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Abstract

Two-dimensional gel electrophoresis is a major technique in global analysis at
the protein level. This paper examines spot volume data from three gel sets with ra-
dioactively labeled yeast Saccharomyces cerevisiae proteins. A strong variance versus
mean dependence in data is found to be stabilized by applying a shifted logarithmic
transformation. However, transformed data show a remaining substantial variance
heterogeneity for different proteins. Furthermore, examination of Studentized resid-
uals reveals that transformed data are approximately normally distributed and that
there are spatial correlations among the measurement errors in the gel.
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1 Introduction

Two-dimensional (2-D) gel electrophoresis (O’Farrell, 1975) is still the most frequently
applied method to simultaneously separate and quantitate thousands of proteins from cell
and tissue samples (Dowsey et al., 2003). The proteins are separated according to their
isoelectric point in a first-dimensional separation (z axis) and their size in a second-dimen-
sional separation (y axis). Gels with spot patterns of labeled or stained proteins are
converted to digital images using scanning devices. The gel images are then processed to
detect and quantitate the protein spots and to match spots in different gels that correspond
to the same protein.
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The objective of a statistical analysis of spot volume data can for example be to identify
differentially expressed proteins or to perform a cluster or discriminant analysis of proteins
or samples. Statistical methods are often based on that data are normally distributed with
constant variance not dependent on the mean. It is important to assess that data do not
severely violate these assumptions; if so, we have either to transform data or to develop
methods for the particular type of data.

In this paper we consider two issues in the analysis of quantitative 2-D gel data: (i)
transformations that stabilize the variance versus mean dependence in spot volume data,
and (ii) statistical exploration and characterization of transformed data. These consider-
ations both point at possible systematic errors in the preceding image analysis step and
guide the choice of methods in a subsequent statistical analysis. We examine data from
three gel sets with radioactively labeled yeast Saccharomyces cerevisiae proteins. Several
studies of the variation in quantitative 2-D gel data exist (Garrels, 1989; Burstin et al.,
1993; Blomberg et al., 1995; Voss and Haberl, 2000; Mahon and Dupree, 2001; Molloy
et al., 2003). Our study is focused on statistical aspects of the variation.

Quantitative 2-D gel data typically comprise many variables (proteins) but few observa-
tions (experimental replications). This is also the case in another large-scale measurement
technique in molecular biology: the genome-wide measurement of mRNA levels with mi-
croarrays. There has been an extensive work in the statistical community on the design and
analysis of gene expression experiments using microarrays (see, for example, Parmigiani
et al. (2003); Speed (2003)). An example of a statistical issue that has been considered in
the analysis of microarrays, but to our knowledge not yet in the analysis of 2-D gels, is
the multiple comparison issue in the hypothesis testing for differential expression (Dudoit
et al., 2003). Some aspects in this paper are inspired by the analysis of microarrays and
one of our aims is to draw attention to the similarities in the statistical challenges in these
two types of genome-wide analyses.

2 Material and methods

2.1 Data sets

The three data sets that are examined in the paper consist of spot volume data from
2-D gels with radioactively labeled proteomes of yeast Saccharomyces cerevisiae: (i) a
2x5 gel set that has been used in a genome-wide analysis of the steady-state salt stress
response in yeast (Alipour et al., 2003) (ii) a 2x2x3 gel set that has been used in a
characterization of the N-terminal acetyl transferase NatB (Svensson and Blomberg, 2003)
and (iii) a 1x12 gel set with technical replications of a single extract of yeast proteins. The
protein labeling with 3*S-methionine, extraction and separation by 2-D gel electrophoresis
were conducted as earlier described (Blomberg, 2002). The gel images were processed in
the gel image software PDQuest (Bio-Rad Laboratories) with the following steps: image
smoothing, background subtraction with a floating ball, spot detection, spot quantitation
by 2-D Gaussian fitting, manual spot editing and manual spot matching. The sets contain



different strains, growth conditions, types of replication, gel running systems and image
scanning devices. These differences are summarized in Table 1.

2x95 2Xx2x3 1x12

Strain(s) wild-type wild-type wild-type
nat3 A

Growth normal normal normal
condition(s) 1M NaCl 1M NaCl
Replications 5 biological 3 biological 12 technical
2nd dim. Investigator Ettan DALT IT Ettan DALT II
gel system (Oxford (Amersham- (Amersham-

Glycosystems)  Pharamacia) Pharmacia)
Scanning Phosphoimager Phosphoimager Phosphoimager
device (Molecular (Bio-Rad (Bio-Rad

Dynamics) Laboratories) ~ Laboratories)
No. of 842 577 628

matched spots

Table 1: The major differences between the three gel sets.

For each gel, the individual spot volumes are normalized by the total volume in all
quantitated spots in the gel. This procedure accounts for pipetting errors when loading
the samples to the first dimension strips, inconsistency in the transfer of proteins from
the first dimension to the second dimension and different gel exposure times in the image
acquisition. The normalized spot volume is given in parts per million, referred to as the
original data throughout the paper and denoted with 7.

2.2 Variance versus mean stabilizing transformations

An initial exploratory analysis of the variation in normalized spot volumes using plots of
the sample variance as a function of sample mean reveals a strong variance versus mean
dependence among the different proteins. The dependence in the 2x5 gel set is shown
in Fig.1 (a) and (b) and indicates a multiplicative variation, where the dependence is
quadratic and demonstrated as a line with slope two in plots with logarithmic scale on
both axes.
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Figure 1: First row. Variance versus mean plots of original data in the 2x5 gel set: (a)
normal and (b) 1M NaCl growth conditions. The gray lines in (a) and (b) have slope two;
indicating a multiplicative error. Second row. Variance versus (rank of) mean plots of log
transformed data: (c) normal and (d) 1M NaCl growth conditions. The gray lines in (c)
and (d) show local medians. Logarithmic scales are used for both axes in (a) and (b) and
for the vertical axis in (¢) and (d). A dot in the figure corresponds to the measurements
of one protein.



The standard technique to stabilize the variance of a stochastic variable with multi-
plicative variation is to apply a logarithmic transformation. However, we find that the
logarithm is too strong for low abundance proteins. This can be seen in Fig. 1(c) and (d)
where the variance of log transformed data (the natural logarithm is used throughout the
paper) is plotted against the rank of the mean. Plotting against the rank distributes the
data evenly along the z-axis and facilitates the visualization of the variance heterogeneity.
The variance versus mean dependence is emphasized by plotting local medians: the z-axis
is divided into eight intervals of equal length, the median of the sample variances in each
interval is calculated and plotted as a horizontal line.

It may be noted that the standard deviation of log transformed data is approximately
the same as the coefficient of variation (CV) of the original data, which in the literature
is a common way to summarize variation in 2-D gel data. For example, by plotting and
fitting a curve to the CV as a function of mean of spot volumes in 2-D gels with Coomassie
Blue stained Arabidopsis thaliana proteins, Mahon and Dupree (2001) report a dependence
similar to Fig. 1(c) and (d).

There are many sources of variation in 2-D gel data. The preceding exploratory analysis
indicates that the variation mainly can be modeled with a multiplicative error but that
this is not the whole story, especially in the case of low abundance proteins. A possible
next step is to include an additive error component in the model.

2.2.1 The inverse hyperbolic sine transformation family

The inverse hyperbolic sine transformation family is motivated by a two-component model
of measurement error (Rocke and Lorenzato, 1995) where the measured value is modeled
as
Z =Ce"+e+0. (1)
Here ( is the true value, n ~ N(0, 0727) and € ~ N(0,02) are independent multiplicative and
additive random error components, respectively, and ¢ is an additive bias.
The variance of data distributed according to model (1) is approximately stabilized by
a transformation that is based on the inverse hyperbolic sine function (Huber et al., 2002;

Durbin et al., 2002):
yx(z) = arsinh (Z j\— )\2) : (2)

1

This transformation holds for A; > 0 and for all values of the numerator in the argument,
even negative values. The relations between the parameters in the model and the approx-
imate variance stabilizing transformation are A\; ~ 0./0, and Ay = —¢. Hence, \; reflects
the additive (zero mean) random error and A, reflects the additive bias.

Note that arsinh(z) = log(z + V22 + 1) for z > 0, so arsinh(z) = log(2z) for large
values of z. Consequently the shifted log transformation

ya(z) =log(z+A), z+A>0, (3)
is, within an additive term, a limit case of the inverse hyperbolic sine transformations by

letting A\; — 0, i.e. when the additive (zero mean) random error is negligible.
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2.2.2 Criterion for variance versus mean stabilization

A criterion for variance homogeneity and normality can be obtained by computing the log
likelihood of original data under the assumption that for some unknown A the transformed
data are independently and normally distributed with equal variance (Box and Cox, 1964).
With Z;;, denoting the normalized spot volume of protein %, growth condition j and repli-
cation k, the assumption is that, independently for all 4, j and k, yx(Zijk) ~ N(uij, 0?).
For fixed A, the maximized log likelihood with respect to the parameters y;; and o? is
Lipaz(N) = —%m(log(%r) +1) - %mlog 2(A\) + zzjk: log ‘ %(zijk)

, (4)

where m is the total number of spots and 6%(A) = 3, (yijk — 3i5.)%/m.

It is possible to factorize the log likelihood criterion into two parts (Box and Cox, 1964):
(i) the contribution of the normality within each group of observations of a protein in a
growth condition, and (ii) the contribution of variance homogeneity under assumption of
normality. Usually, the information about A coming from within group normality is very
slight, whereas the requirement of constant variance has a major effect on the choice of
A. This is also the case for the examined 2-D gel data. Hence, the log likelihood criterion
favors transformations that cause the group sample variances of transformed data to be
homogeneous and consequently stabilize the variance versus mean dependence.

2.3 Exploration of transformed data

To further characterize the variation in the data, an analysis of variance of sample variances
is performed after transformation and externally Studentized residuals are used to examine
normality and to find spatial trends in the measurement errors.

2.3.1 Analysis of variance of sample variances

Analysis of variance models for the logarithm of the sample variances (Scheffé, 1959, pp
83-87) are used to analyze the dependence of sample variances on proteins, strains and
growth conditions in the experimental design.

The 2x5 gel set is analyzed with the model

log(sfj) = p+ o; + B + €5, (5)

where sfj is the sample variance of transformed data for protein ¢ and condition j, «; is
the effect of protein 4, 3; is the effect of growth condition j and ¢;; is the residual. While
the growth condition effects should be regarded as fixed, the effects of proteins may be
regarded either as fixed or random, depending on whether we are interested in estimating
the individual protein effects or not.



The corresponding model for the 2x2x3 gel set is

log(sy;) = i+ o + B + v + (@B)ij + (ay)ik + (B7)jk + i (6)
where -y, denotes the effect of strain &, (o), (ay)ix and (87);r denote interactions, while
the other components in the model have similar interpretations as in model (5).

2.3.2 Externally Studentized residuals

With yy,...,y, denoting the n transformed normalized spot volumes of a protein in a
replicate group, the externally Studentized residuals are given by

ti=—2 Y =1, .0, (7)
S(3) 1-— 1/n

where ¢ is the sample mean and s%i) is the sample variance calculated by omitting the
1:th observation. This cross-validation type of construction is standard in applied linear
regression (see, for example, Draper and Smith (1998, p 208)) and ensures that under
assumptions of normality and independence, the numerator and denominator are indepen-
dent, and thus the externally Studentized residuals are ¢-distributed with n — 2 degrees of
freedom.

Residuals are a useful tool to assess distributional assumptions and to diagnose sys-
tematic errors. This is because they are the best estimates of the random measurement
errors. By dividing each residual by its estimated standard error, it is possible to compare
residuals that correspond to different proteins, strains and growth conditions, and therefore
might have different variances.

3 Results

3.1 Variance versus mean stabilization by transformation

To find the data transformation that stabilizes the variance versus mean dependence that
can be seen in Fig.1, we maximize the log likelihood criterion (4) with respect to the
parameters in the inverse hyperbolic sine transformation (2). Contours of L4, (), the log
likelihood criterion as function of the two parameters in these transformations, are shown
in Fig. 2. The estimates of the parameter A\, are 5\2 = 47, 72 and 108 for the three data
sets, and for all sets the maximum is obtained by letting A\; — 0. Hence, the optimal
transformation is the shifted logarithm (3). Figure 3 shows the result of applying the
shifted log transformation to the data in the 2x5 gel set and is a variance versus mean
stabilized counterpart of Fig.1 (c) and (d).

The value of L. ()) is not of interest in itself; it is the difference in log likelihood
that provides information about the uncertainty in the parameter estimates and enables
comparisons of different transformations. For example, the increment in log likelihood from
the ordinary logarithm, that is given by letting A\; — 0 and A2 = 0, to the optimal shifted
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Figure 2: Contours of L,.;(A): (a) the 2x5 gel set, (b) the 2x2x3 gel set and (c) the
1x12 gel set. The step between consecutive shown contours is 20 units in the log likelihood.
The location of maxima are marked with a star and the corresponding maximal values are
shown.
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Figure 3: Variance versus (rank of) mean plots of log(z + 47) transformed data in the 2x5
gel set: (a) normal and (b) 1M NaCl growth conditions. Gray lines show local medians.

log transformation is highly significant in all three data sets. The ridges of the surfaces in
Fig.2 can be understood with the concept of power strength of a transformation (Tukey,
1957). The transformations along the ridge have similar power strength, i.e. they are
comparable, for values in the bulk of the distribution of data.

It may be noted that we also tried the power transformation family formulated by Box
and Cox (1964): yx(2) = ((z+A2)M —1)/A;. Compared to the shifted log transformation it
gives a marginal but statistically significant improvement. The estimates of the exponent
A\ are \; = 0.04, 0.11 and 0.06 for the three data sets. However, as the improvement
is small, our conclusion is that the conceptually simpler shifted log transformation seems
adequate for further analysis.

3.2 Exploration of transformed data
3.2.1 Variance heterogeneity among proteins

Having stabilized the variance versus mean dependence in data, we proceed by examining
if, although not depending on the mean, there is a variance heterogeneity in transformed
data and try to determine the major source of such a heterogeneity. This is done with
analysis of variance models of the logarithm of the sample variances. Tables 2 and 3
are the ANOVA tables for the models (5) and (6) for the 2x5 and the 2x2x3 gel sets,
respectively.

Booth ANOVA tables show a clear variance heterogeneity for different proteins and the
empirical distributions of the estimated protein effects are shown in Fig. 4. No interactions
are significant in Table 3, which simplifies the interpretation. There are minor significant
effects of the growth conditions in both tables, but these effects are small compared to



Analysis of variance

Source Sum Sq. d.f. Mean Sq. F

Protein 1241.3 841 1.48 2.07**
Condition 4.5 1 4.46 6.28*
Error 598.3 841 0.71

Total 1844.1 1683

Table 2: ANOVA table of model (5) for the 2x5 gel set. In the column with F-statistics
(***) denotes p < 0.001 and (*) denotes p < 0.05.

Analysis of variance

Source Sum Sq. d.f. Mean Sq. F
Protein 1393.3 576 2.42 1.42%**
Condition 9.2 1 9.23 5.43*
Strain 1.8 1 1.83 1.08
Protein x Condition 1074.0 576 1.86 1.10
Protein x Strain 1012.3 576 1.76 1.03
Condition x Strain 0.1 1 0.08 0.05
Error 978.9 576 1.70

Total 4469.7 2307

Table 3: ANOVA table of model (6) for the 2x2x3 gel set.
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Figure 4: Empirical distribution of estimates of the protein effects on the logarithm of
sample variances: (a) in model (5) for the 2x5 gel set, and (b) in model (6) for 2x2x3 gel
set.

the protein effects. Hence, the difference in precision in the measurement of two randomly
chosen proteins in a gel, is on average larger than the difference in precision in the mea-
surement of the same protein in two gels from different strains and/or growth conditions.

In the analysis of variance, residuals are assumed independent, which seems quite rea-
sonable for different strains and growth conditions, but more arguable for different proteins.
The result of the analyses of variance is therefore regarded as exploratory rather than con-
clusive.

3.2.2 Residual plots reveal approximate normality and spatial trends

Finally, we explore the residuals — the estimates of the random measurement errors. Since
we have found a remaining variance heterogeneity for different proteins, we work with the
externally Studentized residuals (7). Here we divide each residual by its estimated standard
error which enables a comparison of the residuals that correspond to different proteins.

To examine the issue of normality, we regard the marginal distribution of all externally
Studentized residuals in a replicate group. Histograms of these residuals in the 2x5 gel set
are shown in Fig. 5 together with the probability density of a t-distributions with 3 degrees
of freedom corresponding to the assumption of independent and normally distributed errors
in transformed data. The empirical distributions are somewhat flattened in the center and
have slightly heavier tails, but the deviations do not seem alarming. Similar observations
are made for the other two data sets (data not shown).

The residuals are further used to demonstrate that the measurements errors are spatially
correlated. Figure 6 shows the externally Studentized residuals in the 2x5 gel set as
function of spot positions in the gel. There are areas in the gels where the spots volumes
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Figure 5: Histograms of externally Studentized residuals in the 2x5 gel set: (a) normal
and (b) 1M Na ClI growth conditions. The smooth curves show the t-distribution with 3
degrees of freedom.

generally are higher or lower than the average of the values in the replicate group. Similar
spatial trends can be observed in the other two gel sets (data not shown). To understand
the size of the spatial trends, we perform the following quick calculation. If we consider
a typical protein with a CV of 35% and disregard the additive bias, then an externally
Studentized residual of 1.5 for a protein spot in one gel roughly corresponds to a 1.5-fold
spot volume change relative to the (geometric) mean of the spot volumes in the replicate

group.

4 Discussion

4.1 Variance versus mean stabilizing data transformation

The estimated transformation parameters can be viewed in two ways: (i) the transforma-
tions are merely seen as tools to obtain variance versus mean stabilization for a subsequent
statistical analysis and the estimated parameters are not assigned further interpretation;
or (ii) confidence is placed in the two-component model (1), and with the assumption
that the variance should not be dependent on the mean, the estimated transformation
parameters can be seen as estimates of parameters in the model. Hence, A1 ~ 0 indicates
that the additive (zero-mean) random error is negligible and X2 > 0 suggests that there
is a negative additive bias. If the estimated )y is considered a small value that can be
attributed to uncertainty in the measurement procedure, then z + Mo might, in the latter
point of view, be seen as a (statistically) calibrated value of the observed normalized spot
volume z similar to the simultaneous calibration and variance stabilization of microarray
data proposed by Huber et al. (2002).
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Figure 6: (a) The spatial correlations among the externally Studentized residuals in the
second gel in the 2x5 gel set are illustrated with local medians according to the gray scale
in the bar to the right. The dots mark spot positions. The residuals in the third row of
local medians that is marked in (a) are plotted in (b) as a function of the z-position and
the local medians are shown with gray lines. The spatial trends in all ten gels are shown to

the right in the figure: gels 1-5 are from normal growth conditions and gels 6-10 are from
1M NaCl growth conditions.
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4.2 Variance heterogeneity among proteins

Even after use of a shifted logarithmic transformation to compensate for the variance versus
mean dependence, there remains a clear variance heterogeneity for different proteins as
shown by the analysis of variance in Sec.3.2.1. We have investigated if this variability
is related to the isoelectric point (x position) or size (y position) of the proteins, but we
do not found any clear such connections (data not shown). It remains to further analyze
this heterogeneity and, for example, to see how stable it is when we compare different
experiments, and if there are some specific properties of the proteins with high or low
variability.

4.3 Spatial trends

The image background can vary in different gel images, either globally over the whole or
large areas of the gel or locally around specific spots. The customary approach in gel image
processing is to rely on extrapolation of image background variability to the spot areas to
estimate the background level in the spot. Hence, a poor background estimation in the
image processing might contribute to spatial correlations among quantitated spot volumes.
It may be noted that the background subtraction is still an issue of discussion in the 2-D
gel community, for example Mahon and Dupree (2001) have reported reduced reproducibil-
ity in Coomassie Blue stained protein gels when the image background is estimated and
subtracted as compared to no subtraction.

There might also be biological phenomena that can manifest as spatial trends. An
example is proteolysis — the enzymatic fragmentation and degradation of proteins. A higher
degree of proteolysis will decrease the volumes of spots corresponding to full-size proteins,
and increase the quantities of the spots corresponding to their degradation fragments that
are positioned further down the second dimension in the gel. This is hypothesized as being
the situation in the 2x2x3 gel set, where the 2-D gel data indicate that the nat3 A mutant
has an increased general protease activity and that this may be due to decreased activity of
a protease inhibitor that is dependent on N-terminal acetylation (Svensson and Blomberg,
2003).

It is desirable to correct for systematic errors in terms of spatial trends and thus improve
the measurement precision. Dowsey et al. (2003) have applied a method from the magnetic
resonance imaging field (Lai and Fang, 1999) to correct for regional relative bias in pairs
of gel images. The method corrects for very slowly varying trends in ratios of quantitated
expression between the two spots in each pair-wise match. We think one should be aware
of the risk that systematic spatial trends is confounded with the effect of a biological
phenomenon such as proteolysis, and by normalizing spatial trends in data using a between
treatment group comparison, one might conceal biologically relevant information.

In the design of experiments, the proper procedure to avoid the confusion of relevant
information and systematic errors is to randomize. In the case of spatial trends this would
correspond to a randomization of the positions of the protein spots in the gel, similar to
the randomization of gene probe positions in the design of microarrays. However, this is
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simply not possible in the case of 2-D gels; a protein spot position is determined by the
physiochemical properties of the protein and the position is roughly the same in all gels,
which is the very foundation of the 2-D gel technology.

We see the spatial correlations together with the small additive bias as a motivation to
investigate the image analysis step — especially the image background estimation and sub-
traction. The statistical techniques described in this paper may serve as quality measures
in such an investigation.

4.4 On the statistical analysis of 2-D gel data

In the exploratory analyses we find that the transformed data are approximately normally
distributed with a clear variance heterogeneity among different proteins. Hence, for the
variance versus mean stabilized data and with awareness of the spatial correlations, we
can apply the machinery of statistical methods that are based on normality. For example,
these observations justify the use of individual two-sample t-tests for differential expres-
sion. Instead of comparing the t-statistics to quantiles of the corresponding ¢-distribution,
it is possible to use resampling methods, e.g. bootstrap or permutation techniques, to
estimate the unknown null distribution of the test statistics and thus avoid parametric
assumptions. For example, Dudoit et al. (2003) have used the permutation technique in
multiple hypothesis testing for differential expression in microarray data. A permutation of
the gels in the gel set would create a situation where the correlation structure, for example
due to the spatial correlations, among measured protein levels are preserved. However, the
number of gels in the gel sets that are considered in this paper is on the border of being
too small for resampling methods. In computer simulations using normally distributed
random variables, Dudoit et al. (2003) found that for 500 genes and the small sample size
of five (as in the 2x5 gel set), the result of a permutation procedure is more conservative
than using quantiles of the corresponding t-distribution.

Individual t-tests are probably too precautionary — they guard against any distribution
of variance among proteins, and as indicated in Fig. 4, the underlying distribution of
variances does not seem to be too irregular. A possible approach is to use a hierarchical
model with an inverse gamma distribution for the variances and normal distributions for
the observations given the variances. This is the hierarchical model that has been used
by Baldi and Long (2001) and Lénnstedt and Speed (2002) for Bayesian inference from
microarray data. We have applied this model to our 2-D gel data in the following way: (i)
similarly to Lonnstedt and Speed (2002), we use the empirical Bayes technique of estimating
the hyper-parameters in the inverse gamma distribution from data; and (ii) in the spirit of
Baldi and Long (2001), we take a short cut from a full Bayesian analysis and regularize the
ordinary two-sample t-statistics by replacing the sample variances with empirical Bayes
variance estimates. It may be noted that the result of using these regularized ¢-statistics
for the transformed data in our 2-D gel sets is actually quite similar to the result in the
combination of ordinary two-sample t¢-tests of log transformed data and a fold change
criterion. This method is commonly used in the analysis of 2-D gel data (see, for example,
Blomberg (2002)), and requires the specification of the significance level in the individual
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t-tests as well as a specification of the ad hoc fold change threshold. The latter specification
can be avoided using regularized ¢-tests. Note that we have here disregarded the multiple
comparison issue in the hypothesis testing.
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