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Point processes and convex sets - applications in fatigue
JENNY ANDERSSON

Department of Mathematical Statistics

Chalmers University of Technology and Goteborg University

Abstract

Two modelling approaches from stochastic geometry, that can be applied
to fatigue problems, are introduced.

First, the grain structure of the surface of a metal is modelled as a
Voronoi tessellation of Poisson points in the plane. As an example of this
approach, we study the influence of grain structure on fatigue life. A crack
growth model is applied to simulated grain structures. The conclusion is
that the fatigue life decreases, compared to a model with grains of equal
size. Also the life variation, due to the random grain structure, can be
estimated.

The second approach is to describe inclusions in steel by two models of
non-overlapping convex sets, which are generalisations of Matérn’s hard-
core models. In both cases, we start with a Poisson process and assign a
convex set to each point. The point process is then thinned so that no
set intersects another set. We derive the second-order product density for
convex sets with the same orientation. The product density can be used
to compare the models to a homogeneous Poisson process. For spherical
sets of equal radii, there can be no point within a distance of less than two
times the radius to another point. Pairs of points at distances between two
and four times the radius are more frequent than in a Poisson process. For
larger distances the frequency of point pairs is the same as for a Poisson
process.

Keywords: Poisson process; Convex sets; Material fatigue; Voronoi tes-
sellation; Germ-grain process; Second-order measures; Short cracks
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2 Stochastic geometry

1 Introduction

Stochastic geometry has many applications in the physical sciences. In
this licentiate thesis, we will focus on two problems in fatigue. In fatigue,
the structure of the material considered, is crucial. We will describe the
characteristics of two types of materials, on two different scales, by means
of convex sets associated with the points of a point process.

The literature on applications of stochastic geometry is extensive. We
will not attempt to make a detailed reference list here, but instead give
[8] as an excellent starting point. A survey on the applications of Voronoi
tessellations can be found in [7]. Stochastic models suitable for modelling
materials are described in [2].

The first paper, Paper A, appended to this thesis, uses a Voronoi tessel-
lation on Poisson points as the grain structure of a metal without defects.
The influence of grain structure on fatigue life is then studied by simulating
such grain structures and letting a crack grow according to a deterministic
crack growth model.

The second paper, Paper B, is more mathematical. Important defects
present in some materials, particularly in steel, are inclusions. Those inclu-
sions, see Figure 1, can consist of, for example, sulphides or oxides and are
often approximately spherical. In this paper we calculate a second-order
characteristic of two models for such inclusions in metals. The two models
are examples of point processes of non-overlapping convex sets. A special
case is when the convex sets are spheres.

The outline of this thesis is as follows. Some background for the ap-
pended papers is given in Sections 2, 3 and 4. First, we give an introduction
to point processes, followed by a short description of fatigue and finally a
section on the structures of metals. In Sections 5 and 6 there are summaries
of Papers A and B respectively. Note that the word grain has different
meanings in the two papers. In Paper A a grain is a part of the metal
with equal orientation of the atom layers. In Paper B the non-overlapping
sets are called grains in accordance with such models usually being called
germ-grain models. Finally, some conclusions and ideas for further work
are given in Section 7.

2 Stochastic geometry

We start with the definition of a point process and continue with some basic
definitions to make the notation clear. Let N be the family of all sequences,
¢, of points in R? such that ¢ is locally finite, that is each bounded subset
of R? contains a finite number of points of ¢. Usually ¢ is also required to
be simple, that is all points of ¢ are distinct. If B is a subset of R¢ denote




2 Stochastic geometry

Figure 1: A cut of cast iron with the black shapes being defects. The image was
produced by Stefano Beretta.

the number of points of ¢ in B by ¢(B). Let N be the smallest o-algebra
on N such that all mappings ¢ — ¢(B) are measurable for any Borel set
B. The formal definition of a point process ® in R? is as a measurable
mapping of a probability space (2, F,P) into (N, N).

The distribution, P, of a point process ® is defined as

PY)=P@ecY)=P{we:dw) €Y}, YeN.

The ezpectation of the number of points of ® in a set B can be written

E[®(B)] = /¢(B)P(d¢) =E [Z 13(96)] :
N

zed

A point process ® is stationary if its distribution is invariant under trans-
lation, that is the processes ® = {X,} and ®, = {X,, + z} have the same
distribution for all € R*. Furthermore it is isotropic if its distribution is
invariant under rotations about the origin. The intensity measure A of ®
is defined as

A(B) = E[®(B)],

for B a Borel set. If it has density with respect to Lebesgue measure then
A can be written in terms of an intensity function \(x),

A(B):/B)\(x)dw.




2 Stochastic geometry

If the process is stationary, the intensity function is independent of z and
it becomes a non-negative real constant, called the intensity, A\. Let the
Lebesgue measure in R be denoted Iz and then for a stationary process

A(B) = M4(B).

A useful theorem, which will be applied in a more complicated form in Pa-
per B, is the Campbell theorem. For any non-negative measurable function

f)
E[Z f(m)} ~ [ S 1@Po) = [ s,

zED zEP

In the stationary case the last expression is simplified to

Corresponding to variances and covariances of stochastic variables are
the second-order measures of a point process. One such measure is the
second-order factorial moment measure a® , defined on R% x R¢. If By and
B, are Borel sets and @ is a point process on R? with distribution P, a?
is defined as

o®)(By x By) =El[#{(z,y) :© € 2N B,y € N By,x # y}]

- / > 15, (22)15, (22) P(d9).

T1,Z2€0
T1£T2

For a stationary Poisson process with intensity A it is equal to A214(B1)l4(Bs).
If the second-order factorial moment measure o(? has density with respect
to the Lebesgue measure, this density is called the second-order product
density 0. An interpretation of the second-order product density is that
02 (x,y)dVidVs is the probability of having a point in each of two infinitesi-
mally small disjoint Borel sets, with Lebesgue measures dV; and dVa, where
z and y belong to one set each.

The wariance of the number of points in a Borel set B can be written
in terms of a® as

Var(®(B)) = o!? (B x B) + A(B) — A(B)?.

If B; and B, are Borel sets, the covariance of the number of points in these
two sets is,

Cov(®(By), ®(By) = a'? (B x By) + A(B; N By) — A(By)A(By).




3 Fatigue

A marked point process on R?, ¥ = {X,,, M,,}, is a point process in R?,
with points X,,, each having a mark M,, belonging to some space of marks,
M. The marked process can be interpreted as an ordinary point process
on the space R x M. Every definition for ordinary point processes can be
repeated analogously for marked processes. The only difference is that a
translation of a marked process usually only acts on the points and not on
the marks.

A tessellation partitions an Euclidean space, R?, into sets, C;, with
non-overlapping interior, that is R* = U;C;. Let {p;} be a set of points.
Each point p; in this set, from now on called nucleus, generates a cell (or
grain) C;. Let one grain C; consist of all points in R? which has p; as their
nearest nucleus,

Ci={z € R : lp; — | < llp; — =l ,Vp;}, (1)

where || - || is the Euclidean distance. If the set of points, {p;}, is locally
finite, i.e. any finite region contains a finite number of points, the C;’s are
called a Voronoi tessellation and C; a Voronoi cell.

See [8] for a general reference on point processes. A general reference
on the properties of Voronoi tessellations is [7] and a more mathematical
one is [5].

3 Fatigue

Fatigue is the failure in a structure that occurs after the structure has been
subjected to a repeated load. The term fatigue is used since the failure
often occurs after a long period of repeated stress, at a level considerably
lower than the stress needed to break the structure if it was applied only
once. The standard example of fatigue is to take a paperclip and notice
that it breaks after repeatedly bending it back and forth at the same spot,
although it is virtually impossible to break it in one bending. When a metal
is subjected to a load, it is possible that small cracks start to form in the
metal grains, most often at the surface. Cracks can also start growing in
some defect already present within the metal. The cracks then continue to
grow, as more load cycles are applied, until a crack spans the entire object
and it breaks. Possibly cracks can stop or close, but that is not our concern
here.

To assess the fatigue properties of materials, laboratory tests can be
performed. Identical test specimens are subjected to a cyclic load until the
specimens break or to a maximum number of load cycles. The procedure is
repeated for different load amplitudes. Data are plotted in a Wohler curve,
where the logarithm of the load amplitude is plotted against the logarithm




4 Metal structure

of the number of cycles to failure. Often there is a linear relation between
the load level and the fatigue life, the number of cycles to failure, for high
loads. For some materials there may be a fatigue limit, that is a stress level
below which failure will never occur. In [1] there is a section on fatigue.

4 Metal structure

Metals are crystalline materials, that is the atoms are ordered in a three-
dimensional pattern. Common atomic arrangements in metals are the
body-centred cubic (BCC), the face-centred cubic (FCC) and the hexagonal
closed-packed (HCP) structures. The last two arrangements are the most
efficient ways, in terms of occupied space, of stacking equally sized spheres
and because of this they are called close-packed structures. One way of
illustrating the atomic structure is in terms of a unit cell, which is the
smallest repetitive unit within the crystal, see Figure 2.

Figure 2: Unit cells of the face-centred cubic (to the left) and the body-centred
cubic atomic structures. Two slip planes are shaded in the FCC cell and one in
the BCC cell.

A slip plane, such as those shown in Figure 2, is a preferred plane of
atoms that will move when a stress is applied. The number of unique non-
parallel slip planes depends on the crystal structure. The FCC crystal has
four slip planes, the BCC has six and the HCP has one. Each plane can
slip in three directions in the FCC and HCP crystals and in two directions
in the BCC crystal.

A crystalline material is usually composed of many crystals. In the
cooling process of a melt of a crystalline material, small crystals, or grains,
start to form at many locations. As the melt cools each of the grains grows
by incorporating atoms from the liquid surroundings. In the area where two
grains meet, called the grain boundary, the atoms are not ordered since the
two grains do not generally have the same direction of their atomic planes.




5 Summary of Paper A

If all grains have the same chemical composition, the metal is said to have
one phase. More on metal structures can be found in textbooks in material
science, for example [1].

5 Summary of Paper A

Supposedly identical components made of metal often show substantial
differences in fatigue lives. The differences are apparent even during con-
trolled tests with identical stress levels. One source of variation could be
differences in the structure of the metal. The idea in Paper A is to use a
simulated grain structure and apply the existing theory of crack propaga-
tion to study the influence of grain structure on fatigue life. A short crack
growth model is used since the main part of the fatigue life occurs during
the crack initiation phase.

The crack growth model is adapted from Navarro-de los Rios model for
short crack growth under uniaxial loading [6]. The crack is modelled on
the surface of the metal and consequently the three-dimensional structure
is disregarded. Since the point here is to use a grain structure with grains of
different sizes, the Navarro-de los Rios model, which is described for grains
of equal size, has to be modified to the current situation.

In the simulations the metal grain structure is a Voronoi tessellation
in two dimensions of points generated from a Poisson process. The crack
path was determined and the crack was allowed to grow to a maximum, it
could stop before, length ten times the mean grain size. The crack growth
rate as a function of crack length and the number of cycles to failure were
calculated, the latter resulting in a Wohler curve for the short crack growth.
Compared with the fatigue life of a metal with all grains equal in size, that
is the original Navarro-de los Rios model, the fatigue lives in the simulations
were shorter. The fatigue life decreased with increasing number of grains,
probably reflecting the fact that with increasing number of grains there is
a greater probability of finding a large grain, where the crack is assumed to
start. The standard deviation of the logarithm of the life lengths conditional
on finite life is in the order of 0.2-0.4.

As expected, grain size variation gives rise to shortened fatigue life and
also fatigue life dependent on component size. However, only a part of
the observed fatigue life variation is explained by the varying grain size
according to the simulations.




6 Summary of Paper B

6 Summary of Paper B

We consider two models of non-overlapping convex grains, which are gener-
alisations of Matérn’s two hard-core processes, see [4]. These models were
described in [3] and are constructed as follows. Convex sets, called grains,
are placed at points of a homogeneous Poisson process and the process is
thinned by two different procedures. The first thinning scheme, called pair-
wise, gives independent weights to both points in a pair with overlapping
grains and the point with strictly higher weight wins. New weights are
assigned in every comparison. A point is kept only if it wins in all pairwise
comparisons. The second scheme, called global, gives each point a weight
once and for all, and the point with strictly higher weight is kept when
comparing with weights of overlapping grains. The weight may depend on
the size of the grain in both cases.

The second-order product densities, defined in Section 2, of the above
models are derived when the grains have equal orientation. In the derivation
the product densities, the thinning procedure can be thought of as a process
giving marks to the original Poisson process. A point gets mark 0 if it is
removed and mark 1 if it is retained. The second-order product density
can then be written in terms of the intensity, A, of the Poisson process and
the two-point mark distribution M, 5, as

ng)(l‘l,mg) = Mz1,$2(m1 = 1’m2 = 1) (2)

The two-point mark distribution is the distribution of the marks in z; and
2 under the condition that there are points in x1 and x2. The main idea,
when calculating the product density, is then to find the probability that
two points in z; and z both have marks 1. Tt is equal to the probability
that no points of the original point process win over them. The number of
points that win over x; or x- is Poisson distributed and the essential step,
when deriving the product density, is to calculate the expectation of this
distribution.

As spheres are an important special case, the product densities for the
models are stated both for spheres of equal radii in Theorems 2 and 3 and
for spheres having a certain radius distribution in Theorems 4 and 5. When
the grains are convex sets with the same orientation, the product densities
are stated in Theorems 6 and 7. Except for some special cases, the product
densities must be calculated by means of a numerical integration.

In the case of spheres of equal size the pair-correlation, which is the
product density divided by the squared intensity, is compared to a Poisson
process with the same intensity, see Figure 3 below and also Figure 5 in
Paper B. The comparisons is made in terms of the frequency of pairs of
points with certain interpoint distances. For short distances, less than two




7 Conclusions and future work

times the radius, the pair-correlation is 0, meaning that two points cannot
exist at that distance. For a slightly larger distance, between two times
and four times the radius, pairs of points occur more frequently than in
a Poisson process. For even larger distances, larger than four times the
radius, the frequency of point pairs is the same as in a Poisson process. As
the intensity of the original Poisson process tends to infinity the frequency
of point pairs, at a distance between two and four times the radius, in
the global model gets smaller, but is still slightly larger than for a Poisson
process. In the pairwise model on the other hand the frequency of pairs
of point at this distance tends to infinity as the intensity of the original
Poisson process tends to infinity.

— - pairwise-low
— - pairwise-high
—— global

11F

0.9

0.8 L
[ 0.1

Figure 3: Pair-correlation function for the pairwise and the global model in two
dimensions with the same intensity after thinning, A;, = 4, and radius of the
spheres ro = 0.1. The intensity before thinning was 5.74 and 34.11 for the two
pairwise models giving the same A, labelled low and high respectively in the
plot, and 5.56 for the global.

By varying the size distribution and the weight distribution a wider
range of behaviours of the product density can be obtained. This can, for
example, be used in a future fitting to data of inclusions in steel.

7 Conclusions and future work

Common for both papers appended to the thesis is that we have used
models from stochastic geometry to describe materials. The modelling is
quite different in that the properties of the materials are modelled on two
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different scales which shows the flexibility of this approach. However, the
results are purely theoretical and have not yet been applied to the problems
from which they originate.

In the future, the ideas from Paper A could be applied to a material for
which there is real life data available. Then we could compare the variance
in the theoretical results to the variance of the data and draw conclusions
about the importance of the variability of grain sizes. Since the large grains
in a grain structure seem to be of importance it would also be interesting
to find the extreme value distribution of the largest grain in a Voronoi
tessellation and also compare to real data.

The models in Paper B were inspired by images of inclusions in cast
iron, see Figure 1, but it remains to be verified if they capture the features
of these images. This could be done by estimating the product density from
the images and compare them to the product densities of the models. The
product densities of the models can be changed, to resemble the estimated
product density, by introducing different radius distributions and different
weight distributions.
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The influence of grain size variation on metal
fatigue.

Jenny Andersson
Department of Mathematical Statistics, Chalmers University of Technology,
SE-412 96 Goteborg Sweden

Abstract

The aim of the present study is to investigate the influence of the
variation of metal grain sizes on fatigue lives. The grain structure is
simulated from a Poisson Voronoi model and the short crack growth
model of Navarro and de los Rios is applied. The resulting fatigue
life decreased with increasing component size, probably reflecting the
fact that with increasing number of grains there is a larger probability
of finding a large grain were the crack starts. The standard deviation
of the logarithm of the lives was in the order of 0.2-0.4, i.e. the
variation in grain size explains only part of the observed variance in
real fatigue data.

Keywords: Short crack; Grain structure; Voronoi tessellation.

1 Introduction

Supposedly identical components made of metal often show substantial dif-
ferences in fatigue lives. The differences are apparent even during controlled
tests with identical stress levels. K. Miller writes in [1] that the scatter in
fatigue data needs to be put in a perspective by for example detailed stud-
ies of the effect of material structure on early crack growth. One model of
early (short) crack growth have been developed by A. Navarro and E.R.
de los Rios in [3], [4], [5], [6], [7] and [8]. The purpose of this study is
to investigate the effect of grain size variation on fatigue life. Since the
main part of the fatigue life is explained by the crack initiation, the model
of Navarro-de los Rios will be used, as in Turnbull and de los Rios [10],
but modified to handle grains of varying sizes. A grain structure will be
obtained by simulation. The grain model is introduced in section 2.1 and
the Navarro—de los Rios model with modifications is described in section
2.2 along with some computational details. The results are presented in
section 3 and analysed in section 4.




2 Model

2.1 Grain structure

In the proposed model the metal grain structure is a Voronoi tessellation
in two or three dimensions of points generated from a Poisson process (see
Figure 1). The reason for using a Voronoi tessellation can be argued as fol-
lows. If, in the crystallisation process of a one phase metal, all grains begin
to grow simultaneously and at the same rate the resulting grain structure
would be a Voronoi tessellation. The tessellation could be modified by al-
lowing the grains to begin their growth at different times and by using a
different point process with more or less clustering of the points.

Figure 1: A Voronoi tessellation of points generated from a Poisson process

A tessellation partitions an Euclidean space (R™) into sets, (C;), with
non-overlapping interior, that is R* = U;C;. Let {p;} be a set of points.
Each point p; in this set, from now on called nuclei, generates a cell (or
grain) C;. One grain C; consists of all points in R™ which has p; as their
nearest, nuclei,

Ci={z € R" : ||pi — 2|l < |lpj — =l ,Vp;}, (1)

where || - || is the Euclidean distance. If the set of points {p;} is locally
finite (any finite region contains a finite number of points) the C;’s are
called a Voronoi tessellation and C; a Voronoi cell. A general reference on
the properties of Voronoi tessellations is [9] and a more mathematical one
is [2].




The metal simulated here is assumed to have a face-centred cubic (FCC)
atomic structure and one phase (homogeneous in terms of chemical compo-
sition).In the model each grain is given a random (uniformly distributed)
slip plane direction which determines the directions for the other slip planes
(Figure 2).

Figure 2: Slip planes in a closed packed metal seen in two dimensions.

2.2 Crack growth model

The crack growth model is adapted from Navarro-de los Rios model for
short crack growth under uniaxial loading (references [3], [4], [5], [6], [7] and
[8]). The crack is modelled on the surface of the metal and consequently
the three dimensional structure is disregarded. Since the point here is to
use a grain structure with grains of different sizes, the Navarro-de los Rios
model, which is described for grains of equal size (as in Turnbull and de
los Rios [10]), has to be modified to the current situation. In short the
Navarro-de los Rios model considers the plastic slip produced ahead of a
crack to be represented by a continuous distribution of dislocations. It is
assumed that when slip is initiated in a grain the entire grain undergoes slip
and is only blocked by the grain boundary, i.e. the front of the plastic zone
coincides with the grain boundary. Slip is initiated in the next grain when
the stress ahead of the plastic zone is enough to move new dislocations.
This stress only depends on the position of the crack tip relative to the
grain boundary.

The crack is initiated in the centre of a large grain with a slip plane
close to the plane of maximum shear stress, that is the angle between the
slip plane and the load direction is close to 45°. In making a decision in
which grain to start a compromise is made between size and direction of
slip planes. If [ is the length of the grain along a slip plain going through
the centre of the grain and @ is the angle between the slip plane and the




plane of maximum shear stress, a new length is calculated by I. = [ cos 26
(this is repeated for the three slip planes through the centre of the grain).
This calculation reflects the fact that the sheer is zero both perpendicular
and parallel to the main load direction. The grain selected for the crack to
start in is the one with maximal /.. The crack is supposed to grow along a
slip plane at all times.

The crack growth rate is determined by

da
=19, @)

where a is half the surface crack length, N the number of load cycles, f
represents the fraction of dislocations ahead of the crack that participates
in the crack growth process and depends on the applied stress and the
material and ¢ is the plastic displacement of the crack-tip given by

¢ = % Vl_"zm’ (3)

where o is the applied load, p the shear modulus and v Poisson’s ratio.
Here n = a/c is a dimensionless parameter, ¢ the length of half the crack
and half the plastic zone (see Figure 3).

Figure 3: Illustration of the parameters ¢ and a .

The slip band is blocked by the grain boundary and the crack will
grow at a decreasing rate as it approaches the boundary until slip can be
transfered to the next grain. This happens at a critical value of n equal to

ni = cos (EU_ULZ) , (4)

Ocomp

where 0comp is the resistance to plastic deformation of the crack tip.
Consecutive grains are numbered ¢ = 1,2,3,.... When o is smaller than




or; the stress is not enough to overcome the boundary and the crack stops.
The minimum stress required for slip propagation is given by

oL; = UFL# P (5)

where c; is the length of half the crack plus half the plastic zone when the
crack grows in grain 4, d; is the mean of the length the crack has grown in
each grain, oy, is the fatigue stress and

s 9 1.86
— =14+2. —arct 522(¢ —1)2 .
p— +2.07 <7r arctan (0.522(i — 1) )) (6)

is the ratio of grain orientations.
When a new slip band is initiated in the next grain and the plastic zone
is supposed to span the entire new grain and therefore n decreases to

nit! = —ni, (7)
Ci+1

which is a rescaling of the old value of n by the new value of ¢. According
to the model the crack will grow along that slip plane in the new grain
that is closest to the plane of maximum shear stress (the angle between
this plane and the loading direction is 45°), regardless of which direction
the slip plane takes in the third dimension under the surface.

The growth rate equation (2) can be integrated over a grain (or over
parts of a grain) to give the number of cycles spent in that grain,

__r
fd—-v)2o

The total number of cycles is then obtained by summing over all grains.

In the Navarro—de los Rios model all the grains are assumed to be
equal in size and because of the symmetry in that case it is enough to do
calculations on half the crack. Here however the crack may not grow at the
same rate at both directions after the first grain. Practically this is solved
by considering the two directions separately. For each direction (call them
l = left and r = right respectively) it is possible to calculate a, and a; as
functions of N. The total crack length as a function of N is a, + a;. The
growth rate is calculated as ¢(ar) + d(ar)-

The values of the parameters used in the calculations are the same as
Turnbull and de los Rios used in [10] for commercially pure Aluminium.
These are shown in Table 1. They used f = 6.16 - 1072(2(c — orz))*9%.

AN; = (arcsinn! — arcsinn?) . (8)




Parameter Value
7 25.0 GPa
Ocomp 50.0 MPa
OF], 42.5 MPa

v 0.33

Table 1: Parameter values for commercially pure Aluminium.

3 Results

Simulations were made of 2—-dimensional Voronoi tessellations were the
number of nuclei were taken from a Poisson distribution with expecta-
tion (denoted AX) 2000, 4000 and 9000. The crack path was determined as
described in section 2.2 and the crack was allowed to grow to a maximum
(it could stop before, if 0 < oz; in equation (4)) length of ten times the
mean grain size. The crack growth rate as a function of crack length and
the number of cycles to failure were calculated, the latter resulting in a
Whéhler curve for the short crack growth. For each value of the expectation
the simulation was repeated 1000 times.

Figure 4 shows an example of a simulated crack and Figure 5 the crack
growth rate as a function of crack length for this crack. In the latter figure
there is also the corresponding plot for a grain structure with equal grain
sizes. The growth rate decreases when the crack get close to a boundary,
then increases sharply as the crack resumes its growth in the next grain.
Figure 6 shows a Waohler curve for the initial crack growth for expectation
in the Poisson distribution equal to 9000. As a comparison the results from
using a model without grain size variation is plotted in the same figure. A
regression was made on the lives for Ao ranging from 94 MPa to 100 MPa
to N = a(Ac)? with the values of the coefficients in Table 2 as the result,
i.e. the life decreases with A\ or equivalently component size.

The observations at N = 10® are of cracks that have stopped before
they were ten times the mean grain size long. The variation conditional
on finite fatigue life of the number of cycles to failure first increases with
the applied load and the decreases (plot in Figure 7). Figure 8 shows the
percentage of cracks that stopped, i.e. the fatigue life is infinite.




;g :

< |od o o —

& [

4

S

0 < [

Sl & >
—

g

=

= 8

[®]

= =

= [}

Slo oo Q

00000 o

£E523 g

S| < o o

] <

& s

<5 [




Crack growth rate da/dN
Crack growth rate da/dN

3
Square root of the crack length (2a)05 Square root of the crack length (2a)05

(a) Equal grains (b) Grain distribution

Figure 5: Logarithmic Crack growth rate plots for the original Navarro-de los
Rios model to the left and for the Voronoi tessellation model to the right.
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4 Discussion

The discussion following is purely qualitative because of lack of real data.
There is no evaluation of the Voronoi model as a grain structure and the
calculated lives should be seen as an example of what is possible to do with
this modelling approach. The crack growth model of Navarro—de los Rios is
used only in the form of grains of equal sizes as a first approximation. For
future simulations the results for unequal grain sizes in Vallellano, Navarro
and Dominguez [11] can be used instead.

Comparing the simulations to a computation with equal grain sizes show
that the crack growth rate curve is more irregular. The advantage of using
a grain structure with varying grain sizes as opposed to one with equal
grains is that the crack can stop and that it is possible to calculate the
variance of the fatigue lives.

There are many simulations with infinite life even for higher loads which
is not observed in real data. The explanation is that if a crack stops in a
real material there may be a crack that can continue somewhere else in the
structure. If a crack stops here there is no other crack that starts at another
location. In principle it is possible to simulate that situation, however then
a decision have to be made when to stop creating new cracks.

The standard deviation of the lives conditional on finite life first in-
creases with the load and then decreases as expected from observations.
The increase in the beginning is due to the censored data which really have
large fatigue lives and hence would increase the standard deviation if they
were accounted for.

The fatigue life decreased with increasing number of grains, probably
reflecting the fact that with increasing number of grains there is a larger
probability of finding a large grain (where the crack is assumed to start).
The standard deviation of the logarithm of the lives conditional on finite
life is in the order of 0.2-0.4 depending on the load.

As expected, grain size variation gives rise to shortened fatigue life and
also fatigue life dependent on component size. However only a part of
the observed fatigue life variation is explained by the varying grain size
according to the simulations.

5 Acknowledgements

I am grateful to my supervisors Jacques de Maré and Thomas Svensson for
starting me on this project and helpful discussions.

10




References

[1] Miller, K.J. A historical perspective of the important parameters of
metal fatigue; and problems for the next century. Fatigue '99: Proc.
7th International Fatigue Congress, vols 1-4 , editors: X.R. Wu and
7.G. Wang, China Higher Education Press, Beijing, 1999, pp 15-39.

[2] Moller, J. Lecture notes on random Voronoi tessellations. Springer-
Verlag, 1994.

[3] Navarro, A., de los Rios, E.R. A model for short fatigue crack propaga-
tion with an interpretation of the short-long transition. Fatigue Fract.
Engng Mater. Struct. 1987:10:169-186.

[4] Navarro, A., de los Rios, E.R. A microstructurally-short fatigue crack
growth equation. Fatigue Fract. Engng Mater. Struct. 1988:11:383-396.

[5] Navarro, A., de los Rios, E.R. Short and long fatigue crack growth: A
unified model. Philosophical Magazine A 1988:57:15-36.

[6] Navarro, A., de los Rios, E.R. An alternative model of the blocking of
dislocations at grain boundaries. Philosophical Magazine A 1988:57:37-
42.

[7] Navarro, A., de los Rios, E.R. Compact solution for a multizone BCS
crack model with bounded or unbounded end conditions. Philosophical
Magazine A 1988:57:43-50.

[8] Navarro, A., de los Rios, E.R. Considerations of grain orientation and
work hardening on short-fatigue-crack modelling. Philosophical Mag-
azine A 1990:61:435-449.

[9] Okabe, A., Boots, B., Sugihara, K. Spatial tessellations: Concepts and
applications of Voronoi diagrams. Wiley, 1992.

[10] Turnbull, A., de los Rios, E. R. Predicting fatigue life in commercially
pure aluminium using a short crack growth model. Fatigue Fract. En-
gng Mater. Struct. 1995:18:1469-1481.

[11] Vallellano C., Navarro A., Dominguez J., Compact formulation for
modelling cracks in infinite solids using distributed dislocations. Philo-
sophical Magazine A 2002:82:81-92.

11




Paper B







Product densities of two models of
non-overlapping grains

Jenny Andersson

9th December 2003

Abstract

We consider two models of non-overlapping convex grains, which
are generalisations of Matérn’s two hard-core processes. Grains are
placed at points of a homogeneous Poisson process and the process
is thinned by two different procedures. The second-order product
density is derived for the point process with convex grains of equal
orientation. As spheres are an important special case, the product
densities for the models are stated both for spheres of equal radii and
for spheres having a certain radius distribution.

1 Introduction

A point process where the points cannot be closer than a fixed minimal
distance is called a hard-core point process. Matérn [4] introduced two such
processes. In the first one he considers a Poisson process and excludes every
point with a distance to its nearest neighbour less than a fixed number R >
0. In the second model each point is given a weight, uniformly distributed
on (0,1) and independent of the weights of other points. Points are then
retained if there are no other points within distance R with lower weight
and removed otherwise. These models can be thought of as systems of
non-overlapping spheres with radii B/2. A survey of random systems of
non-intersecting spheres is found in [9]. Hard-core models are used, for
example in forestry applications, see [11].

Another example of hard-core models is the simple sequential inhibition
model, SSI, which is also called the random sequential adsorption model,
RSA, used in physical and biological sciences. Spheres are placed randomly
and sequentially in a bounded region. A sphere is rejected if it intersects
a previously placed sphere. Other items than spheres could be used. For a
survey on RSA models, see for example [14].




The Stienen model and a generalisation, the lily-pond model, describe
sets of spheres with random radii. Points are generated according to a
stationary Poisson process. In the Stienen model, each Poisson point is
the centre of a sphere with a diameter equal to the distance to its nearest
neighbour. See [8] and pages 218 and 380 in [10] for more on the Stienen
model, for example the pair-correlation function. In the lily-pond model
spheres are grown radially, at the same time and at the same rate, from
the Poisson points. Each sphere grows until it meets another sphere. In [1]
there are some recent results and an overview of what is known so far for
the lily-pond model.

Some hard-core models are examples of Gibbs processes, which are also
studied in the literature on physics. A mathematical treatment can be
found in [10].

A model which is closely related to Matérn’s second model is Matheron’s
dead leaves model, see [2] and [12]. In two dimensions, discs are dropped
sequentially according to a Poisson process on the plane. Parts of a new
disc that intersects an old disc are invisible, that is we watch the discs from
below. In a finite area, the process can be stopped once all the surface is
covered by discs, since new discs dropped do not influence the distribution
of the intact discs. The intact discs correspond to the points that are not
removed in Matérns second model when the intensity of the Poisson process
tends to infinity, according to [12].

Mansson and Rudemo [3] describe two models of non-overlapping grains,
which are generalisatations of Matérns models. The processes are obtained
by thinning a stationary Poisson process. A convex compact set, called
grain, is associated with each point. In the simplest case the grains are
spheres with equal radii. Points with overlapping grains are either removed
or kept, according to two different procedures, in a way that leaves points
with non-overlapping grains. The first thinning scheme, called pairwise,
gives independent weights to both points in a pair with overlapping grains,
and the point with strictly higher weight wins. New weights are assigned in
every comparison. A point is kept only if it wins in all pairwise comparisons.
The second scheme, called global, gives each point a weight once and for
all and the point with strictly higher weight is kept when comparing with
weights of overlapping grains. The weight may depend on the size of the
grain in both cases. Figure 1 is a realisation of these models for spheres
of equal sizes. The models in [3] were originally inspired by inclusions in
steel and nodular cast iron, which are important for the fatigue strength of
these materials.

Similar to the models in [3] are the generalisations of Matérn’s second
model in [13]. In the first generalisation the weights may have some distri-
bution that is not uniform and which is independent of the radius. As in
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Figure 1: Realisation of pairwise and global thinning of a Poisson process in the
unit square of R? with intensity A = 100, where all the spheres have an equal
radius 0.05.

Matérn’s model, a point in z is removed if there is another point in the ball
of radius R, centred in z with lower weight than =. This gives exactly the
same point process after thinning as in the global model above with the
same weight distribution and all radii equal to R/2. In the second generali-
sation, the radii of the points are not constant but follow some distribution,
that is a point z gets radius r,. A point in z is now removed if there is
no other point with lower weight in the sphere with radius r, centred at z.




This is not a model of non-overlapping spheres as the global model of [3].
For example, it is possible to have one sphere completely inside another. In
[13] thinning intensities and product-densities for both models are derived.

In [3], the thinning probabilities, the relation between the point pro-
cesses before and after thinning, the volume fraction and the size distribu-
tions after thinning are considered. To further characterise these models
we are interested in studying second-order characteristics. Once a second-
order measure and the first moment measure are known, variances and
covariances can be calculated. Furthermore, the second-order properties
can be used to compare the models, for example to a stationary Poisson
process.

We start by giving a description of the pairwise and global models in
Section 2. We define the product density and derive an expression for
calculating the product density in terms of a two-point mark probability in
Section 3. This expression is used in [6] and [7]. In Section 4 we calculate
the second-order product density for spherical grains with fixed radii for
the two thinning procedures. This may seem somewhat superfluous as the
same calculations for general radius distribution are carried out in Section
5, but we think it is worthwhile to present the ideas of the proofs in an
easier setting. Section 6 states the product densities for convex, compact
grains with the same orientation.

2 Description of the models

Consider a Poisson point process with constant intensity A in R?. On each
point a sphere, or some other convex set, in general called grain, is centred.
The radius of the sphere associated with a point has distribution Fz, which
is independent of the point process and of the radii of other points. The
process is thinned so that there are no intersecting spheres, according to
two different schemes:

(P) Pairwise assignment of weights. For each pair of points with inter-
secting spheres both points get weights independent of each other
and the point with the lower weight is removed. In the case of equal
weights both are removed. A point will only be retained if it wins
in each of the pairwise comparisons. For example, if three points
have intersecting spheres it is possible that all three points will be
removed.

(G) Global assignment of weights. The points get i.i.d. weights once and
for all. As before, points with intersecting spheres compete and the
one with strictly higher weight is retained.




Both in the global and pairwise case the weight may depend on the radius,
but not on the point process. Denote the weight distribution for a sphere
with radius 7 by Fyy|,.

The thinning procedure can be thought of as giving marks to the original
Poisson process. A point gets mark 1 if it is kept and 0 if it is removed. Now
we have a marked process ® = {[X,; M,]} with points {X,} constituting
a stationary Poisson process with intensity A in R? and to each X,, an
associated mark M, taking values in M = {0, 1}.

The intensity is an important characteristic of a point process. For
the current models it can be expressed in terms of h(r), the retaining
probability, i.e. the probability that a point with radius r will be retained
(see [3]), as

Ath = A /0 ” h(r) Fn(dr). 1)

Let Wi(r) and Wa(y) be two independent weights with distribution func-
tions Fyy |, and Fyy),, and k4 the volume of the unit sphere in d dimensions.
The retaining probability for the pairwise case is

hp(r) = exp {—)\K,d /000 P(Wi(r) < Wa(y))(r + y)dFR(dy)} . (2)

For the global case the retaining probability is

ha(r) = /Oooexp {—)\nd /000(1 = Fyy(w))(r + y)dFR(dy)} Fyp(dw). (3)

A further characteristic of these models is the radius distribution after
thinning. In general it is not the same as the distribution before thinning,
but the right tail of the distribution can be preserved, if large spheres are
kept in the thinning. See [3] for a discussion of the radius distribution.

3 Second-order quantities

As mentioned in the Introduction, we want to study functions that de-
scribe the second-order behaviour of these models. One such function is
the second-order product density 0® . Tt is the density with respect to the
Lebesgue measure of the second-order factorial moment measure a(® on
R? x R%. If B; and B, are Borel sets and ¥ is a point process on R? with
distribution Py, a® is defined as

a® (B; x By) =E[#{(z,y) : 2 € ¥N By,y € ¥N By, z # y}]
:/ Z 1, (z1)1B,(z2) Py (d1).

T1,T2€Y
T1#£T2




An interpretation of the second-order product density is that
o (z,y)dV1dVs

is the probability of having a point in each of two infinitesimally small
disjoint Borel sets, with Lebesgue measures dV; and dV>, where = and y
belong to one set each. The following result will be used in the calculation
of the second-order product density for the thinned processes defined above.

Lemma 1 Let ® = {[X,; M,]} be a simple marked point process in R?
with marks in M = {0,1}, where the associated point process {X,} is a
stationary Poisson process with intensity A and My, ., is the two-point
mark distribution, defined on M x M. Then the second-order product den-
sity 052) for the process consisting of points with marks 1 can be written
as

Qgi)(a:l,a@) = N Mgy 2y (M1 = 1,mp = 1). 4)

If the process consisting of points with marks 1 is stationary and isotropic
the product density will only depend on the distance |x1 — 2| between the

two points, and ,QS}ZL) (z1,x2) is simplified to
02 (r) = XM, p(m, = 1,my = 1), (5)

for one point at the origin and one point in location r at distance r from
the origin.

The two-point mark distribution My, ,, describes the marks in z; and z»
under the condition that there are points in z; and z,, see [5]. It can be
thought of as a two-fold Palm distribution.

The proof of Lemma 1, which is given below, is rather technical and
may be skipped without affecting the reading of further sections. We need
a modification of Theorem 2.3 from [5] with the assumption of the sta-
tionarity and isotropy of the marked process removed. The proof of this
modification can essentially be found in [5], but is not stated in a theorem
there. The theorem below, which states the modification, can be called the
“two-point Campbell theorem”.

Theorem 1 Let ® = {[X,,; M,,]} be a simple marked point process in R%
with marks in M = {0,1} and distribution P. The set of all outcomes of ®
is denoted by N. Let {Mg, 4, : ©1,72 € R} be the family of corresponding
two-point mark distributions and let (o) be the second-order factorial mo-




ment measure of {X,}. For every measurable f : R* x M x R¢ x M — R+,

Y flw,mi,mz,ma)P(dy)

N [zimi]ee
[z2;ma]€p
T1#£T2

= [ [ ferm s m) Ma, e @, ma)a (o, 22).
RixRe M xM
Now we are ready to prove Lemma 1 with the aid of Theorem 1.

Proof of Lemma 1 For a thinned process with distribution P, the
second-order factorial moment measure is

al (By x By) = / S 15, (5115, (@2) Pon(de).

T1€Q, T2€¢
T1#T2

This expression can be rewritten in terms of the original marked process ®
with distribution P. Let 11y {1}(m1,m2) be the indicator function of the
event that both z; and z, are retained when thinning. By summing over
all points in ® that are retained in the thinning procedure we get

aly) (By x By) = / 3 18, (@1) 18, (22) Ly iy (1, ma) P(dg).

N [z1imi]ep
[z2;ma]Ee
T1#£T2

By Theorem 1,
agz) (B] X Bz)

- / / Lty (71, m12) Mas g (A1, 20 (d (1, 7))
B1xBs MxM

= / 30> Ty (ma, ma) Ma, o, (d(ma, ms))al? (d(z:, )

By ><B2m1:0 mo=

= [ Mo {1} x (10 (o1, 22)

B1xBs
- / M, g (mi = 1,ms = 1)a® (d(z1, 22)).
B1xB2

For a homogeneous Poisson process with intensity A, the second-order fac-
torial moment measure a(® (B; x By) = Al4(Bi)l4(Bs), see for example




[10]. Since the product density of the thinned process is the density of agi)
with respect to Lebesgue measure we get (4). |

4 Spheres with fixed radii

4.1 Second-order product densities

In this section we derive the second-order product density for the two point
processes with spheres of radius rg and continuous weight distribution.
The following notation is used. Let Bg(z,r) = {y € R : |z —y| < r}
be the d-dimensional sphere centred in x with radius r and let I; be
the Lebesgue measure in R?. Moreover, let kg = l4(B(z,1)), the vol-
ume of the unit d-dimensional sphere, so that I(B(z,r)) = kqr?, and let
Ya(r, h) = lg(Bg(z, k)N Bg(x+7, h) be the volume of the intersection of two
spheres with equal radius h with centres at a distance r from each other,
see Appendix A for calculations in two and three dimensions. Quantities in
the pairwise case and the global case are indexed by P and G, respectively.

From equations (1), (2) and (3), the intensities of the thinned processes
are

1
)‘thP =)\ exp {—5)\K/d(27‘0)d}

in the pairwise model and

1—exp {—/\nd(2r0)d}
Kq(2rg)d ’

Atha =

in the global model, when the intensity of the Poisson process before thin-
ning is A.

Theorem 2 With pairwise assignment of weights, the second-order prod-
uct density is

0 if r < 2rg
0@ (r) ={ Nexp {=A(ka(2ro)* — 37a(r,2r0))} if 2ro <r <4drq  (6)
A exp { —Aka(2ro)*} if r > dry.

Proof We use (5) to calculate the product density, i.e. we need M, ,(m, =
1,m, = 1), the two-point mark probability that two points at distance
r both have marks 1, that is the probability of retaining two points at
distance r. Given one point at the origin, o, and one point at distance r
from the origin located in 7, see Figure 2, the probability that both points




Figure 2: Two spheres at distance r in 2-d.

are retained is zero if r < 2rg, since then their spheres intersect and at least
one of them must be removed and hence M, »(m, =1,m, = 1) = 0. For
r > 2rg the two-point mark probability can be rewritten as

Mor(mo =1,my = 1) = P({# of points that win over o or r} =0). (7)

The points that win over o or r constitute an inhomogeneous Poisson pro-
cess with intensity function As(z). When X is the intensity of the Poisson
process before thinning, the mean number of points in R¢ of this inhomo-
geneous process can be written

/ M (z)dz = / AP(A point in z wins over o or r)dz.
R4 R4

For r > 2r, points that belongs to the union of B4(0,2rg) and Bg(r, 2r) are
possible candidates for winning over either o or  or both. More precisely
points in Bg(o,2r9)\ Ba(r, 2r9) can beat o, but not r, points in By(r, 2ro) \
By(0,2rp) can beat 7, but not o and points in Bg4(o,2r¢) N Ba(r,2ry) can
beat o or r. If W, is the weight of o, W,. is the weight of r, W, is the weight
of z when competing with o and W, is the weight of z when competing
with 7, then

/ Ay (z)de =)\/ [1{Bd(0,2r0)\3d(r,2r0)}(m)]P’(Wm >W,)
R4 R4
+ 14 B, (r,2r0)\Ba(0,2r0) } ()P (W2 > W)
+ 1{Ba(r 2r0)nBu(0,2r0)} (Z)P(Wa1 > Wo U Wyp > Wr)} dz

®)




since the sets are disjoint. Further simplification gives,

1
/ Ap(z)dr = )\/ [1{34(0,2%)\34(7,%0)}($)§
Rd R4

1 3
+ 1Bu(r,2r0)\Ba(o2r0)} (%) 5 + I{Bd(r,2m)ﬂBd(o,2ro)}(m)Z:| dz
9)
1 1
=)\[5a(Ba(0,2ro) \ Ba(r,2r0)) + 5la(Ba(r, 2r0) \ Ba(o,2r0))
3
+ Sla(Ba(r,2r0) N Ba(o, 21«0))].
Recalling (7) we get
Mor(me=1,m, =1) = exp{ - )\b(;v)dx}. (10)
R4
Equations (9) and (10) combined with (5), using
ld(Bd(O, 27‘0) \ Bd('r, 27‘0)) = ld(Bd(’l", 2’[‘0) \ Bd(o, 2’[‘0))
= ka(2ro)? — ya(r,2r0)
and
la(Ba(r,2r¢) N Bg(o,2r0)) = va(r, 2ro)
concludes the proof. Observe that v4(r,2r9) = 0 for r > 4ry. a

Theorem 3 Let V = k4(2r0)? and q(r) = vyq4(r,2r0). With global assign-
ment of weights, the second-order product density is

(0 if r <2rg

5 1 e—XV
{V(2V —q(r))  V(V —q(r)
o® (r) =4 e~ M2V —q(r))

if 2r r r (11)
+(V—q(1"))(2V—q(1~))} f 2ro <1 < 4ro

1— e MV 2
\ <+> if > 4ro.

Remark: This formula can be found on page 164 in [10]. The proof
given here is very similar to that of Theorem 2.

Proof Conditioning on the probability that a point in o has weight w, and
a point in 7, at distance r from the origin, has weight w,, the probability
that both points are retained can be found as in the proof of Theorem 2
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above. Denote a point in z having radius r, by [z;r.]. For simplicity’s
sake we take the weight distribution to be uniform, but it could be any
continuous distribution. Instead of (7) we get

Mop(me =1,m, =1)
1,1
= //IF’({# of points that win over [o; w,] or [r;wy]} = 0)dw,dw,.
0Jo

Another difference from the proof of Theorem 2 is that in (8)

1

P(Wz1 > W,) is replaced by P(W, > w,) = dw =1 —w,,
1

P(Wyo > W,) is replaced by P(W, > w,) = / dw=1-w,

W

and similarly
P(Wy1 > W, U Wy > W,) is replaced by
P(W, > min(w,,wy)) / ( ;iw =1—min(w,,wy).
This leads to o
Mor(mo =1, mr—l)

/ / exp { = A[(1 = w,) (ka(2ro)? = 7a(r, 2r0))

(12)
(1 — wr)(ka(2r0)* = ya(r,2ro))
+ (1 = min(wp, w,))va(r, 2ro)] }dwod'w,..
Evaluating (12) and multiplying by \? gives (11). O

4.2 Behaviour of the models

According to [3] the intensities after thinning behave quite differently for
the two models, see Figure 3. For the pairwise case Ay, = 0 as A — o
and it has a maximum in A;, = 2/(ka(2ro)%) for A = 2/(ka(2ro)?). On
the other hand, for the global case, Ay, is increasing in A and as A — oo,
/\th — 1/(Iﬁ)d(2T0)d).

When comparing product densities of the global model and the pairwise
model it is clearer to consider the pair-correlation function instead. It is
defined as

g(r) = 0P (r)/ N,
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}‘m - intensity after thinning
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Figure 3: The intensity after thinning for the pairwise and the global models in
two dimensions for spheres of equal radii=0.1.

giving
0 if r <2rg
gp(r) =< exp {)\i*yd(r, 27’0)} if 2rg < r < drg
1 if r > 4T0
and
(0 if r <2rg
2 { 1 e\
(r) = Nwa V@V —q(r)  V(V —q(r))
el = e A2V —q(r) } ) -
+ i 2rg < r < drg
(V= q(r)(2V —q(r))
ol if r > 4ro,

for the two models.

For a Poisson process g(r) = 1, r > 0, see [10].

When r < 2r, the pair-correlation is 0 and there can be no pair of points

with such a distance between the points.

The pair-correlation is 1 for

both models when r > 4rg, meaning that the frequency of point pairs at

distances larger than 4r( is the same as in a Poisson process.

For the

12




pairwise model and 2ry < r < 41, the pair-correlation is increasing in A,
meaning that when A — oo the process has a higher frequency of pairs
of points at distances between 2ro and 4ry than a homogeneous Poisson
process even though the intensity after thinning tends to zero at the same
time. On the other hand, when A goes to infinity for the global model, go
tends to (2V)/(2V — q(r)), for 2rq < r < 4ry, which is between 1 and 1.1
in R?, since 0 < ¢(r)/V < 2/3—+/3/7. In R% an upper bound for ¢(2ro) is
1/2, meaning that (2V')/(2V — q(r)) is never greater than 4/3. This means
that the global process has almost the same pair-correlation as a Poisson
process except for the hard cores. When A — 0 the two processes behave
alike in that both Ay, — 0 and g(r) — 1, for 7 > 2ry.

If we compare the pair-correlation functions for the same value of the
intensity after thinning we get three different behaviours since the pairwise
model can have the same Ay, for two different A, as can be seen in Figure
3. Figure 4 and Figure 5 show a plot of the pairwise and the global pair-
correlation function in two dimensions.

161 — ~ pairwise-low
— pairwise-high
— global

09

0.8 L
[

Figure 4: Pair-correlation function for the pairwise and the global model in two
dimensions with the same intensity after thinning, A:;», = 4, and radius of the
spheres ro = 0.1. The intensity before thinning was 5.74 and 34.11 for the two
pairwise models giving the same A, labelled low and high respectively in the
plot, and 5.56 for the global.
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13f — — pairwise
— global

0.8 L L L L
0 01 0.2 0.3 0.4 0.5 0.6

Figure 5: Pair-correlation function for the pairwise and the global model in two
dimensions with the same intensity after thinning, A = 2/(ka(2r0)%) = 5.86,
and radius of the spheres ro = 0.1. The intensity before thinning was 15.92 for
the pairwise model and 10.59 for the global. Compared with Figure 4 there is
only one pairwise model since A; is chosen as the maximum in Figure 3.

5 Spheres with general radius and weight dis-
tributions

Now we turn to a more general case than above, where the spheres radii
have some nondegenerate distribution, as a step towards convex sets of
varying sizes in Section 6. Let the spheres have radius distribution Fg and
the weights have distribution Fyy|, which may depend on the radius.

Theorem 4 Let 84(r, 1o+ Tw, e +7w) = la(Ba(0, 7o +7w) N Ba(r, 1 + 1))
with o —r| = r and let Wi(z) have distribution Fy,. With pairwise
assignment of weights, the second-order product density is

0@ (r) :/\2/ / oexp{—)\/
o Jo 0

[(kalro + )" = 8a(r, 7o + 1o, e + 7)) BWa (1) < Wa(ra))
+ (nd(rr + rw)d — 0a(r,To + Ty, e + rw))IF’(Wg(r,.) < Wa(rw)) (13)
F84(r,To + Tw, e + 70)P(W1 (10) < Wa(rw) U Wa(re) < Wi (rw))]

Fr(dry) }FR(drr)FR(dr(,).
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Proof Consider two points, one at the origin, o, and the other at a distance
r from the origin, in location r. As before, use M, ,.(m, = 1,m, = 1) in
(5) and condition on the sphere at o having radius r, and the sphere at
r having radius r.. Denote a point in z having radius r, by [z;r;]. If
the distance between o and r is less than the sum of their radii, both of
the points cannot be retained, hence we integrate over all radii such that
r>r,+ e

Mo,r(mo = lam‘r = 1) = / / 1{7'>7'o+7'-r}
0o Jo
P({# points that win over [0;r,] or [r;r.]} = 0)Fr(dr,)Fr(dry).

(14)

As before, the points that win over [0;7,] or [r;r.] constitute an inho-
mogeneous Poisson process with intensity function Ay(z). When A is the
intensity of the stationary Poisson process, the mean number of points in
R? of this inhomogeneous process can be written

//\b(m')dw = //\]P’(A point in z wins over [0;7,] or [r;7y])dx
Rd Rd

= )\// P(A point in [z;r,] wins over [0;7,] or [r;r.])Fr(dr,)dz.
0
Rd

(15)

A point with radius r,, is a possible candidate for winning over o if it
belongs to the set

{z € R? : Bi(0,75) N Ba(m,7w) # 0} = Balo,76 + 1),

and similarly it is a candidate for winning over r if it belongs to By(r, 1y, +
rp). Points in Bg(o,r, + 7y) N Bg(r, 7y + r7) can win over both o and r.
These three sets can be made into three disjoint sets, and letting W;(x)
have distribution Fyy|,, we get

//\b(a:)da:

R4

:/\//0 [I{Bd(o,ro+rw)\Bd(r,1‘r+Tw)}(x)]P(le(Tw) > Wa(ro))
Rd

+1{Bd(7‘77‘r+7“w)\Bd(O,Tc+rw)}(m)P(WCEQ(Tw) > Wr(rr))
F1 Bt ra 0 Balorotr )} OB Wit (1) > Wo(r6) UWaa(ru) > Wa(ry)]
Fgr(dr,)dz.
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The weights do not depend on z, thus giving,

/)\b(:c
Rd

)dz

:/\/ [ld(Bd(O, To + Tyw) \Bd('f',’f'r +7w) ) P(Wae1(rw) > Wo(ro))

+1q(Ba(r, e +1w) \ Ba(0,70 + 14))P(Waa(rw) > We(ry))

+1a(By(r,re + 1) N Bg(o,70 + 14))

P(le(rw) > WO(TO) U Wx?(’"w) > WT(TT))]FR(dTw)-
The probability in (14) is

Py ({# of points that win over [0;7,] or [r;rs]} = 0)

= exp{ —/)\b(;v)dac}. (17)
R4

Insert (16) and (17) in (14), multiply by A? and the proof is completed. O

Theorem 5 Let §4(r, 7o+ 7w, e +Tw) = la(Ba(0,76 +74) N Ba(r,mr +1y))
with |o—r| = r. With global assignment of weights the second-order product

density is

o (r) =)2 OT/OHO // exp{ - )\/

[/ (Ka(ro +Tw)® = 6a(r, 7o + Tw, e + Tw)) Fiyjr, (dw)

o
o0

+ (kq(re + 'rw)d —04(r, o + Ty e +Tw)) Fyr,, (dw) (18)

W

+ / 0a(r,ro + Tw, Tr + Tw) Fwr,, (dw)]

in(we,wr)

FR(drw)}Fw‘Tﬂ(dwo)FWh.r(dw,)FR(dr,.)FR(dro).

Proof A point in z with its associated radius and weight is denoted by

[m;rm;wz]'

The ideas of the proof are the same as for the proof of Theorem

4, but condition also on the weights of the two typical points in o and r
being w, and w, respectively, i.e. (14) becomes

Mo,r(mo =1l,m,=1)= / / // 1{7‘>r0+r,.}
0 0

P({# of points that win over [0;7,;w,] or [r;Tr; wn]} = 0)

Fyyir. (dw,) By, (dwr) Fr(dr,) Fa(dry).
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Furthermore, to calculate the expectation of the number of points that beat
o or r, we must also condition on the weight of x

/)\b(x)dx
R4

= //\]P’(A point in z wins over [0;74;w,] Or [r; rp; wy])dz

Rd
- )\///[I{Bd(oﬂ'aw”‘w)\Bd(r77‘r+rw)}($)l{wzzwa}
R4

+ 1 Ba(rrrtro)\Ba(oyratra)} ) Lw, >w,}
+ U Bu(rrrtru)nBalo,rotru) () L {w, >min(w, wo)}]
Fwr,, (dwg) Fr(dry)dz.
The last steps are the same as those in the proof of Theorem 4. a

Remark: If the weight distribution is continuous and independent of the
radius it does not matter which form it has.

To evaluate the product density for special cases it is usually necessary
to do the integration numerically. Below is a simple example of when it is
possible to calculate the product density exactly, as an illustration of its
behaviour.

Example 1 Consider a model in R? with two spheres of radius r; and 7
and let p; be the probability of a sphere having radius r;. Let the weight
distribution be uniform and independent of the radius. An expression for
da(r,my + 1,75 + 71), the area of the intersection of two discs with radii
r; + 1 and r; + 11, at distance r, can be found in Appendix A. Then, for
the pairwise model, the intensity after thinning is

2

1 . .

Menp = )\Zpi exp {_’\QW((” +r1)?p1 + (ri + rg)ng)} ;

i=1
by (1) and (2). By (13), the product density is
2 2 2 -

9 _ . .
ng)(r) =)\?2 ZZ Uritr;<r} exp{—/\z [5 ((ri +rE)? + (r; + rk)Z)
i=1 j=1 k=1

1
- 152(7“, Ty + TR, T+ "'k)]pk }pjpi-
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Let V; = Ei:l pr7(r; +75)? and gi,;(r) = Zi=1 PrO2 (T, i+ 1, T+ TE).
From (1), (3) and (18), the corresponding quantities for the global model
are

\ 22: 1—exp {—/\ﬂ' Z§:1 (r; + rj)2pj}
thG = 3 p Di
i=1 m Z_j:l (ri +15)°p;

and

o2 (r Z Z Lrtrs <ny { (Vi = ais )V = aig (M) (Vi + V)
i=1 j=1
+ ViV (Vi + Vi = 24;,5(r)) exp[=A(Vi + V; — g1 5(r))]
- Vi(Vi + Vi—aij (T'))( —Gij () eXp[_)‘Vj]

= Vi(Vi + Vi = 43,5 (r) (Vi = ai,5(r) exp[-\Vi] }

H{ViViVi = aig M)V = 41y (Vi + Vi = 415(r) fpim.

The pair correlation functions, o / )\th, for both models with parameters
r =02,72=01p =05 and p2 = 0.5, are shown in Figure 6. A sphere
has radius r; = 0.2 with probability p; = 0.5 and radius r» = 0.1 with
probability p» = 0.5. In the global model after thinning, the probability
that a sphere has radius r; is approximately 0.58. In the pairwise model
after thinning, the probability that a sphere has radius r; is approximately
0.72. The calculations of these probabilities can be done using Theorem
3.2 in [3]. The jump at r = 0.2 occurs because the spheres must have a
radius which is at least 0.1 and consequently the points must be separated
by at least 0.2. The next jump at r = 0.3 occurs because two spheres with
radii which are 0.1 and 0.2, respectively, cannot be closer than 0.3. The
final jump at r = 0.4 is explained in the same way.

6 Convex, compact grains

Let us instead of spherical grains consider grains with the same shape and
orientation as a convex, compact set in R?. To describe such a set some
notation is needed. For a set A C R?, the translation of A by z € R? is
defined as

A, ={z+y:ye€ A}
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Figure 6: Pair-correlation function for the pairwise and the global model for
spheres of two sizes with the same intensity after thinning, A;p, = 2.5.
the reflection of A is defined as
A={-z:2€ A}
and the Minkowski-addition of A and B C R? is defined as
AeB={z+y:x€ A,y € B}.
Another useful way to write the Minkowski-addition is
A@B={z:An(B), #0}. (19)

Define the size of a set A € R? as half its diameter, to have the size of a
sphere equal to its radius, i.e. the size is defined as,

= sup |a ]

— sup |z —yl.

2 z,yeA Y
The family of convex, compact sets C' in R¢ having size 1 and containing
the origin is denoted by C%. For C € C% let C(r) = {ry : y € C},
that is a set of the same shape and orientation as C' but of size r > 0.
By Theorem 4.1 in [3], (2) and (3) are valid if kq(r + y)¢ is replaced by
{z : 14{C(r) NC(y) # 0}, or equivalently I4(C(r) ® C(y)). For example,
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the intensities for the thinned processes where all grains have the same size
o, the intensity of the Poisson process before thinning is A and the weight
distribution is independent of size, are for the pairwise model,

Athp = A exp {—%)\ld (C(To) D C(TO))}

and for the global model,

1—exp {—)\ld (C(To) 53] C(TO))}
la (C(ro) ® C(ro))

The main difference from spheres is that the second-order product den-
sity cannot be written in terms of a distance anymore since the thinned
process is not isotropic. However, the process is stationary, meaning that
it is enough to consider o(® (o0,y). The following notation is used in the
theorems below. Let Q(u,7y,7) = l4(C (1) ®C(r)) and S(0,70,y,7y,7) =
la((C(ro) & C(r)) N (Clry)y & C(r))).

Theorem 6 With pairwise assignment of weights and convex grains with
the same shape and orientation as C € C%, the second-order product density

18
. o0 o0 o0
0 (0,y) = /\2/ / L{r o ry:C(ro)NCO(ry) =0} eXP{—/\/
0 0 0

[(Q(o, To,1) — S(o0, ro,y,ry,r))IF’(Wl(ro) < Wa(r))
+(Qy,ry,7) — S(0,70,y,7y, 1)) P(W(ry) < Wa(r)) (20)
+ 8(0, 70,5,y IP(Wi(rg) < Wa(r) UWa(ry) < Wi(r)]

Fr(dr) }FR(dro)FR(dry).

Proof The proof is similar to that of Theorem 4. We consider one point
at the origin and one point in y and want to find M, ,(m, = 1,m, = 1).
The integration corresponding to (14) is only done for sizes of the grains
of 0 and y such that these grains are not overlapping, hence the indicator
function in (14) is changed to 14, . .c(ro)nC(ry),=0}-

The only other difference compared with spherical grains is the sets
where points can win over o or y. A point with a grain of size r is a
possible candidate for winning over o if it belongs to the set

{x €RY: C(r,) NC(r), # 0} = C(r,) ® C(r),

where the equality comes from (19). Similarly a point in C(r,), ®C(r) can
win over y. Points common to both these sets can win over either point,
that is points in (C(r,) ® C(r)) N (C(ry), @ C(r)).

The remaining steps are the same as those in Theorem 4. a

Athg =
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Theorem 7 With global assignment of weights and convez grains with the
same shape and orientation as C' € C?, the second-order product density is

9(2) (07 y) =)\? /// l{ro,ry:C(ro)ﬂC(ry)y=0} exp{ - >‘/

[/w (Q(0,70,7) = S(0,70, 4,7y, 7)) Fyy|r (dw)

o

+ [ " Qs rys1) = (0,701, 74 )) Fiype (d)

Wy

+ / S(Oa Ta,y,Ty,T)Fw|T(dW)]

min(we,wr)

FR(dr)}FW|TO (dwo) Fyyr, (dw,) Fr(dro) Fa(dry).

Proof Apply exactly the same modifications as in the proof above to the
proof of Theorem 5. a

For ellipses and squares of equal sizes in R?, expressions for the Lebesgue-
measures needed in this section are stated in Appendix A.

Example 2 For squares of equal size, in R?, the pair-correlation function
is shown in Figure 7. As in Section 4.2 there are two pairwise models
for one intensity after thinning. A discussion of the behaviour of the two
models can be carried out in the same manner as in Section 4.2.

7 Concluding remarks

We have considered the second-order product density for two models of
non-overlapping grains. In simple cases it is possible to get explicit results
and in general we get integrals that need to be calculated numerically. It
is an advantage of these models that they allow easy computation of the
product density compared to many other models of non-overlapping grains
found in literature.

As the models considered here were originally inspired by inclusions in
cast iron it would be interesting to fit them to real data. We could try by
using different radius distributions and change the way the weights depend
on the radius.

Further future work could be to look at mark correlations of the thinned
process, when the marks are the radii of the spheres, or in general the size
of a convex set. Studying grains of different orientations could also be of
interest,.
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(a) Pairwise - low intensity before
thinning

16
15
14
13

12

(b) Pairwise - high intensity before
thinning

(c) Global

Figure 7: The pair-correlation function for squares of size v/2, that is side of
length 2, in two dimensions. The intensity after thinning is 0.03 for all three
models. There are two pairwise models for one intensity after thinning, since
the intensity after thinning behaves as in Figure 3. The pair-correlation is 0 for

—2<r<2and -2<y<2.
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A Areas and volumes for some convex sets

A.1 Sphere

d ld(Bd(m7r)) ld(Bd(z,h) ﬂBd(.’E+r’ h))
2 wr? 2h? arccos # — §V4ah? — 12

3 3 3r 1 (r\?
3 4/37rr 4/37TT‘ ( —m+m(ﬁ)>

02(r,r1,7m2) = l2(Ba(z,71) N B2(x + 7,72))

) r24+r? —r2 5 r? +r3 —r?
=r?arccos [ ————= | +r3arccos | —————
211 2rry

1 /= ‘
- 5\/21"21"% +2r2r + 2023 — 1t —r} — 1}

A.2 Ellipse

—
i

L(C(r)® C’(r)) =1,(C(2r)) = 4nqr?

The area of the intersection of two ellipses where the centre of the second
ellipse is translated by s = (zs,ys) from the centre of the first is

1(C(r) N C(r)s) = qla(Ba(w,7) N Ba (2 + /3 + (ys/9)%,7))-




Y
<

T

L([C(r) & C(r)] N[C(r)s & C(r)])
= ¢lx(Ba(x,2r) N Ba(z + /22 + (ys/9)?,2r))

A.3 Square

Cr) = {(0,9) : =r/V2 <,y <r/V2}

The area of the intersection of two squares where the centre of the
second square is translated by s = (z,ys) from the centre of the first is

2(C(r) N CO(r)s) = [V2r — ] - [V2r — ys.

L([C(r) & C(]N[Cs(r) & C(r)]) = 2V2r — a4| - [2v2r —y4
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