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Abstract

We propose a model for geometric random graphs motivated by wireless communication
networks adopting the Bluetooth standard. We obtain asymptotic and high probability
results concerning connectivity and the emergence of connected giant components in such
random graphs. In particular, global connectivity is possible to obtain even as the typical
number of links connecting a given node remains constant. Our results show how a very
simple, constant-time distributed algorithm can compute connected spanning subgraphs of
low average degree in random unit disk graphs, with high probability.

1 Introduction

In the study of wireless communication networks, the following setup is natural. A number n
of nodes are distributed in some geographical region. Links can be established between any
pair of nodes within a given distance r from each other.

What is a good strategy for connecting nodes to each other, in order to
obtain good connectivity properties of the resulting global network?

(1.1)

We shall for simplicity take the geographical region to be the unit square [0, 1]2, and also make
the probabilistic model assumption that the positions of the n nodes are random: independent
and uniformly distributed on [0, 1]2.

An obvious answer to question (1.1) is to establish links between all pairs of nodes within
distance r from each other. This may, however, be very costly, so one would like to find a
localized, distributed strategy (i.e., not requiring global optimization or coordination) which
keeps the number of links incident to each node small. We propose the following strategy.

Definition 1 Fix r > 0 and a positive integer c. We take Gnr,c = (V n
r,c, E

n
r,c) to denote the

geometric random graph defined as follows.

• The vertex set V n
r,c consists of n points, picked independetly according to the uniform

distribution on [0, 1]2.

• Each node v ∈ V n
r,c connects to c nodes chosen uniformly at random among those within

distance r. If the number of such nodes is less than c then v connects to all of them.
This is done independently for all nodes v.
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The resulting graph Gnr,c is called the Bluetooth graph with parameters r, c, and n.

We emphasize that the degree (i.e., the number of links incident to) a given node v may exceed
c, because in addition to the c links created by v, there may be further links resulting from
other nodes choosing to connect to v. However, the total number of links cannot exceed cn,
and therefore the average degree among the n nodes cannot exceed 2c.

The model is motivated by the study of networks adopting the Bluetooth standard, one of
the most promising technologies for multihop wireless networking. As shown by Ferraguto et
al. [3], Gnr,c approximates very well the graphs generated by certain protocols for the Bluetooth
so-called device discovery phase. When a Bluetooth network starts operating each device
explores its neighborhood in order to establish reliable communication links with devices within
transmision range. The goal of device discovery is to set up enough links in order to have a
connected network (see [3] and references therein). Since device discovery is both time and
energy consuming it is not possible to set up all possible links. The problem then becomes that
of finding a local strategy to set up a subset of all possible links in order to have high probability
of global connectivity. In [3] a device discovery strategy where each device connects to c
neighbours is studied, and the Bluetooth graph of Definition 1 makes this notion matematically
precise. This approach leads to device discovery protocols outperforming all existing solutions
(in practical implementations a couple of additional requirements are enforced that make the
protocol more effective but much harder to analyze).

The nature of the networks generated by the real Bluetooth device discovery protocol is
difficult to analyze due to the complicated nature of that protocol. However, a rather extensive
set of experiments – see [3] – show that Gnr,c, simple as it is, is a very good model. The same
study shows that Gnr,c and hence, the real BT graph, is, above a certain point density, very
likely to have a huge giant component, consisting of about 95% of the vertices, and, for a
higher density, is very likely to be connected.

The emergence of a giant component is interesting and potentially useful. For instance in
coverage applications it opens up the possibility of being able to monitor the area of interest
with a connected network using a significantly smaller number of devices.

In this paper we present a probabilistic analysis that validates these empirical observations.
Our first result says, roughly, that the Bluetooth graph Gnr,c with large n exhibits a giant
component. We now state it precisely. We write P for probability (and will sometimes for
clarity write Pn rather than P to emphasize that the probability model depends on the number
of nodes n).

Definition 2 Let s ∈ (0, 1] be some fixed constant. An s-giant component of an undirected
graph G is a connected subgraph of G containing at least ns of the vertices.

Proposition 3 Fix r > 0 and c ≥ 2. Then there exists a constant s > 0 such that

lim
n→∞

P(Gnr,c has an s-giant component) = 1 . (1.2)

The next result shows that this is even true with s = 1, i.e., the graph becomes connected:

Theorem 4 Fix r > 0 and c ≥ 2. Then

lim
n→∞

P(Gnr,c is connected) = 1 . (1.3)

Of course, Theorem 4 implies Proposition 3. The reason we state Proposition 3 separately
is that, as we shall see, it forms a natural intermediate step towards proving Theorem 4. In
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fact, our proofs show that both statements holds with high probability. The probability of the
complementary events goes to 0 as Θ(n−ε) for some ε ∈ (0, 1).

This shows that the very simple (constant time!) distributed algorithm embodied in Def-
inition 1 computes with high probability a connected spanning subgraph of constant average
degree. In fact, most of the nodes will have very low degree. Spanning graphs like these are
considered to be a useful routing infrastructure to distribute traffic evenly. This is one of the
reasons why the minimum degree spanning tree problem has received much attention recently
(see for instance [8] and, for a distributed implementation, [2]).

We shall consider one more model, which is natural in the context of networks that are
generated by Bluetooth device discovery protocols, but which have the additional complication
that links may fail.

Definition 5 Fix r > 0, c ≥ 2, and p ∈ (0, 1). The graph Gnr,c,p = (V n
r,c,p, E

n
r,c,p) is defined as

the geometric random graph obtained by the following procedure.

• First, generate a Bluetooth graph Gnr,c = (V n
r,c, E

n
r,c) as in Definition 1.

• Then, for each edge e ∈ Enr,c independently, delete e with probability 1− p (thus keeping
it with probability p).

The resulting graph Gnr,c,p is called a thinned Bluetooth graph with parameters r, c, p and
n.

Our main result for thinned Bluetooth graphs is the following, which shows that, provided p
is not too small, the giant component result (Proposition 3) extends to the thinned Bluetooth
model. However, there is a striking qualitative difference in that the connectedness result
(Theorem 4) does not obtain:

Theorem 6 Fix r > 0, c ≥ 2, and p > 1
c . Then there exists a constant s > 0 such that

lim
n→∞

P(Gnr,c,p has an s-giant component) = 1 . (1.4)

On the other hand,
lim
n→∞

P(Gnr,c,p is connected) = 0 . (1.5)

We remark that an easy branching process comparison shows that the emergence of a giant
component fails when p is sufficiently small. In fact, our main technique for proving the re-
sults stated above is also comparisons with branching processes, but these are somewhat more
sophisticated. This difference comes from the fact that for the small p result, the compari-
son works by showing that a certain branching process dominates the connected component
containing a given vertex, while for our main results, the comparison goes the other way.

The use of branching process comparisons to establish connectivity properties is quite
standard in percolation theory (see, e.g., Meester and Roy [11]), but deserves to become better
known in the study of wireless networks.

Our main results – Proposition 3, Theorem 4, and the first half of Theorem 6 – can all
be seen as instances of what appears to be a general principle in percolation theory: if the
selection mechanism with which nodes connect to other nodes is sufficiently “spread out”, i.e.
if it chooses randomly among very many, then rather few links per node will suffice to obtain
good global connectivity. See [12, 10, 5] for other results in this direction. In contrast, it
appears that if the device discovery mechanism in Definition 1 is replaced by one where each
node connects to its c nearest neighbors, then c = 2 is not enough to obtain a giant component
(as indicated by the simulations reported in [6]), while no finite c suffices for connectedness [4].

In the next section, we prove Proposition 3, while Sections 3 and 4 are devoted to the
proofs of Theorems 4 and 6, respectively. Finally, in Section 5, we mention some possibilities
for extensions and future work.
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2 Bluetooth: giant component

For the purpose of proving Proposition 3, and also later, Lemma 7 below will be useful. Fix
an integer k such that

k >

√
5
r

(2.6)

and partition [0, 1]2 into k2 subsquares of size 1
k ×

1
k in the obvious way. (One point of this

choice of k is that it ensures that any two points sitting in adjacent subsquares are within
distance r from each other; this will be needed in the proof of Theorem 4.)

Lemma 7 For any fixed k, we have

lim
n→∞

Pn

(
each of the k2 subsquares contains at least n

2k2 points
)

= 1 . (2.7)

Proof: Fix a square S and let X denote the number of points in S. Then, µ := EX = n
k2

and, by the Chernoff-Hoeffding bound,

Pn(X <
n

2k2
) ≤ e−n/8k2

.

Thus, the probability that some square has less than the required number of points is at most
k2e−n/8k

2
. 2

To investigate connected components of the Bluetooth graph, we shall employ the following
method, which we will call the sequential discovery procedure (this is simply a breadth-
first exploration). First, select a node v0 at random (among all n nodes). Then consider
the c edges chosen by v0 (in the device discovery procedure of Definition 1), and denote the
endpoints (other than v0) of these edges by v1, . . . , vc. Then continue with the edges chosen
by v1, and so on, in a breadth first search manner. Each time a new node is encountered,
the node reached by it is included in our list of nodes, and the choice is deemed a success.
Sometimes, the edge leads to a node already seen in this procedure, in which case the choice
is said to be a failure. At any point of this search procedure, we may stop, and those vertices
encountered whose outgoing edges have not been investigated (yet), are called fresh nodes.

At various stages of our arguments, we will invoke a comparison between the sequential
discovery procedure and a (Galton–Watson) branching process. Such a branching process
(see, e.g., Harris [7] or Asmussen and Hering [1]) begins with m0 individuals. Each of these
begets, independently of the others, a number of offspring, which has some given distribution
f on the non-negative integers. Each of these children then has a number of children for
themselves, again independent with distribution f . And so on, again ina BFS manner. One
of two things will happen: either the branching process dies out after a finite number of
generations, or it survives (forever). Excluding the trivial case where f puts unit mass on 1,
it is well known that the branching process has positive probability of surviving if and only if
f ’s first moment is strictly greater than 1.

We shall be particularly concerned with a branching process whose offspring distribution is
the binomial distribution Bin(2, p). This can be compared to the sequential discovery procedure
for c = 2 in the following way. Suppose that we can show that up until some given stage S
of the sequential discovery procedure, each choice of a new node to connect to has probability
at least p (conditionally on everything seen so far) of being a success. Then we can make
a joint construction (a so-called coupling; see [9]) of the sequential discovery procedure and
the Bin(2, p) branching process in such a way that each individual in the branching process
corresponds to a particular node (not shared by any of the other individuals of the branching
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process) of the sequential procedure, up until the given stage S. We say in this case that
the sequential procedure up until stage S stochastically dominates the branching processs
(for stochastic domination see for example [9]). We will show that the sequential discovery
procedure first generates almost surely a set of log n points and that from then on each point
u begets offsprings with distribution Bin(2, pu), with pu ≥ 3

4 . It follows from a standard
application of stochastic domination that the survival probability of the sequential discovery
procedure is at least that of log n independent branching processes with distribution Bin(2, 3

4).

Proof of Proposition 3: We prove the result for c = 2 only, which is obviously enough since
adding edges is not going to destroy a giant component.

Run the sequential discovery procedure until the outgoing edges of log(n) nodes are inves-
tigated (or until there are no more fresh nodes, in which case we are stuck).

By Lemma 7, we may assume that the event in (2.7) happens, and condition on that event.
By the choice (2.6) of k, this means that each time a node selects another node to connect to,
there are at least n

2k2 nodes to choose from. And each time, there are at most 2 log(n) nodes
that have already been seen, so each edge has probability at most

4k2 log(n)
n

(2.8)

of hitting a node that has already been seen. Hence, the probability that at least one of the
2 log(n) choices is a failure, is at most

2 log(n)
4k2 log(n)

n
=

8k2(log(n))2

n
, (2.9)

which tends to 0 as n → ∞. Hence, the probability that all choices, up until the outgoing
edges of log(n) nodes are investigated, are successful, tends to 1 as n→∞.

Hence, we have shown that with probability approaching 1 as n→∞, we get a connected
component with at least 2 log(n) nodes. But this is not enough to prove Proposition 3, which
asserts a component whose size is linear in n.

We can, however, continue the sequential discovery procedure from the log(n) fresh nodes
that we have (assuming that all choices so far have been succesful). Let us continue the
sequential procedure until the stage S when either a total of n

8k2 nodes have been found (or
no fresh nodes remain). Before stage S, each new discovery has, by an analogous argument as
that used to establish (2.8), probability at most

n/8k2

n/2k2
=

1
4

of not being successful. It follows that the sequential discovery procedure starting from the
log(n) nodes until stage S stochastically dominates a Bin(2, 3

4) branching process with the
same initial number of individuals. We therefore get, conditionally on no failures associated
with the first 2 log(n) nodes,

P(the sequential procedure fails to survive until n
8k2 nodes are found)

≤ P(a Bin(2, 3
4) branching process starting with log(n) individuals dies out)

= (P(a Bin(2, 3
4) branching process starting with 1 individual dies out))log(n)

= (1− α)logn (2.10)

where α > 0 is the survival probability of a Bin(2, 3
4) branching process starting from a single

individual (an easy calculation shows that α = 8
9 , but we only need the fact that α > 0, which
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follows from the fact that the offspring distribution has expectation 3
2 > 1). The sum of (2.9)

and (2.10) tends to 0 as n→∞, whence (1.2) follows with s = 1
8k2 , and we are done. 2

Note that by Lemma 7, (2.9) and (2.10) the probability of not having a giant component is
Θ(n−ε) for ε > 0.

3 Bluetooth: connectedness

In this section we go on to prove the connectedness of Gnr,c asserted in Theorem 4. We begin
by proving the following strengthening of Proposition 3.

Proposition 8 Fix r > 0 and c ≥ 2. Then there exists a constant s > 0 such that

lim
n→∞

P(every node of Gnr,c is in some s-giant component) = 1 .

Proof: Again, it suffices to consider c = 2. As in the previous section, let α denote the survival
probability of a Bin(2, 3

4) branching process starting from a single individual.
We proceed using the sequential discovery procedure as in the proof of Proposition 3, with

the following modification. Instead of initially running it until the outgoing edges of log(n)
nodes have been checked, run it until the outgoing edges of a log(n) nodes have been checked,
where a is a fixed number chosen so that

a > log
(

1
1− α

)
.

The estimate in (2.9) then becomes replaced by 8k2a2(log(n))2

n . However, since the result we
are trying to prove concerns all n points simultaneously, we need to improve on this estimate
(which, when multiplied by n, fails to approach 0). To do this, note we can afford to have one
failed edge during the discovery of the outgoing edges of the first a log(n) nodes without very
much damage (there will still be a log(n) fresh edges at the end of this search). To estimate
the probability that at least two choices fail, note that there are less than (a log(n))2

2 pairs of
times during the procedure at which the choices can fail, and for each such pair the probability

of failure in both is at most
(

2a log(n)
n/2k2

)2
(assuming as before the event in Lemma 7). The

probability that at least two of the 2a log(n) choices are failures is therefore at most

(a log(n))2

2

(
2a log(n)
n/2k2

)2

=
8k4a4(log(n))4

n2
, (3.11)

which tends to 0 at a rate which (as we shall see) is fast enough for our purposes.
Again imitating the proof of Proposition 3, we go on to run the sequential discovery pro-

cedure until a total of n
8k2 nodes have been found. Since we begin with a log(n) fresh nodes,

the analogue of (2.10) becomes

P(the sequential procedure fails to survive until n
8k2 nodes are found) ≤ (1− α)a log(n)

= n−b (3.12)

where b = −a log(1− α), and b > 1 by the choice of a.
On the event in Lemma 7 (whose probability tends to 1), we can bound the probability

that some node fails to sit in an s-giant component (with s = 1
8k2 ) by adding the estimates in

(3.11) and (3.12) and multiplying by the number of nodes n. This yields

8k4a4(log(n))4

n
+ n1−b (3.13)
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which still tends to 0 as n→∞, so the proof is complete. 2

Proof of Theorem 4: As usual, we need only consider the c = 2 case. Note that in view of
Proposition 8 with the estimate

s =
1

8k2
(3.14)

that comes out of its proof, the only thing that can cause (1.3) to go wrong is if there exists
an ε > 0 such that

lim sup
n→∞

P(Gnr,c contains at least two distinct 1
8k2 -giant components) ≥ ε . (3.15)

Now consider the experiment of generating Gnr,c and then picking two of its nodes at random;
let A denote the event that these two nodes end up in the same connected component. By
conditioning on the first of these nodes, we see that (3.15) implies that

lim sup
n→∞

P(¬A) ≥ ε

8k2
.

In order to prove the theorem, it therefore suffices to show that

lim
n→∞

P(¬A) = 0 . (3.16)

Let us denote the two nodes chosen at random by v0 and v1. By Proposition 8 and the estimate
(3.14), we may assume that v0 is in a connected component of at size least n

8k2 . Then, by the
pigeonhole principle, at least one of the k2 subsquares of [0, 1]2 introduced in Section 2 contains
at least n

8k4 nodes of that connected component. Let us pick such a subsquare and denote it
by B.

Next, fix an integer m, and run the sequential discovery procedure starting from the other
node v1, with the following restriction. As soon as an edge fails to lead to a new node, we give
up. Assuming this does not happen, we run the procedure until the outgoing edges of exactly
m− 1 nodes have been investigated; this leaves us with exactly m fresh nodes. Let w1, . . . wm
denote the fresh nodes after having checked the outgoing edges of m−1 nodes in the sequential
procedure. Pick one of these vertices, wi, and denote the subsquare it sits in by Bi,0. We can
then find a sequence of subsquares Bi,1, Bi,2, . . . , Bi,`, ` ≤ 2k, such that

(i) for each j ∈ {0, 1, . . . , `− 1}, the subsquares Bi,j and Bi,j+1 are adjacent, and

(ii) Bi,` = B.

Fix such a sequence, and consider the “naked-branch” sequential discovery procedure starting
from wi, and denote the nodes found along this branch by wi,1, wi,2, . . . , wi,`. Given the event
in Lemma 7 (which we may assume happens), the probability that wi,1 ends up in Bi,1 is at
least n/2k2

n = 1
2k2 (due to our choice (2.6) of k). Given that, the conditional probability that

wi,2 ends up in Bi,2 is at least 1
2k2 . And so on. Finally, given that wi,`−1 is in Bi,`−1, the

conditional probability that wi,` is in the connected component of v1, is at least n/8k4

n = 1
8k4 .

Multiplying these conditional probabilities yields that wi,` has probability at least(
1

2k2

)`−1 1
8k4
≥
(

1
2k2

)2k−1 1
8k4

(3.17)

of being in the connected component of v0.
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On the event that no checked edges result in failures (which we assume), the m different
“naked branches” move independently, so (3.17) implies that the probability that none of them
hit the connected component of v0 is at most(

1−
(

1
2k − 1

)k−1 1
8k4

)m
.

We have thus shown that

lim sup
n→∞

P(¬A) ≤
(

1−
(

1
2k2

)2k−1 1
8k4

)m
. (3.18)

Now, m was arbitrary, and the right hand side of (3.18) can be made as small as we wish by
picking m large. Hence (3.16) is established and the proof is complete. 2

A careful examination of the estimates of failure probabilities in the proof above show that the
probability of not having connectivity is at most Θ(n−ε), for ε > 0.

4 Thinned Bluetooth

In this section, we go on to consider the thinned Bluetooth graph, and in particular to prove
Theorem 6. We begin with the easy part.

Proof of Theorem 6, part (1.5): First construct the (non-thinned) Bluetooth graph Gnr,c.
This graph contains at most cn edges, so the nodes have on average degree at most 2c. It
follows that at least n

2 nodes have degree at most 4c. Among n
2 such nodes, we can find a

subset A of size at least n
2(4c+1) , such that no two of the nodes in A share an edge.

When we now delete edges from Gnr,c to obtain the thinned Bluetooth graph Gnr,c,p, each
node in A gets all its edges deleted with probability at least (1−p)4c, independently for different
nodes in A. Hence, the probability that at least one node in A becomes isolated in Gnr,c,p is at
least

1−
(
1− (1− p)4c

) n
2(4c+1) ,

which tends to 1 as n→∞, and (1.5) follows. 2

Proof of Theorem 6, part (1.4): Fix an arbitrary ε > 0, and let p′ = 1/c+p
2 . Let α′ denote

the survival probability of a Bin(c, p′) branching process starting from a single individual, and
note that α′ > 0 since Bin(c, p′) has first moment cp′ > 1. Choose an integer a in such a way
that

(1− α′)ca < ε ,

and also an integer b such that (
1− (p′)(c+c2+···+ca)

)b
< ε .

Finally, define the positive number d as

d =
p− 1

c

4k2
.

Now start a sequential discovery procedure beginning with b randomly chosen initial nodes,
running for a generations. Each node can potentially connect to c others, but the connection
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is considered a failure if either the edge is deleted in the thinning step of Definition 5, or the
node discovered has already been seen in the sequential procedure.

During this part of the sequential discovery procedure, the probability of failure of an edge
is bounded by (1− p) (for the event of being removed in the thinning) plus 2k2b(1+c++c2...+ca)

n
(for the event of encountering a vertex that has already been seen). We may suppose that n
is large enough so that

p− 2k2b(1 + c+ +c2 . . .+ ca)
n

≥ p′

so that (assuming as usual the event in Lemma 7) the probability of success of an edge remains
at least p′.

Hence, each one of the b initial nodes has probability of seeing only successes in the first a
generations of its part of the sequential discovery process is at least

(p′)(c+c2+···+ca) ,

and the event D that at least one of the b initial nodes yields a such completely successful
generations, has probability at least

P(D) ≥ 1−
(
1− (p′)(c+c2+···+ca)

)b
> 1− ε (4.19)

where the last inequality is due to the choice of b.
On the event D, pick one of those spectacularly successful initial nodes at random, and

continue the sequential discovery procedure from the ca fresh nodes of its connected component
until a total of dn nodes have been encountered (or no fresh nodes remain). The success
probability of each new edge during this process is at least

p− dn

n/2k2

which, by the choice of d, equals p′. Hence, we can make the by now familiar comparison with
a branching process – in this case a branching process with Bin(c, p′) offspring distribution.
We get

P(the sequential procedure fails to survive until dn nodes are found)
≤ P(a Bin(c, p′) branching process starting with ca individuals dies out)
= (P(a Bin(c, p′) branching process starting with 1 individual dies out))c

a

= (1− α′)ca

< ε , (4.20)

where the last inequality is due to the choice of a. Combining the results of (4.19) and (4.20),
we get that

lim sup
n→∞

P

(
Gnr,c,p fails to contain connected component of size at least dn− (b− 1)

a∑
i=0

ci
)
< 2ε .

Hence

lim sup
n→∞

P
(
Gnr,c,p fails to contain connected component of size at least

dn

2

)
< 2ε ,

and since ε > 0 was arbitrary, we have established (1.4) with s = d
2 . 2
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5 Final remarks

There are a number of possible ways to proceed from where we are, in order to produce further
results. We mention some of these:

1. One may note that the only place in which we have used the fact that the positions of the
n nodes are independent and uniformly distributed on [0, 1]2, is in the proof of Lemma 7.
Hence, one may replace the chosen model for placement of the nodes by any other model
which yields a sufficiently even distribution of nodes to obtain Lemma 7 or something
along those lines. A large number of models for which this may be attempted can be
found, e.g., in [13].

2. Likewise, there is scope for great flexibility in replacing the region [0, 1]2 in which the
nodes are distributed, by others. One could even move to other dimensions; this is a
mathematically natural extension but perhaps less interesting for the engineering appli-
cation. For instance, the proofs of all our main results extend easily to the case where
[0, 1]2 is replaced by [0, 1]d for d = 1 or any d ≥ 3.

3. The condition p > 1
c in Theorem 6 is probably not sharp.

4. One could consider other kinds of asymptotics, where r and c are still kept fixed, but
the size of the region grows as the number of points n increases. As an extreme case,
one could take the region to be all of R2, and points to be distributed according to a
homogeneous Poisson process with intensity λ. This would take us into the realm of
percolation theory, where the number one question would be to ask for the existence of
an infinite connected component. Fixing r and c, one would expect the probability of
existence of such an infinite component to depend on λ in such a way that it is 0 for λ
less than some critical value λc, and 1 for λ > λc. Somewhat counterintuitively, it seems
difficult to prove the monotonicity in λ required for such a statement (adding nodes may
not always improve connectivity).
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[2] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee and S. Khuller, Construction
of an efficient overlay multicast infrastructure for real-time applications, Proceedings
of Infocom 2003

[3] F. Ferraguto, G. Mambrini, A. Panconesi and C. Petrioli, Blue Pleiades, a new so-
lution for device discovery and scatternet formation in multi-hop Bluetooth networks,
submitted to ACM Winet.

[4] Feng Xue and P. R. Kumar, The number of neighbors needed for connectivity of wireless
networks. To appear in Wireless Networks.

[5] M. Franceschetti, L. Booth, M. Cook, R. Meester, and J. Bruck, Percolation of multi-
hop wireless networks, preprint, http://www.cs.vu.nl/~rmeester/pre.html
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