,
in this case 500. If the event � � ��� � � is not yet determined when reach-
ing this upper limit the simulation is aborted and marked accordingly.
These aborted simulations are later used for getting upper and lower
estimates of the connection probability. None of the omniparametric
simulations did encounter any problems with this limit, while some of
the fixed parameter simulations did. In fig. 1.11 we see how this limit
affect the simulations.

Theoretically we can get rid of these approximations by just removing
the upper limit of the box size. Such simulation will however require a
lot of computer resources, both in memory and CPU-time. Simulations
show, when boxes up to ��� 	�	 	 are used, a week of CPU-time or more is
required.
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Figure 1.11: The fixed parameter simulations both suffer from the upper limit
of the box. In some interval around � 
 � ��� the curves are only
approximated. The solid line is the approximation when disre-
garding the aborted simulations. The upper and lower dashed
lines are estimates using all simulations, including the aborted
ones.
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CHAPTER 2

The two-type Richardson
model

2.1 Definition
The two-type Richardson model is a growth model on the lattice �'� ,

introduced by by Häggström and Pemantle [HP98]. In this extension of
the ordinary Richardson model [Ric73] two infections are competing for
space. Each vertex in the lattice can be infected or not, if infected it can
have one of two types.

The process starts at � � 1
with a certain initial configuration, that

is, two disjoint subsets
0 �

and
0 < of ��� where all vertices of

0 �
have type

one, and all vertices of
0 < have type two. The rest of the lattice have type

zero. The model evolves through time as 0’s changes to 1’s or 2’s at
rates depending on the nearest neighbour configuration, while the 1’s
and 2’s do not change at all. Let type one and two have infection rates
& �

and & < respectively. Due to time scaling and symmetry we only need
to study the case when & � � ,

, and & < � & $ � 1  , � . Let us now state this
in a precise manner.

We construct a graph with vertex set ��� and edge set � , defined by

� � � � � �� ! � �  � $ � �  � �%	�� � �3, �
An element � � �*�"! $ � 1  , /. � ��� is an assignment of state 0,1 or 2 to each
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CHAPTER 2. THE TWO-TYPE RICHARDSON MODEL

vertex. Let ��� �*�"! be the configuration at time � , with parameter & and
denote the state of a vertex �-$ ��� at time � with ���� � �"! . Also at time� , denote the set of vertices having type one with ( �� � �"! , and the set
having type 2 with ( �< �*�"! . Since this is a growth model we need an initial
configuration

0 �  0 < from which the model can evolve. Define these sets
by the following. 0 ) � �:#%$ � � ��� �� � 1 ! � + �  + �-,  .
The pair � 0:�  0 < ! can be any pair of disjoint subsets of ��� , but for sim-
plicity we will assume that both are connected subsets of the graph.

The evolution of the model is defined by the infection process. If a
vertex has type one or two it infects all its uninfected neighbours at a
certain type dependent rate. The probability that such a neighbour will
be infected in a short time interval is proportional to the length of the
interval. If a type zero vertex has

� �
type one neighbours and

� < type
two neighbours it changes from type zero to type one at rate

� � & �
, and

to type two at rate
� < & < .

Type 1

Type 2

Uninfected

Figure 2.1: The uninfected vertex in the middle changes to type 1 at rate � � ,
and to type 2 at rate �����

Since the parameters & � and & < do not change over time we get a
homogeneous Poisson process of infection events along each edge. We
think of this as a process active for all non-negative times, but events
are only interesting when the source vertex of the edge is infected and
the target vertex is not.

To reduce the number of parameters in the model from two to one
we will use the concept of thinning of the Poisson process of infection
events. First an explanation of thinning .

Consider a homogeneous Poisson process, with intensity & . If we
let each event occur with a certain probability � and independently of
each other it is a straightforward calculation to show that the process of
remaining events also is a Poisson process, but with intensity & � . The
remaining process is called the thinned Poisson process.
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Let & �  & < be the infection rates for the two types. Instead of assigning
Poisson processes with different intensities to vertices we scale time,
use symmetry and thinning. We do this so type one has infection rate

,
and type two has rate & � & < � & �

, and assume & < � & �
.

Assign now independently to all edges two unit rate Poisson pro-
cesses, one for each possible direction of an infection event,and two se-
quences of independent random variables (one for each process), ����� � ���� �
such that � � �� � � 1  , � for all

�
. The evolution of the model is now de-

termined by the sequences of Poisson events along with the random
numbers. At each event one vertex tries to infect another along the
common edge. Assume that such an event takes place at time � , and let� � be the time just after this event. Also let # be the infecting vertex and� its victim. If # is infected and � is not the following happens.

� � � �
�

! �
�� 	 ,  � � �*�"! � ,

.  � � �*�"! � .  � � &1  � � �*�"! � .  � � &
where � is the random number associated with this event.

If � is infected or # is not, nothing happens. Let 5��; 6 8 ; 9 denote the
probability measure for the described process.

2.2 Behaviour and results
The two-type Richardson model enables us to study growth of two

infections with different infection rates, or by ignoring the difference
in types, also study the traditional Richardson model. The remaining
part of this chapter is devoted to the study of simultaneous survival,
that is, the event that both infections continues to infect vertices for
all times. First we consider the asymptotic behaviour, then we analyse
the situation for finite boxes and see what happens when the box size
increases.

2.2.1 Asymptotic properties
Start the process with the following configuration,

0=� � � � � � 1  1  � �  1 ! �
and

0 < � � � � � ,  1  � � �  1 ! � , and let it evolve for all times. There will al-
ways be infected vertices having uninfected ones as neighbours, so the
infected area will get larger and larger. As time tends to infinity the
infection will spread to all vertices of

��

, leaving no vertex uninfected.

We study
� � �"! as � � � . Let

� �
denote the event that type one

survives as � � � , and define
� < accordingly. In the sequel we will
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CHAPTER 2. THE TWO-TYPE RICHARDSON MODEL

consider the model for a fixed but arbitrary & , and since it does not
change we suppress it in the notation. We have three possible scenarios.

1. Vertices of type one surrounds all type two vertices, and only type
one grows to infinity. Type one is said to strangle type two, denote
this event

� � � � < .
2. Type two strangles type one, denoted

� < � � �
.

3. Neither type strangles the other, both types survive as � � � ,
denoted

� � 
 � < .
As long as &�� 1

there is a positive probability for both scenario 1
and 2. There is always a possibility for type one to strangle type two
since it is the stronger type. Before the region infected by type one has
become too large there is always a possibility for type two to strangle it.

The third scenario is harder to say anything about. If both types
survive to infinity, this reflects some kind of power balance between the
two. For the case & � ,

and � � . Häggström and Pemantle [HP98]
showed that 5 � 8 �

� 8 � � � � 
 � < ! � 1
. For the case when & �� ,

they state in
[HP00, prop 2.2] roughly that even a small advantage for the stronger
type is enough to doom the weaker type in the long run. Their main
theorem states (theorem 2.1 below) that for almost all & we cannot have
simultaneous survival of both types in the limit.

Theorem 2.1 Häggström-Pemantle
Consider the two-type Richardson model on ���  �  . . Then

5 �=8
� 8 � � � � 
 � < ! �21

for all but at most countably many choices of & .

The result is valid for all finite initial configurations where no type is
strangled by the other,see [HP00]. But it does not say anything about
the situation for any particular value for & . For a fixed & we cannot use
this theorem. The same situation arises in simulations. We cannot use
simulations to rule out the possibility for exceptional values for & , that
is, rule out the existence of some & 	 $ � 1  , ! such that

5 ��� 8
� 8 � � � � 
 � < ! � 1

In their article [HP00] Häggström and Pemantle states a conjecture re-
garding the problem with exceptional values.
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Conjecture 2.1
For the two-type Richardson model on �'�  �  . , we have

5 � 6 8 � 9
� 8 � � � � 
 � < ! � 1

whenever & � �� & < .

According to this conjecture there can be no exceptional values, and
this is also the starting point and main reason for this thesis.

Figure 2.2: A realization of the model for two different values of � . In the right
picture both types seem to have survived in some kind of balance,
but in the left type 1 (black) is about to surround the weaker type
2. If conjecture 2.1 is correct, then the apparent balance on the
right is doomed to break down in the long run

Another open question is the asymptotic shape of the infected area.
Already in his 1973 article [Ric73] Richardson stated the existence of
such an asymptotic shape. Some further results concerning it has been
published over the years, see [DL81], but the question regarding exact
shape remains unanswered.

2.2.2 Finite boxes

So far the results about the two-type Richardson model has to do
with asymptotic behaviour. Nothing has been said about the relation
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CHAPTER 2. THE TWO-TYPE RICHARDSON MODEL

between the two infections in finite time, or on finite regions. No matter
how slowly the weaker type infects its neighbours there is a positive
probability for it to strangle the stronger type. This event might happen
at any time, but is most likely to happen in the beginning before the
area infected by the stronger type has become too large.

From Häggström and Pemantle [HP00] we know that a small advan-
tage for the stronger type is enough to ensure that asymptotically it will
strangle the weaker type. This is stated in their key proposition (propo-
sition 2.1 below), here adapted to our notation. Before stating it we need
a definition of size in the meaning of how spread out sets in � �

are. Al-
though the asymptotic shape

�
is unknown we can use it to define this

measure of size, ��� � . For any set ' � �'�
let � ' � � ���	� � � � ' � � � � . For any

two �>"# $
� we define the set
� � �>"# ! of pairs of configurations as follows

� � �>"# ! � � � 0
�
 0 < ! � � 0 �

� � �� � 0 < �  # �
We will use this for � � # to denote subsets of pairs of configurations,� 0 �

 0=< ! , where
0 �

always will be a little bit smaller than
0 <

.

Proposition 2.1
Fix & $ � 1  , ! and let

, ��� ��� . Then

��� �
�	� � 
���� ; 6 8 ; 9�� �� � �	� 8 �	� � 5 ��8 �; 6 8 ; 9 � � � ! � 1

Considering this proposition one question comes to mind, which has
to do with convergence rates. Let ( � �*�"! and ( < � �"! be the sets of vertices
infected by type one and two respectively at time � and let type two be
the stronger type. If we at time � 	 have � ( < � � 	 !�� � � ( � �*� 	 ! � ��� � ,

how does
the convergence look in this case? If our only concern is infection on
finite regions we might be interested the probability for strangling the
weaker type given the ratio � ( < � � � ( � � , as the region gets larger and larger.
Since the definition of ���	� uses the unknown asymptotic shape � we have
to use some other measure of size to study this by simulations. This
question however is left unanswered, it is included more as a thought
regarding proposition 2.1.

In percolation finite boxes are often studied, and conclusions drawn
regarding the behaviour over the whole lattice based on the behaviour
in these finite boxes by letting the box size approach infinity. We can
also use this strategy when studying simultaneous survival.
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Let the box �'� be a subset of the � -dimensional lattice �'� . The
boundary

� � �
of this box is the set of all vertices in � � with at least

one neighbour in � �
.

Let
� �) 8 � be the event that type + survives until reaching

� � �
, + � ,  . .

Define a function � � � & ! by the following.

� � � & ! � 5 � � � � 8 � 
 � �< 8 � !
We need to formulate and prove two properties of the sequence � � � � �� � � .
Lemma 2.1
For each �� � � � & ! is continuous.

We defer the proof of lemma 2.1 until all necessary notation has been
properly introduced in chapter 3, see page 37.

Lemma 2.2
For any & $ � 1  , � and any � , we have � ����� � & ! � � � � & !

Proof :
If

� � � 8 �=��� 
 � �< 8 �=��� happens then both types has survived until reaching� � �
which is enough for

� � � 8 � 
 � �< 8 � to happen. Let � $ � be the outcome
in fig. 2.3. The set of type one, ( � � �"! is almost surrounded in the smaller
box ( � < ), and if vertex # is infected by the type two infection, then ( < �*�"!
surround ( � �*�"! in ��� . So � $ � � � � 8 < 
 � �< 8 < ! � � � � � 8 � 
 � �< 8 � ! . This can happen
for each finite � . Thus

� � � � 8 � 
 � �< 8 � ! � � � � � 8 ����� 
 � �< 8 ����� ! ����
for all � and the wanted result follows.�

2.3 Simulation, a simple scheme
Given the proposed model with intensities 1 for type one, and & for

type two, a simple simulation algorithm is given in fig. 2.4.
We think of the infection processes as unit rate Poisson processes,

because of this we can choose an infecting vertex � at random. The next
step is to choose a neighbour # to infect, this is also done uniformly at
random. If � has type one and # type zero, vertex # gets infected, and has
in the future type one. If � has type two and # has type zero we have
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v v

Figure 2.3: The configuration � in boxes ��� and ��� .

to use thinning, since this infection event originates from a Poisson
process having intensity & � ,

. With probability & we infect # with type
two. If � has type zero or # does not have type zero no infection takes
place. The function computing the stop criteria can be any function as
long as it returns TRUE in finite time.
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2.3. SIMULATION, A SIMPLE SCHEME

graph G
graph G.setInitialConfig()
repeat

u = G.getRandomVertex()
v = G.getRandomNeighbour(u)
if u.type1 � TRUE AND v.uninfected � TRUE then

v.type = 1
end if
if u.type2 � TRUE AND v.uninfected � TRUE then

if rnd � & then
v.type = 2

end if
end if

until G.computeStopCriteria() � TRUE

Figure 2.4: A simple simulation scheme for the two-type Richardson model.
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CHAPTER 3

An omniparametric model

3.1 The omniparametric two-type Richardson model
The omniparametric model is based on the ordinary two-type Richard-

son model. If we looked upon the ordinary model as a model for spread-
ing infections, the omniparametric model is about spreading informa-
tion. The information tell us for which parameter values each vertex is
uninfected or has one of two infection types.

We use the same graph, � �'�  � ! , as in the ordinary model. We use
the same set of independent Poisson processes for all edges in � , each
equipped with a sequence of i.i.d. random numbers, all

� � 1  , � . Let a
configuration

4
be an element of � � 1  , � � � 1  , � � � � , and let

4 �*�"! denote the
configuration at time �  1

.
4 � �"! � � � � � 8 �  � � 8 � ! $ � 1  , � � � 1  , � � � � 8 � � � � 8 �  # $ � � �

The configuration for a vertex # at time � is denoted
4 � �*�"! , see fig. 3.1.

Given
4 �*�"! we can obtain the ordinary configuration � � �"! for any & $

� 1  , � in the following manner. We assign each vertex # type one if & � � � 8 � ,
type two if & � � � 8 � and type zero if & $ � � � 8 �  � � 8 � � , see fig 3.2. For this
assignment to work we must have � � 8 � � � � 8 � for all �� 1

since a vertex
can have one type only.

A initial configuration is an assignment of threshold values to all
vertices such that for each & $ � 1  , � we have a valid initial configuration
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v,t v,t(a  ,b  )

Figure 3.1: Threshold representation in the omniparametric two-type Richard-
son model

in the ordinary model.

a v,t bv,t0 1

type 2type 1 type 0 (uninfected)

Figure 3.2: Meaning of threshold representation in the omniparametric two-
type Richardson model

The evolution of the omniparametric model is more complicated than
for the fixed parameter model. Instead of propagating infection types
we propagate threshold values. Any vertex having type one or two for
some fixed but arbitrary & can propagate this to any neighbour � having
� � 8 � �� � � 8 � if & $ � � � 8 �  � � 8 � � . The idea is the following. We consider the
sequence of Poisson events just as in the ordinary model. Assume that,
at time � , a vertex # tries to propagate its information to vertex � , and
let � � be the time just after this event. Let

4 � � �"! � � � � 8 �  � � 8 � ! be the state
of vertex � at time. This vertex is already infected for & $ � 1  � � 8 � ��� � � � 8 �  , �
so only for &2$ � � � 8 �/ � � 8 � � an infection can take place. For vertex # we
have three cases.
� + ! For & $ � 1  � � 8 �*� vertex # has type one, # infects � if

& $ � 1  � � 8 �*� 
 � � � 8 �� � � 8 � � .
� + + ! For & $ � � � 8 �  , � vertex # has type two, # infects � if

& $ � � � 8 �  , � 
 � � � 8 �  � � 8 � � .
� + + + ! For & $ � � � 8 �  � � 8 � � vertex # has type zero and cannot infect � .
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Infections of type one are spread each time, so at time � � we let � � 8 ���
be equal to ����� � � � 8 �  � ��� � � � 8 �  � � 8 � !�! . For an illustration of this, see fig
3.3.

Infections of type two are spread with probability & . We accomplish
this by using the random number � assigned to the Poisson event, and
let the type two infection spread whenever � � & . When we change the
limit � � 8 � we do this depending on ����� � �� � � 8 � ! instead of just � � 8 � . Let
� � 8 � � � � � � � � � 8 �  ����� ��� �� � 8 � ! ! , where � � ����� � �> � � 8 � ! .

Summary: if at time � vertex # tries to propagate information to vertex� , and
4 � � �"! � � � � 8 �  � � 8 � !  4 � � �"! � � � � 8 �  � � 8 � ! , then we get the following.

� � 8 � � � ����� � � � 8 �  � ��� � � � 8 �  � � 8 � ! !
� � 8 � � � � ��� � � � 8 �  ����� ���  � � 8 � ! !

For the omniparametric model we have the following sample space.
��� � � � �  � ! � �  ��$ � 1  , �  � � � � � �

An omniparametric configuration is any element � $ ���
. As in the

ordinary fixed parameter model we need a initial configuration. Given
any two finite, disjoint and connected (in the ordinary graph theoretic
sense) sets

0 �  0 < � ��� we define the initial configuration as follows.

Definition 3.1 Initial configuration
For

0:�  0 < $ ��� . Define
4 � 1 ! by

4 � � 1 ! �
�� 	 � ,  , !  #%$ 0 �

� 1  1 !  #%$ 0 <
� 1  , !  otherwise

 #%$ � �

where
0:�  0 < are two finite disjoint and connected subsets of ��� .

Next step is the definition of a mapping on the omniparametric sam-
ple space defining the dynamics of the model. Assume that a Poisson
event happens at time � . Vertex # tries to affect vertex � along the com-
mon edge. We now define the evolution operator � .

Definition 3.2 The evolution operator: �
Given an infection event at time � where vertex # tries to infect vertex � .

Let � be a
� � 1  , � random number. Define the evolution operator � by the

following.
� � #  �  �� 4 � �"!"! � 4 � �

�
!
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01 2

1

1

at time t

Vertex w
at time t+

Vertex v

Vertex w
at time t

u

0 2

20

b

ba

a b

aw,t

v,t v,t

w,t

w,t w,t++

Figure 3.3: An example of how information propagates from vertex � to vertex
� .

where
4 � � � � ! � 4 � � �"! for any vertex # �� � and

4 � �*�
�

! � � ����� � � � 8 �  � � � � � � 8 �  � � 8 � ! !  � � � � � � 8 �  ����� � �� � � 8 �  � � 8 � ! ! !

When there is a need to emphasise the evolution at a certain vertex we
denote this by � � 4 � � �"!�! .

Next step is to make sure that the threshold order is preserved dur-
ing evolution, otherwise the state of a vertex may not be unique for some
& .

Lemma 3.1 The evolution operator � preserves threshold order.
If for any vertex � $ ��� we have

4 � � �"! � � � � 8 �  � � 8 � ! such that � � 8 � � � � 8 �
then � � 4 � � �"!�! � � � � 8 � �  � � 8 � � ! will satisfy � � 8 � � � � � 8 � � .

Proof :
We must prove that the order of the thresholds isn’t changed by the
evolution operator � . Let a Poisson event take place at time � and that
vertex # is trying to infect vertex � . Assume that � � 8 � � � � 8 �  � � 8 � � � � 8 � .
There are five different cases to analyse.

Case 1: Assume that � � 8 � � � � 8 � � � � 8 � � � � 8 � .
� � 8 � � � ����� � � � 8 �  � � � � � � 8 �  � � 8 � !"! � � � 8 �
� � 8 ��� � � � � � � � 8 �  ����� � �� � � 8 � �� � 8 � !�!  � � 8 �
� � 8 � � � � � 8 � �
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Case 2: Assume that � � 8 � � � � 8 � � � � 8 � � � � 8 � .
� � 8 � � � ����� � � � 8 �  � � � � � � 8 �  � � 8 � !"! � � � 8 �
� � 8 � � � � � � � � � 8 �  ����� � �� � � 8 � �� � 8 � !�!  � � 8 �
� � 8 � � � � � 8 � � � � 8 � � � � 8 � �

Case 3: Assume that � � 8 � � � � 8 � � � � 8 � � � � 8 � .
� � 8 � � � ����� � � � 8 �  � � � � � � 8 �  � � 8 � !"! � � � 8 �
� � 8 ��� � � � � � � � 8 �  ����� � �� � � 8 � �� � 8 � !�!  � � 8 �
� � 8 � � � � � 8 � � � � 8 � � � � 8 � �

Case 4: Assume that � � 8 � � � � 8 � � � � 8 � � � � 8 � .
� � 8 � � � ����� � � � 8 �  � � � � � � 8 �  � � 8 � !"! � � � 8 �
� � 8 ��� � � � � � � � 8 �  ����� � �� � � 8 � �� � 8 � !�! � � � 8 �
� � 8 � � � � � 8 � � � � 8 � � � � 8 � �

Case 5: Assume that � � 8 � � � � 8 � � � � 8 � � � � 8 � .
� � 8 � � � ����� � � � 8 �  � � � � � � 8 �  � � 8 � !"! � � � 8 �
� � 8 � � � � � � � � � 8 �  ����� � �� � � 8 � �� � 8 � !�! � � � 8 �
� � 8 ��� � � � 8 ���

Since we have � � 8 � � � � � 8 � � in all five cases, the result follows.

�

These are the components of the model. When using it we have a
initial configuration � 0 �  0 < ! and then apply the evolution operator for
each time there is a Poisson event. This gives us a configuration

4 � �"! ,�  1
.

3.2 Relation to the fixed parameter model
Given a configuration

4 �*�"! and some & $ � 1  , � we may want to com-
pute the fixed parameter configuration

� � � �"! . We do this with a projec-
tion mapping � � , defined as follows.

Definition 3.3 Projection mapping
Let � � � � � � �

for & $ � 1  , � be the projection operator defined by the
following

� � � 4 � � �"!�! �
�� 	 ,  & $ � 1 �� � 8 � �1  & $ � � � 8 �  � � 8 � �

.  & $ � � � 8 �  , �
 #%$ � �
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The omniparametric configuration is a tool we use to study the fixed
parameter configuration for any value of & . We are especially interested
in studying properties of the model as a function of & , and by using
the omniparametric model we get better estimates. Before doing this we
must establish a relation between the two models. What we want is the
following.

� � � 4 � �"!�! �� 5 �; 6 8 ; 9  �� 1
In order for this to work we need to establish two properties about

the evolution operator � . It must preserve the order of threshold values,
otherwise the projection operator will not work, and mimic the dynam-
ics of the two-type-Richardson model for any fixed & $ � 1  , � , that is,
the operator has to be consistent with the behaviour of the two-type-
Richardson model. The first property was established in lemma 3.1, the
second property is the established in the next lemma.

Lemma 3.2 The evolution operator � is consistent
Assume that a Poisson event takes place at time � . Let

4 � �"! be a valid
omniparametric configuration for all times prior to � , that is, � � � 4 ��� !�! ��5>�; 6 8 ; 9 for all � $ � 1  � � . Then

4 � � � ! � � � 4 � �"! ! �� 5 �; 6 8 ; 9 .

Proof :
Let a Poisson event take place at time � and let

4 � � � ! � � � 4 �*�"!"! be the
configuration just after this event. We need to prove that the evolution
operator has the correct behaviour in every situation. Let & $ � 1  , � be
arbitrary but fixed. There are nine cases to analyse.

Case 1: � � � 4 � � �"!�! � � � � 4 � � �"!"! � 1
, implies � � 8 � �3& � � � 8 � , � � 8 � � & � � � 8 �

and
� � 8 � � � ����� � � � 8 �  � ��� � � � 8 �  � � 8 � !� ��� �� ���
	 � ! � &

� � 8 ��� � � ��� � � � 8 �  ����� ��� �� � 8 � !� ��� �
� �

!� &

where � � ����� � �� � � 8 � !� & .
Thus � � 8 ��� � & � � � 8 ��� implying � � � � � 4 � � �"!"!�! � 1

Case 2: � � � 4 � � �"!�! � 1  � � � 4 � � �"!�! �-,
, implies � � 8 � � & � � � 8 � , & � � � 8 � and

� � 8 � � � ����� � � � 8 �  � ��� � � � 8 �  � � 8 � !� ��� �� ����	 � ! � � � 8 �  &
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Thus � � 8 ���  & gives � � � � � 4 � �*� � !"!�! �-,
Case 3: � � � 4 � � �"!�! � 1  � � � 4 � � �"!�! � . , implies � � 8 � � & � � � 8 � , � � 8 � � & and

� � 8 � � � � � � � � � 8 �� ��� �
� �

 ����� ���  � � 8 � !�! � &

Thus � � � � � 4 � �*� � !"!�! � .
Case 4: � � � 4 � � �"!�! � ,  � � � 4 � � �"!�! �21

, implies & � � � 8 � , � � 8 � � & � � � 8 � and

� � 8 � � � ����� � � � 8 �  � ��� � � � 8 �  � � 8 � !� ��� �
� �

!� &

Thus � � 8 ���  & gives � � � � � 4 � �*� � !"!�! �-,
Case 5: � � � 4 � � �"!�! � ,  � � � 4 � � �"!�! �-,

, implying � � 8 �  & and � � 8 �  & .

� � 8 � � � ����� � � � 8 �  � ��� � � � 8 �  � � 8 � !"!� &
Since � � 8 ���  & we have � � � � � 4 � �*� � !"!�! �3,

.

Case 6: � � � 4 � � �"!�! � ,  � � � 4 � � �"!�! � . , implies � � 8 �  & , � � 8 � � & and

� � 8 � � � � � � � � � 8 �� ��� �
� �

 ����� ���  � � 8 � !�! � &

Since � � 8 � � � & we have � � � � � 4 � � � � !�!"! � . .
Case 7: � � � 4 � � �"!�! � .  � � � 4 � � �"!�! �21

, implies � � 8 � � & , � � 8 � � & � � � 8 � and

� � 8 � � � � � � � � � 8 �  � � � � � � 8 �  � � 8 � !� ��� �
� �

! � &

� � 8 � � � � � � � � � 8 �� ��� �
� �

 ����� � �> � � 8 �� ��� �
� �

 � � 8 �� ��� �
� �

!�! * � &  if � � &
 &  if �  &

Thus � � � � � 4 � � � � !�!"! � . with probability & , and � � � � � 4 � � � � !�!"! � 1
with probability

, 	 & .

Case 8: � � � 4 � � �"!�! � .  � � � 4 � � �"!�! �-,
, implies � � 8 � � & , & � � � 8 � and

� � 8 � � � ����� � � � 8 �  � ��� � � � 8 �  � � 8 � !� ��� �
� �

!� &

Thus vertex � is left unchanged.
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Case 9: � � � 4 � � �"!�! � .  � � � 4 � � �"!�! � . , implies � � 8 � � & , � � 8 � � & and

� � 8 ��� � � � � � � � 8 �� ��� �
� �

 ����� ���  � � 8 � !�! � &

With � � 8 � � � & vertex � is left unchanged.

This can be done for any & $ � 1  , � . Thus the evolution operator is con-
sistent.�

By applying this evolution operator repeatedly at every Poisson event
the model evolves as time passes.

Theorem 3.1
Given an omniparametric sample

4 � �"! we can calculate an ordinary sam-
ple by using the projection operator

� � � 4 � �"!"! �� 5 �; 6 8 ; 9
for & $ � 1  , � and any �  1

.

Proof :
Let

4 � 1 ! be any initial configuration and &2$3� 1  , � fixed. We apply the
projection operator on this configuration vertex by vertex.

� � � 4 � � 1 !"! �
�� 	 ,  & $ � 1 �� � 8 � �1  & $ � � � 8 �  � � 8 � �

.  & $ � � � 8 �  , �
 #%$ � �

Since each vertex #3$ �'� has
4 � � 1 ! $ � � ,  , ! � 1  1 ! � 1  , ! � according to

the definition of the initial configuration it follows that the projection
mapping applied to the initial configuration gives a proper configuration
in the fixed parameter model.

Even though time is continuous the model evolves only at each Pois-
son event. Let � � � � �� � � be the sequence of times for all the Poisson
events. Assume that � � � 4 �*� � !"! �� 5>�; 6 8 ; 9 . Let � �� be the time just after
the next event. Since the evolution operator is consistent according to
lemma 3.2 we automatically have � � � 4 � � �� !"! �� 5>�; 6 8 ; 9 . The result now
follows by induction.�

36



3.2. RELATION TO THE FIXED PARAMETER MODEL

We are now ready to prove lemma 2.1 given in chapter 2.

Proof:
Fix some arbitrary � $ � �

Let
� �) 8 � be the event that type + survives until

reaching
� �'� , + � , /. . If 5 � � � � 8 � ! and 5 � � �< 8 � ! are continuous continuity

follows for � � since . . .

� � � & ! � 5 � � � � 8 � 
 � �< 8 � ! � 5 � � � � 8 � ! 	 5 � � � � 8 � � � �< 8 � ! � 5 � � � � 8 � ! 	 5 �"� � �< 8 � !  !
Fix & $ � 1  , ! and a small � � 1

.
Is there a

� � 1
such that � 5 � � � � 8 � ! 	 5 � � � ���� 8 � ! � ��� ?

� 5 � � � � 8 � ! 	 5 � � � ���� 8 � !�� � 5 � � � � 8 � � � � ���� 8 � !� 5 � � � � $ � & /& � � ! for some #%$ � � � � !
where � � �  � � ! � 4 � �*�"! . Since

� � �
is a finite set this shrinks to zero as

� �1
. Hence, there is some small enough

�
satisfying � 5 � � � � 8 � ! 	 5 � � � ���� 8 � !�� ��� .

The same type of argument using the other threshold value, � � , yields
continuity for

5 � � �< 8 � ! .
�
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CHAPTER 4

Simulation experiments

By using the proposed simulation algorithm to generate samples we can
study the behaviour of the two-type Richardson model on finite boxes
in �'� . Although this is possible for any finite � the case studied here is
� � . .

The purpose of this chapter is to study the probability for simulta-
neous survival on a finite box � �

as a function of & . For � �
we let

� �) 8 �
denote the survival of type + � , /. on the boundary

� � �
. We let

� �
de-

note the event that type one survives in the limit and define
� < in the

same manner.
According to theorem 2.1 we have 5 ��8

� 8 � � � � 
 � < ! � 1
for all but at

most countably many choices of & $ � 1  , � . Let � � � 1  , ! be this set of
exceptional values of & . Note that we have excluded 1 from � since it is
already known that 5 ��8

� 8 � � � � 
 � < ! � 1
, whenever & �-,

. We can formulate
our knowledge of the probability for simultaneous survival as follows

� & $ � 1  , ! � � � 5 � 8 �
� 8 � � � � 
 � < ! � 1

By doing simulations we will try to find some indications of the exis-
tence of any value & 	�$ � .
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4.1 Simultaneous unbounded growth in simulations
We are looking for some indication of the existence of exceptional

values, and one may wonder how they manifest themselves in simula-
tions.

Let � � � & ! � 5 � � � � 8 � 
 � �< 8 � ! be the probability for simultaneous sur-
vival on finite boxes and let � � & ! denote the probability for simultaneous
survival on � <

. Then � � � & ! � � � & ! point wise as � � � .
In the absence of exceptional values ( � � �

) the function � will have
the following appearance.

� � & ! �+* �  & �-,
1  & � ,  & $ � 1  , !

for some
� � 1

. The functions � � will be continuous for each � , and they
will converge point wise to function � � & ! as � � � .

Assume for the moment that the set � isn’t empty, and pick & 	 $�� .
Whenever & � & 	 there is a positive probability for simultaneous sur-
vival, then the function � will not be increasing, and since the functions
� � converge point wise to � they will not be increasing either whenever
� is large enough. According to [HP00] the set � is at most countable
so an exceptional value &�	 will have non-exceptional values to the right
of it, and will manifest itself as in fig. 4.1.

λe

p (  )n λ

10
λ

λe

p(  )λ

large n
small n

intermediate n

λ
10

Figure 4.1: The functions � � � � � and � � � � when there is an exceptional value ��� .

We use simulations to estimate functions � � with �� � , and do this for
a number of different values of � . If we find that all �� � are increasing
it’s an indication of increasing � � , for the simulated values of � . If � � is
increasing for all large � then so is � � & ! which rules out the existence
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4.2. THE SIMULATION ALGORITHM

of exceptional values. The question is now: When is � large? We do
not know the answer to this question, so the simulations have been
carried out for � as large as possible. Later we will use the simulations
to estimate how large boxes we need to study exceptional probabilities
bounded from below by some small constant.

Another way to analyse the estimated functions is to fit a parametric
curve to them and see how well it fits the estimations. We know that the
functions � � decrease when � increases, so the model should be able to
reflect that.

4.2 The simulation algorithm

The simulation algorithm follows the omniparametric two-type Richard-
son model as it is described in section 3.1, see fig. 4.2.

1: graph G
2: G.setInitialConfig()
3: repeat
4: u = G.randomVertex()
5: v = G.randomNeighbour(u)
6: u.propagateTo(v)
7: until G.calcStopCriteria() � TRUE

Figure 4.2: A simulation scheme for the omniparametric two-type Richardson
model.

What is left to describe is initial conditions and stop criteria.

4.2.1 Initial configuration

The smallest possible initial configuration is used. Vertices � � � 1  1 !
and � � � ,  1 ! are assigned thresholds � � � 8 	  � � 8 	 ! � � ,  , ! and � � � 8 	  � � 8 	 ! �
� 1  1 ! respectively. All other vertices � $ � �

are assigned thresholds� � � 8 	� � � 8 	 ! � � 1  , ! . For every & $ � 1  , � this gives the origin type one, its
left neighbour type two and the rest of � � type zero.
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4.2.2 Stop criteria

The algorithm is executed until the first vertex on the boundary
� � �

is affected, that is, for � ��� 
 ��� � , where � 
 ��� � is defined by the following.
� 
 ��� � � ����� � � � � � � 8 �/ � � 8 � ! � � 1  , ! �� � $ � �'� �

The model is only defined on the box
� �

so we have to abort at this
stage. If we continue after this the model will not evolve as the two-type
Richardson model prescribe.

4.2.3 Data structures

The most critical resource for a large simulation is memory. When
the infected area grows only a small fraction of vertices will actually be
active in the process. A vertex � having � � 8 
 � � � 8 
 at time � is already
infected for all values of & , so if � � 8 
 � � � 8 
 is true for all neighbours #
then � will never infect any other vertex and will remain inactive for all
times � � � . We call a vertex � active if there is any value of & for which� or any of its neighbours can infect or be infected, that is if ��� 8 
 �� ��� 8 

for � or any of its neighbours. If we fix any vertex in � <

eventually this
will become inactive, it and all of its neighbours will have ��� 8 
 � ��� 8 
 . In
line � � ! and ����! of the algorithm (in fig. 4.2) we choose a vertex that will
try to infect and a victim. Its crucial that this is done uniformly over the
graph. If we in line � � ! choose an inactive vertex nothing will happen,
and we choose another. So if we remove all inactive vertices from the
graph this will not change the dynamics of the model, but it will speed
up the algorithm, and save memory. When taking advantage of this
property of the model we only have to store 	 � � ! vertices in memory, if
we were to store them all the memory usage would be 	 � � < ! .

4.2.4 Optimisation issues

It is tempting to go one step further when optimising the execution
time. The next candidate is line ��� ! in the simulation scheme. When
we choose a neighbour at random we could discard neighbours which
cannot be infected any more. But if we do this we do not choose an
edge uniformly at random, instead we are introducing bias. Excluding
one or more neighbours in line ��� ! results in giving the other neighbours
probability at least

, � � of being chosen. If we have � active vertices we
choose a vertex in line � � ! with probability

, � � . Then we must choose
a neighbour with a probability independent of the first vertex, so this

42



4.2. THE SIMULATION ALGORITHM

(0.4, 0.4)

(0.5, 0.6)

(0.6, 0.6)

(0.4, 0.4) (0.4, 0.6)

(0.4, 0.4)

(0.4, 0.4)(0.6, 0.6)

u

(0.4, 0.4)

(0.5, 0.6)

(0.6, 0.6)

(0.4, 0.4) (0.4, 0.6)

(0.6, 0.6)

(0.4, 0.4)(0.6, 0.6)

(0.6, 0.6)

v
(0.4, 0.7)

Figure 4.3: An example of one active vertex � and one inactive vertex � . Vertices
which cannot be infected for any � any more are coloured gray, ver-
tices still not infected for some � are white. Vertex � is surrounded
by gray vertices and therefore inactive, while � still has one white
neighbour and thus remains active.

probability must be equal for all vertices. For some vertices this second
probability will indeed be

, � � , so it must be
, � � for all vertices, and this

is not the case if we exclude vertices that cannot be infected but still
has neighbours that can.

4.2.5 Simulation setup

We perform simulations for the following values of � .

� $ � � 1  , 1�1  , � 1  . 1 1 /. � 1  �=1�1  � � 1  � 1 1  � � 1  � 1�1  � 1�1 �� � 1  , . � 1 /. � 1=1 �
For all but the largest box 1000 simulations are done. Since large boxes
take a long time to simulate, we were forced to limit the number of
simulations for � � . � 1�1

to 100.
After running all simulations the functions � � are estimated point-

wise in the following manner. Each simulation generates threshold val-
ues for every vertex. Let � ) be the set of threshold values for a simulation
+ , and assume we have done � simulations. Then � �

�
�) � � � ) is the set

of values of & where some vertex changes in the model. Order these
vales according size.

� � � & �  & <  � � � /&�� �
For each & ) $�� we estimate � � � & ) ! by just going through all simulations
and check in how many of these both types have survived on

� � �
and

divide this number with the total number of simulations.
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4.3 Results
In fig. 4.4 we see the estimated functions �� � � & ! for some of the simu-

lated boxes. As expected the probability for simultaneous survival (for
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Figure 4.4: the estimates of the functions � � � � � for some values of � .

any fixed & ) is decreasing as the box size increases. Functions �� � <�� 	 � & !
and �� <�� 	 	 � & ! breaks this monotone pattern. The more erratic behaviour
of �� <�� 	�	 is of course due to the smaller number of samples. There is
no indication of non-monotonicity like in fig 4.1 in any of the estimated
functions. An open question is if the simulated boxes are large enough.
If there exists any exceptional value & 	 � ,

with 5 � 8 � �
� 8 � � � � �� 8 � 
 � � �< 8 � ! � 1

we
would probably need extremely large boxes to see this. No matter how
large boxes we simulate there will however always be possible to have a
small exceptional probability at an exceptional value close enough to 1.

4.4 Curve fitting
In this section we fit a model to the estimated curves and in the next

section we use it for an analysis.
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Figure 4.5: Estimated and fitted function for boxes � ����� and ����� � .

4.4.1 Fit a parametric curve to the estimated functions

Let us fit a parametric curve to the estimated functions �� � � & ! , and
see if we can relate the parameters to box size. When looking at the
estimated curves it seems appropriate to fit some s-shaped curve to
data. We try with the following.

� � � & ! �����
�%� � � � � � � ���

It is tempting to replace
�

in the exponent by a third parameter � �
to get

o closer fit. This does not, however, decrease the difference between � �
and �� � enough to motivate such an extension. We have two parameters
���

and � � to estimate from the function �� � . The first parameter
� �

is the
probability for simultaneous survival whenever the infection intensities
are equal, the second parameter has to do with the shape of the curve.

There is no hope of course for this curve to be correct. Theoretically
we have � � � 1 ! � 5 � 8 	

� 8 � � � 	 � 8 � 
 � 	 < 8 � ! � 1
since type two doesn’t infect at all

with zero infection intensity, but
� �
� � � � � 1

for all plausible values of
the estimated parameters. Even if there is no theoretical support for
this model it is interesting to see how closely we can approximate the
estimated functions. Curve fitting can also illustrate how � � � & ! behave
for & � ,

as � � � , which is important when studying how fast
the stronger type strangle the weaker. With these remarks in mind we
proceed. In figures 4.5 and 4.6, we see the result of this procedure.

Note that � � does not fit the estimated functions well whenever &
is small enough or close to 1. But there is a region, �

�� (see fig. 4.7),
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Figure 4.6: Estimated and fitted function for boxes � � ��� � ��� � � � � � ��� � and � ��� ��� .

when �� � � & ! increases the most where � � � & ! fits quite well. Perhaps � � � & !
captures the behaviour of �� � when its derivative is large. Above this
interval ( � <� in fig. 4.7) simulations indicate �� � � & ! � � � � & ! .

For all boxes the probability for simultaneous survival doesn’t change
much when & is close to 1, but decreases quite rapidly (at least for larger
boxes) when & is below some threshold value & � 8 � . In fig. 4.7 w have & � 8 �
somewhere in the middle of the interval � <� . In the simulated cases this
threshold & � 8 � approaches 1 as � gets larger. Perhaps this behaviour
is the same for all finite boxes and & � 8 � � ,

as � � � . In that case
the behaviour is consistent with the belief that the exceptional set � is
empty.
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Figure 4.7: In the interval � �� where � � � � � closely approximates �� � � � � . In inter-
val � �� we have ����� � ����� ��� � � . We can use the underestimation of
the curve in � �� to get a upper bound for the rate of convergence at
which ����� � .

4.4.2 Dependence between parameter and box size

In trying to relate the parameters to box size we plot these as func-
tions of � . In fig 4.8 there appears to be no strong correlation between �
and

�>�
. Theory indicates that

�>�
should be decreasing as � gets larger,

approaching the limit value
5 ��8
� 8 � � � � 
 � < ! as � � � . It’s hard to say

anything about how
� �

approaches its limit values, the simulated data
is too spread out and the limit value unknown. Considering fig. 4.8
it seems reasonable however to conclude that

��� � � � � � � $ � 1 � � 1  1 � � . � .
The dependence of

� � on � should not be linear since we cannot have
negative values for

�>�
, ever. Perhaps some sort of exponential or slowly

varying function is more appropriate to model the decay.
The situation for parameter � is different. This parameter models

the shape of the function. In fig. 4.8 we see that there is some quite
strong linear dependence between � and � � . As the finite boxes grows
to infinity so does � � , resulting in the following limit function.

� � � & ! � ��� �� � � � �
� �  � � � � � ��� �+* �  & �-,

1  & � ,  � �21 � � 1

where
� � � � � � � � �>�

. This is also consistent with the belief that � is
empty, so there is nothing new here. If this captures the dependence
between � and � � we can see how quickly the functions � � converges to� � , 	 & ! , and get an indication of how the probability of simultaneous
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Figure 4.8: Parameters � � and
� � for different values of the box size � .

survival behave on finite boxes.

4.5 Statistical analysis
4.5.1 A test: Are there exceptional values for & $ ���  � � � � ?

All simulation results indicate that the set � of exceptional values
for & is empty, but how strong is the evidence against � �� � .

Given �� � � & ! we assume the existence of exceptional values & 	 such
that, 5 ��8

� 8 � � � � �� 8 � 
 � � �< 8 � !� �� � � & 	 !
that is, the existence of & 	 such that we should be able to see some
indications of them in simulations. We cannot use this idea to test the
existence of & 	 such that

5 ��8
� 8 � � � � �� 8 � 
 � � �< 8 � ! � �� � � & 	 !

since these are not visible in simulations.
We fix ��� 1

and test the hypothesis that there exists some & 	 $� 1 �� �  � � ,
, such that 5 ��8

� 8 � � � � � 8 � 
 � �< 8 � !  � against the alternative that
there is no such exceptional values.

We perform the test for the largest box where we have �
� , 1 1�1

simulations, that is
� � <�� 	 . Figure 4.6 indicates that � 
 � 1  1 � �:� � �

, so
we use � � 1 � � . (Here we make the cardinal sin of looking at data before
deciding on the null hypothesis. We feel that this does not have very
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Figure 4.9: Assuming the existence of � � � ������� � such that ������ � � �
	 � �� � ��� 	 � �� � � � � we reject the null hypotheses in favour of the alternative if����� 	 �� � � � ��� ��� ������� � � ��������� ������� � .
severe consequenses in this case, but the critical reader is invited to try
other values of � .) We now state the hypotheses! 	 � � & 	 $ � 1 �� � � 5 ��8

� 8 � � � � �� 8 � 
 � � �< 8 � !  �! � � � & $ � 1  � � � 5 ��8
� 8 � � � � � 8 � 
 � �< 8 � ! ���

Under the null hypothesis the Binomial distribution and the central
limit theorem give us a statistic

" � �� � & 	 ! 	 � � & 	 !#
� � & 	 ! � , 	 � � & 	 !"! � �

�
� � � 1  , !

provided that we have a candidate for &�	 (which we do not). Suppose
� � � & 	 ! �

� . This suggests that we reject ! 	 in favour of !%� at significance
level

�
if

�� � � & 	 ! � � �$ ) � )  �&% �
��	 ��')( � � , 	 � !

�
We do not however know the value & 	 so we choose a conservative ap-
proach and reject ! 	 whenever � � � � � � �$ ) � )  �&% , where

� � � � � ����� � �� � � & ! � & $ � 1 �� � �
As a consequence of the choice of � we have � � � � � 1

, and we can easily
calculate the p-values of the test as a function of � , see fig. 4.10.

With
� �31 � 1 � we can reject for �  1 � 1�1 . � and if we want

� � 1 � 1 ,
we

can reject whenever �  1 � 1�1 �	� .
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Figure 4.10: � -values for the test expressed as a function of � � � � � .

Given simulations on larger boxes we can test the null hypothesis for
smaller and smaller values for � and also do this for larger and larger
subsets of � 1  , � .

4.5.2 The case 5 ��� � � 8 	 
 � �� 8 	 !� �����
From fig. 4.8 it seems reasonable to assume that

��� �� � � ��� $ � 1 � �  1 � � .7�
We fix

�>� �21 � � for all � consider & such that
5 �; 6 8 ; 9 � � � � 8 � 
 � �< 8 � ! � , � .

Let & ��� < � � ! denote this value.

� � � & ��� < � � !"! �����
� �  � � � � � 6�� 9 � � �	��� � ,

.
� & ��� < � � ! � , 	

� � � . ���
� � �

��� �

where as
� � 1 � � 1 before.If the probability for simultaneous survival is

monotone this is a threshold value for & above which there is at least
probability

, � . for simultaneous survival, see fig. 4.11. The theoretical
limit of & ��� < as � � � is of course 1. It is interesting to see how slowly
& ��� < converges to its limiting value. We can repeat this procedure for
any � � 1 � � and get similar figures as the one in fig.4.11.
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Figure 4.11: We see how the threshold value � �	� � � � � vary with � . This illus-
trates how the region for � in � ��� � � where we have a reasonable
probability for simultaneous survival decreases as � grows.

This is an indication of a small region for & , close to 1, where infec-
tions are almost equally strong, in which it takes a very long time for the
stronger infection to strangle the weaker. On finite regions we will then
have a reasonably high probability, which in this case is at least

, � . ,
for simultaneous survival if & � � & < , or & � ,

, though the tolerance for
differences in infection intensities decreases as the region gets larger.

4.5.3 A conjecture: Lower bound for 5 ��� � � 8 	 
 � �� 8 	 ! when &�� ,
In the last section we treated the case when the probability of simul-

taneous survival is at least
, � . , and can in fig. 4.11 see how & ��� < � ,

as � � � . We will now see what conclusions can be drawn from
simulations regarding the behaviour of 5��; 6 8 ; 9 � � � � 8 � 
 � �< 8 � ! when & � ,

.
As claimed before there is a small interval � , 	 �  , � where it seems as if
�� � � & !  � � � & ! , see fig. 4.5 and 4.6. Let us formulate this as a conjecture.

Conjecture 4.1
There exists a

� $ � 1  , ! such that
5 ��8
� 8 � � � � � 8 � 
 � �< 8 � !� �

� �  � � � � � ���  � �21 � � 1  � � ��� �� � � ���

whenever & $ � , 	 �  , � .
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If true, the conjecture sets an upper bound on the rate at which
5 ��8
� 8 � � � � � 8 � 
 � �< 8 � ! � 5 ��8

� 8 � � � � � 
 � �< !
We can also use this to determine how large boxes we must use to

detect & 	 $ � 
 � , 	 �  , � such that
5 �=8
� 8 � � � � � 
 � �< !� �

for any � � 1
. For example to detect & 	 � 1 � � ��� with exceptional proba-

bility � $ � 1  1 � , � , we just rewrite the inequality

� 
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and see how the lower bound on � behaves as a function of � , see fig.
4.12.
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Figure 4.12: Given a lower bound on the exceptional probability  for a certain
� � we can use the conjecture to get a lower bound on the box size
we have to use in simulations. In this case � ��� ��� ����� while 
varies over � � ����� � � .
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CHAPTER 5

Discussion, comments and
open questions

5.1 Omniparametric simulation
5.1.1 Present and future

Up to this date there are to our knowledge only a few omniparametric
simulation algorithms available in the field of particle systems. They
have been used for theoretical purposes, such as the study of continuity
for some functions as in [Hig91], or for estimating functions over the
coupled parameter as in [PW96].

When confronted with the problem of constructing an omniparamet-
ric simulation algorithm for a, at least in this sense, new model two
questions arise:

1. Is it at all possible?

2. Is there some property, or properties, of models making them can-
didates for omniparametric simulation?

In perfect simulation it is known that if the model possesses a certain
monotonicity property one can use monotone CFTP instead of ordinary
CFTP to generate perfect samples, and avoid running an impossible
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CHAPTER 5. DISCUSSION, COMMENTS AND OPEN QUESTIONS

large number of processes in parallel. What is needed is a partial or-
dering of the sample space with maximal and minimal elements, and a
certain order preserving coupling in the update mechanism of the sim-
ulation algorithm. There is a property for omniparametric simulation,
regarding the representation of the sample space, that appears to be
equally important.

Consider the proposed omniparametric algorithm for the two-type
Richardson model. Given an omniparametric sample

4 �*�"! we can eas-
ily use the projection operator to retrieve an ordinary fixed parameter
sample. Theoretically we can use any partition of � 1  , � to define such a
projection operator as long as we can determine what type a vertex have
for each parameter value. But, if the partition is not consisting of three
connected disjoint subsets we have a problem, since then we could get
more and more subsets in the partition in every step of the algorithm.
So the property of the partition of being possible to represent as three
connected disjoint subsets is important. Preserving this property is cru-
cial for the success of the algorithm. The omniparametric sample has
for each vertex such a representation and we cannot represent it in the
computer during simulation if it becomes more and more complicated
in every step of the algorithm. The omniparametric algorithm for the
random-cluster model proposed by Dimakos share this property, see
[Dim00] for further details.

In general when considering omniparametric simulation we can the-
oretically use any partition of the parameter space to define a projec-
tion, and it does not matter if the representation of the partition gets
more and more complicate as the algorithm evolve. However when pro-
gramming such an algorithm the representation must have constant
complexity otherwise the algorithm will, sooner or later, break down.
We call this property the constant representation complexity property .

Perhaps as omniparametric algorithms are developed for a larger
number of models we will be able to see some kind of characterisation
of this property. Another important property is the existence of a par-
tial order with a maximal and minimal element together with a suitable
update mechanism making it a candidate for monotone CFTP.

5.1.2 Utilisation

By generating a single omniparametric sample we generate samples
for each value of the parameter, making it worth the extra effort to use
the omniparametric approach.

For the two-type Richardson model there is the problem of simulta-
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5.2. ASYMMETRIC SIMULTANEOUS SURVIVAL IN THE TWO-TYPE
RICHARDSON MODEL

neous survival when the two infection types have different intensities.
Here omniparametric simulation makes it possible to use simulations
and see if samples show any indications of exceptional values. Since
the exceptional set is countable this is not possible when using fixed
parameter simulation.

For the independent percolation model omniparametric simulation
makes it possible to generate monotone estimates of the connection
probabilities, something which is harder to do with traditional simu-
lation. It also makes the simulation faster, not due to any theoretical
properties, but as a consequence of the smaller number of samples
needed.

The three examples show that by using omniparametric simulation
we sometimes get faster simulation algorithm, sometimes we can study
questions previously not possible to address by simulations, and in
some cases we just get better estimates.

5.2 Asymmetric simultaneous survival in the two-type
Richardson model

The original question remains unanswered, but we have shed some
light over the situation, as was our intention.

What remains to do is to prove that the set of exceptional values for &
is empty. The simulations carried out and analysed in this thesis show
no indication of such values. As pointed out in chapter 4 there will, re-
gardless of used box size or number of simulations, always be possible
to have an exceptional value &�	 � ,

with small enough probability for
simultaneous survival. Also there will always be a tolerance, on finite
boxes, for differences in infection intensities such that we will have si-
multaneous survival with reasonably high probability if & � � & < . The
tolerated difference will of course decrease as the simulated box gets
larger, but if conjecture 4.1 is correct it approaches zero very slowly.

5.3 Future work
5.3.1 Omniparametric simulation in general

The concept of omniparametric simulation is rather new and there
are to our knowledge only a few examples of algorithms so far. One is
given in this thesis, one given by Dimakos [Dim00], and one relatively
simple for the independent percolation model.

One line of work is to continue to develop omniparametric algorithms
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for other probability models. This would simplify the study of functions
having the parameter space as domain, as in the example regarding
connection probabilities for the percolation model. Perhaps one would
also see if there are some general properties of a model, making it a
candidate for omniparametric simulation.

Another approach is to study fully omniparametric models, i.e. mod-
els without any fixed parameters. For one parameter models this intro-
duces nothing new, but for models with two or more parameters there
are some new problems. An example is the random-cluster model,
where we have to couple the processes over two parameters,and sim-
ulate for � �� � ! $ � 1  , � � � ,  � ! simultaneously. Perhaps the more compli-
cated simulation algorithms are motivated by new applications, perhaps
not.

5.3.2 Omniparametric simulation as a tool in statistics

A second line of work is to investigate how to use omniparametric
simulation as a tool in statistics. This is interesting when the model
itself cannot be examined, but we can measure quantities which are
functions of one or several parameters.

5.3.3 What next ...

After presenting this thesis I will start working on a project regarding
the Ising model, and use omniparametric simulation to do inference
about the connection parameter, given observations at certain sites.
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