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Summary: The influence potential is an index for measuring the effect of trees on under-
story vegetation observed, in this study, in a quadrat of a plot, and is defined as the sum
of the effect of all trees in the plot. Since only the trees on the plot have been observed
and not the trees outside the plot, the influence potential on a quadrat (IPQ) may be un-
derestimated. Existing edge-corrections are not appropriate for this case. We propose
a correction that consists of adding the expected IPQ outside the plot to the observed
IPQ on the plot. The expectation is obtained by applying the refined Campbell theorem
for stationary marked point processes. If a completely spatially random process is as-
sumed, then the correction is based only on the size and location of the trees. Data from
1985-86 National Forest Inventory of Finland was used to calculate IPQ for six quadrats
systematically allocated in 1240 plots. The implementation of the correction for this data
is described. The estimates of IPQ with and without the correction proved the existence
of edge-effects and the effectiveness of the correction to eliminate the bias. This method
has the potential to be applied to other additive functions.

Keywords: edge-effects, forest ecology, influence potential, marked point process, Na-
tional Forest Inventory, refined Campbell theorem.

1 Introduction

The influence potential of trees on a quadrat (IPQ) is an ecological index used to summa-
rize the effect that trees have on a particular location (e.g. a quadrat in a plot). The effect
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of a tree is understood in terms of the resources that it may add or subtract, and therefore
facilitate or hinder the growth of other plants in that location. IPQ has been previously
applied to data from the permanent sample plots (PSP) of the 1985-86 National Forest
Inventory (NFI) of Finland to model the presence of a species of understory vegetation
(Kühlmann-Berenzon and Hjorth, 2003). The PSP consist of circular plots with quadrats
assigned at specific positions inside the plot and are used for measuring the understory
vegetation. We here consider the definition introduced by Kühlmann et al. (2001), where
IPQ was obtained as the sum of the effects of the trees in the plot; and the effect of a tree
was described as a function of the size of the tree and the relative position of the tree with
respect to the quadrat. In the calculations, only the trees inside the plot are included in
the sum. This means that the trees outside the plot are ignored, which may underestimate
the true influence on the quadrat.

This type of problem is also encountered in the analysis of spatial point processes,
when the process is observed through a delimited window. Then the information gath-
ered on the events (i.e. the points of the point pattern, for example, trees) is censored by
the boundaries of the window; this problem is commonly known as edge-effects. Several
corrections have been developed for the G-function, F-function, K-function, and other
statistics used in the field; see surveys on edge corrections in Ripley, 1982, 1988; Cressie,
1993; Stoyan, Kendall, and Mecke, 1995; and Kühlmann-Berenzon, 2002. Most of the
methods correct for distances between an event and its nearest neighbor, or between an
arbitrary point and its nearest event. Neither of these apply to IPQ where we require the
distances between every event (tree) and an arbitrary point (quadrat); for these reasons
an edge correction specific for IPQ was developed.

The edge correction is based on tools from the theory of marked point processes. The
method is in an application of the refined Campbell theorem for stationary marked point
processes, which takes advantage of the additive nature of IPQ. Although the correc-
tion conditions on the type of process, it is also shown that it is possible to ignore that
condition, and that this is equivalent to assuming a completely spatially random (CSR)
process.

In section 2 of this paper we define IPQ and illustrate the nature of the edge-effect
problem, as well as introduce notations. Section 3 summarizes some useful concepts in
the study of spatial point processes and marked point processes. The Campbell theorem
and the refined Campbell theorem are stated in section 4. The proposed edge correction
for IPQ is developed in section 5. Sections 6 and 7 describe, respectively, the implementa-
tion of the correction when applied to the PSP of the 1985-86 NFI of Finland, and compare
the results obtained before and after the correction.

2 IPQ and edge-effects

The relationship between the trees and the understory vegetation has been studied us-
ing IPQ to summarize the effect that trees have on the vegetation (Kühlmann et al., 2001;
Kühlmann-Berenzon and Hjorth, 2003); see Kuuluvainen and Pukkala (1989) who pro-
posed the original version of this index. The version used here takes into consideration
what information was collected from the PSP. The PSP consist of circular plots with a
radius of 9.77m (area=300m

�
) and distributed on a grid over Finland. In each plot, six
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quadrats were assigned systematically and utilized for measuring the vegetation. The
quadrats were located at 3m (quadrats 2 and 3) and 8m (quadrats 1 and 4) north and
south of the center of the plot and at 6m (quadrats 5 and 6) east and west of the cen-
ter. Additionally all trees with diameter at breast height (DBH) greater than 10.5cm were
measured and their location registered. Given this information, IPQ was defined as�����	��

�����
��� ����������� � � ��

� �!#"%$ (1)

here & indexes the trees;
�

is the DBH of the tree,
� � ��

�

is the Euclidean distance between
the tree & and the quadrat



; and ! is the influence parameter which defines the distance

from the quadrat at which a tree has a negligible effect on the quadrat. Figure 1 shows
the configuration of the plot and the idea behind IPQ.
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Figure 1: Tree effect in a plot of the PSP. The circles represent trees of different diameters, and the
diamonds represent the quadrats with their identification numbers next to them. The arrows show
schematically how every tree influences every quadrat; the effect will depend on the size of the tree
and the distance to the quadrat. The effects of all trees are added up to produce a value of IPQ for
each quadrat.

When IPQ is calculated from the PSP data, it is biased since only the trees observed
inside the plot are included. This means that trees outside the plot, which might also af-
fect the vegetation in the quadrat, are ignored. The result is an edge-effect and a possible
underestimation of the true influence. Furthermore, the effect of a tree is weighted by
its proximity to the quadrat: nearby trees weigh more heavily than those further away.
Therefore the edge-effect problem is more pronounced the closer a quadrat is to the bor-
der of the plot, as more of the trees at shorter distances are missing.

Possible solutions from the field of spatial point processes include using a guard area
or applying the border or toroidal methods (see e.g. Ripley, 1982). During the measuring
campaign, however, no guard area was considered; additionally the plots are too small
and do not have enough trees to be able to use the border method; and the toroidal
principal is difficult to implement in circular plots. The case of the F-function is similar to
the problem experienced in IPQ, since it measures the distance between an arbitrary point
and the nearest event. In IPQ, however, we are not interested in only the nearest tree from
the quadrat, but also other trees further away. The K-function takes into account events at
other distances, but is only concerned on event to event distances, so corrections for this
case are not appropriate for IPQ either. Moreover we wish to correct influence potential
and not only the distance.
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We therefore decided to develop a correction specifically for this problem, which
would adjust the observed IPQ. The basic idea behind the proposed correction is to calcu-
late the expected value of IPQ outside the plot where the trees were not measured. This
expectation is then added to the observed IPQ to obtain the corrected IPQ; i.e.�����'��

�)(*�+�����'��

�-,/.1032 �54-61�/7�8�9;:=< �����	��

�-,?>A@B.1032 �54-61�/7C8/DFE

(2)

In theory IPQ should be calculated for an infinite area around the quadrat. For the
purpose of the correction, however, we define a circle of influence G ��
IHKJL� centered at the
quadrat



and with radius

J
. We assume that the most important contributions to IPQ

come from trees located in this circle. The radius
J

is obtained by defining first a mini-
mum significant effect

����� � � � � ��

� �?M ! �N� 0.01. This means that only those trees with an
effect larger than 0.01 are considered to be relevant. Assuming that the parameter ! has
been previously determined, then the radius of influence isJO�QP !CR .1SC��T5U1UV� E

Depending both on the position of the quadrat with respect to the border of the plot
and on

J
, G ��
IHKJL� might be completely contained inside the plot or not. If G ��
IHKJL� is inside

the plot, then we have all the information necessary for determining IPQ for that quadrat.
If G ��
IHKJL� is partly inside and partly outside the plot, we further denote those two areas asWX��
IHKJL�

and Y ��
IHKJL� . More formally,

WX��
IHKJL�Z� G ��
IHKJL�\[ G ��]IH_^V�Y ��
IHKJL�Z� G ��
IHKJL�\` G ��]IH_^V�KH
where G ��]IH_^V� represents the plot centered at the origin and with radius

^
. Figure 2 illus-

trates all the necessary concepts. The problem of calculating a corrected IPQ in (2) can be
defined now more precisely as�����'��

� ( �+������ab
	c & deG ��]IH_^V��f 9;: < ������ab
gc &'dhY ��
IHKJL��f D E

For simplicity, the term inside the expectation will be sometimes be written as
�����ia Y ��
IHKJL��f .

3 Spatial point processes

The spatial point processes j �k,/lnm 8 we discuss here are restricted to o � and assumed to
have been observed in a window p . The location of an event

l d=j is determined by its
coordinates

�rqns5H_q � � . For the particular case of a stationary process, the intensity or mean
number of points per unit area, t , is constant throughout the area and can be estimated byu MBv p v , i.e. the total number of events divided by the area of the observation window (see
e.g. Diggle, 2003). In a CSR pattern, the number of events in p has a Poisson distribution
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Figure 2: Edge correction concepts: The small circles represent trees: the filled ones have been ob-
served, and the empty ones have not. The diamonds are the quadrats. The circle of influence �L���I�K�L�
(dashed line) is of the same size for both quadrats. Since �I� is closer to the plot border, its circle of
influence extends beyond the borders and therefore a correction for IPQ is needed. The correction
will estimate the expected value of IPQ in � ���I�K�L� (dashed area). The upper quadrat �V� has a circle
of influence completely inside the plot, thus all the information necessary for calculating IPQ has
been measured and no correction is required.

with mean ��� �'� , and the locations of the � events are distributed independently and
uniformly in � .

A marked point process can be considered as a spatial point process with an addi-
tional dimension that contains information regarding each event (Stoyan et al., 1995).
Typically the information may be continuous or discrete, e.g. diameter or species of a
tree. The marked process is expressed as ���k�I� ���3�_���V�b� , where � are the locations of the
events and � are the corresponding marks. Stationarity is defined as for the unmarked
case, i.e. it does not depend on the marks.

One of the statistics of interest in a marked point process is the mean mark �� ,����� ¢¡£ ¡ �¥¤V¦¨§i�r�©�K� (3)

it depends on the mark distribution function ¦*§ of the mark ª , where ¦«§ is estimated
as ¬

¦¨§h�r­B���¯® �/�±°²­´³1�iµe�%�� �
for a continuous variable ­ , and ® �
¶�� is the indicator function. The mark sum measure·X¸ ���¹��� º» ¼V½ ¸�¾À¿1Á � ® �/�Âµe�%�
� (4)

represents the sum of the marks for all events in � , and its expected value in the stationary
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case is t%ÃÄ v p v . It then follows that the estimate of the mean mark for a stationary marked
point process observed in the window p is computedÅÃÄ �¥ÆXÇ � p �u E

(5)

The estimated mean mark
ÅÃÄ is not always unbiased, but

Åt ÅÃÄ is unbiased for t%ÃÄ (Stoyan
and Stoyan, 1994, p. 278).

4 Campbell theorem for spatial point processes

The Campbell theorem gives a way to calculate the expected sum of the values of a non-
negative measurable function of a point process; see Stoyan and Stoyan (1994) and Stoyan
et al. (1995) for the application to spatial point processes, and Kingman (1993) for the one-
dimensional case and detailed proofs. The theorem for a stationary spatial point process
can be seen as :²È �ÉVÊ1Ë¹Ì �rl��ÎÍ3� t�Ï Ì �rl��¨�
l E

With a parallel formulation, the theorem can also be obtained for a function Ì of
the events and marks in a stationary marked point process as (Stoyan and Stoyan, 1994;
Stoyan et al., 1995) :²È �Ð ÉVÑ Ç�Ò Ê1Ë Ì �rl $ Ä �ÎÍÓ� t ÏÔÏ Ì �rl«H Ä ���VÕ¨Öi� Ä �¨�
l E (6)

The refined Cambell theorem or Campbell-Mecke theorem computes expectations where
the function depends not only on

l
but also on the whole realization; thus, for any non-

negative measurable function × and a stationary point process,:²È �ÉVÊ1Ë × �rl $ j �ÎÍØ� Ï �ÉVÊFÙ × �rl«H_ÚÛ�)ÜÓ���
ÚÛ�� t Ï¥Ï × �rl«H_Ú É �)Ü�Ý1���
ÚÛ�)�
l«H (7)

where
Ü�ÝL���
ÚÛ�

is the Palm distribution at the origin for the realization
Ú

(Stoyan et al.,
1995). The Palm distribution is defined asÜ�Ý1��Þ'��� Ï �ßLÊFÙBà
á WB,/Úãâ ß d Þ 8t v p v ÜÓ���
ÚÛ�KH
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where
Þ

is a property of the process j , and
Úäâ ß is the realization translated by

q
. The

Palm distribution provides the probability that for a typical event of the process,
ÚOâ ß

holds the property
Þ

. Then (7) can be interpreted as the expectation of the sum of a
function given a typical point from the realization

Ú
.

The analogous refined Campbell theorem for a stationary marked point process is
(Stoyan et al., 1995, p. 125):²È �Ð ÉVÑ Ç�Ò Ê1Ë × �rl«H Ä H j �ÎÍå�� Ï �Ð ÉVÑ Ç�Ò ÊFÙ × �rl«H Ä H_ÚÛ�)ÜÓ���
ÚÛ�� t�ÏÔÏ¥Ïæ× �rl«H Ä H_Ú É ��Ü ÇÝ ���
ÚÛ�)�VÕ¨ÖÂ� Ä �)�
l E (8)

Here
Ü ÇÝ is the Palm distribution for a marked point process that allows conditioning on

a point at the origin with mark Ä .

5 Edge correction for IPQ

To correct the edge-effects, we are interested in finding the expectation of IPQ in Y ��
IHKJL� .
We can consider the trees as being a realization of a marked point process. Furthermore,
IPQ is defined as the sum of the effect of individual trees, and so IPQ can be thought of
as the sum of a function of marked events. Then it follows that the Campbell theorem for
marked point processes is an appropriate method for estimating the expectation of IPQ
in Y ��
IHKJL� . By plugging directly into (6) and assuming a stationary process,:=< ����� a Y ��
IHKJL� f D � t Ï� Ê1ç�è�éKê ë)ì Ï í � ��������� �

� ��

� �! " �VÕ¨Öi�����¨� & $ (9)

and
Õ¨Ö

is the mark distribution function of DBH. This correction only takes into account
the individual trees and not the relationship between the trees. It is likely, however, that
the position of a tree will depend in part on the location of other nearby trees. This im-
plies that information on the process that generated the tree pattern would be beneficial
for the correction. In an indirect way, this is already taken into account in IPQ through
the distance between the trees and the quadrat; the distribution of the distances between
an event and an arbitrary point is known to differ among different types of spatial pro-
cess; (see e.g. Diggle, 2003 and the F-function). But if the process can be identified, and
thus more information is available, then the expectation of IPQ can be obtained with the
refined Campbell theorem (8), such that: < �����åa Y ��
IHKJL��f D � t Ï� Ê1ç�è�éKê ë)ì Ï íQÏË � ����� � � �

� ��

� �! " Ü í� ���
ÚÛ�I�VÕ¨ÖÂ�����I� & E (10)
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Here the expectation is conditioned on a typical point of the marked point process located
at & and with mark

�
. Even when the process is known, it may still be difficult to calculate

the expectation. Nevertheless, in the particular case of a CSR process with independent
marks, the Palm distribution coincides with the unconditional distribution, so

Ü í� ���
ÚÛ���ÜÓ���
ÚÛ�
(Stoyan et al., 1995). As a result, the integral for the Palm distribution can be

separated from the rest of the formula, and: < �����åa Y ��
IHKJL��f D � t Ï� Ê1ç�è�éKê ë)ì Ï í � �����O��� �
� ��

� �!#" �VÕ¨Öi�����I� &¢ÏË ÜÓ���
ÚÛ� E

The integral over j is equal to one, and so the expectation simplifies to: < �����åa Y ��
IHKJL��f D � t Ï� Ê1ç�è�éKê ë)ì Ï í � ����� � � �
� ��

� �! " �VÕ¨Öi�����I� & E

This equation is identical to (9) where no process was assumed. In other words, if the
process is CSR, then the expectation does not use any information on the process itself.
In other words, when applying the Campbell theorem, we indirectly assume that there
are no interactions between the trees, i.e. that they area a realization of a CSR process.

Furthermore, all the terms in the previous equation are only functions of the events
or of the marks, and therefore it is possible to separate the integrals as: < �����åa Y ��
IHKJL��f D � t�Ï í �*�VÕ¨Öi����� Ï� Ê1ç�è�éKê ë)ì ��������� �

� ��

� �!#" � & E
The parameter t can be estimated in the usual way with

Åt � u MBv Y ��
IHKJL� v , where u is the
number of trees in Y ��
IHKJL� . The first integral represents Ã� , the mean mark of the DBH as in
(3), and can be approximated with (5), namely Æ í � Y ��
IHKJL�_� M u . Since Y ��
IHKJL� has not been
observed, u and Æ í � Y ��
IHKJL�_� are unknown, but

Åt Ã� can be estimated from the observed
trees in the plot. The estimate of the expected value of IPQ in Y ��
IHKJL� then becomesÅ:î< ����� a Y ��
IHKJL� f D �¥ï � Ê � è Ý ê ð-ì � �v G ��]IH_^V� v Ï� Ê1ç�è�éKê ë)ì ��������� �

� ��

� �! " � & E (11)

Several advantages can be pointed out for the correction (10). It only requires that the
process inside and outside of the plot be stationary. If information on the distribution
of DBH is available, then a better estimate of Ã� can be included in the correction. Fur-
thermore, IPQ may be interesting for a specific group of events, e.g. tree species, and this
method allows for the correction to be calculated for each group separately, using their
individual

Åt and Ã� ; this may be especially significant if the intensity or mean diameter
differ greatly among the groups.

If the CSR assumption is not reasonable, then the marked point process needs to be
modeled; studying groups of similar plots might facilitate this step. Once the process
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Figure 3: Cases I-III: The plot is represented by the large circle with solid line (center ÿ and radius� ), and the circle of influence by a dashed line (center � and radius � ). The small circles represent
trees: the filled ones are relevant trees, i.e. they are inside the circle of influence or the plot, and the
empty ones are of no interest.

has been estimated, the expectation in (10) can also be estimated. Typically, this would
be done by simulating the estimated marked point process a large number of times and
calculating

����� �Î� ���I�K�L�_� for each simulation; then the estimate of the expected correction
would be obtained from the average of the simulations.

6 Implementation

Three possible situations can occur in terms of � ���I�K�L� and �L��ÿI� � � , depending on the value
of � that defines � :

I. ����� �
	 ÿL� );
II. � �
	 ÿL�
���+����� �
� ÿL� );

III. � �
� ÿL�
���+� .
Figure 3 illustrates the three cases. Case I does not require any correction, because all

the trees in �L���I�K�L� needed for calculating IPQ have been observed. In case II � ���I�K�L� has
the shape of a crescent, and in case III that of an annulus of variable width. The main
difference between cases II and III is how to determine the boundaries of � ���I�K�L� . Here
we present explicitly the calculations for case II, and the formulas for case III are included
in the Appendix.

The correction in (11) expressed in polar coordinates is¬� � ������� � ���I�K�L�����ä�� ��� ¿�������� �! ¤ �� �L��ÿI� � �5�  " �$#%��&�� '� (  ) �$#%��&�� '� ( *,+.-0/ 1 	 * ��32 ¤ * ¤54B�
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Figure 4: Geometry of the edge correction for case II. The angle D5EGF�H measures the intersection
between the plot (centered at

]
and with radius

^
) and the circle of influence (centered at



and

with radius
J
); I � D � is the distance between the quadrat and the border of the plot at angle D .

which makes it more convenient for defining the boundaries of Y ��
IHKJL� . The limits of the
integrals for case II are shown in detailed manner in figure 4. The angle D5EGF�H represents
the angle of intersection between the circle of influence and the plot, and I � D � is the dis-
tance between the quadrat and the edge of the plot at angle D . It follows that the integral
term of the correction isJ�KMLONÏâ J�KMLON ëÏP1è J ì I ����� � � I �! " � I � D �� !QSR J�KMLONÏâ J�KMLON �����©��� I � D � �! " � D � ! DTEGF�H �����©��� J �! " H
and the expectation of IPQ in Y ��
IHKJL� is thereforeÅ: < ������a Y ��
IHKJL��f D �� ï � Ê � è Ý ê ð-ì � �U U1U V !QSR J�KMLONÏâ J�KMLON ��������� I � D � �! " � D � ! DTEGF�H ��������� J �! "XW E (12)

In this equation the sum of the diameters is computed over the trees in the plot, andv G ��]IH_^V� v , the area of the plot, is equal to 300m
�
. The remaining integral must be solved

numerically. Its limits are obtained by applying the law of cosines:^ � � I � D � � 9 ]L
 � � Q I � D � ]L
3Y�.
2?�OZ � D �
giving I � D ���\[ ^ � � ]L
 � 2!]�@ � D � ]L
^Y�.
2?� D � $ (13)
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and

DTEGF�H ��_ 4 Y�Y�.
2 � ^ � � ]L
 � � J �Q ]L
¹J " E (14)

With (13) and (14), (12) is now expressed in terms of the known quantities
v G ��]IH_^V� v , ! , ^ , J ,]L


, and ï � � � . These are the same for all quadrats and plots, expect for
]L


that is specific
for each quadrat, and the sum of the diameters that is different for each plot.

7 Application

IPQ was calculated for a subset of plots from the PSP comprising 1240 plots that contained
one single tree stand and were located on mineral soils, and for each of the dominating
tree species, Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and birch (including
Betula pubescens and B. pendula). By assuming that the influence potential of the species
were independent, the observed IPQ (1) and the correction (11) were first calculated sep-
arately for each species ` , and then added together to obtain one IPQ per quadrat. So the
biased and the corrected IPQ were obtained from

�����'��

� � �!a ����� a ab
 $ & d©G ��]IH_^V��f�����'��

� ( � �!acbX����� a aÎ
gc & d©G ��]IH_^V��f 9;: < ����� a aÎ
gc & dhY ��
IHKJL��f Ded E
The results can be seen in figure 5, where boxplots for each of the six quadrats were

drawn for IPQ and IPQ
(
. Case II is illustrated with ! � 20 and case III with ! � 75. In

figures 5(a) and 5(c), without the correction, the distributions of quadrats 1 and 4 concen-
trate on a smaller scale compared to the distributions of other quadrats (see figure 1 for
location of quadrats in the plot). The reason is that those quadrats are positioned closest
to the edge of the plot, so fewer trees are taken into account when calculating the influ-
ence potential. This bias is more subtle for quadrats 5 and 6 situated further inside the
plot. Quadrats 2 and 3, close to the center, also suffer of edge-effects with these values
of ! , because the G ��
IHKJL� extends beyond the plot borders. In this case, however, Y ��
IHKJL� is
smaller than for the other quadrats, so the bias is smaller.

Figures 5(b) and 5(d) show the distributions when IPQ has been corrected by adding
the expectation over Y ��
IHKJL� . Although the correction cannot reproduce observations on
the tail, it adds an important proportion of tree effects. The boxes are now almost per-
fectly aligned; this was anticipated, since the IPQ should be in the same range for all
quadrats. Again we observe that the correction needed is larger the closer the quadrat
is to the border. Furthermore the correction is also larger as ! , and therefore Y ��
IHKJL� , in-
creases. These results confirm the presence of edge-effects and proves the effectiveness
of the proposed correction to correct the bias.
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(d) IPQ r : fhgjtuq ( lhgwvyxpo z m)

Figure 5: IPQ and IPQ
(

by quadrat with ! at 20 and 75 for case II (a and b) and case III (c and d).

8 Conclusions

The initial measurements of IPQ are biased due to edge-effects, because they only con-
sider the trees inside the plot. Trees outside the borders, however, are likely to affect
the vegetation in the quadrats, too, which means that the true IPQ is underestimated.
Quadrats closer to the border were expected to have a larger bias as more trees at short
distance are missing and therefore do not contribute to IPQ. This was confirmed by com-
paring the distributions of IPQ for the six quadrats, where the quadrats closer to the edge
had a smaller range than those located towards the center. Edge corrections for spatial
point patterns are available, but these do not take into account the mathematical defini-
tion of the effect of a tree.

The proposed correction consisted in estimating the expected IPQ outside the plot,
which was then added to the observed IPQ. By taking the trees and their DBH as a sta-
tionary marked point process, the correction was based on the refined Campbell theorem.
This means that the expectation of IPQ was conditioned on the realization, and therefore
required the Palm distribution of the process. When a CSR process was assumed, the
correction could be calculated by using only the locations and diameters of the trees. It is
reasonable to believe, however, that the correction will be more precise if information on
the process is included; e.g. Tomppo (1996) describes the spatial pattern of trees in differ-
ent type of forests. Nevertheless, we allow the possibility that the process is not known,
but in some sense we then assume CSR.
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The correction integrated the exponential part of IPQ over Y ��
IHKJL� , i.e. over the area
of the circle of influence that lies outside the plot. The limits of the integral were defined
by polar coordinates and simple geometrical properties such as the law of cosines. The
quadrat as reference point for the integral limits was important, since the tree effect was
measured according to the distance to the quadrat. This step was only required to be
calculated once for each of the quadrats. When applied to the PSP data, the method was
satisfactory in the sense that the bias observed in the original calculations of IPQ was
eliminated.

The procedure we have introduced is based on a stationary process, and thus a dif-
ferent method should be applied in the non-stationary case. Although the assumption of
CSR seems to be appropriate in our example, it does not always hold. It remains to be
studied how much of the edge-effect remains or new bias is introduced when the process
is not CSR, and on the other hand, how well the expectation can be estimated by sim-
ulations of the estimated model. The method, however, has the potential to be adapted
to other plot shapes and to other definitions of influence potential as long as they can be
described as a sum (cf. Kuuluvainen and Pukkala, 1989; Økland, Rydgren, and Økland,
1999).
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9 Appendix: Case III

PSfrag replacements

{
| }�~ ��� {��� ~ � ��� �

Figure 6: Case III: Geometry of the edge correction
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