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Sweden
Telephone +46 (0)31 772 1000

Cover: A flow trajectory in the dense herringbone mixer projected onto
the yz-plane, and the deformation of a circle along the trajectory.
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Abstract

Fluid mixing in small systems is difficult when the diffusion is a slow pro-
cess compared to other relevant processes, and when the fluid dynamics is
laminar, i.e., dominated by viscous forces. This is the prevailing situation
in microfluidic systems. However, mixing is enhanced in chaotic flows. In
this work we estimate and compute the mixing time in chaotic channel
flows as tm = 1/(2σ) ln (Pe), where σ is related to a stability factor for the
flow and Pe is the Péclet number.
We compute the flow in a number of realistic microfluidic mixers by solv-
ing the stationary three-dimensional Navier-Stokes equations and Stokes
equations by the finite element method. Stability factors are obtained by
computing and analyzing flow trajectories. The procedure is motivated by
maximum norm a priori error estimates quoted from the literature.
A major part of this work has been to choose, evaluate, and implement al-
gorithms. The implemented Navier-Stokes/Stokes solver, written in C++
code, combines a Krylov method with multigrid. Our results indicate that
the solver is optimal.

Keywords: mixing, chaotic convection, microfluidics, microfluids, Navier-
Stokes, Lagrangian viewpoint, preconditioner, multigrid, Hood-Taylor, fi-
nite element
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1. Introduction

One of the major themes in technology and science during the past half
century has been miniaturization. As a most notable consequence the per-
formance of computers is improving at an exponential rate. The number
of transistors per area unit in an integrated circuit is doubled every 1.5
year. This is known as Moore’s law in honor of Gordon Moore who made
this prediction nearly forty years ago [50]. This is likely to go on for 10–15
more years and then start to level out when the size of the transistor is
approaching the molecular size [4]. From an engineering/computational
point of view this is promising1. We may expect that computer simula-
tions will become even more important both in fundamental research and
industrial design. The traditional experiments will to some extent be re-
placed by ’virtual experiments’, gaining efficiency, flexibility and cutting
costs. This is not only academic chit-chat. The market for prototyping
software is estimated [20] to 1.4 billion dollars year 2007.
Miniaturization does not only encompass electronics and impact on com-
puter technology. New fields are emerging where electronics is merged with
mechanics, inmicro-electro-mechanical systems (MEMS) and fluid systems
are scaled down in size, in microfluidics. The present work will mainly deal
with computational aspects of large scale computing related to microflu-
idics and with particular applications to fluid mixing in microchannels.

1.1. Microfluidics. What is microfluidics? It is difficult to give a terse
definition and it is probably meaningless to try anyway. We have a notion
of microelectronics. Thus, let us say that microfluidics is like microelec-
tronics but instead of charge transport as for microelectronics, microflu-
idics is mainly about atom and molecular mass transport in microsystems.
Microelectronics could be combined with micromechanics and microflu-
idics in MEMS devices. This possibility is of utmost practical importance
since the combination naturally enlarges the functionality and the number
of devices that could be produced and studied, possible also opens up for
new applications.

We make a distinction between microfluidic and microfluid systems and
say that the microfluidic systems are manmade systems whereas microfluid
systems is a collective name for all small fluid systems. Microfluidic sys-
tems are fabricated with similar techniques as is used for microelectronics,

1But also daunting since today there is no successor to the silicon technology.
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e.g., lithography etc., and could for this reason in a natural way be in-
cluded in MEMS devices. Microfluid systems in general could for example
be found in nature, e.g., thin blood vessels and cells. Another impor-
tant example related to microfluid systems is the microscale flow between
particles in colloidal dispersions. This intricate flow governs the hydrody-
namical interaction in colloidal systems.

From an applied mathematical perspective microfluidic and MEMS tech-
nology include a lot of physics that could be appropriately modelled with
partial differential equations, e.g., the convection-diffusion-reaction equa-
tion for heat and chemical reactants, theMaxwell equations for the electro-
magnetic field, the Navier-Stokes equations for fluid transport and the
elasticity equation for solid mechanics, etc. It is a strong mathematical re-
sult that there exist unique solutions to the mentioned equations2. With a
powerful computer at hand and with multi-physics models (combining the
equations above) it should be possible to describe, design and to a large
extent understand microfluidic and MEMS devices through computer sim-
ulations.

For general reference on microfluidics we refer to the monograph [41]
and a number of review and research articles [74, 10, 26, 47].

1.1.1. Science. In microfluidics, as we scale down the size of the system,
it becomes more important to understand various types of interactions in
the flow and the underlying physical mechanisms. These interactions are:
(i) the interaction between the constituents of the flow, molecules and
particles, for example, the hydrodynamical interaction between particles
in colloidal dispersions; and (ii) the interaction between solid objects,
such as walls, and the fluid. These interactions are not fully understood
and are subjects to fundamental research. By exploring microfluidic de-
vices we may gain in fundamental understanding of how matter interacts,
knowledge useful if we for example would like to understand friction and
lubrication.

Remark 1.1. Through this work we will frequently use two dimensionless
numbers:
(i) The Reynolds number, Re, estimating the ratio of inertia to viscous
forces in a flow, Re = UL/µ, where L and U are characteristic length and

2With exception to the Navier-Stokes equations where the issue is an open question
worth a million dollars [64]. However we may expect the existence of a unique solution
for laminar flows, close to Stokes flow.
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velocity scales of the system, µ = η/ρ is the kinematic viscosity, η is the
fluid viscosity and ρ is the fluid density (µ = 10−6 [m2/s] for water).
(ii) The Péclet number, Pe, estimating the ratio of convective to diffusive
processes in the flow, Pe = LU/D, where D is the diffusion coefficient.

We summarize a few features associated with microfluidics.
Small Reynolds number, Re . 10. Fluid flows in microstructures are
usually limited by the size of the system, friction to walls, and therefore
the fluid velocity will be small. Combining this with the size of the system
generally gives a Reynolds number Re . 10 or possibly Re ¿ 10. Inertia
will play a minor role in microfluidics and there will not be any turbulence
in a traditional meaning, although elastic turbulence may occur [29, 30]
but this is due to an entirely different mechanism.
Large Péclet number, Pe & 100. The diffusion of particles/(molecules)
is approximately inversely proportional to the size of the particle. For
dilute solutions the diffusion coefficient of a particle could be estimated
by a Brownian motion type of argument to D = kBT/(6πηa) where kB
is the Boltzmann constant, T is the temperature, η is the viscosity of
the fluid and a is the size of the particle [16]. The diffusion coefficient is
small for large molecules, such as, DNA, proteins, cells, or generally, for
colloidal particles and therefore the Péclet number will be large for many
microfluid systems of interest, approximately Pe & 100. As a consequence
fluid mixing is difficult in microfluidic systems.
Slip boundary condition. The non-slip boundary condition, i.e., that
the fluid takes the same velocity as the solid at the solid-fluid interface, is
often taken for granted in macroscopic models, for an exception see [65].
In microfluidics we should hesitate before applying a non-slip boundary
condition. There is a large number of studies pointing in the direction that
there is slip at the solid fluid interface, see for example [75, 14, 12]. To get a
feel for how a slip boundary condition may influence the flow field we solve
the Navier-Stokes equations in the domain between the planes y = ±h
and with a constant pressure gradient ∆p in the x-direction. Assuming a
linear Navier boundary condition [65], that is, u(y = ±h) = βγ̇ where β is
the slip length and γ̇ is the shear rate3, we get,

(1.1) u =
h2∆p

2η

(

(y

h

)2

− 1−
2β

h

)

.

3γ̇ = n · ∇u, where n is the unit normal pointing into the domain.
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The slip length, β, is generally in the micrometer regime and hence the in-
fluence from the slip becomes larger as the size of the system is scaled
down. This should be compared to the solution in the non-slip case,
u = (h2∆p/2η)((y/h)2 − 1).
Granularity and failure of the continuum hypothesis. The contin-
uum hypothesis for fluid mechanics is valid when the fluid system length
and time scales are considerably larger than the largest molecular length
and time scales, the fluid system should always be in local thermodynami-
cal equilibrium. In microfluidics we carefully have to consider the validity
of the continuum hypothesis. In reality there is no such thing as a contin-
uum, the constituents in flows are atoms or molecules. As we scale down
the size of a fluid system this becomes more and more apparent. When the
continuum hypothesis is violated one must reconsider the model used for
describing the flow, if it is a continuum model. For gas flows this happens
when the mean free path of the gas molecules approach the size of the fluid
system. This is captured by the Knudsen number and we refer to [47, 15]
for further details. For fluids this type of effect is more subtle. There may
be reorientation of the molecular structure of the fluid in a thin layer at, for
example, solid-fluid interfaces [41] and fluctuations due to molecular diffu-
sion on the solid-fluid interface [51]. There is yet another effect related to
dilution, consider for example a fluid containing dissolved/dispersed parti-
cles/molecules. For small systems it might not be correct to introduce the
notion of concentration for particles or molecules, due to fluctuations that
may arise in this continuum variable. This is similar to rarefication in gas
flows. For particle flows it may even be necessary to include the particles
in a direct numerical simulation in order to accurately describe the system.
This should be necessary when the size of the particles approach a large
fraction of the size of the system.

1.1.2. Technology. The size of beakers, test tubes, tubings etc. in a chem-
istry laboratory has been more or less constant over the past 300 years
[62]. Microfluidics will drastically change this and revolutionize chemistry
in a similar way as microelectronics revolutionized electronics. Microflu-
idics will set a new paradigm for chemical analysis, reducing solvent and
sample consumption, and in this way gain efficiency, cutting time and costs
[32]. Microfluidics will also make it possible to design and control chemical
experiments, reactions and processes on the microscopic scale. This opens
up the possibility to better improve reaction rate constants and also to
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have a better control on by-products, that could for example be toxic and
harmful for the environment [33].

Today entire fluid systems, channels, sample reservoirs, pumps and
valves are scaled down and integrated onto microchips [66]. When com-
bining this infrastructure with analysis devices it is common practice to
talk about ’lab on a chip’ [59]. The step taken, integrating the fluid system
on a chip is gigantic in terms of the possibility to increase complexity and
to make it possible for automated (computerized) control. The allegory
tyranny of numbers, historically known from computer design4, could be
recast into tyranny of pipetteing for a modern chemistry laboratory [66].

It was early recognized that microchannels could possibly be used for
cooling of microelectronic circuits [55]. Today we see a number of other ap-
plications related to biotechnology such as DNA and protein analysis [11],
particle separation and detection [72], fluid control [31], but also generally
for chemical reactions and synthesis [22].

1.2. Aim. It is intrinsically difficult to mix fluids in microfluidic systems,
see for example [61, 43]. Work done in the direction of understanding and
improving mixing in microfluidic systems found in the literature are mainly
experimental [61, 46, 63]. The overall aim of the present work is to:

1. Establish a quantitative criterion that will describe the mixing
properties (good/bad) in microfluidic systems.

2. Simulate the dynamics of fluid flow in microfluidic systems.

1.3. Motivation.

1.3.1. Computational mathematics. The tremendous development of com-
puter power that we have experienced during the past three decades and
that probably will continue for at least one more decade must be accom-
panied with development of computational methods. We would like to
solve partial differential equations (PDEs) in realistic settings, which often
means that we will have to work with three spatial dimensions. Unavoid-
ably the degrees of freedom and hence the size of the problems will become
large in three dimensions. A draw-back of many commercially available

4It became impractical at the time to build computers out of vacuum tubes because
the number of vacuum tubes became too large with the consequence that the computer
became to ’bulky’ and there was a real problem in wiring the components together.
The tyranny of numbers was resolved by the dawn of the transistor and the integrated
circuit.
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software packages for solving PDEs are that they cannot really handle large
problems in an efficient manner, at least when it comes to general finite
element solvers. The hinge is that it is fairly difficult to write a ’black box’
solver (a solver that can handle a number of different problems and set-
tings), that could solve large systems and in the same time be robust and
reliable, which is a necessity for a commercial program. Large problems
must be solved with iterative methods and this is non-trivial. Exploring
and to some extent develop such methods is one of the major motivations
for the present study. Another very important aspect of computing that
also motivates this work is error control. Generally, this is only vaguely
dealt with by commercial programs, possibly due to the complexity of the
issue.

1.3.2. Applications. In industrial design of microdevices, in general, there
is always the possibility to build prototypes and evaluate the device char-
acteristics in experiments. However this is often a time consuming (expen-
sive) and tedious process. This becomes more apparent when it comes to
optimal design. The number of design parameters could be large and it
would be impractical to find a good design through measuring on a number
of different devices. With modern computer technology and appropriate
models the design could be done by simulations, saving time and gaining
efficiency in the design process. In this work we compute: (i) the fluid flow
in microfluidic systems, and (ii) parameters (stability factors) character-
izing the dynamics in microfluidic systems under realistic settings. This
two points can be the basis for a computer assisted design procedure.

1.4. Outline. In the present work we focus on the part of the microfluidic
system where the fluid mixing occurs and call this part of the system the
mixer. In order to handle the problem theoretically and computationally
we make the assumption that the mixer is a periodic device, in theory in-
finitely long. Due to the periodicity we can partition the mixer into small
units called unit cells, see Figure 2.1. The complete dynamics of the mixer
is contained in one unit cell and we therefore limit the study of the mixer
to one of these unit cells.

The work is divided into three distinct but linked parts.

Eulerian view. Computing the flow in the unit cell in the Eulerian view.
This should be done with error control. Since we have not established
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any rigorous result in this direction and it is lacking in the literature we
introduce the error control by a hypothesis that is likely to be valid and
will be a subject for further studies.
Lagrangian view. Given the computed flow, a vector field u, we com-
pute particle trajectories x(t) by solving a system of ordinary differential
equations (ODEs), ẋ(t) = u(x) with x(0) = x0. This is done with error
control and the analysis is valid under the assumption of the hypothesis
made for the error in the Eulerian view.
Stability. We consider the mixer as dynamical system and compute the
stability factors for the system. These data are used to characterize the
mixer and estimate the mixing time. Loosely speaking: the more unstable
the system is, the better mixer it is.

1.4.1. Basic assumptions. We limit this work to the study of microfluidic
systems such that the continuum hypothesis is valid which motivates the
notion of fluid density and viscosity which are taken to be constant through
this work. Under these conditions the incompressible Navier-Stokes equa-
tions will serve as a good model describing the fluid. Further assumptions
are:

1. the no-slip boundary condition is valid,
2. Reynolds number Re < 10,
3. Péclet number Pe > 100,
4. the fluids considered are miscible and Newtonian.

We remark that these conditions are not particularly unique for microsys-
tems. Hence, the results in this work are not only limited to microfluidics.

We illustrate the validation of the continuum hypothesis in an example.
Considering a microfluidic system with water. The important microscopic
timescale is the molecular collision time, i.e., the average time between
collisions for one molecule. Assuming that the thermal energy for one
molecule equals its kinetic energy we obtain the velocity for one water
molecule, v = (2kBT/m)1/2, where kB is the Boltzmann constant, m is
the molecular mass and T is the temperature. Furthermore, assuming
that a mean free path equals the inter-molecular distance between water
molecules, λ, gives an estimate for the molecular collision time tc = λ/v ∼
10−12 s. This is a lot smaller than any system timescales of interest, maybe
> 10−6 s. The size of a water molecule is ∼ 10−10 and the continuum
hypothesis should be valid for any system & 10−7 m.
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1.4.2. Software and algorithms. We discretize the Navier-Stokes equations
by means of the finite element method and use the Dolfin library [34] as
a basic platform for solving the problem. In addition a number of C++
classes have been implemented, e.g., for matrix assembling, precondition-
ing and multigrid solvers. The initial grids were generated in FEMLAB
and subsequent refinements were done in a MATLAB code. The ODE sys-
tem and the stability factors were computed with the multi-adaptive ODE
solver Tanganyika [48]. In addition we implemented a data acquisition
class (interpolation from discrete to continuous data) based on a binary
space partitioning algorithm.



9

2. Navier-Stokes equations and finite elements

We introduce the Navier-Stokes equations. For the physical background
and a derivation we refer to the monograph [45] and for a mathematical
analysis we refer to [13, 25, 49]. Assume Ω ⊂ Rd, d = 2, 3, is an open and
bounded domain with Lipschitz continuous boundary. The stationary, or
time-independent, Navier-Stokes equations in dimensionless form in Ω are,

(2.1)

−ν∆u+ (u · ∇)u+∇p = f inΩ,

∇ · u = 0 inΩ,

u = g on ∂Ω,

where u is the fluid velocity, p is the pressure, f ∈ (H−1(Ω))d is an ex-
ternal body force and ν = 1/Re. We also state the related linear Stokes
equations,

(2.2)

−ν∆u+∇p = f inΩ,

∇ · u = 0 inΩ,

u = g on ∂Ω,

with the same notation as for (2.1).
The incompressibility condition, ∇ · u = 0, requires that the boundary

value g in (2.1) and (2.2) satisfies
∫

∂Ω

g · n dS = 0,

where n is the outwards/inwards pointing unit normal at the boundary
∂Ω. There are a number of such Dirichlet boundary conditions. In this
work we will either use confined flow, that is, g · n = 0 on ∂Ω, or pressure
driven periodic channel flow, that is, for a channel with a solid boundary
(wall), Γs, and in/out flow boundaries Γin/Γout that are identical in size
and orientation,

u = 0 onΓs,

u|Γin
= u|Γout

,

p|Γin
= p|Γout

+R,

where R is a constant representing the pressure drop over the channel
segment. We call the domain inscribed by the boundaries Γs, Γin and Γout
the unit cell, see Figure 2.1.
We remark that it is intrinsically difficult to assign in/out-flow boundary
conditions; we have to know something about the solution before we even
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PSfrag replacements unit cell

Γs

Γs
Γin

Γout

Figure 2.1: A periodic channel consisting of an infinite number of juxtaposed
unit cells. The flow enters at the inflow boundary Γin and exits at the outflow
boundary Γout. The inflow and outflow boundaries are identical in size and
orientation. Solid boundaries such as channel walls are denoted by Γs.

have solved the problem. Assigning periodic boundary conditions resolves
this difficulty in a neat way. For further details on consistent in/out-flow
boundary conditions we refer to [53, 49].

2.1. Weak formulation. We state the weak formulation of the Navier-
Stokes equations for the two types of boundary conditions that we will
use. In the sequel we will use the following notation: the Sobolev space
W 1,2(Ω) = H1(Ω); the modified L2-space, L20(Ω) = {q ∈ L

2(Ω) :
∫

Ω
q dx =

0}, for the pressure; and the vector space

V (Ω) = {v ∈ H1(Ω) : v|Γs
= 0, v|Γin

= v|Γout
},

for the periodic flow.

Confined flow. Find (u, p) ∈ (H1(Ω))d×L20(Ω) such that u = g on ∂Ω and,

(2.3)
νa(u, v) + c(u, u, v) + b(p, v) = (f, v),

b(q, u) = 0,

for all (v, q) ∈ (H1
0 (Ω))

d×L20(Ω). Setting c(u, u, v) = 0 we obtain the weak
formulation for the Stokes equations.

Pressure driven periodic channel flow. Find (u, p) ∈ (V (Ω))d×L20(Ω) such
that,

(2.4)
νa(u, v) + c(u, u, v) + b(p, v) = (f, v) +R`(v),

b(q, u) = 0,

for all (v, q) ∈ (V (Ω))d × L20(Ω). Setting c(u, u, v) = 0 we obtain the weak
formulation for the Stokes equations.
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In the weak formulations above we use the notation,

(u, v) =

∫

Ω

uivi dx,

a(u, v) =

∫

Ω

∂ui
∂xj

∂vi
∂xj

dx,

b(p, v) =−

∫

Ω

p∇ · v dx,

c(u, v, w) =

∫

Ω

ui
∂vj
∂xi

wj dx,

`(v) =

∫

Γin

v · n dS,

with the usual summation convention, i.e., uivi =
∑d

i=1 uivi.

2.2. Finite element formulation. Discretizing the weak formulations
(2.3) or (2.4), that is, replacing the infinite-dimensional vector spaces
(H1(Ω))d×L20(Ω) for confined flows (or (V (Ω))d×L20(Ω) for periodic flows)
with finite-dimensional approximations (Xh(Ω))

d ×Mh(Ω) must be done
with care. To begin with we assume that the domain Ω can be partitioned
into a non-degenerate triangulation T [8]. In order for the discretization
to be stable we have to choose (Xh(Ω))

d ×Mh(Ω) such that the Babuska-
Brezzi-Ladyzhenskaya (BBL) condition (or the inf-sup condition) is satis-
fied [9, 8]. There are many possible ways of choosing (Xh(Ω))

d ×Mh(Ω)
such that the BBL condition is satisfied. A family of vector spaces that
are commonly used are the Hood-Taylor finite elements. These are vector
spaces of continuous piecewise polynomials such that,

(2.5)
Xh(Ω) = {vh ∈ C

0(Ω) ∩H1(Ω) : vh|K ∈ Pn+1 ∀K ∈ T },

Mh(Ω) = {qh ∈ C
0(Ω) ∩ L20(Ω) : qh|K ∈ Pn ∀K ∈ T },

where Pn denotes polynomials of degree n ≥ 1. The stability of the Hood-
Taylor elements for the three-dimensional Stokes equations was generally
proven in [5].

We now discretize the weak form for the confined flow, equation (2.3),
and obtain the corresponding finite element formulation. Find (uh, ph) ∈
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(Xh(Ω))
d ×Mh(Ω) such that uh = Ihg on ∂Ω and,

(2.6)
νa(uh, vh) + c(uh, uh, vh) + b(ph, vh) = (f, vh),

b(qh, uh) = 0,

for all (vh, qh) ∈ (Xh(Ω) ∩ H
1
0 (Ω))

d × Mh(Ω). The Ih in the boundary
condition is an interpolation operator. For the periodic flow the finite
element formulation is similar and is obtained if we add R`(vh) to the
right hand side of equation (2.6) and change the finite element spaces
appropriately.

For the Stokes equations (2.2) the finite element formulation is obtained
from (2.6) if we drop the non-linear part c(uh, uh, vh). Since we will refer
to it later we state it explicitly. Find (uh, ph) ∈ (Xh(Ω))

d ×Mh(Ω) such
that uh = Ihg on ∂Ω and,

(2.7)
νa(uh, vh) + b(ph, vh) = (f, vh),

b(qh, uh) = 0,

for all (vh, qh) ∈ (Xh(Ω) ∩H
1
0 (Ω))

d ×Mh(Ω).
Equation (2.6) is not readily solved due to the non-linearity c(uh, uh, vh).

To proceed solving the problem we have to deal with this. The predom-
inant method is to linearize, for example, c(uh, uh, vh) ≈ c(un−1h , unh, vh).
With this particular choice of linearization we obtain a fixed point itera-
tion scheme called the Oseen equations. With un−1h known, find (unh, p

n
h) ∈

(Xh(Ω))
d ×Mh(Ω) such that uh = Ihg on ∂Ω and

(2.8)
νa(unh, vh) + c(un−1h , unh, vh) + b(pnh, vh) = (f, vh),

b(qh, u
n
h) = 0,

for all (vh, qh) ∈ (Xh(Ω) ∩ H
1
0 (Ω))

d × Mh(Ω). It is important to notice
that this fixed point iteration scheme will converge when there is a unique
solution to problem (2.1), see [23, p. 78]. We note that the Stokes equations
are linear and hence, the finite element problem (2.7) is a linear algebra
problem that could be solved accordingly.

Let {φ1, . . . , φdM} be a basis for (Xh(Ω))
d and {ϕ1, . . . , ϕN} be a basis

for Mh(Ω). Then uh = uiφi and ph = pjϕj for constants ui, i = 1, . . . , dM
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and pj, j = 1, . . . , N . With,

Aij = νa(φi, φj) + c(un−1h , φi, φj),

Bki = b(ϕk, φi),

Fi = (f, φi),

we can write equation (2.8), and equally equation (2.7) by omitting the
non-linear part in A and the iteration index n, in matrix form,

(2.9)

(

A BT

B 0

)(

un

pn

)

=

(

F
0

)

.

This linear system of equations is often referred to as a discrete saddle
point problem.

2.3. Error estimates. In this section we only consider the Stokes equa-
tions (2.2) with g = 0. For (u, p) solutions to the Stokes equations and
(uh, ph) solutions to equation (2.7) where (uh, ph) ∈ (Xh(Ω) ∩ H

1
0 (Ω))

d ×
Mh(Ω) such that the BBL condition holds, we have [9, p. 61]

(2.10) ||u− uh||1,Ω + ||p− ph||0,Ω ≤ inf
vh,qh

(||u− vh||1,Ω + ||p− qh||0,Ω),

where the inf is taken over all (vh, qh) ∈ (Xh(Ω) ∩ H
1
0 (Ω))

d ×Mh(Ω) and
where || · ||m,Ω denotes the Sobolev norm in Hm(Ω). Below we will also use
the corresponding seminorm | · |m,Ω where only the highest derivatives are
taken into account. The estimate (2.10) particularly holds for the Hood-
Taylor finite elements [5] and in the sequel we will assume that (Xh(Ω))

d×
Mh(Ω) are the Hood-Taylor finite element spaces (2.5). Led by estimate
(2.10) and the fact that the Hood-Taylor finite elements satisfies the BBL
condition we can generalize Theorem 4.3 in [25, p. 181].

Theorem 2.1. Let Ω be a bounded polygonal domain in Rd and let the
solution (u, p) to the Stokes equations (2.2) with g = 0 be such that

u ∈ (Hk+1(Ω) ∩H1
0 (Ω))

d, p ∈ Hk(Ω) ∩ L10(Ω),

for 1 ≤ k ≤ n + 1, where n is as in (2.5). If the triangulation T is non-
degenerate and such that: (i) if d = 2, no triangle has two sides on the
boundary ∂Ω; and (ii) if d = 3, every tetrahedron has at least one internal
vertex. Then the solution (uh, ph) ∈ (Xh(Ω))

d ×Mh(Ω) to equation (2.7)
using the Hood-Taylor finite elements, satisfies the estimate

(2.11) |u− uh|1,Ω + ||p− ph||0,Ω ≤ C1h
k(|u|k+1,Ω + |p|k,Ω),
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and if Ω is convex or if the boundary is smooth,

(2.12) ||u− uh||0,Ω ≤ C2h
k+1(|u|k+1,Ω + |p|k,Ω).

The proof is a mere formality when (2.10) is established.

Proof. For the interpolation operators, Ih : Hk+1(Ω) ∩ H1
0 (Ω) → Xh(Ω)

for the velocity, and Ih : Hk(Ω) ∩ L10(Ω)→Mh(Ω) for the pressure we get
with (2.10) the estimate,

|u− uh|1,Ω + ||p− ph||0,Ω ≤ C|u− Ihuh|1,Ω + ||p− Ihph||0,Ω

≤ C1h
k(|u|k+1,Ω + |p|k,Ω),

by Poincaré-Friedrichs inequality and standard interpolation estimates.
Estimate (2.12) is obtained by a duality argument, which requires con-
vexity or smoothness of the boundary ∂Ω. ¤

This should to some extent motivate the use of higher order finite ele-
ments in microfluidic applications where the solution to the Stokes (and
Navier-Stokes) equations is expected to be very regular.

2.3.1. Maximum norm estimates. Inspired by [19] we formulate a hypoth-
esis estimating the a priori error in maximum norm.

Hypotheses 2.1. For Ω convex, (u, p) and (uh, ph) as in Theorem 2.1.
There is a constant C independent of h such that

(2.13) ||u− uh||0,∞,Ω ≤ Chk+1| log h|α(|u|k+1,∞,Ω + |p|k,∞,Ω),

for 1 ≤ k ≤ n+ 1 and some constant α.

In [19] this was proven for n = 1, d = 2, and α = 3.
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3. Optimal solvers for the saddle point problem

We examine the discrete saddle point problem equation (2.9) in some
more detail and introduce the more compact notation for the block-matrix,

(3.1) A =

(

A BT

B 0

)

.

Generally, A is non-symmetric, indefinite, large and sparse and the sub-
matrices are such that A ∈ Rn×n and B ∈ Rn×m with n ≥ m. Typically, in
this work n+m ∼ 106, and the ratio of nonzero elements to zero elements
is 10−4. For finite element methods the number of unknowns in the linear
system (2.9) scales as hd, where h is the average finite element size. We
note that this type of matrix occurs in other applications such as quadratic
programming [28], and hence, is of more general interest.

With present computer technology it is certainly possible in many sit-
uation to refine the finite element triangulation until convergence for the
laminar two-dimensional Navier-Stokes equations [70]. However, this is
not always the case for the three-dimensional Navier-Stokes equations [71].
This is a direct consequence of the scaling mentioned above. The bottom
line is that we will have to manage solving larger and larger linear systems
in order to get three-dimensional problems to converge.

Solving large and sparse linear systems of equations we must rely on
iterative methods. The time it will take to solve a linear system scales
as Nα where N is the number of unknowns and α is an exponent related
to the method ranging between 1 and 3. We have, 2 < α 6 3 for direct
solvers, e.g., Gaussian elimination, and α ≥ 1 for multigrid solvers. If the
time it takes to solve the linear system scales linearly with the number of
unknowns (α = 1), we say that the solver is optimal. Multigrid solvers
are optimal for symmetric and positive definite problems whereas for non-
symmetric and indefinite problems the efficiency may lack [7]. For further
comments on multigrid and saddle point problems we refer to a recent
review article [73].

Recently it was demonstrated that a solver combining a Krylov (it-
erative) method and multigrid can: (i) optimally solve the linear sys-
tem arising from the finite element discretization of the two-dimensional
Navier-Stokes equations [42], and (ii) efficiently solve the large linear sys-
tem arising from the finite element discretization of the three-dimensional
Navier-Stokes equations [71]. For these results a Krylov method is used
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as a prime solver and the multigrid is employed in the preconditioning.
There is a clear difference in how preconditioning is realized and therefore
we choose to name the methodologies after their origin:

1. The Anglo-Saxon preconditioner due to Elman, Golub, Wathen,
et.al., [42, 21, 52].

2. The German preconditioner evolved from the DFG5 high-priority
research program Flow Simulation with High-Performance Com-
puters, and due to Schäfer, Turek, Volker, et.al., [68, 71].

In this work we extend the result in [42] demonstrating that the method
works for three-dimensions. We now outline the over all idea in some more
detail.

3.1. The Anglo-Saxon preconditioner. In the two very short papers
[52, 36] it was shown that if the matrix A is preconditioned by the matrix,

P =

(

A BT

0 BA−1BT

)

,

then the preconditioned matrix P−1A has at most three eigenvalues. Thus,
a Krylov method applied to the preconditioned system will converge to the
exact solution in less than four iterations. The matrix in the (2,2) posi-
tion, BA−1BT (the Schur complement), is however not readily computed
and needs to be approximated. In [42] it was suggested and motivated
to replace the Schur complement by ApF

−1
p Mp where Ap and Fp are the

discretizations of the operators: −∆; and −ν∆ + b · ∇, where b is a con-
vection field (un−1 in the Oseen equations), and Mp is the pressure mass
matrix. Put together in a right-preconditioned flexible GMRES algorithm
[57, 58, 60] the method was shown to perform optimally, with only a mild
dependence on the viscosity, solving a number of different two-dimensional
Navier-Stokes problems. The inverse of P can be written as, replacing the
Schur complement with M−1

p FpA
−1
p ,

(3.2) P−1 ≈

(

A−1 0
0 I

)(

I BT

0 I

)(

I 0
0 M−1

p FpA
−1
p

)

.

In each cycle of the GMRES solver the action of this matrix must be
computed. This is partitioned into computing the action of a number of
sub-matrices: (i)A−1 is computed by two V-cycles multigrid with symmet-
ric point Gauss-Seidel smoothing, (ii) A−1p is computed by two V-cycles

5Deutsche Forschungsgemeinschaft
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multigrid but now with forward point Gauss-Seidel smoothing, and (iii)
M−1

p is computed by five iterations of preconditioned conjugate gradient
[42].

3.2. The German preconditioner. If the matrix A is preconditioned
by itself, i.e., by A−1 then the problem is solved. Approximately com-
puted, the inverse A−1 could be used as a right-preconditioner in a flexible
GMRES algorithm. In [69, 70, 71] the action of the inverse of A was
computed by multigrid and then used in a flexible GMRES solver. The
method performed well solving a large scale three-dimensional benchmark
Navier-Stokes problem. One of the difficulties in applying multigrid to
saddle point problems is to find good smoothers. In the discussed work
the authors suggested to employ a block Gauss-Seidel method.

3.3. Implementation and verification. In this work we chose to work
with the P2P1 Hood-Taylor finite elements (n = 1 in (2.5) and in all the
presented results the discrete saddle point problem (2.9) was solved with
a method related to the Anglo-Saxon preconditioner. The preconditioner
was implemented in a similar way as described in [42] although the con-
jugate gradient solver was replaced by a GMRES solver. The multigrid
solver was implemented as a multiple discretization multigrid solver, cf.
[71], this is due to the higher order finite element approximation of the ve-
locity field. The initial grid was generated in FEMLAB and subsequently
uniformly and regularly refined [3] two times. In Figure 3.1 we illustrate a
typical grid at the finest level. The solver was stopped when the computed
solution reached a tolerance of 10−6.

3.3.1. Optimality in 2D. The implemented solver is optimal, cf. the intro-
duction of this Section, when solving the two-dimensional Navier-Stokes
equations [42]. We demonstrate this fact by solving the Navier-Stokes
equations with ν = 1 in the lid driven cavity problem on a number of
different grids defined by four consecutive uniform refinements. In Figure
3.1 we plot the time it takes to solve the problem as a function of the
number of unknowns, the degrees of freedom (dof ). It is clear that the
solver scales optimally, or very close to optimally. For a comparison we
also solved the problem in FEMLAB 2.3 using a direct solver. In this case
we only can present data from two refinements since the computer we used
got out of memory after the third refinement. However, the trend is clear,
compared with the implemented solver. (i) the FEMLAB solver does not
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Figure 3.1: (left) The grid corresponding to the ridge mixer (see Paragraph
6.1), after two regular refinements which is the finest level in the multigrid
hierarchy. There are 55277 nodes and 298432 tetrahedra. (right) The time for
solving the two-dimensional Navier-Stokes equations with ν = 1 in the lid driven
cavity problem as a function of the degrees of freedom (dof ). We compare the
implemented solver with the FEMLAB 2.3 solver. For the FEMLAB solver the
computer got out of memory after the third refinement.

scale optimally (which is not a surprise since we used a direct solver), (ii)
the FEMLAB solver is slower than the implemented one, and (iii) the
FEMLAB solver use more memory.

3.3.2. Optimality in 3D. For three-dimensional problems it is much more
requiring to present results similar to the two-dimensional case. The size
of the problems grows like hd, cf. the discussion in the introduction of
this Section. In this work we are only able to give 3D results for two
consecutive refinements, limited by the hardware that was used. In Table
3.1 we present some results on the scaling for a number of 3D Stokes
problems and one Navier-Stokes problem. We refer to Paragraph 6.1 for
details on the different problems. From the results it seems plausible that
the solver also is optimal for 3D problems but this is not conclusive at this
momnet.

3.3.3. Anglo-Saxon vs German preconditioning. In the algorithms discussed
in Paragraph 3.1 and 3.2 one or two multigrid V-cycles were applied in the
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Table 3.1: The number of iterations (proportional to the time) for solving the
three-dimensional Stokes and Navier-Stokes equations for four different prob-
lems (see Paragraph 6.1) as a function of the degrees of freedom (dof ).

Mixer: RM, 3D Stokes

dof 24061 173468 1314632
iter 31 32 33

Mixer: SHM, 3D Stokes

dof 22207 156783 1173754
iter 37 37 41

Mixer: dSHM, 3D Stokes

dof 22272 155863 1160914
iter 45 47 47

Mixer: MM, 3D NS Re=10

dof 21786 157182 1191916
iter 119 122 129

preconditioning. These particular choices seem to be empirically estab-
lished. For this reason we may ask for a rigourously motivated stopping
criterion. We have not found such criterion in the literature.

It would be interesting to compare the discussed preconditioner on a set
of benchmarks problems. We have tried to achieve results in this direction
but we were not able to obtain conclusive and ’fair’ results. This was
partly because all the implementations were made on a sequential computer
whereas it seems necessary to implement the German preconditioner on a
parallel computer, where the block Gauss-Seidel smoother should work
well.
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4. Mixing in microfluidic channels

In the introduction, Paragraph 1.1.1, it was pointed out that the combi-
nation of small Reynolds number Re < 10 (possibly¿ 10) and large Péclet
number Pe > 100 is significant for many microfluidic systems. As a con-
sequence it is difficult to mix fluids in these systems. For small Reynolds
numbers there is no turbulence and we cannot rely on such inertial effect
for mixing, and for large Péclet numbers convective effects will dominate
diffusive effects and mixing by diffusion will be a relatively slow process.

We consider stationary flow in channels with characteristic length L,
the diameter (width) of the channel, and characteristic velocity U , the
maximum flow velocity along the channel. The objective is to mix two
miscible fluids, A and B, that enter in a Y-junction. If the geometry of
the channel is such that a parabolic velocity profile is maintained along
the channel there will be little mixing and only due to diffusion. This has
been demonstrated in several papers, e.g., [37, 40, 43] and we illustrate it
in Figure 4.1. To enhance the mixing the idea is to introduce convection
in the cross section of the channel. In any case we would like the time it
takes to mix the two fluids, tm, the mixing time, to be as small as possible.

PSfrag replacements

U

L

A

B

flow

Figure 4.1: A Y-junction. Fluids A and B are entering the channel in a Y-
junction. In microfluidics the characteristic length L, the width of the channel
and the characteristic velocity U , the maximum velocity, are both small. Inertial
effects are weak and if the channel is smooth the two fluids will flow along next
to each other. There will be little mixing and only due to diffusion.

Inspired by the general definition of strong topological mixing in [54,
p. 118] we now define mixing in periodic channels (mixers). Let x(t) =
X(t, t0;x0) be the solution to the ODE ẋ = u(x) with x(t0) = x0, where u
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is the velocity field in the channel. We consider one unit cell and denote
the inflow boundary of the unit cell by Γ. Remembering that the inlet
and outlet boundaries are equivalent due to the periodicity we introduce
the mapping T : Γ → Γ defined by T (x) = X(t1, t0;x) for t1 such that
X(t1, t0;x) is on the outflow boundary of the unit cell. We assume that
there is no fixed points in the unit cell or other features that might trap a
trajectory in the unit cell. Let T n(x) = T ◦ T n−1(x) with T 0(x) = x. The
mapping T n is called the Poincaré mapping of the channel flow X(t, t0;x).

Definition 4.1. (Strong topological mixing in periodic channels) We say
that a periodic channel flow mixes if for any two non-empty subsets of Γ,
A and B, there is an N such that T n(A) ∩B 6= ∅ for any n > N .

We note that if the mapping T is such that it meets the requirements
of strong topological mixing then T is topologically transitive in dynamical
system theory language. The definitions for strong topological mixing and
topological transitive are equivalent.

4.1. Mixing by diffusion. We consider a situation were there is no con-
vection in the channel cross section. Any initial configuration of misci-
ble fluids will mix, homogenize, in time due to diffusion. The maximum
time this will take is approximately the time it will take for one mole-
cule/particle to diffuse over the channel cross section. This can be esti-
mated by the Einstein relation,

(4.1) tm =
L2

D
,

where D is the diffusion coefficient, see Paragraph 1.1.1. Relating this
time to the mean flow velocity U gives us a distance along the channel,
the mixing length, ∆xm = UL2/D = Pe L. For some combinations of the
parameters U , L and D, that are common in microfluidics, the mixing time
(or equivalently the mixing length) is unpractically large. We illustrate this
in Figure 4.2.

4.2. Mixing by chaotic convection. We consider a situation were there
is no diffusion in the channel or very little diffusion. From every day
practice we sort of know that such a system will mix if we stir it. This
idea was theoretically worked out in detail during the eighties [2, 1, 54],
and it is commonly referred to as chaotic advection. The main idea is that
dynamical systems that are chaotic will mix. There are many definitions of
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Figure 4.2: Mixing time, tm, as function of molecule/particle size a in water.
The left y-axis gives the mixing time by diffusion, and is based on the Einstein
relation (4.1), for L = (10−7, 10−5, 10−3) m; and the right y-axis gives the
mixing time by chaotic convection, base on relation (4.2) rewritten to tm =
1/(2σ) ln (LU/D), where the diffusion coefficient is D = kBT/(6πηa), and for
σ = (1, 10, 100) assuming Re = 1 and µ = 10−6 (water).

chaos in dynamical systems in the literature. Led by the simple definition
in [17, p. 50], we choose a definition that will serve our purposes using
the notation introduced for Definition 4.1. Before the actual definition of
chaos in periodic channel flows we give two additional definitions that will
define the notation necessary, these are also inspired by [17, p. 49].

Definition 4.2. The flow X(t, t0;x) : Ω→ Ω has sensitive dependence on
initial conditions if there exist δ > 0 such that, for any x ∈ Ω and any
neighborhood N of x, there exist y ∈ N and t > t0 such that ||X(t, t0;x)−
X(t, t0; y)|| > δ.

Definition 4.3. The point x is a periodic point of period n if T n(x) = x.

Definition 4.4. (Chaos in periodic channel flow) The flow X(t, t0;x) is
said to be chaotic if,

1. X(t, t0;x) has sensitive dependence on initial conditions,
2. T is topologically transitive,
3. periodic points of T are dense in Γ.

We will use item (1) in the definition to estimate the mixing time by
chaotic convection. We assume X(t, t0;x) to be chaotic and to have an
exponential growth of small perturbations `0, i.e., `0 exp(σt), for σ > 0.
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In practice there is always diffusion and we denote the distance over which
diffusion have to go in order to reach mixing by ∆r. Due to the chaotic
convection we assume that this distance will decrease with time as ∆r =
L− `0 exp(σt) where we assume `0 ¿ L. Led by the Einstein relation for
the diffusion time we choose `0 = (t0D)1/2 and t0 = L/U the characteristic
time for the flow. We say that the system is mixed when ∆r = 0 and get
an estimate for the mixing time,

(4.2) tm =
1

2σ
ln(Pe).

Here we have used `0/L = (D/LU)1/2 = Pe−1/2 and we note that `0 ¿ L
for large Péclet numbers. Hence, tm grows slowly with Pe. For fixed Re
and σ we plot the mixing time as a function of the particle diameter a
(remembering that D = kBT/(6πηa), see Paragraph 1.1.1). We illustrate
this in Figure 4.2 for Re = 1. For consistency we also give the mixing
length in this case, ∆xm = U/(2σ) ln(Pe).

We note that item (2) in Definition 4.4 is identical with Definition 4.1 for
mixing. Thus, chaos implies mixing. Item (3) seems not to be important
for characterizing mixing, we included it for completeness.
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5. Stability in computed flows

We consider the system of ODEs,

(5.1) ẋ = u(x), t ∈ (t0, T ], x(t) ∈ Ω; x(t0) = x0,

where u is the velocity field defined by the Navier-Stokes equations (2.1)
or the Stokes equations (2.2). We would like to predict the stability of
such systems in terms of the dependence on initial conditions, item (1) in
Definition 4.4. Therefore we introduce the perturbed problem,

(5.2) ˙̄x = u(x̄), t ∈ (t0, T ], x̄(t) ∈ Ω; x̄(t0) = x̄0,

and subtract it from equation (5.1). With e = x − x̄ and e0 = x0 − x̄0
small, we get,

(5.3) ė = A(t)e, t ∈ (t0, T ]; e(t0) = e0,

where A(t) =
∫ 1

0
Du(x̄(t) + se(t)) ds and Du is the Jacobian. We assume

that u(x) ∈W 1,∞(Ω) which implies that the matrix A(t) is bounded, i.e.,
supt ||A(t)|| < ∞. Equation (5.3) is the linear nonautonomous system
frequently studied in dynamical system theory. The traditional analysis
of these systems relates to characteristic exponents and particularly to
Lyapunov exponents. Below we give account for these concepts and refer
for further details to a recent review article [18].

5.1. Lyapunov exponents. Let X(t) be a fundamental matrix solution
to (5.3), i.e., a solution for Ẋ = A(t)X. The characteristic exponents,
with ϕi ∈ R

d the ith unit vector,

λi = lim sup
t→∞

1

t
ln ||X(t)ϕi||, i = 1, . . . , d,

are called the Lyapunov exponents when
∑d λi is minimized with respec-

tive to all possible fundamental matrix solutions. The Lyapunov exponents
characterize the asymptotic behavior of solutions to (5.3).

5.2. Stability factors. Consider the dual problem to (5.3),

(5.4) −ż = A∗(t)z, t ∈ (t0, T ]; z(T ) = zT ,

where A∗ is the adjoint to A, T > t0 and with arbitrary data zT ∈ Rd.
Taking the scalar product of (5.3) and z, and the scalar product of (5.4)
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and e we get
(ė, z)− (Ae, z) = 0,

−(e, ż)− (e, A∗z) = 0,

where (·, ·) is the euclidian scalar product in Rd. Subtracting these equa-
tions we get the differential equation Dt(e, z) = 0, with the solution,

(5.5) (e(T ), zT ) = (e0, z(t0)) = (e0, X
∗(t, T )zT ),

where the matrix X∗(t, T ) is the solution operator to the dual problem
(5.4). Choosing zT = ϕi, the unit vectors, we define the stability factors
sij(t0, T ) = |(X

∗(t0, T )ϕi)j| and si(t0, T ) = ||X
∗(t0, T )ϕi||. With zT = ϕi

in (5.5) we get the estimate,

(5.6) |ei(T )| ≤ ||e0||si(t0, T ).

There are a few differences between stability factors and Lyapunov expo-
nents. For a system of three coupled ODEs there are nine stability factors
whereas only three Lyapunov exponents, hence the stability factors will
give more detailed information of the dynamics in the dynamical system.
The stability factors could also describe any growth, e.g., polynomial or
exponential whereas the Lyapunov exponents only captures exponential
growth. The stability factors describe the initial behavior whereas the
Lyapunov exponents describe the asymptotic behavior as t→∞.

5.3. Error estimates in computed flow trajectories. Substituting u
in (5.2) with a computed velocity field uh we get,

(5.7) ˙̄x = uh(x̄), t ∈ (t0, T ], x̄(t) ∈ Ω; x̄(t0) = x̄0.

Subtracting (5.7) from (5.1) we get the ODE for the error, e = x− x̄,

(5.8) ė = A(t)e+ E(t), t ∈ (t0, T ]; e(t0) = e0,

where A(t) as in (5.3) and E(t) = u(x̄)− uh(x̄).
In the same way as in Paragraph 5.2 we introduce the dual problem

to (5.8), subtracting the weak forms and solving the resulting differential
equation. We get,

(e(T ), zT ) = (e0, z(t0)) +

∫ T

t0

(E(t), z(t)) dt,

and with zT = ϕi we get the estimate,

|ei(T )| ≤ ||e0||si(t0, T ) + max
t0≤t≤T

||E(t)||Si(t0, T ),
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where Si(t0, T ) =
∫ T

t0
||X∗(t, T )ϕi|| dt is another stability factor. Finally,

with Hypothesis 2.1 we get,

|ei(T )| ≤ ||e0||si(t0, T ) + Chk+1Si(t0, T ),

assuming that the finite element approximation for the velocity field is of
order k, and C is a constant depending on |u|k+1,∞,Ω and |p|k,∞,Ω.
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6. Channel mixers: A case study

The design of passive (no use of external stimuli) microfluidic mixers
with good mixing properties for small Reynolds numbers, roughly Re < 10,
is a fairly recent problem that only has been addressed in a few studies,
see [61, 46, 63, 43]. Additional work that relate to these studies may be to
systematically optimize the proposed mixers but also to devise new designs
that do not necessary rely on mechanisms known from macroscopic mixers,
see for example [56]. In this work we study mixers related to: (i) channels
patterned with ridges or staggered herringbones [61]; (ii) serpentine, or
meandering channels [46, 63]; and (iii) combination of the two. Below we
outline the design of a number of mixers and briefly discuss parameters
that should be recognized in optimal design of the mixers, something that
we have not done in this work. The mixers are meant to be archetypical
in design and in this way capture main features of different mixers. It
is important to realize that the designs we use in this study have been
limited by the fact that the flow in the device should be computable, with
reasonable accuracy.

6.1. Parameters and design.

6.1.1. Ridge and herringbones mixer. Patterning the bottom of a straight
rectangular channel with periodic structures, ridges or herringbones, will
induce flow perpendicular to the main flow direction. This was demon-
strated and experimentally studied in [61]. Led by these results we define
three different mixers:

1. the ridge mixer (RM),
2. the staggered herringbone mixer (SHM),
3. the dense staggered herringbone mixer (dSHM),

all depicted in the Figures 6.1 and 6.2.
For optimal design of the mixers we recognize a few parameters that

should be important to tune: (1 ) the angle θ, (2 ) the number α, con-
trolling the depth of the structures, (3 ) the number β, controlling the
size of ridges/herrigbones along the channel and the distance between the
structures, (4 ) the width w and the length `, and (5 ) the number p, con-
trolling the asymmetry in the herringbone structures. The choice θ = 45◦,
and p = 2/3 was motivated in [61] with a simplified analytical argument.
However, the actual optimal values for all the parameters, including θ and
p, remain unknown.
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Figure 6.1: The ridge mixer (RM). The unit cell is defined by the partitioning
planes A and B. In the simulations we choose the following values of the pa-
rameters: ` = w = 1, h = 0.3, θ = 45◦, α = 2/3, β = 0.5, and the length of the
unit cell is = 1.
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Figure 6.2: (top) The staggered herringbone mixer (SHM). (bottom) The
dense staggered herringbone mixer (dSHM). The unit cell is defined by the
partitioning planes A and B. In the simulations we choose the following values
of the parameters: ` = 2/3, w = 1, h = 1/5, θ = 45◦, α = 2/3, β = 3/8,
p = 2/3, and the length of the unit cell is = 14/9.

6.1.2. Meandering channel mixers. In curved channels a secondary flow
will appear in the channel cross section when the Reynolds number is
sufficiently large. This secondary flow is due to a centrifugal instability
and is called Dean flow [56]. Relying on such inertial effects, a channel
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mixer may be devised by a meandering (MM) [63] or serpentine [46] kind
of design.

6.1.3. Combinations. Wemay try any combination of the mixers suggested
above. In the combined mixer (CM) we explore the idea of triggering
inertial effects by introducing ridge-like obstacles in a meandering channel.
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Figure 6.3: (top) The meandering mixer (MM). (bottom) The combined
mixer (CM). The unit cell is defined by the partitioning planes A and B. In the
simulations we choose the following values of the parameters: h = ` = w = 1,
θ = 45◦, and the length of the unit cell is = 2.

6.2. Simulations. The structure of the velocity field of the ridge mixer
(RM) and herringbone mixers (SHM, dSHM) does not change much with
the Reynolds number with in the range considered Re ≤ 10. This is in
agreement with experimental observations [61]. However, for the mean-
dering mixers, where the mixing mechanism relies on inertial effects, we
see that the Dean vortices start to appear at Re & 10. This observation
really questions the use of meandering mixers for microfluidic applications
and consequently we will only present a few results on this type of mixer.
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Table 6.1: We compare the ratio of the maximum flow velocity along the
channel to the maximum transverse flow velocity in the cross section C, in
Figures 6.4–6.7.

mixer max u1/max u2 max u1/max u3
RM, Stokes 5 4
SHM, Stokes 3 4
dSHM, Stokes 3 4
MM, NS Re = 1 77 207
MM, NS Re = 10 8 26
CM, NS Re = 1 41 9
CM, NS Re = 10 10 11

6.2.1. Euler flow fields. In Figures 6.4–6.7 we illustrate the flow field in
the studied mixers. These pictures give a good feel for how the mixer will
work. The ridge mixer(RM) will merely rotate the fluid in the cross section
of the channel and the dynamics of the flow is related to the dynamics in
the two or three-dimensional lid driven cavity flow. Since the lid driven
cavity flow is known for its weak reorientation properties [54, page 73], and
hence poor mixing properties, we may anticipate the same for the ridge
mixer. For the staggered herringbone mixers we can see two vortices in the
cross section. The position of these vortices will change continuously along
the channel resulting in a flow field that will have good mixing properties.
We note that these observations were already made in [61].

Together with the illustrated flow fields Figures 6.4–6.7 and the discus-
sion above we may also characterize the properties of the mixer by com-
puting the ratio of the maximum flow velocity along the channel, in the
x-direction, to the maximum flow velocity in transverse directions, the y
and z-directions, in the cross sections marked with C in Figures 6.4–6.7.
A small ratio indicates that there will be large mass transport in the cross
section, which could be favorable for mixing. We present such data in
Table 6.1. We note that for the meandering mixer (MM) with Re = 1 and
Re = 10 the ratio is large compared to the ridge and herringbone mixers,
which indicates that the mixer will not be efficient for Re ≤ 10. For the
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combined mixer (CM) we observed no major improvements in the direc-
tion of the idea we had for this kind of design, i.e., that the an obstacle
should trigger inertial effects.
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Figure 6.4: The ridge mixer (RM). Velocity field for the Stokes equations in
the cross section of the channel at position C in Figure 6.1. (left) The y and z
velocity field. (right) The x velocity field.

6.2.2. Stability factors. A quantitative measure of the flow character is
given by the stability factors si(t) = si(0, t) (with the initial time t0 = 0),
see Paragraph 5.2. We would like to predict wether the flow is chaotic
and if it is we would like to know how strongly chaotic it is. For fixed
initial data, a point x0, we compute a sequence of stability factors, si(t)
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Figure 6.5: The dense staggered herringbone mixer (dSHM). Velocity field for
the Stokes equations in the cross section of the channel at position C in Figure
6.2 bottom. (left) The y and z velocity field. (right) The x velocity field. We
remark that the flow field in the staggered herringbone mixer (SHM) is similar
in structure to the depicted flow field.
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Figure 6.6: The meandering mixer (MM). Velocity field for the Navier-Stokes
equations, for Re = 10, in the cross section of the channel at position C in
Figure 6.3 top. (left) The y and z velocity field. (right) The x velocity field.
We remark that for Re . 1 there is nearly no y and z velocity field in the cross
section at position C, cf. Table 6.1.
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Figure 6.7: The combined mixer (CM). Velocity field for the Navier-Stokes
equations, for Re = 10, in the cross section of the channel at position C in
Figure 6.3 bottom. (left) The y and z velocity field. (right) The x velocity
field.

and with the ansatz si(t) = expσit we estimate σi by fitting the data,
see Figure 6.8. Note that we are not limited to exponential growth, we
could make any other ansatz, e.g., polynomial. The σi is a number that
describes how perturbations will grow in the flow. This value could be
used in (4.2) estimating the mixing time in the flow. In Table 6.2 we
account for the exponent σi, for different mixers and different initial data,
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x0. We note that the numbers are given in dimensionless form and should
be multiplied with the inverse of the characteristic time t−10 = U/L before
applied in (4.2). There is some variation in σi as a function of x0 and we
can not conclude that the flow is equally chaotic over the cross section.
This point needs to be worked out in more detail.
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Figure 6.8: The stability factor, the solid line, s1(t) computed in the dense
staggered herringbone mixer (dHSM) for the initial data x0 = (0.01, 0.5, 0.2).
The stability factor range over five orders of magnitude and it seem plausible
that the growth is exponential. From the fitted data, the dashed line, we deduce
that σ1 = 0.21.

6.2.3. Flow trajectories and Poincaré mappings. Flow mixes if it has the
property in Definition 4.1, which is equivalent to the flow being topologi-
cally transitive. A qualitative measure for this is the Poincaré mapping or,
equally but more detailed, the projection of a flow trajectory onto the yz-
plane, the cross section. Ideally, for the flow to be topologically transitive,
we like to see the Poincaré sections spread out over the entire yz-cross sec-
tion. To recognize such behavior it is necessary to compute the Poincaré
sections in a larger time interval. This is intrinsically difficult for two rea-
sons: (i) the dynamical system is likely to have sensitive dependence on
initial conditions, (ii) a computed velocity field is used for computing the
flow trajectories, introducing additional errors in the computation. For
these reasons we only plot the initial behavior. In Figure 6.9 we have plot-
ted the yz-projection of two particle trajectories, one from the ridge mixer
and the other from the dense staggered herringbone mixer. From the plots
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Table 6.2: Exponents for the stability factors. The results are obtained from
fitting computed stability factors to the ansatz si(t) = expσit. The exponents
are in dimensionless form, i.e, σi = t0σ

′
i where t0 = L/U is the characteristic time

and the σ′i has the dimension [1/s]. For the meandering mixer the results are
tentative, the computed stability factors only range over two orders of magnitude
and we can not really rely on the fitted data.

Mixer: RM, 3D Stokes

x0 σ1 σ2 σ3
(0.0, 0.2, 0, 4) 0.10 0.10 0.10
(0.0, 0.3, 0, 4) 0.06 0.07 0.07
(0.0, 0.4, 0, 4) 0.06 0.05 0.07
(0.0, 0.5, 0, 4) 0.07 0.07 0.06

Mixer: SHM, 3D Stokes

x0 σ1 σ2 σ3
(0.0, 0.2, 0, 2) 0.05 0.04 0.05
(0.0, 0.3, 0, 2) 0.04 0.06 0.06
(0.0, 0.4, 0, 2) 0.12 0.10 0.09
(0.0, 0.5, 0, 2) 0.07 0.07 0.07

Mixer: dSHM, 3D Stokes

x0 σ1 σ2 σ3
(0.0, 0.2, 0, 2) 0.19 0.19 0.14
(0.0, 0.3, 0, 2) 0.15 0.18 0.14
(0.0, 0.4, 0, 2) 0.10 0.07 0.06
(0.0, 0.5, 0, 2) 0.21 0.20 0.21

Mixer: MM, 3D NS, Re = 10

x0 σ1 σ2 σ3
(0.0, 0.5, 0, 05) 0.03 0.02 0.02
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we can see that the flow in the ridge mixer merely rotates the fluid whereas
for the herringbone mixer the reorientation seems to be more random-like.
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Figure 6.9: Projection of flow trajectories onto the yz-plane, the cross section
of the channel. (left) The ridge mixer (RM) with x0 = (0.0, 0.5, 0.4) (right)
The dense staggered herringbone mixer (dSHM) with x0 = (0.0, 0.5, 0.2), a
similar result is obtained for the (SHM).

6.3. Summary. Evaluating the mixing properties of a mixer it is impor-
tant to recognize items (1) and (2) in Definition 4.4 where item (2) guaran-
tees that the mixer will mix fluids and item (1) with equation (4.2) will give
an estimate for the time it will take to obtain mixing. The mixing time is
readily computed as was demonstrated in the paragraphs above. However,
it is much more difficult to prove or by other quantitative means establish
item (2) for a mixer in realistic settings. We could plot the Poincaré map-
ping or equivalent and in this way gain qualitative results indicating that
the dynamical system defined by the mixer is topologically transitive, i.e.,
satisfying the criteria in Definition 4.1 and hence will mix.

For the ridge and herringbone mixers we could conclude that the herring-
bone mixers, SHM and dSHM with similar properties, are better mixers in
terms of items (1) and (2) in Definition 4.4. The meandering mixer does
not seem to work for Re . 10 and we conclude that this design principle
is not suited for microfluidic applications.
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7. Outlooks: particle models

Overlooked in this study is that many microfluidic applications comprise
fluids with solved large molecules or particles, collectively called colloidal
dispersions. It is well known that the hydrodynamical interaction between
particles will have a major influence on the flow characteristics. Resolving
the complex hydrodynamical particle interactions in colloidal dispersions
necessitate a methodology where the motion of the fluid and colloids are
fully coupled. It is possible to take this into account in a Direct Numerical
Simulation and there are a number of such methods. In the Stokesian dy-
namics [6, 24] inertial effects are ignored and the method gives good results
at very small Reynolds numbers and therefore it is strictly valid only for
Re = 0. Moreover, only the two-body problem can be treated in an exact
manner [38, 39], and hence Stokesian dynamics is lacking in the treat-
ment of the resistance tensor, i.e., in how the important hydrodynamic
interaction is dealt with. It is also limited to spherical particles.

For finite Reynolds number a number of different methods have been
proposed in recent years, see, e.g., the special issue on multiphase flows
in Computational Physics, 169, 2001. Finite elements are commonly used
as a core technique and the problems are addressed as moving boundary
problems. One fundamental issue is the adjustment of the mesh to the
moving boundaries of the particles. In the Arbitrary Lagrange-Euler tech-
nique [35], the mesh is deformed along the moving particles. This requires
regeneration of the mesh as it deteriorates. In the Distributed Lagrangian
Multiplier technique [27] computations are done on a fixed mesh and the
rigid body motion of the particles is enforced by introducing Lagrange
multipliers. We also mention the Front Tracking Finite Difference tech-
nique [67] and the Lattice Boltzmann technique [44] based on microscopic
models.

In a typical microfluidic application were a colloidal dispersion is con-
sidered the number of particles will be fairly small and it should be ideal
to address the problem by a direct numerical simulation.

7.1. A boundary value problem. A colloidal dispersion can be de-
scribed by a well-posed boundary value problem, see for example [27].
We assume that the fluid carrying the colloids is Newtonian and can be
described by the incompressible Navier-Stokes equations and that the dis-
persed colloids translate and rotate according to a set of coupled Langevin-
Euler equations. The Navier-Stokes equations and the Langevin-Euler
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equations are coupled through hydrodynamical and Brownian forces acting
on the interface between the fluid and the colloids. We denote the domain
of the body containing the whole system by Ω ⊂ Rd where d = 2, 3 and
the time dependent domains of the colloids by Bj(t), where j = 1, . . . , N
and N is equal to the total number of colloids. Note that the shape of the
colloids can be arbitrary. The Navier-Stokes equations (time dependent)
are solved in the domain Ω \ ∪Nj=1Bj(t).

The no-slip boundary condition on the colloids reads,

u(x, t) = Vj(t) + ωj × (x−Gj(t)), x ∈ ∂Bj(t),

where Vj(t) denotes the velocity, and ωj(t) and the angular velocity, of the
center of mass Gj(t) of the j:th colloid.

The colloids translate and rotate in the fluid according to the Langevin-
Euler equations,

Mj
dVj
dt

= F extj + F hydj + F brwj +
N
∑

i,i 6=j

F colij ,

Ij
dωj
dt

+ ωj × Ijωj = T hydj + T brwj ,

where Mj is the mass and Ij is the inertia tensor of the j:th particle. Fj
(Tj) denote various types of forces (torques) acting on the j:th colloid.
They are distinguished by the following superscripts:

ext: External forces, e.g., gravity or electromagnetic forces.
hyd: Hydrodynamical force on the j:th colloid,

F hydj = −

∫

∂Bj

σn dS,

where σ is the stress tensor, and the torque at Gj of the hydrody-
namical forces acting on the j:th colloid,

T hydj = −

∫

∂Bj

(x−Gj(t))× σn dS.

brw: Brownian forces (torques) exerted by the fluid on the particles;
these will be of stochastic nature and characterized by,

〈F brwj 〉 = 0, 〈F brwj (0)F brwj (t)〉 = 2kBTRFUδ(t),

where kB is the Boltzmann constant, T is the temperature, δ(t) is
the delta function, and RFU is the resistance tensor. In contrast
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to what has been done within Stokesian Dynamics [6, 24], where
the resistance tensor is constant, we expect the tensor to depend
on the velocity field of the fluid.

col: Short-range collision forces derived from a Yukawa potential,

V col
ij ∝

1

rij
e−κrij ,

where κ is a system-dependent parameter and rij is the distance
between the i:th and the j:th colloid (i 6= j).
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