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Abstract

A stochastic model, describing the growth of two competing infections
on Rd, is introduced. The growth is driven by outbursts in the infected
region, an outburst in the type 1 (2) infected region transmitting the type
1 (2) infection to the previously uninfected parts of a ball with stochastic
radius around the outburst point. The main result is that with the growth
rate for one of the infection types fixed, mutual unbounded growth has
probability zero for all but at most countably many values of the other
infection rate. This is a continuum analog of a result of Häggström and
Pemantle. We also extend a shape theorem of Deijfen for the correspond-
ing model with just one type of infection.
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1 Introduction

In Deijfen (2002), a model is introduced that describes the random growth of
an infected region in Rd by means of spherical outbursts in the infected re-
gion. The purpose of the present paper is to extend the work of Deijfen (2002)
in two directions. First, we generalize the asymptotic shape theorem of that
paper from bounded outburst radii to unbounded ones satisfying a certain mo-
ment condition; see Theorem 1.1. Second, we extend the model to encompass
two competing types of infection, and prove a continuum analog of a result
of Häggström and Pemantle (2000) concerning the impossibility of mutual un-
bounded growth; see Theorem 1.2.

The model in Deijfen (2002) can be viewed as a generalization to continuous
space of the well-known Richardson model. The Richardson model, first intro-
duced in Richardson (1973), describes growth on Zd. Sites can be either infected
or uninfected: An uninfected site becomes infected at a rate proportional to the
number of infected nearest neighbors and once infected it never recovers. In the
continuum model the growth takes place by way of outbursts in the infected
region, an outburst at an infected point causing a ball with stochastic radius
around the outburst point to be infected. Hence, for all t the infected region at
time t, denoted by St, is a union of randomly sized Euclidean balls. The dy-
namics is that, given St, the time until the next outburst occurs is exponentially
distributed with expected value proportional to |St|

−1 and the outburst point
is chosen uniformly in St. The main result in Deijfen (2002) is a shape theo-
rem which asserts that if there is an upper bound for the radii of the outburst
balls, then on the scale 1/t the set St has an asymptotic shape, which due to
rotation invariance must be a Euclidean ball. The following result states that
the conclusion of the shape theorem in Deijfen (2002) is still valid under the
weaker assumption that the radius distribution, denoted by F , has a moment
generating function. Here B(x, r) is a closed ball with radius r centered at x.

Theorem 1.1 (Generalized shape theorem) Fix d ≥ 1 and consider the
d-dimensional continuum growth model with rate λ. Assume that

∫ ∞

0

e−ϕrdF (r) <∞ for some ϕ < 0 (1)

and let S0 ⊂ Rd be arbitrary but bounded with strictly positive Lebesgue measure.
Then there is a real number µ > 0 such that, for any ε ∈ (0, λµ−1), almost surely

(1− ε)B
(

0, λµ−1
)

⊂
St
t
⊂ (1 + ε)B

(

0, λµ−1
)

for all sufficiently large t.

In Häggström and Pemantle (1998) a two-type version of the Richardson model
is introduced: Two particle types – type 1 and type 2 – compete for space
on Zd, the dynamics being that an empty site becomes occupied by a type i
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particle at a rate that is proportional to the number of nearest type i neighbors
and an occupied site remains occupied forever. In this paper a similar two-type
version of the continuum model is introduced. A careful description will be given
in Section 3 but roughly the model is as follows: Two different non-reversible
entities – which henceforth will be referred to as type 1 and type 2 infection
– compete for space on Rd. The infected region at time t can be divided in
two disjoint sets S1t and S2t indicating the region occupied by type 1 infection
and type 2 infection respectively. As in the one-type model the growth takes
place by way of outbursts which infect the previously uninfected parts of a ball
with random radius around the outburst point. The outbursts are of two types:
Type 1 outbursts occur in the type 1 infected region and result in outburst
balls of type 1, that is, the infection transmitted by the outburst is of type 1.
Type 2 outbursts occur in the type 2 infected region and causes outburst balls
loaded with type 2 infection. For i = 1, 2, given Sit the time until an outburst
occurs in Sit is exponentially distributed with parameter λi|S

i
t | and the outburst

point is uniformly distributed over Sit . Note that if λ1 = λ2 and if we do not
distinguish between the infection types this model is equivalent to the one-type
model introduced in Deijfen (2002).

Consider the development of the infection in the two-type Richardson model.
There are two possible scenarios:

1. One of the infection types is at some point surrounded by the other type,
implying that only finitely many sites are ever occupied by the surrounded
type.

2. Both infection types keep growing indefinitely.

Clearly the first scenario has positive probability but what about the second
one? This issue is dealt with in Häggström and Pemantle (1998) and (2000).
The main result in the first paper is that if λ1 = λ2 – that is, if the infection
types are equal in power – and d = 2, then the event G = {both infection types
grow indefinitely} has positive probability. In the second paper the case λ1 6= λ2
is considered and the main result is that if λ1 = 1, then G has probability zero
for all but at most countably many values of λ2 (note that, by time-scaling,
the assumption that λ1 = 1 is no restriction). The main result in the present
paper is that, for d ≥ 2, this holds also in the two-type continuum model. This
strongly suggests that G in fact has probability zero for all choices of λ2 6= 1.
See Häggström and Pemantle (2000) for some intuitive reasoning behind this
statement.

Before formulating the result we have to specify what the event “both infection
types grow indefinitely” will mean in the continuum model. To this end, let

Gi = {the type i infection reaches points arbitrarily far away from the origin}

and define G = G1 ∩G2 so that G hence is the event that both infection types
reach arbitrarily far away from the origin simultaneously. If the outburst radius
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is bounded, the type 1 (2) infection is clearly prevented from growing any further
if it is surrounded by a type 2 (1) layer whose thickness exceeds the upper bound
for the size of an outburst. In this case the event G thus means that none of
the infection types is enclosed by the other and so the concept of co-existence
is similar to the lattice case. On the other hand, when the outburst radius is
not bounded it is not possible to rule out G in finite time, indicating that we
are dealing with a more subtle concept of co-existence.

It is not hard to show that the events G1 and G2 both have positive probability
for all choices of λ1 and λ2 (see Proposition 5.1). The event G = G1 ∩ G2 is
more complicated to study. However, intuitively it is clear that G should not
occur if λ1 6= λ2: That both infection types reach arbitrarily far away from the
origin means that some kind of balance of power reigns between the infection
types and if one of them is more powerful than the other there is no reason to
believe that such a balance should be possible. Our main result is a step on the
way towards a formalization of this intuition. To formulate it some notation is
needed. Let P λ1,λ2

Γ1,Γ2
denote the probability law of the two-type growth process

started at time zero from S10 = Γ1 and S20 = Γ2 and with infection rates λ1
and λ2 respectively. Our first result for the two-type model is that under the
assumption that arbitrarily small outbursts are possible the particular choice of
Γ1 and Γ2 is irrelevant in deciding whether the event G has positive probability
or not.

Proposition 1.1 Let (Γ1,Γ2) and (Γ′1,Γ
′
2) be two pairs of disjoint, bounded

subsets of Rd with strictly positive Lebesgue measures. Furthermore, suppose
that F has unbounded support and satisfies F (ε) > 0 for all ε > 0. Then

Pλ1,λ2

Γ1,Γ2
(G) > 0⇒ P λ1,λ2

Γ′
1
,Γ′

2

(G) > 0.

Remark 1.1 The proof of Proposition 1.1 can easily be modified to cover the
case with bounded support as well, provided the following (obviously necessary)
condition on (Γ′1,Γ

′
2): If the radius distribution is bounded by r, then neither

of Γ′1 or Γ′2 may contain an impenetrable layer of thickness r around the other.

In words, if we can find two sets Γ1 and Γ2 such that the event G has positive
probability when starting from Γ1 and Γ2, then it follows that G has positive
probability for all other initial sets Γ′1 and Γ′2 as well. Thus we may restrict
our attention to the case when the process is started from two balls with radius
given by the mean outburst radius, denoted by γ. The balls are placed next to
each other, one of them centered at the point −2γ = (−2γ, 0, . . . , 0) and the
other at the origin. The notation for the probability law in this case is simplified
by dropping the subscripts so that P λ1,λ2 hence denotes the law of the growth
process started from Γ1 = B(−2γ, γ) and Γ2 = B(0, γ). Furthermore, note that
by time scaling we may assume that λ1 = 1. The main result is as follows:

Theorem 1.2 If F satisfies (1), then for d ≥ 2 the set {λ2; P
1,λ2(G) > 0} is

countable.

4



Thus P 1,λ2(G) = 0 for all but at most countably many values of λ2. As men-
tioned before, this strongly suggests that P 1,λ2(G) = 0 for all λ2 6= 1. In the
case λ2 = 1 on the other hand, it seems reasonable to suspect that G has pos-
itive probability. That λ2 = 1 means that the two infection types are equal
in power and hence it should be possible for some kind of balance of power to
arise. Let us summarize all this in the following conjecture:

Conjecture 1.1 If (1) holds, we have {λ2; P
1,λ2(G) > 0} = {1} for d ≥ 2.

The rest of the paper is organized as follows. Theorem 1.1 is proved in Section
2. Section 3 provides a closer description of the two-type continuum model and
Section 4 contains a number of auxiliary results needed in the following sections.
In Section 5 an analogue of the “key proposition” in Häggström and Pemantle
(2000) is formulated and proved. This result will be of vital importance in the
proof of Theorem 1.2 and due to the fact that the asymptotic shape for the
continuum model is known to be a Euclidean ball, its proof is somewhat more
appealing for the intuition compared to the lattice case. Theorem 1.2 is proved
in Section 6 and Proposition 1.1 in Section 7.

2 The asymptotic shape

The aim in this section is to prove Theorem 1.1.

As described in the introduction, the growth in the one-type process is gener-
ated by stochastically sized spherical outbursts in the infected region St. Given
the development of the infection up to time t, the time until an outburst occurs
somewhere in St is exponentially distributed with parameter λ|St| and the lo-
cation of the outburst is uniformly distributed over St. To formally construct
the model in d dimensions, a (d + 1)-dimensional Poisson process with rate λ
is used, the extra dimension representing time. A bounded set Γ ⊂ Rd with
strictly positive Lebesgue measure is picked to initiate the growth and also, to
the points in the Poisson process i.i.d. radius variables with distribution F are
attached. Starting at time zero the growth is then brought about by following
the cylinder Γ × R upwards along the time axis until a point in the Poisson
process is found. An outburst then takes place at this point and an infection
ball B1 with radius given by the radius variable associated with this particular
Poisson point is created around the outburst point. The infected region in now
given by Γ ∪ B1. Scanning within the cylinder (Γ ∪ B1) × R further upwards
along the time axis a new Poisson point is eventually hit and a new infection
ball B2 arises around this point. And so on. For a more thorough description
of the construction we refer to Deijfen (2002).

The main result in Deijfen (2002) is the asymptotic shape result in Theorem
1.1 under the stronger assumption that the outbursts radii are bounded. (The
result was formulated for λ = 1 only, but the general result follows by a simple
time scaling argument.)
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Let T̃ (x) be the time when the entire ball with radius γ around the point x is
infected in a unit rate process started from S0 = B(0, γ), that is,

T̃ (x) = inf{t; B(x, γ) ⊂ St}.

The time constant µ is given by

µ = lim
n→∞

E[T̃ (n)]

n
= lim

n→∞

T̃ (n)

n
, (2)

where n = (n, 0, . . . , 0). The existence of the limit in (2) and the fact that it is
an almost sure constant is proved in Deijfen (2002). The proof does not use the
assumption of bounded support for the radius distribution and hence it applies
also if this assumption is dropped. In fact, the only part of the proof of the
shape theorem in Deijfen (2002) that uses the assumption of bounded support
for F is the one that establishes that µ > 0, that is, that the infection does not
grow faster than linearly in time. Hence a weaker condition that guarantees
at most linear growth could replace the bounded support assumption without
weakening the conclusion of the theorem. We will show that existence of the
moment generating function of F is sufficient for the growth to be at most linear.
More precisely, we will show:

Proposition 2.1 If
∫∞

0
e−ϕrdF (r) <∞ for some ϕ < 0, then µ > 0.

In view of the above discussion, Theorem 1.1 follows once we have proved Propo-
sition 2.1. The main ingredient in the proof of Proposition 2.1 is a “larger”
growth process in which the outbursts constitute a spatial branching process.
This process will be referred to as the Branching Random Walk growth process.
We will show that the BRW process grows at most linearly in time and since
it can be shown that the original growth process is stochastically dominated
by the BRW process, the proposition follows from this. The time constant µ
is defined based on a unit rate process and hence we consider only unit rate
processes for the remainder of this section.

The BRW growth process works in a similar way as the original process, with
outbursts that infects a randomly sized shape around the outburst point. In
the BRW process though, each outburst point is assigned its own independent
Poisson process to generate new outbursts in the surrounding outburst shape.
Furthermore, for technical reasons we will take the outbursts in the BRW process
to be cubes rather than spheres.

To formally construct the BRW growth process, let {Nn} be a sequence of inde-
pendent unit rate Poisson processes on Rd+1. The extra dimension represents
time and the points in the n:th process are denoted (Xn

k , T
n
k ) where Xn

k ∈ Rd

and Tnk gives the location on the time axis. Also, to each Poisson point, asso-
ciate independently a variable Rn

k with distribution F . Finally, for S ⊂ Rd, let
Nn(S × R) denote the restriction of Nn to S × R. The process now evolves at
time points {Tn} by aid of cubic outbursts with side length {2Rn} centered at
points {Xn} obtained inductively as follows:
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1. Define X0 = 0, T0 = 0 and R0 = γ and let Cn denote a cube in Rd with
side length 2Rn centered at Xn.

2. Given {Xi; i ≤ n}, {Ti; i ≤ n} and {Ri; i ≤ n}, for i = 0, . . . , n, let

T́ni = inf
k
{T ik; T

i
k > Tn and (Xi

k, T
i
k) ∈ Ni(Ci × R)}

and define Tn+1 = mini{T́
n
i }. The point Xn+1 is the (a.s. unique) point

in Rd such that (Xn+1, Tn+1) ∈ Ni for some i and Rn+1 is the side length
variable associated with (Xn+1, Tn+1).

The infected region after n outbursts is obtained as S̄(n) = ∪ni=0Ci and for
t ∈ [Tn, Tn+1) the infected region at time t is given by S̄t = S̄(n).

Remark 2.1 In the above construction the initial set S̄0 is a cube with side
length 2γ centered at the origin. The notation S̄t is reserved for the infected
region at time t starting from this particular configuration. Furthermore, in the
original one-type model, it will often be convenient to take S0 = B(0, γ) and the
notation St is henceforth used to represent the infected region at time t starting
from this particular choice of S0.

The first result is a lemma stating that {St} is stochastically dominated by {S̄t}.

Lemma 2.1 The processes St and S̄t can be coupled in such a way that St ⊂ S̄t
for all t.

Proof: First note that by definition we have S0 = B(0, γ) and S̄0 = C(0, 2γ),
where C(0, 2γ) is a cube with side length 2γ centered at the origin. Hence S0 ⊂
S̄0. Let N0 be the Poisson process used to generate {St}t>0 and let {Nk}k≥1
be a sequence of independent Poisson processes on Rd+1 that are independent
also of N0. A process with the same distribution as {S̄t} is obtained by starting
from C(0, 2γ) and then using ∪n−1i=0 Nk to generate new outbursts in regions that
previously has been exposed to n outbursts. That is, in intersections between n
outburst balls we scan within n independent Poisson processes, always including
N0, upwards along the time axis to find new outburst points. Note that this
is a different (but equivalent) way of constructing the process compared to the
above definition. Some thought reveals that with this construction, given that
S(n) ⊂ S̄(n), it will also hold that S(n+1) ⊂ S̄(n+1). It follows by induction over
n that S(n) ⊂ S̄(n) for all n and the lemma is thereby proved. 2

The outbursts in the BRW process satisfy the independence structure usually
assumed in branching processes, and is in fact a branching process with no
deaths of the Crump-Mode-Jagers type, see e.g. Chapter 6 in Jagers (1975) for
a description of the general process. Note that the reproduction of the ancestor
at the origin is slightly different from the other individuals reproduction in that
R0 ≡ γ, that is, the side length of the infection cube surrounding the ancestor
is deterministic.

Before proving Proposition 2.1 we state a theorem by Biggins that will play
a key role in the proof. To formulate the result, consider a one-dimensional
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general spatial branching process in which all individuals are equal, that is, all
individuals are of the same type and the distribution of its progeny in space
and time is the same. The reproduction of an individual is described by a point
process Z on R×R+ with each point corresponding to a child. Let the intensity
measure of Z be denoted ν and let m(ϕ, φ) be its Laplace transform, that is,

m(ϕ, φ) =

∫

e−ϕx−φtν(dx, dt).

Define
α(ϕ) = inf{φ; m(ϕ, φ) ≤ 1}.

Finally, write Ht for the position of the rightmost individual at time t.

Theorem 2.1 (Biggins 1995) Assume that α(ϕ) <∞ for some ϕ < 0. Then
there is a constant ζ <∞ such that almost surely Ht/t→ ζ as t→∞.

With this result at hand we are ready to prove Proposition 2.1.

Proof of Proposition 2.1: We want to prove that the infected region in the
original process grows at most linearly in time. By Lemma 2.1 this follows if
we can show that the growth of the BRW process is at most linear. To do
this we will assume that the ancestor in the BRW growth process has the same
reproduction as the other individuals, that is, we will assume that the process is
started from a cube with random side length distributed according to F . Linear
growth for such a process establishes linear growth also for a process with an
ancestor surrounded by a deterministic cube. This can be seen as follows: Let
S̄Γt denote the infected region at time t in a BRW process started from an

arbitrary initial set Γ and let S̄
[Γ,s]
t denote the region infected at time t ≥ s

in a BRW process started at time s emanating from Γ. If τ denotes the time
when the cube C(0, 2γ) is infected in a BRW process started from a cube with
random side length R, where R ∼ F , then clearly

S̄
[C(0,2γ),τ ]
t ⊂ S̄

C(0,2R)
t

for t ≥ τ and since S̄
[C(0,2γ),τ ]
t has the same distribution as S̄t−τ , linear growth

for S̄
C(0,2R)
t guarantees linear growth also for S̄t.

To prove linear growth in a BRW growth process with i.i.d. reproductions
for all individuals, including the ancestor, consider the projection of such a
process on the first coordinate axis. Some thought reveals that this projection
is a one-dimensional branching process in which each individual gives birth to
children according to a Poisson process in time with rate (2R)d, where R is a
random variable with distribution F . The children are distributed uniformly in
an interval of length 2R centered at the parent. Given that R = r in such a
process, we have ν(dx, dt) = (2r)d−1dxdt and the Laplace transform becomes
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mr(ϕ, φ) =

∫ ∞

0

∫ 2r

0

(2r)d−1e−ϕx−φtdxdt

= (ϕφ)−1(2r)d−1
(

1− e−2ϕr
)

.

Integrating over r yields

m(ϕ, φ) = (ϕφ)−1
∫ ∞

0

(2r)d−1
(

1− e−2ϕr
)

dF (r),

which implies that

α(ϕ) = ϕ−1
∫ ∞

0

(2r)d−1
(

1− e−2ϕr
)

dF (r).

Hence α(ϕ) <∞ iff
∫∞

0
e−ϕrdF (r) <∞. Assume that this is the case for some

ϕ < 0 and letH1
t denote the position of the rightmost individual in the projected

process. Then, by Theorem 2.1, there is a constant ζ such that H1
t /t → ζ as

t → ∞. Thus, if (1) holds, the BRW process grows at most linearly in time in
the direction of the first coordinate axis. But the same reasoning can be applied
to all coordinate axes: If H i

t denotes the position of the rightmost individual in
the projection of the BRW process on the i:th coordinate axis (i = 1, . . . , d), we
have that H i

t/t→ ζ for each i as t→∞. Hence, for any ε > 0, on the scale 1/t
the set of outbursts in the BRW growth process is contained in a cube with side
length ζ + ε centered at the origin if t is sufficiently large. This means that the
process grows at most linearly in time and Lemma 2.1 completes the proof. 2

3 Construction of the two-type model

In this section the two-type model is built up more formally by the construction
of a Markov process whose state at time t is a subset of Rd and consists of
two disjoint sets S1t and S2t . The process may for example be thought of as
describing the growth of two competing germ colonies and the set S1t (S2t ) will
be referred to as the type 1 (2) infected region.

To construct the model, let N1 and N2 be two independent Poisson processes
on Rd+1 with intensities λ1 and λ2 respectively. The extra dimension represents
time and the points in Ni (i = 1, 2) are denoted (X i

k, T
i
k), where X

i
k ∈ Rd and T ik

gives the location on the time axis. Furthermore, to each point in the Poisson
processes a random radius is associated. The radius variables are assumed to
be i.i.d. with expected value γ. We will use the processes N1 and N2 together
with the attached radius variables to construct three sequences {Tn}, {Xn}
and {Rn} indicating the time points, locations and radii respectively of the
outbursts, and two sequences {Si(n)} (i = 1, 2) specifying the type i infected
region after n outbursts. The intuition is as follows: At time zero a ball with
radius γ around the point −2γ = (−2γ, 0, . . . , 0) is infected with type 1 infection

9



and a ball with radius γ around the origin is infected with type 2 infection so
that S1(0) = B(−2γ, γ) and S2(0) = B(0, γ). The growth is then brought about

by scanning within the set (S1(0) ∪ S
2
(0)) × R upwards along the time axis until

either S1(0) hits a point in N1 or S
2
(0) hits a point in N2. An outburst then takes

place at this location infecting all points within some random distance from the
outburst point. The type of the infection is determined by the region in which
the outburst occurs: An outburst in the type i infected region generates outburst
balls of type i. After the outburst the new infected region is given by S1(1)∪S

2
(1)

where the infected region with the same infection type as the outburst might be
enlarged compared to before the outburst and the other region is unchanged.
Next we follow the set (S1(1) ∪ S2(1)) × R further upwards along the time axis

and eventually one of the regions S1(1) and S2(1) hits a new point in N1 or N2
respectively. This causes a new outburst and the infected region is enlarged in
the same way as described above. And so on.

Formally the sequences {Tn} (time points for the outbursts), {Xn} (locations
of the outbursts), {Rn} (radii of the outburst balls) and {Si(n)} are constructed
inductively as follows:

1. Define T0 = 0, S1(0) = B(−2γ, γ) and S2(0) = B(0, γ). Also, for S ⊂ Rd, let

Ni(S × R) denote the restriction of Ni to S × R.

2. Given Tn and Si(n) (i = 1, 2), define Tn+1 = min{T́ 1n+1, T́
2
n+1}, where

T́ in+1 = inf
k
{T ik; T

i
k > Tn and (Xi

k, T
i
k) ∈ Ni(S

i
(n) × R)}.

The point Xn+1 is the (a.s. unique) point in Rd such that (Xn+1, Tn+1) ∈
Ni for some i and Rn+1 is the radius variable associated with the point
(Xn+1, Tn+1).

3. Once the points Tn+1, Xn+1 and Rn+1 are specified, the infected regions
S1(n) and S

2
(n) are updated as follows: If (Xn+1, Tn+1) ∈ N1, that is, if the

outburst is of type 1, then

{

S1(n+1) = S1(n) ∪ [B(Xn+1, Rn+1) ∩ (S1(n) ∪ S
2
(n))

c]

S2(n+1) = S2(n)

so that, in words, the type 1 infected region is enlarged by the previously
uninfected parts of the outburst ball B(Xn+1, Rn+1) and the type 2 in-
fected region remains unchanged. If the outburst is of type 2, that is, if
(Xn+1, Tn+1) ∈ N2, then the type 2 infected region is updated analogously
while the type 1 infected region is left unchanged.

For t ∈ [Tn, Tn+1) the type i infected region at time t is given by Sit = Si(n) and

the total infected region at time t is S1t ∪ S
2
t .
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Write ∆i
n+1 for the time counting from Tn until an outburst of type i occurs.

By standard properties of the Poisson process, we have

∆i
n+1|F

i
n ∼ Exp{λi|S

i
(n)|},

where F i
n = σ(Si(0), . . . , S

i
(n)). Furthermore, given Sit the memoryless property

of the exponential distribution implies that the time until an outburst occurs
somewhere in Sit is exponentially distributed with parameter λi|S

i
t | and also the

location of the outburst is uniformly distributed over Sit .

To make sure that the model does not explode by generating infinitely many
outbursts in finite time, we have to show that the sequence {Tn} does not have
a finite limit point. This is done in the following proposition, which is the
analogue of Proposition 2.1 in Deijfen (2002):

Proposition 3.1 If the radius distribution has finite moment of order d, then
almost surely Tn →∞ as n→∞.

Proof: Let {∆n} denote the increments of the process {Tn}, that is, ∆n :=
Tn − Tn−1 is the time between two successive outbursts regardless of type.
Since Tn =

∑n
k=1∆k the proposition follows if we can show that

∑∞

k=1∆k =∞
almost surely. To do this, note that

∆k = min{∆1
k,∆

2
k}.

Since ∆i
k|F

i
k−1 ∼ Exp{λi|S

i
(k−1)|} it follows that

∆k|Fk−1 ∼ Exp{λ1|S
1
(k−1)|+ λ2|S

2
(k−1)|},

where Fk = σ(S1(0), . . . S
1
(k), S

2
(0), . . . S

2
(k)). Furthermore, by properties of the

Poisson process, given Fk−1 we can write

∆k =
k

λ1|S1(k−1)|+ λ2|S2(k−1)|
· Ek

where {Ek} are independent, Ek ∼ Exp(k). A trivial upper bound for |Si(k−1)|

(i = 1, 2) is given by

|Si(k−1)| ≤ v0 +

k−1
∑

n=1

Vn,

where v0 is the volume of the initial type i γ-ball in Rd and Vn denotes the
volume of a d-dimensional ball with radius Rn. Let v = E[Vn], which is finite
by the assumption of the proposition. By the strong law of large numbers,

1

k

k−1
∑

n=1

Vn → v as k →∞

11



and hence, if k is large,
1

k
|Si(k−1)| ≤ 2v.

Thus, for large k,

∆k ≥
1

(λ1 + λ2)2v
· Ek

and we are done if we can show that
∑∞

k=1Ek =∞. But this is an easy conse-

quence of Kolmogorov’s three series theorem: Let Ẽk = Ek−E[Ek] = Ek−1/k,
so that Ek = Ẽk + 1/k. Since

∑∞

k=1 1/k =∞ it suffices to show that
∑∞

k=1 Ẽk
converges almost surely. Using the fact that

∑∞

k=1 E[Ẽ
2
k] =

∑∞

k=1 1/k
2 < ∞

this follows from the three series theorem. 2

4 Preliminaries

In this section we prove a number of auxiliary results needed in the later sections.
The first two lemmas concern the relation between the one-type model and the
two-type model.

Lemma 4.1 Let S2t denote the type 2 infected region at time t in a two-type
process with distribution P 1,λ and let St denote the infected region at time t in
a one-type process with rate λ. The two-type process and the one-type process
can be coupled in such a way that S2t ⊂ St for all t.

Proof: Couple the two processes by letting the one-type process and the type
2 outbursts in the two-type process be generated by the same rate λ Poisson
process with the same radius variables attached. If S2(n) ⊂ S(n), it then also

holds that S2(n+1) ⊂ S(n+1). Since S20 = S0, the lemma follows by induction
over n. 2

Lemma 4.2 Consider the one-type process {St}t≥0 with rate λ ≤ 1 and the
two-type process {S1t ∪ S

2
t }t≥0 with distribution P

1,λ. These can be coupled in
such a way that

St ⊂ S1t ∪ S
2
t (3)

for all t.

Proof: For t = 0, (3) is trivial. To couple the one-type and the two-type
process, let N1 and N2 be two independent Poisson processes with rate 1 − λ
and λ respectively. Use N1∪N2 to generate the type 1 outbursts in the two-type
process and use N2 to generate all outbursts in the one-type process and the
type 2 outbursts in the two-type process. Note that the two-type process is
obtained in a different way here compared to in Section 3, but it is easy to see
that it gets the correct distribution. Also, it is easy to see that (3) is preserved
for t > 0. 2

12



The next two lemmas are needed in the proof of Proposition 5.2. To formulate
them, introduce a new, hampered version of the one-type process by placing
“ceilings” and “floors” in Rd restricting the growth in all directions but one:
Write (x1, . . . , xd) for the coordinates of a point x ∈ Rd and let Sbt denote the
infected region at time t in a one-type process where all infection outside the
stripe Ωb = {x ∈ Rd; |xi| ≤ b for all i ≥ 2} is ignored. The process {Sbt } hence
works exactly like the original one-type process except that points with |xi| ≥ b
for some i ≥ 2 are immune to the infection. The following lemma says that Ωb

is filled with infection linearly in time.

Lemma 4.3 Consider a hampered one-type process with unit rate. Assume that
(1) holds and let Sb0 ⊂ Ωb be bounded with strictly positive Lebesgue measure.
Then, for any dimension d there is a real number µb > 0 such that, for any
ε ∈ (0, µ−1b ), almost surely

(1− ε)
{

x ∈ Ωb; |x1| ≤ tµ−1b
}

⊂ Sbt ⊂ (1 + ε)
{

x ∈ Ωb; |x1| ≤ tµ−1b
}

for all sufficiently large t.

The proof of the lemma for the case of bounded outburst radii is a straightfor-
ward but tedious adaptation of the proof of the shape theorem in Deijfen (2002),
and the general case follows as in Section 2. We therefore omit the proof.

Let T̃ b(x) be the analogue of T̃ (x) in the process Sbt , that is, T̃
b(x) is the time

when the γ-ball around the point x is infected in a unit rate hampered process
started from S0 = B(0, γ). The time-constant µb is defined analogously to the
time-constant for the unhampered process, that is,

µb := lim
n→∞

E[T̃ b(n)]

n
= lim

n→∞

T̃ b(n)

n
,

where n = (n, 0, . . . , 0). The following lemma states that as b becomes large
the speed of the growth in the hampered process approaches the speed in the
unhampered process.

Lemma 4.4 As b→∞ we have µb → µ.

Proof: Trivially µb ≥ µ so it suffices to show that limb→∞ µb ≤ µ. To this end,
consider a one-type process with unit rate and pick δ > 0 and p ∈ (0, 1). We
will show that

P
(

T̃ b(kn) > (1 + δ)µnk
)

≤ p (4)

if n, k and b are large. Since p > 0 was arbitrary this implies that almost surely

lim
n→∞

T̃ b(n)

n
≤ (1 + δ)µ

for large b and since also δ > 0 was arbitrary the proposition follows. To prove
(4), first note that by Theorem 1.1 and (2) we have

13



E[T̃ (n)] ≤ (1 + δ/3)µn, (5)

if n is large. Define Db
n = T̃ b(n) − T̃ (n) and let F b

n be the event that the
hampered process Sbt reaches ∂Ωb before time T̃ b(n). We will show that

(i) P (F b
n)→ 0 as b→∞;

(ii) E[Db
n|F

b
n] ≤ cn for some constant c ∈ R.

The claim (i) follows easily by noting that P (F b
n) ≤ P (‖ST̃ (n)‖ > b). Since

almost surely T̃ (n) < ∞, Proposition 3.1 gives that P (‖ST̃ (n)‖ < ∞) = 1 and

hence P (‖ST̃ (n)‖ > b)→ 0 as b→∞.

To establish (ii), write τb for the time when the infection reaches ∂Ωb and note
that

E[Db
n|F

b
n] ≤ E

[

T̃ b(n)− τb|F
b
n

]

.

Now imagine that at time τb a new process is started from the origin using only
outbursts that touch the x-axis, that is, at time τb all infection except a ball
with radius γ around the origin is erased and the infection then evolves in time
along the x-axis using the same d+1-dimensional Poisson process as the original
process. Let τn denote the time counting from τb when the γ-ball around the
point n is infected in this new process. Since T̃ b(n) ≤ τb + τn we have

E[Db
n|F

b
n] ≤ E[τn]. (6)

Using the same technique as in the proof of Lemma 3.1 in Deijfen (2002) it
follows that the time until the point n is infected in the x-axis process can be
bounded by a sum of nd2γ−1e independent exponential variables with mean
η = η(d). Furthermore, it is not hard to see that the time from when the point
n is infected until the entire γ-ball around n is infected can be bounded by a
sum of m = m(d) exponential variables, which may be defined so that their
mean equals η. Hence E[τn] ≤ cn, where c can be taken as ηdm + 2γ−1e. The
statement (ii) now follows from (6).

By (i) we can pick b large so that P (F b
n) ≤ µδ/3c. Using (ii) and the fact that

E[Db
n] ≤ P (F b

n)E[D
b
n|F

b
n],

it follows that, for such b, we have

E[Db
n] ≤ δµn/3. (7)

Now, if n is chosen large enough to ensure (5) and b large enough to ensure (7),
then

E[T̃ b(n)] = E[T̃ (n) +Db
n]

≤ (1 + δ/3)µn+ δµn/3

= (1 + 2δ/3)µn. (8)
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It remains to show that this implies (4). To this end, let T̃ b((j−1)n, jn) denote
the time it takes for the infection to invade the entire γ-ball around the point
jn in a process started at time T̃ b((j− 1)n) emanating from the point (j− 1)n.
The variables {T̃ b((j − 1)n, jn); j ≥ 1} are iid with expected value E[T̃ b(n)]
and hence, by the strong law of large numbers, almost surely

1

k

k
∑

j=1

T̃ b((j − 1)n, jn)→ E[T̃ b(n)] as k →∞.

Using (8) this implies that

P





k
∑

j=1

T̃ b((j − 1)n, jn) > (1 + δ)µnk



 ≤ p

if k is large. Since

T̃ b(kn) ≤
k
∑

j=1

T̃ b((j − 1)n, jn)

this proves (4). 2

The next lemma is needed to prove Proposition 1.1. It involves the concept of
effective outbursts: An outburst is said to be effective if it causes previously
uninfected regions to be infected, that is, if it reaches outside the boundary of
the infected region.

Lemma 4.5 Assume that F satisfies (1) and let Λ be a bounded subset of Rd.

(a) The number of effective outbursts that occur in Λ during the progress of
the growth in a two-type process is almost surely finite.

(b) If in addition F has unbounded support and if Λc ∩ [S10 ∪ S
2
0 ] has positive

Lebesgue measure, there is a positive probability that no effective outbursts
ever occur in Λ.

Remark 4.1 In analogy with Remark 1.1, Lemma 4.5(b) extends to the case
with bounded radii provided that Λc∩[S10∪S

2
0 ] is not “strangled” by Λ∩[S10∪S

2
0 ]

in the sense of Remark 1.1.

Proof of Lemma 4.5: By time-scaling and symmetry it is enough to consider
a process with infection rates (1, λ), where λ ≤ 1. Furthermore, the choice of
initial sets does not affect the arguments in the proof. Hence we may restrict
our attention to a process with distribution P 1,λ.

(a) Write NΛ for the number of effective outbursts in Λ. Lemma 4.2 and Theo-
rem 1.1 implies that almost surely

S1t ∪ S
2
t ⊃ B

(

0,
λµ−1t

2

)
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for all sufficiently large t. Hence the minimal distance between points in Λ and
points in (S1t ∪S

2
t )
c is at least λµ−1t/4 for all sufficiently large t. It follows that

E[NΛ] ≤ |Λ|

∫ ∞

0

(

∫ ∞

λµ−1t/4

dF (r)

)

dt

= |Λ|

∫ ∞

0

(

∫ 4r/λµ−1

0

dt

)

dF (r)

=
4|Λ|

λµ−1

∫ ∞

0

rdF (r).

The last integral is finite by the assumption on F and hence NΛ is finite almost
surely.

(b) The calculation in (a) shows that there is an r (depending on Λ) such that if
S1t ∪S

2
t contains the ball B(0, r), then the conditional expectation of the number

of effective outbursts in Λ after time t is at most 1/2. Let A denote the event
that the ball B(0, r) is fully infected before the first outburst in Λ. Then

P (NΛ = 0) ≥ P (NΛ = 0|A)P (A)

≥
1

2
P (A),

which is clearly positive. 2

We will later on need the following refinement of Lemma 4.5.

Lemma 4.6 Consider a two-type process with F satisfying (1). For any δ, ξ >
0, there exists an r∗0 <∞ such that for all r∗ ≥ r∗0 we get that if the process is
started with (S10 , S

2
0) satisfying

S20 ⊂ B(0, r∗) and S10 ∪ S
2
0 ⊃ B(0, r∗(1 + ξ)),

then
P (infection 2 never makes an effective outburst) > 1− δ.

To prove Lemma 4.6 we need the following auxiliary result, which asserts that
if the initial set in a two-type process is large, then the infection will continue
to grow at least with the speed stipulated by the shape theorem for the weaker
infection type.

Lemma 4.7 For λ ≤ 1 and any δ, ε ∈ (0, 1), there is an s < ∞ such that
if a two-type process with infection rates (1, λ) is started in such a way that
S10 ∪ S

2
0 ⊃ B(0, sλµ−1), then

P
(

S1t ∪ S
2
t ⊃ B

(

0, (1− ε)(s+ t)λµ−1
)

∀t ≥ 0
)

> 1− δ.
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Proof of Lemma 4.7: In view of Lemma 4.2 it is enough to prove the corre-
sponding statement for the one-type process, that is, it is enough to prove that
there is an s < ∞ such that if a one-type process with parameter λ is started
with S0 ⊃ B(0, sλµ−1), then

P
(

St ⊃ B
(

0, (1− ε)(s+ t)λµ−1
)

∀t ≥ 0
)

> 1− δ. (9)

To do this, consider a one-type process {S∗t }t≥0 with parameter λ and initial
condition, say, S0 = B(0, γ). Define the event

At =
{

B
(

0,
(

1−
ε

2

)

tλµ−1
)

⊂ S∗t ⊂ B
(

0,
(

1 +
ε

2

)

tλµ−1
)}

,

and note that, by Theorem 1.1, there exists an s <∞ such that

P

(

At holds for all t ≥ s
(

1−
ε

2

)

)

> 1− δ. (10)

Now couple the processes {St}t≥0 and {S∗t }t≥0 in such a way that the latter is
generated by the former’s underlying Poisson process delayed by time s(1−ε/2).
If S0 ⊃ B(0, sλµ−1), on the event in (10) we get that S0 ⊃ S∗s(1−ε/2) and, by

the choice of the coupling, St ⊃ S∗s(1−ε/2)+t for all t ≥ 0. This implies (9). 2

Proof of Lemma 4.6: By time-scaling and symmetry it suffices to consider a
process with infection rates (1, λ), where λ ≤ 1. For such a process it follows
from Lemma 4.7 (with ε = min{ ξ4 ,

1
4}) that if r

∗ is taken to be sufficiently large,
then

P

(

S1t ∪ S
2
t ⊃ B

(

0, r∗
(

1 +
ξ

2

)

+ (1− ε)tλµ−1
)

∀t ≥ 0

)

> 1−
δ

2
. (11)

Let πd be such that πd(r
∗)d is the volume of a d-dimensional ball with radius r∗

and write Nr∗ for the number of effective outbursts in B(0, r∗). On the event
in (11), we have that an effective outburst inside B(0, r∗) at time t has to have
radius at least r∗ξ/2 + (1− ε)tλµ−1. Hence on the event in (11) we have

E[Nr∗ ] ≤ πd(r
∗)d
∫ ∞

0

(

∫ ∞

r∗ξ/2+(1−ε)tλµ−1

dF (r)

)

dt

≤ πd(r
∗)d
∫ ∞

r∗ξ/2

(

∫ r/(1−ε)λµ−1

0

dt

)

dF (r)

=
πd(r

∗)d

(1− ε)λµ−1

∫ ∞

r∗ξ/2

rd+1dF (r).

When r ≥ r∗ξ/2, we have (r∗)d ≤ 2drd/ξd. Thus

E[Nr∗ ] ≤
πd2

d

(1− ε)λµ−1ξd

∫ ∞

r∗ξ/2

rd+1dF (r).
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The last integral is finite by the assumption on F and hence E[Nr∗ ] can be made
arbitrarily small by taking r∗ large. Take r∗ large enough so that E[Nr∗ ] is at
most 1/2 and such that (11) holds. Then with probability at least 1 − δ the
type 2 infection never makes an effective outburst, as desired. 2

5 A key proposition

In this section we formulate and prove an analogue of Proposition 2.2 in Hägg-
ström and Pemantle (2000). The proposition will play a key role in the proof
of Theorem 1.2 and as in Häggström and Pemantle (2000), the proof is rather
lengthy and technical; this appears to be unavoidable. We will opt for a geomet-
rical argument that is a bit different from the one of Häggström and Pemantle.
The unboundedness of the outbursts radii causes some extra complications in
our case, but on the other hand the fact that the asymptotic shape is a sphere
makes the geometric intuition a bit more accessible.

We begin by observing that the events G1 and G2 have positive probability.

Proposition 5.1 If F has unbounded support, then, for all infection rates
(λ1, λ2) and all choices of initial sets (Γ1,Γ2) which are bounded and have pos-

itive Lebesgue measure, we have P λ1,λ2

Γ1,Γ2
(Gi) > 0 for i = 1, 2.

Remark 5.1 Proposition 5.1 extends to the case of bounded radii as well,
provided that neither Γ1 nor Γ2 surrounds the other in the sense of Remark 1.1.

Proof of Proposition 5.1: Since the total infected region increases to cover all
of Rd we have P λ1,λ2

Γ1,Γ2
(G1 ∪ G2) = 1. Furthermore, by Lemma 4.5(b), there

is a positive probability that no effective outbursts ever occur in S10 . Hence

Pλ1,λ2

Γ1,Γ2
(G2) > 0. Similarly it can be seen that P λ1,λ2

Γ1,Γ2
(G1) > 0. 2

The proof of Theorem 1.2 is based on the fact that if both infection types will
survive in the long run they have to grow equally fast, that is, the asymptotic
speed of the growth for the type 1 and the type 2 infection have to be the same.
This is formulated in Lemma 6.1, which says that on the event of indefinite
growth for the weaker infection type, the size of the asymptotic shape of the
total infected region is determined by the weaker infection type. This means
that if the weaker infection type grows indefinitely, then the asymptotic speed
of the growth for the stronger infection type can not exceed the speed of the
weaker type. The key step in proving Lemma 6.1 is to show that if the stronger
infection type gets a large enough lead over the weaker infection type infinitely
often – which indeed will be the case if the asymptotic shape is larger than the
capacity of the weaker infection type allows for – then almost surely the stronger
infection type will eventually eradicate the weaker one. To formulate this key
result, assume that λ1 = 1 (note that by time-scaling this is no restriction) and
write λ2 = λ. Furthermore, for an arbitrary set Γ ⊂ Rd, let

‖Γ‖ = sup{|x|; x ∈ Γ}.
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The proposition now runs as follows:

Proposition 5.2 Assume that F satisfies (1). Also, fix λ < 1 and ε > 0 and
let

D =
{

‖S1t ‖ ≥ (1 + 3ε)tB
(

0, λµ−1
)

for arbitrarily large t
}

.

Then P 1,λ(G2|D) = 0.

Proof: Write S̃it for the set of points whose entire γ-ball is contained in the
type i infected area at time t. Points in S̃it will be referred to as strongly type
i infected at time t. Let

Q = (1 + 3ε)B(0, λµ−1)\(1 + 2ε)B(0, λµ−1)

and introduce the event
Et = {S̃

1
t ∩ tQ 6= ∅}.

Note that almost surely

D ⇒ {Et occurs for arbitrarily large t}. (12)

To see this, write Π for the set of type 1 outbursts that occur in tQ for some
t during the progress of the growth and let Πγ be those outbursts in Π whose
radius is at least γ. If D occurs then |Π| = ∞ and, since each outburst in Π
has radius greater than γ with some probability p > 0, it follows from Levy’s
version of the Borel-Cantelli lemma (see Williams (1991), section 12.15) that
|Πγ | =∞ as well. But if |Πγ | =∞ the region tQ must contain strongly type 1
infected points infinitely often and (12) is verified.

Now fix ε > 0 and λ < 1. We want to pick δ > 0 and α ∈ (0, ε] so that
(1 + δ)−1µ−1 > (1 + α)λµ−1 (here the left-hand side should be thought of as a
lower bound for the speed of a hampered unit rate process and the right-hand
side as an upper bound for the speed of an unhampered process with rate λ).
Hence we define

δ =
1− λ

2λ

and

α = min

{

1− λ

2(1 + λ)
, ε

}

.

Let
Ft = {‖S

2
s‖ ⊂ (1 + α)sB(0, λµ−1) for all s ≥ t},

and write Ft = σ(S1s ∪ S
2
s ; s ≤ t). We will show that, for some fixed c > 0, we

have almost surely on the event Et that

P 1,λ(Gc
2|Ft, Ft) > c if t is large. (13)

Using Levy’s 0-1 law the proposition follows from this: By Theorem 1.1 and
Lemma 4.1, P 1,λ(Ft) → 1 as t → ∞. Together with (12) and (13) this implies
that, almost surely on the event D,
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 (1+α) λ −1µ

Figure 1: Choice of θ.

P 1,λ(Gc
2|Ft) > c/2 infinitely often. (14)

Levy’s 0-1 law tells us that almost surely P 1,λ(Gc
2|Ft) tends to the indicator

function of Gc
2 and (14) prevents P 1,λ(Gc

2|Ft) from converging to 0 on D. Hence
P 1,λ(Gc

2|Ft)→ 1 on D, implying that P 1,λ(G2|D) = 0, as desired.

It remains to prove (13). To describe the idea in the proof, note that on EtFt
we have ‖S2t ‖ ≤ (1 + ε)tλµ−1 and ‖S̃1t ‖ ≥ (1 + 2ε)tλµ−1, that is, the strongly
type 1 infected region at time t has a lead of at least εtλµ−1 units of length as
compared to the type 2 infected region. We will show that if t is large, then with
large probability this lead gives the type 1 infection time to create a layer that
completely surrounds the type 2 infection. Moreover, if this layer is sufficiently
thick – which it will indeed be if t is large – then Lemma 4.6 gives a lower
bound for the probability that no type 2 outbursts that reach outside the layer
ever occur. The proof is to a large extent based on a geometrical construction,
which is easiest to picture in two dimensions. Hence we give the details for
d = 2 and indicate at the end of the proof how the geometrical arguments can
be generalized to higher dimensions.

To describe the geometrical construction, first define an angle θ ∈ (0, π/2) such
that if a vector of length (1+δ)−1µ−1 that forms the angle θ with a given line is
projected on that same line, then the length of this projection is strictly greater
than (1 + α)λµ−1; se Figure 1. Since

(1 + δ)−1µ−1 − (1 + α)λµ−1 ≥ µ−1/2,

we can for example pick θ such that

cos θ =
(1 + α)λµ−1 + µ−1/4

(1 + δ)−1µ−1

= (1 + δ)[(1 + α)λ+ 1/4].

Now fix a point x0 ∈ Q located on the positive x-axis and draw two line segments
starting from x0 with angle θ and −θ respectively to the x-axis; see Figure 2(a).
The length of the segments is taken to be

l =
ελµ−1

2(1 + α)
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Figure 2: Geometrical construction
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(the reason for this particular choice of l will be clear later on in the proof). Let
l01 and l

0
1− denote the two segments and write x01 and x

0
1− for the terminal points

(the zeroes in the superscripts will be explained later). From the points x01 and
x01− we draw two new line segments l02 and l

0
2− of length l. The segment l02 (l

0
2−)

should form the angle θ (−θ) with an imaginary line through the origin and x01
(x01−). We continue to draw line segments like this in an outward spiral running
in both directions. The segments should all be of length l and depending on
the sign of the x-coordinate of its starting point it should form the angle θ or
−θ with an imaginary line through the origin and its starting point. Eventually
the two spiral arms will meet at a point (−u, 0) on the negative x-axis. Let 2n
denote the number of segments needed to achieve this. We then have two sets
of line segments, {l0k}

n
1 and {l0k−}

n
1 , constituting the upper and lower spiral arm

respectively, and two sets of terminal points for the line segments, {x0k}
n
1 and

{x0k−}
n
1 . Note for the future that |x0k| − |x

0
k−1| ≥ l cos θ, which implies that

|x0k| ≥ (1 + 2ε)λµ−1 + kl cos θ. (15)

Now extend the construction by adding more edges, still of length l, branching
out from the points {x0k} and {x0k−} towards the boundary of the circle with
radius u around the origin; see Figure 2(b). The branches should be built up so
that edges hit ∂B(0, u) at points {yj} located not more than a distance a from
each other, where

a =
1− α

1 + α
·
l

4

(the choice of a is motivated later). Furthermore, the number of segments used
to join a point x0k (or x0k−) to a point on the circle boundary ∂B(0, u) should not
exceed n−k. We group the line segments in generations depending on how many
links away from x0 they are: An edge whose starting point is linked to x0 using
k− 1 other edges is placed in generation k. If lik (lik−) denotes segment number
i in generation k in the upper (lower) half plane we thus have n generations
{lik, l

i
k−}i≥0, where the edges with i = 0 belongs to the inner spiral. Let {xik}

and {xik−} denote the terminal points of the segments lik and lik− respectively.
The last demand on the construction is that (15) should hold for all terminal
points in generation k, that is,

min
i
|xik| ≥ (1 + 2ε)λµ−1 + kl cos θ. (16)

When the line segments are arranged, we complete the construction by forming
channels of width, say, l/100 around all segments.

Writem(x0) for the total number of channels required in the above construction.
As indicated this number depends on the choice of the starting point x0. Let m
denote the largest value for m(x0) when x0 ∈ Q and pick a time point t0 that
fulfills the conditions (i)-(iii) described below. Some of these conditions might
seem awkward at first, but their purpose will gradually become clear.
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(i) Combining Lemma 4.3 and Lemma 4.4 yields that

lim
b→∞

lim
t→∞

T b(t)

t
= µ a.s.

Hence for each p > 0 and δ > 0 we have

P
(

T b(t) ≥ (1 + δ)µt
)

≤ p (17)

if b and t are large. Let t0 be large enough to ensure that (17) holds for
b ≥ t0l/100 and t ≥ t0l when δ = (1− λ)/2λ and p = 1/2m.

(ii) Write St for the infected area at time t in a one-type process with unit
rate and let t0 be large enough to guarantee that

P

(

(1− α)B
(

0, µ−1
)

⊂
St
t
⊂ (1 + α)B

(

0, µ−1
)

)

> 1−
1

2m

for t ≥ t0ελ/8(1 + α)2.

(iii) Let ξ = a/4u and δ = 1/2 in Lemma 4.6 and pick t0 so that t0u ≥ r∗0 .

We will show that (13) holds for such a choice of t0. To this end, fix t ≥ t0
and note that on Et we can pick a point x0 ∈ (S̃2t ∩ tQ)/t to serve as starting
point for the geometrical construction described above (by rotation invariance
we may assume that x0 is located on the positive x-axis). At time t we then
have a strongly type 1 infected point tx0 with |x0| ≥ (1 + 2ε)λµ−1. Also, since
α ≤ ε, on Ft the type 2 infected area at time t does not reach further than
(1 + ε)tλµ−1 from the origin. Now define

t′ = (1 + δ)µtl

and consider the state of the infection at time t + t′. For the type 2 infection,
by the choice of l and α we have on Ft that

‖S2t+t′‖ ≤ (1 + α)(t+ t′)λµ−1

≤

(

1 +
3

2
ε

)

tλµ−1. (18)

To deal with the type 1 infection, let T̃ ik (T̃ ik−), k ≥ 1, denote the time counting
from t + (k − 1)t′ until the terminal point of the segment lik (lik−) is strongly
type 1 infected assuming that at time t+ (k− 1)t′ all type 1 infection is erased
and replaced by a γ-ball around the starting point of lik (lik−) while the type 2
infection is left as in the original process. By (18), on Ft the type 2 infection
has not yet reached any parts of the channels in the first generation at time
t+ t′. Hence up to time t+ t′ the spread of the type 1 infection inside the first
generation channels behaves like hampered one type processes with b = tl/100.
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On the scale t the channels has length tl and since t ≥ t0 it follows from the
condition (i) in the choice of t0 that on Et we have

P 1,λ
(

T̃ i1 ≥ t′|Ft, Ft
)

≤
1

2m
for all i, (19)

where T̃ i1 can also be replaced by T̃ i1−. For the state of the infection at time
t+ 2t′, a similar reasoning as for the time t+ t′ yields that

‖S2t+2t′‖ ≤ (1 + 2ε)tλµ−1, (20)

implying that the analog of (19) holds also for the second generation passage
times {T̃ i2} and {T̃ i2−}. Now note that

(1 + α)t′λµ−1 = (1 + δ)(1 + α)λtl

≤ (1 + δ)[(1 + α)λ+ 1/4]tl

= tl cos θ.

Hence on Ft we have

‖S2t+kt′‖ ≤ ‖S2t+(k−1)t′‖+ (1 + α)t′λµ−1

≤ ‖S2t+(k−1)t′‖+ tl cos θ.

Using (20) this implies that

‖S2t+kt′‖ ≤ (1 + 2ε)tλµ−1 + (k − 2)tl cos θ (21)

for k ≥ 2 and thus, by (16), at time t + kt′ the type 2 infection has not yet
reached any parts of the channels surrounding the line segments in the k:th
generation. Up to time t + kt′, the spread of the type 1 infection inside the
k:th generation channels hence behaves like hampered one type processes with
b = tl/100. It follows from the condition (i) in the choice of t0 that on Et the
bound in (19) holds also for {T̃ ik} and {T̃ ik−}, that is,

P 1,λ
(

T̃ ik > t′|Ft, Ft
)

≤
1

2m
for all k ≥ 1 and i ≥ 0,

where T̃ ik can also be replaced by T̃ ik−. Let Ct denote the event that no passage
time in the system exceed t′, that is,

Ct =
⋂

k,i

{T̃ ik ≤ t′ ∩ T̃ ik− ≤ t′}.

Since there are at most m channels in the system, on Et we obtain

P 1,λ(Ct|Ft, Ft) >
1

2
. (22)
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Note that on EtFtCt all points {tyj} on the boundary of the circle B(0, tu) are
strongly type 1 infected at time t + nt′. Furthermore, the distance from the
circle boundary ∂B(0, tu) to the type 2 infected region at time t+nt′ is at least
tl cos θ, that is, ‖S2t+nt′‖ ≤ u − tl cos θ. This follows from (21) combined with
the fact that u ≥ (1+2ε)tλµ−1+(n− 1)tl cos θ, which is a consequence of (16).
It can be seen that cos θ ≥ 1/2 and hence we have

‖S2t+nt′‖ ≤ u−
tl

2
. (23)

The next step is to use the one-type shape theorem to show that with large
probability the strong type 1 infection at the points {tyj} will expand and
create a connected type 1 layer around the type 2 infection. To this end, define

t′′ =
ελt

8(1 + α)2

and note that (23) combined with the fact that (1+α)t′′λµ−1 ≤ tl/4, gives that
on Ft we have

‖S2t+nt′+t′′‖ ≤ u−
tl

4
. (24)

Now, for each j, assume that at time t+nt′ a new process is started by reducing
the type 1 infection to the γ-ball around the point tyj . More precisely, at time
t+nt′ all type 1 infection except the one in B(tyj , γ) is erased while the type 2

infection is left unchanged. For s ≥ t+ nt′, let S
1(j)
s denote the type 1 infected

region at time s in such a process and for s ≥ 0 define

Aj
s =

{

B
(

tyj , (1− α)sµ−1
)

⊂ S
1(j)
t+nt′+s ⊂ B

(

tyj , (1 + α)sµ−1
)

}

.

Since (1 + α)t′′µ−1 = tl/4, the event Aj
t′′ does not depend on the state of the

infection outside B(tyj , tl/4) and by (24), B(tyj , tl/4) does not contain any type
2 infection at time t+nt′+t′′. Hence the one-type shape theorem can be applied
to estimate the probability for the event Aj

t′′ and since t ≥ t0 it follows from
the condition (ii) in the choice of t0 that

P 1,λ
(

Aj
t′′

)

≥ 1−
1

2m

on Et. Let

At =
⋂

j

Aj
t′′ .

The number of points {tyj} on ∂B(0, tu) is clearly bounded by m implying that
on Et we have

P 1,λ(At|Ft, Ft, Ct) >
1

2
. (25)
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In words At is the event that all circles with radius (1 − α)t′′µ−1 around the
points {tyj} are type 1 infected at time t + nt′ + t′′. Since (1 − α)t′′µ−1 = ta,
where ta is recognized as the distance between the points {tyj}, the circles
overlap each other so that a layer of type 1 infection with thickness at least ta/2
concentrated around ∂B(0, tu) is created.

Remember that the aim is to establish (13). Trivially

P 1,λ(Gc
2|Ft, Ft) ≥ P 1,λ(Gc

2|Ft, Ft, Ct, At) · P
1,λ(At|Ft, Ft, Ct) · P

1,λ(Ct|Ft, Ft)

and using (22) and (25) it follows that on Et we have

P 1,λ(Gc
2|Ft, Ft) > P 1,λ(Gc

2|Ft, Ft, Ct, At) · 2
−2. (26)

What remains is to bound the probability that Gc
2 occurs on EtFtCtAt from

below. To do this, note that on EtFtCtAt, at time t+nt′+t′′ the type 2 infection
is contained in B(0, tu) and the annulus B(0, tu + ta/4)\B(0, tu) is filled with
type 1 infection. In between the type 1 layer and the type 2 infection there
might however still be uninfected regions. Clearly we are done if we can find a
lower bound for the probability that Gc

2 occurs when these regions are assumed
to be occupied by type 2 infection. Hence consider a two-type growth process
with infection rates (1, λ) started from a connected configuration without holes
such that S20 ⊂ B(0, tu) and S1t ∪ S

2
t ⊃ B(0, tu+ ta/4). It follows from Lemma

4.6 and the condition (iii) in the choice of t that the probability that the type
2 infection never makes an effective outbursts in such a process is at least 1/2.
Combining this with (26) yields

P 1,λ(Gc
2|Ft, Ft) >

1

23
.

Hence (13) is established for d = 2 and the proposition is proved.

For d ≥ 3, the geometrical construction is obtained by first rotating the two-
dimensional inner spiral around the x-axis a finite number of times and then
add branches – emanating from the rotated spiral arms – that hit the surface
of the ball B(0, u) closely enough. As in the two-dimensional case, Lemma 4.3
and Lemma 4.4 can be combined to show that, if t is large, then with large
probability the type 1 infection travels fast enough through the channels to
reach the points on ∂B(0, u) in time to create a thick layer around the type 2
infection. The rest of the proof is analogous. 2

6 Proof of Theorem 1.2

In this section we prove Theorem 1.2 using arguments similar to those used for
the main result of Häggström and Pemantle (2000), but with a different twist at
the end, which is needed because of the unboundedness of the outbursts radii.
The proof is based on Proposition 5.2 and a coupling of the two-type processes
with distributions {P 1,λ}λ≥0 valid for all λ ∈ [0, 1] simultaneously.
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The part of the proof where Proposition 5.2 comes into play is formulated sepa-
rately in the following lemma, which says roughly that the shape theorem holds
on the event of unbounded growth for the weaker infection type and that the
radius of the asymptotic shape in this case is determined by the weaker infection
type.

Lemma 6.1 Let S1t ∪ S
2
t be the region infected at time t in a two-type process

with distribution P 1,λ, where λ ∈ [0, 1] and assume that (1) holds. Then, for
any ε ∈ (0, λµ−1), we have P 1,λ-a.s. on the event G2 that

(1− ε)B
(

0, λµ−1
)

⊂
S1t ∪ S

2
t

t
⊂ (1 + ε)B

(

0, λµ−1
)

for all sufficiently large t.

Proof: Let ‖S1t ∪S
2
t ‖∗ denote the minimum distance from the origin to (S1t ∪S

2
t )
c,

that is,
‖S1t ∪ S

2
t ‖∗ = sup{s; B(0, s) ⊂ S1t ∪ S

2
t }.

The lemma follows if we can show that

‖S1t ∪ S
2
t ‖

t
→ λµ−1 and

‖S1t ∪ S
2
t ‖∗

t
→ λµ−1

P 1,λ-a.s. on the event G2. Since ‖S1t ∪ S
2
t ‖∗ ≤ ‖S

1
t ∪ S

2
t ‖ it suffices to prove

that P 1,λ-a.s. on G2 we have

lim sup
t→∞

‖S1t ∪ S
2
t ‖

t
≤ λµ−1 (27)

and

lim inf
t→∞

‖S1t ∪ S
2
t ‖∗

t
≥ λµ−1. (28)

The lower bound (28) follows immediately from Lemma 4.2 and Theorem 1.1.
To establish (27), note that by Lemma 4.1 and Theorem 1.1

lim sup
t→∞

‖S2t ‖

t
≤ λµ−1.

We are done if we can show that S2t can also be replaced by S1t here, that is, if
we can show that

lim sup
t→∞

‖S1t ‖

t
≤ λµ−1. (29)

But this is a consequence of Proposition 5.2, since if (29) fails there is an ε > 0
such that the type 1 infected region reaches outside (1 + 3ε)tB(0, λµ−1) for
arbitrarily large t and by Proposition 5.2 this prevents the event G2. 2
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Moving on to the aforementioned simultaneous coupling of the two-type pro-
cesses with distributions {P 1,λ}λ∈[0,1], let N1 and N2 be two independent unit
rate Poisson processes. We will couple the growth processes by successively
thinning the Poisson process N2 and then use it to generate the type 2 out-
bursts. This is done as follows: Associate independently to each point in N2

a random variable uniformly distributed over [0, 1], and let λN2 be the set of
points in N2 whose attached uniform variable is smaller than or equal to λ.
Then λN2 is a Poisson process with rate λ and hence, for each λ ∈ [0, 1] a two-
type process {S1t (λ) ∪ S

2
t (λ)}t≥0 with distribution P 1,λ is obtained by starting

from B(−2γ, γ) and B(0, γ) at time 0 and then using N1 to generate the type 1
outbursts and λN2 to generate the type 2 outbursts. Write Q for the probability
measure underlying this coupling and let Gλ

i denote the event that the type i
infection grows indefinitely at parameter value λ.

Proof of Theorem 1.2: By time-scaling and symmetry we have

P 1,λ(G) = P 1,1/λ(G)

and hence it is enough to prove that P 1,λ(G) = 0 for all but at most countably
many λ ∈ [0, 1]. To this end, we will show that for any λ′ < λ ∈ [0, 1] we have

Q(Gλ
1 ∩G

λ′

2 ) = 0. (30)

This implies that with Q-probability 1 the event Gλ
1 ∩ G

λ
2 occurs for at most

one λ ∈ [0, 1]: By construction of the probability measure Q, the event Gλ
1

is decreasing in λ – that is, if Gλ
1 occurs then Gλ′

1 occurs for all λ′ < λ –
and the event Gλ

2 is increasing in λ. Hence the set of lambdas for which the
event Gλ

1 ∩ G
λ
2 occurs is Q-a.s. an interval. If with positive Q-probability the

interval were non-degenerated there would be λ′ < λ in [0, 1] such that the event
Gλ
1 ∩G

λ
2 ∩G

λ′

1 ∩G
λ′

2 has positive Q-probability. This however contradicts (30).
Thus with Q-probability 1 the interval consists of a single point, implying that
Q-a.s. the event Gλ

1 ∩G
λ
2 occurs for at most one λ ∈ [0, 1]. Clearly

P 1,λ(G) = Q(Gλ
1 ∩G

λ
2 )

and hence it follows that {λ ∈ [0, 1]; P 1,λ(G) > 0} is countable.

To establish (30), fix λ′ < λ ∈ [0, 1] and assume that Gλ′

2 occurs. By Lemma
6.1 we then have

lim sup
t→∞

‖S1t (λ
′) ∪ S2t (λ

′)‖

t
≤ λ′µ−1

so that in particular

lim sup
t→∞

‖S1t (λ
′)‖

t
≤ λ′µ−1.

From the construction of the Q-coupling it is clear that ‖S1t (λ)‖ ≤ ‖S
1
t (λ

′)‖ and
hence it follows that

lim sup
t→∞

‖S1t (λ)‖

t
≤ λ′µ−1. (31)
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Furthermore, by Lemma 6.1, if t is large

lim sup
t→∞

‖S1t (λ) ∪ S
2
t (λ)‖∗

t
≥ λµ−1. (32)

Now pick ε > 0 such that (1 + ε)λ′ < (1− ε)λ. Combining (31) and (32) yields
that there is a time T such that for t ≥ T we have

S1t (λ) ⊂ (1 + ε)tB(0, λ′µ−1) (33)

and

(1− ε)tB(0, λµ−1) ⊂ S1t (λ) ∪ S
2
t (λ). (34)

By (34), an outburst that occurs at a time point t ≥ T must reach outside
(1− ε)tB(0, λµ) to be effective and by the choice of ε we have

(1 + ε)B(0, λ′µ−1) ⊂ (1− ε)B(0, λµ−1).

Thus an effective type 1 outburst at a time point t ≥ T would cause the type
1 infected region to reach outside (1 + ε)B(0, λ′µ−1). This conflicts with (33)
and hence no effective type 1 outbursts can occur after time T . Clearly this
prevents the event Gλ

1 . 2

7 Proof of Proposition 1.1

This section is devoted to the proof of Proposition 1.1.

Proof of Proposition 1.1: Pick bounded sets Γ1,Γ2,Γ
′
1,Γ

′
2 of positive Lebesgue

measure such that Γ1 and Γ2 and also Γ′1 and Γ′2 are disjoint. We will show that
if G has positive probability in the process started from (Γ1,Γ2), then G occurs
with positive probability in the process started from (Γ′1,Γ

′
2) as well. To this

end, first consider the process started from (Γ1,Γ2). By Lemma 4.5(a) almost
surely only finitely many effective outbursts occur in the set Γ′1 ∪Γ′2 during the
progress of the growth in this process and hence there is a time t <∞ such that
with probability, say, 1/2 no effective outbursts occur in Γ′1 ∪ Γ′2 after time t.
Let Ui denote the set of effective type i outbursts that occur in the set S1t ∪ S

2
t

after time t. A second application of Lemma 4.5(a) yields that the sets Ui are
almost surely finite.

Now consider a process started from (Γ′1,Γ
′
2), coupled with the one started from

(Γ1,Γ2) in such a way that the same Poisson processes are used to generate the
outbursts after time t. Before time t the process evolves independently of the
one started from (Γ1,Γ2). We will describe a scenario for this process that
causes the infection to develop in the same way as in the process started from
(Γ1,Γ2) after time t. To prepare for this, join each point in Ui by a curve with
a point in the interior of Γ′i. The connections are made by aid of concatenations
of straight line segments and the restrictions on a connection joining a point in
U1 (U2) with a point in Γ′1 (Γ′2) are:
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– It is not allowed to cross any part of Γ′2 (Γ′1).

– It should stay within the region infected at time t in the process started
from (Γ1,Γ2).

– It can not pass through points in U2 (U1).

The first restriction might not be possible to fulfill if the set Γ′1 (Γ
′
2) is enclosed

by Γ′2 (Γ
′
1). However if this should be the case we condition on a large outburst

occurring in Γ′1 (Γ′2) at some early time point transmitting the type 1 (2) in-
fection past Γ′2 (Γ′1). Then we use the outer parts of the type 1 (2) infected
region as terminal for the connections. When the connections are made we let
each one of them be surrounded by a path of width 2ε, where ε > 0 is chosen
small enough to guarantee that the paths are disjoint. (In two dimensions it is
sometimes impossible to avoid paths from crossing each other and hence we have
to allow overlapping paths at crossing points.) Let {P k

i ; i = 1, 2 and k ≥ 1}
denote the paths and write T (P k

i ) for the time it takes for the infection to wan-
der along P k

i from Γ′i to its terminal point in Ui by aid of ε-small outbursts not
reaching outside the path (in the two-dimensional case we allow for outbursts
with radius 2ε at the possible crossings). Furthermore, define τ to be the time
when all points in U1 ∪U2 are reached by the infection using the paths, that is,

τ = max
i,k
{T (P k

i )}.

The desired scenario for the process started from (Γ′1,Γ
′
2) is now obtained as

follows:

1. Assume that the infection wander along the paths from Γ′1 and Γ′2 to the
points in U1 and U2 by aid of ε-small outbursts.

2. Suppose that τ ≤ t. Also assume that no outbursts except for the ones
on the paths occur before time τ and that no outbursts at all occur in
the time interval (τ, t). At time t then, the infected region consists of the
initial sets Γ′1 and Γ′2 together with fine infected strings linking these sets
to the points in U1 and U2.

3. After time t the same Poisson processes as in the process started from
(Γ1,Γ2) are used to generate the outbursts. Hence we know that effective
outbursts of the same type as in the process started from (Γ1,Γ2) will take
place at the points in U1 and U2. During the progress of the growth it
might happen that some parts of the region that is infected at time t in
the process started from (Γ1,Γ2) are infected by another infection type.
Assume that no effective outbursts take place in those regions. By Lemma
4.5(b) this event has positive probability.

Write GΓ1,Γ2
for the event that both infection types grow indefinitely in the

process started from (Γ1,Γ2) and write ĜΓ′
1
,Γ′

2
for the same event in the coupled

process started from (Γ′1,Γ
′
2). Trivially

P (ĜΓ′
1
,Γ′

2
) ≥ P (ĜΓ′

1
,Γ′

2
|GΓ1,Γ2

)P (GΓ1,Γ2
).
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The second factor on the right-hand side is positive by assumption. As for the
first factor, note that if both infection types grow indefinitely in the process
started from (Γ1,Γ2), the above scenario guarantees mutual unbounded growth
also in the coupled process started from (Γ′1,Γ

′
2), since in both processes the

only outbursts that will reach outside the region infected at time t in the process
started from (Γ1,Γ2) are the ones in U1 and U2. Furthermore, the above scenario
clearly has positive probability because it only depends on finitely many out-
bursts. Hence also the first factor is positive and it follows that P (ĜΓ′

1
,Γ′

2
) > 0.

Since P (ĜΓ′
1
,Γ′

2
) = Pλ1,λ2

Γ′
1
,Γ′

2

(G), we are done. 2
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