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Abstract

In this thesis we develop an adaptive finite element method for pricing
several path-dependent options including barrier options, lookback options,
and Asian options. The options are priced using the Black-Scholes PDE-
model, and the resulting PDE:s are of parabolic type in one spatial dimen-
sion with different boundary conditions and jump conditions at monitoring
dates.

The adaptive finite element method is based on piecewise polynomial
approximation in space and time. We derive a posteriori estimates for the
error in pointwise values of the solution and it’s derivatives, using duality
techniques. The estimates are used to determine suitable resolution in space
and time. The suggested adaptive finite element method is stable and gives
fast and accurate results.

Keywords: finite element method, Galerkin, duality, a posteriori error
estimation, adaptivity, option pricing, Brownian motion, European option,
barrier option, lookback option, Asian option, average option
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This thesis consists of an introduction to option pricing and

the following papers:

• Paper I: Valuing European, Barrier, and Lookback Options using the
Finite Element Method and Duality Techniques

• Paper II: Valuing Asian options using the Finite Element Method
and Duality Techniques
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Axel Målqvist, for the daily discussions about both research and pleasure.

I also thank all the people at the Chalmers Finite Element Center for
providing a pleasant working environment and their assistance during the
completion of this thesis.

ix





1

1 A brief introduction to option pricing

This section gives a brief introduction to the theory of option pricing. A
short background is presented and the mathematical model is explained,
together with some useful tools for option pricing. For a more detailed
discussion about option pricing we refer to Björk, [1], Borell, [2], or Wilmott,
[6].

1.1 Background

A contingent claim, or a derivate, is a contract the value of which depends
on the values of other assets. One of the most common derivates is the
European call option. A European call option on a given stock with strike
price K and maturity date T is the right, but not the obligation, for the
holder of the option to buy one share of the stock at the price K at the time
T . A European put option with strike price K and time of maturity T gives
the holder the right, but not the obligation, to sell one share of the stock
at the price K at maturity. The so called American option differs from the
European option so that the holder can exercise the option at any time prior
to the maturity date. Calls and puts are often called vanilla options.

Stocks and options have a long history. Stocks have existed for at least
750 years. Option contracts were used already during the MiddleAges. Valu-
ing financial derivates in a theoretical convincing way has been difficult
throughout history. A very important contribution was given in 1973 when
Black and Scholes presented their solution to the valuation of the European
call option, based on the assumption that the stock log-price is governed by
a so called Brownian motion. Their solution was based on the Itô calculus
on Brownian motion. The concept arbitrage, that is risk free profit, is very
central here. The most difficult part in this area is to understand the price
dynamics of the underlying contracts.

Another kind of option is the exotic option with a payoff which does not
just depend on its value on the maturity date, but on the history of the
underlying asset price. There are many different kinds of exotic options.
Some of them are easy to price and analytical pricing formulas exist, but
most of them are more difficult to value. The average option, or the so
called Asian option is an example of an option without a (known) closed
form price formula.

1.2 Underlying theory

Throughout this section we are working in the time interval 0 ≤ t ≤ T . Let
B(t) denote the price of a risk free asset at time t governed by the equation
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B(t) = B(0)ert, where r is the constant interest rate. A common hypothesis
about the behavior of asset prices is that they are given by geometric Brown-
ian motions which implies that the asset prices are log-normally distributed
(see e.g. Duffie [3] or Björk [1]). The price S(t) of an asset at time t, solves
the following stochastic differential equation

dS(t) = S(t)(µdt + σdW (t)), (1.1)

S(0) = S0,

where σ is the volatility, µ ∈ R and W (t) is a normalized Wiener process.
Here σ is assumed to be a positive real number. The solution of (1.1) is

S(t) = S(0)e(µ−σ
2

2
)t+σW (t). (1.2)

Now set

W̃ (t) =
µ − r

σ
t + W (t), (1.3)

and note that
dS(t) = S(t)(rdt + σdW̃ (t)). (1.4)

According to Cameron-Martin’s theorem there exists another probability
measure than the objective measure P , the risk neutral measure Q, such
that W̃ is a Q-Wiener process. The solution of (1.4) equals

S(t) = S(0)e(r−σ
2

2
)t+σW̃ (t), (1.5)

and the measures P and Q are equivalent. The existence of the risk neutral
measure Q assures that the market is free of arbitrage possibilities.

Because the Wiener process is not differentiable in the usual sense, the
equation (1.1) is interpreted in the sense of stochastic differential calculus
initiated by K. Itô. The most fundamental tool in stochastic calculus, Itô’s
lemma is given below. But first we state a definition. If the stochastic
process (h(t))0≤t≤T is progressively measurable and

∫ T

0
| h(t) |p dt < ∞ almost surely, (1.6)

for some p ∈ [1,∞[, then we say that h belongs to the class L
p
W [0, T ].

Lemma 1.1 (Itô’s lemma). Let the function u(t, x1, . . . , xm) be two times
continuously differentiable in x1, . . . , xm ∈ R and one time continuously
differentiable in t ∈ [0, T ]. Suppose we have m stochastic differentials

dXi(t) = ai(t)dt +
n

∑

k=1

bik(t)dWk(t), (1.7)
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dependent on n stochastic independent Wiener Processes W1, . . . ,Wn. Let
Ft = σ(W1(λ), . . . ,Wn(λ), λ ≤ t). Let also the coefficients ai(t), bik(t) fulfil
ai(t) ∈ L1

W [0, T ], bik(t) ∈ L2
W [0, T ] and so, especially, for fixed t the processes

are Ft-measurable. Let also X(t) = (X1(t), . . . , Xm(t)). Then we have

du(t,X(t)) =
∂u

∂t
(t,X(t))dt +

m
∑

i=1

∂u

∂xi
(t,X(t))dXi(t) (1.8)

+
1

2

m
∑

i,j=1

∂2u

∂xi∂xj
(t,X(t))dXi(t)dXj(t).

Note that

dtdt = 0, dtdWi(t) = 0,

dWi(t)dWi(t) = dt, dWi(t)dWj(t) = 0 if i 6= j.

1.3 Derivation of the Black-Scholes formula

Let v(t, S(t)) denote the value of the portfolio at time t, with the terminal
condition v(T, S(T )) = g(S(T )), where the function g is piecewise continu-
ous and fulfils

sup
x∈R

(e−C|x||g(ex)|) < ∞ (1.9)

for an appropriate constant C > 0. We then say that g ∈ P. Suppose that
the process (v(t, S(t))0≤t≤T is the value process of a self-financing strategy
(

hS(t), hB(t)
)

0≤t≤T
in the stock and the risk free asset, that is

v(t, S(t)) = hS(t)S(t) + hB(t)B(t), (1.10)

dv(t, S(t)) = hS(t)dS(t) + hB(t)dB(t). (1.11)

By applying Ito’s lemma and using (1.11) we get

dv(t, S(t)) = vt(t, S(t))dt + vs(t, S(t))dS(t) +
1

2
vss(t, S(t))(dS(t))2 (1.12)

= hS(t)dS(t) + rhB(t)B(t)dt.

Identifying coefficients in (1.12) yields hS = vs. Rearranging the terms and
using (1.10) we get the famous Black-Scholes differential equation

vt(t, S(t)) +
σ2S(t)2

2
vss(t, S(t)) + rS(t)vs(t, S(t)) − rv(t, S(t)) = 0, (1.13)

t < T, S(t) > 0.
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Together with the terminal condition v(T, S(T )) = g(S(T )), equation (1.13)
has the following solution,

v(t, S(t)) = e−rτE

[

g(se(r−σ
2

2
)τ+σW (τ)

]

, (1.14)

where s = S(t) and τ = T − t.

Remark 1.1 Observe that (1.14) is independent of the drift coefficient µ.

We thus have the following important result.

Theorem 1.1 Let g ∈ P. A simple European derivate with payoff Y =
g(S(T )) at maturity T has the theoretical value v(t, S(t)) at time t, where

v(t, S(t)) = e−rτE

[

g(se(r−σ
2

2
)τ+σW (τ))

]

, (1.15)

and τ = T − t.

We can simplify (1.15) using the risk neutral measure Q (see Geman, Karoui
and Rochet [4], for a detailed discussion about changes of probability mea-
sure).

Theorem 1.2 The value v(t, S(t)) is equal to

e−rτEQ[g(S(T )) | Ft].

Proof. According to (1.5) we have S(T ) = S(t)e(r−σ
2

2
)τ+σ(W̃ (T )−W̃ (t)) and

hence

EQ[g(S(T )) | Ft] = EQ

[

g(S(t)e(r−σ
2

2
)τ+σ(W̃ (T )−W̃ (t))) | Ft

]

. (1.16)

But since (W̃ (T ) − W̃ (t)) and Ft are stochastic independent and W̃ is a
Q-Brownian motion, the right hand side of (1.16) becomes

E

[

g(se(r−σ
2

2
)τ+σ(W (T )−W (t)))

]

|s=S(t)

= erτ v(t, S(t)),

We now state the famous Black-Scholes formula which gives the value of
a European call option with payoff Y = max(0, S(T ) − K) at maturity T .
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Theorem 1.3 (Black-Scholes formula). A European call option with
maturity date T and strike price K has the value c(t, S(t),K) at time t < T

where

c(t, s,K) = sΦ(d1) − Ke−rτΦ(d2), (1.17)

d1 =
ln s

K
+ (r + σ2

2 )τ

σ
√

τ
and d2 = d1 − σ

√
τ ,

and where Φ is the probability distribution function for a N(0, 1) distributed
stochastic variable.

Proof. Theorem 1 gives that

c(t, s,K) = e−rτE

[

max

(

0, se(r−σ
2

2
)τ−σ

√
τG − K

)]

,

where G ∈ N(0, 1). From this it follows that

c(t, s,K) = e−rτ E

[

se(r−σ
2

2
)τ−σ

√
τG − K; G ≤ ln s

K
+ (r − σ2

2 )τ

σ
√

τ

]

= e−rτ

(

E

[

se(r−σ
2

2
)τ−σ

√
τG; G ≤ d2

]

− KΦ(d2)

)

.

Here

e−rτE

[

se(r−σ
2

2
)τ−σ

√
τG; G ≤ d2

]

= s

∫

x≤d2

e
−σ

2

2
τ−σ

√
τx−x

2

2
dx√
2π

= s

∫

x≤d2

e
−(σ

√

τ+x)2

2
dx√
2π

= sΦ(σ
√

τ + d2) = sΦ(d1),

which proves the theorem.

The price of the European put option can be derived in the same manner
as the call price. Alternatively to derive the European put price one can use
the so called call-put parity relation.

Theorem 1.4 (Call-put parity). Let c and p be the value of an European
call and put option respectively. Then we have

p(t, s,K, T ) = Ke−rτ − s + c(t, s,K, T ). (1.18)

Using Theorems 3 and 4 we can easily calculate the price of an European
put option, p(t, s, K, T).

p(t, s,K, T ) = Ke−rτ − s + sΦ(d1) − Ke−rτΦ(d2) (1.19)

= Ke−rτΦ(−d2) − sΦ(−d1).
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1.4 General derivate valuation formula

To be able to handle more complex derivates we extend the previous valu-
ation formula in Theorem 2 to European derivates with payoff X ∈ L2(Q)
and state the following theorem (for a more detailed discussion see Borell
[2]).

Theorem 1.5 A European derivate with payoff X ∈ L2(Q) at maturity T

has the theoretical value

v(t) = e−rτEQ[X | Ft]. (1.20)

1.5 Hedging and the greeks

Hedging is the reduction of the sensitivity of a portfolio to the movement
of an underlying asset by taking opposite positions in different financial
instruments. One simple way to hedge is the so called delta-hedging. With
V (S(t), t) = V (s, t) denoting the value of a portfolio or derivative, using
Itô′s lemma, (1.8), we have that

dV = σs
∂V

∂s
dW +

(

µs
∂V

∂s
+

1

2
σ2s2 ∂2V

∂s2
+

∂V

∂t

)

dt. (1.21)

Note that V must at least have one t derivative and two s derivatives. Let
Π be a portfolio consisting of one option and −∆ number of the underlying
assets,

Π = V − ∆s. (1.22)

Then

dΠ = dV − ∆ds, (1.23)

which together with (1.21) and (1.1) gives that

dΠ = σs

(

∂V

∂s
− ∆

)

dW +

(

µs
∂V

∂s
+

1

2
σ2s2 ∂2V

∂s2
+

∂V

∂t
− µ∆ds

)

dt.

(1.24)
By choosing ∆ = ∂V

∂s
we eliminate the randomness

dΠ =

(

∂V

∂t
+

1

2
σ2s2 ∂2V

∂s2

)

dt. (1.25)

Delta hedging is a dynamic hedging strategy, that is, it must be continuously
rebalanced to be a perfect hedge. Transaction costs makes this impossible
in practice. When delta-hedging one eliminates the largest random part of
the portfolio. One can also hedge away smaller effects due to, such as for
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instance, the curvature of the portfolio value with respect to the underlying
asset. Then one needs the so called gamma, defined as

Γ =
∂2V

∂s2
. (1.26)

The decay of value in time of a portfolio is represented by the theta, where

Θ = −∂V

∂t
. (1.27)

Sensitivity to volatility called the vega and is defined by

∂V

∂σ
, (1.28)

and sensitivity to interest rate is called rho, defied as

ρ =
∂V

∂r
. (1.29)

1.6 Dividends

Many assets, such as equities, pay out dividends. These dividends affect the
prices of options. There are several ways to model dividends. Dividends may
be deterministic or stochastic, and may be made continuously or at discrete
times. We will consider only deterministic dividends, whose amount and
timing is known prior to the start of the option’s life. This is a reasonable
assumption if the options lifetime is not too long, since many companies have
a similar payment from year to year. There are several ways to incorporate
dividends into the Black-Sholes model. In this section we show how this is
done in the simplest case, when we have a continuous and constant dividend
yield. This is a good model for index options, where the many discrete
dividends can be approximated by a continuous yield without serious error.
The model is also applicable to options on foreign currencies, though only
for short dated options. For stocks, the dividends are often made at discrete
times, and consequently this model is not suitable for stocks. In [5], Večeř
shows how to include discrete dividend payments, for the path-dependent
Asian option, studied later in this thesis, in a very simple manner.

Suppose that the underlying pays out a dividend D0sdt during the time
dt, where D0 is a constant. The dividend yield is then defined as the ratio of
the dividend payment to the asset price. Thus the dividend D0sdt represents
a continuous constant dividend yield. Arbitrage considerations show that
the asset price must fall the amount of the dividend payment, that is, the
stock price stochastic differential equation (1.1) is modified to

dS(t) = S(t)((µ − D0)dt + σdW (t)), (1.30)
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But as noted before, (1.1), the Black-Scholes equation is independent by the
drift-coefficient µ in the stochastic differential equation. What changes is
that we must now include the change due to dividends in our self-financing
portfolio dynamics (1.11). Since we receive D0Sdt for every asset held and
since we hold hS number of the underlying, the change in value of our self-
financed portfolio now reads

dv(t, S(t)) = hS(t)dS(t) + hSD0S(t)dt + hB(t)dB(t). (1.31)

The analysis proceeds exactly as before, but with new term arising from the
dividend, and we find that the value of our portfolio solves the following
equation

vt +
σ2S(t)2

2
vss + (r − D0)S(t)vs − rv = 0, t < T, S(t) > 0. (1.32)

We see that using a continuous dividend yield only corresponds to adjusting
one coefficient in the partial differential equation.
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