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Abstract. Let the random variable X be distributed over the non-
negative integers and let L, and R, be the quotient and
the remainder in the division of X by m. It is shown that
X is geometric if and only if L,, and R, are independent
for m = 2,3, .... In similar terms is characterized also the
exponential random variable.
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1 Introduction.

A random variable X is said to be geometric with parameter p if
P{X=k}=pl-pF, k=0,1,...,0<p<]1,
and exponential with parameter A if
P{X<z}=1-¢" z>0, A>0.

It is well known that only the geometric and exponential distributions possess
the lack of memory property

P X<t+z|X>t}=P{X <z}, >0, t>0,

which makes these distributions play a special role in stochastic modelling. In
particular, any characterization property of these distributions, apart from being
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possibly of theoretical interest, may turn out to be useful in applications by
providing another view to the lack of memory property.

There are many works dealing with characterization of the geometric and expo-
nential distributions, with [1]-[12] being just a few examples, of which [2], [7],
and (8] contain extensive bibliographies in the matter.

The idea of characterizations presented here comes from communication. Suppose
the terminal produces messages according to a sequence of independent Bernoulli
trials. The length X of a message is then described by a geometric random
variable. For transmission, the message is broken up into packets of m > 2 bytes.
Let L,, be the number of full packets and let R,, be the number of bytes left
over. Then for [ =0,1, ... and r=0,1, ... , m — 1 we have

P{L,=¢ Ry,=r}=P{X=ml+r}

1—p)

— p(l— m2+r:1_ 1—p)™) (1 — mé p( )

p(1-p) (1-(1-p)™(1-p) —a—pm

The last expression above is a product of two probability mass functions, the first
one of the geometric distribution with parameter 1 — (1 — p)™ and the second one
of the truncated geometric distribution on {0,1, ... ,m — 1}. Thus the random
variables L,, and R,, are independent, i.e.,

P{L, =4, R, =1r}=P{L, =(}P{R,, =r},
¢(=0,1, ... and r=0,1, ... , m—1,

(1)

and have probability mass functions
PlL,=0=01-1-p™A-p™, £=0,1, ...,

and

L p(l=p)
P{Rm—r}—w,

respectively. In this way, for a geometric random variable X the quotient L,,
in the division of X by the integer m > 2 and the remainder R,, are indepen-
dent random variables. It is now natural to ask whether there exist non-geometric
random variables, distributed over the non-negative integers, with the same prop-
erty. The answer to this question turns out to be negative for random variables
with at least three values with positive probabilities. In fact, we will show in
Theorem 1 that if the quotient and the remainder in the division by m > 2 of a
non-negative integer-valued random variable with at least three values with pos-
itive probabilities are independent when m equals two or three, and satisfy the
equalities (1) for all £ =0,1, ... but only for » = 0,1,2 when m > 4, then the



random variable is geometric. This of course would imply, as we saw above, the
independence of the quotient and the remainder for any m > 2. Thus although
the conditions of Theorem 1 seem to be weaker than the independence of the
quotient and the remainder for m > 2, they are actually not and then, as stated
in Theorem 2, this independence property makes the geometric random variable
unique in the class of all non-negative, integer-valued random variables with at
least three values with positive probabilities.

One interesting question regarding the above theorems is whether they remain
true without the assumption that the random variable under consideration has
at least three values with positive probabilities. They do not, in fact, and this is
shown by the example following Theorem 2.

Since only the geometric and the exponential distributions possess the memoryless
property among the discrete and the continuous distributions, respectively, the
geometric distribution is considered as a discrete analogue of the exponential one,
and many studies have been made on the relationship between these distributions,
see, e.g. [2] and [4-6]. One particular result from [2] is a characterization of the
exponential distribution by the geometric distribution. We give this result in
Theorem 3 and then use it together with the characterization from Theorem 2
of the geometric distribution to characterize in Theorem 4 also the exponential
distribution.

2 Characterization of the geometric random va-
riable

We shall show the following theorem. Recall that the floor function |z| maps
x € R onto the greatest integer not greater than x.

Theorem 1. Let the non-negative integer-valued random variable X have at least
three values with positive probabilities, and let L,, and R,, denote the quotient
and the remainder of the division of X by m, respectively:

X

Ly = {—J R, = X —mL,,

m
If the random variables L,, and R,, are independent when m = 2, 3, and if when
m > 4 the events {L,, = £} and {R,, = r} are independent for £ =0, 1, ... and
r=20, 1, 2 then X s geometric.

Before the proof we introduce some notation and show two lemmas. Assume that
the random variable X satisfies the conditions of the theorem, and introduce the



probability mass functions of X and R,,
pr=P{X=k}, k=0,1,..., (2)
and
Bm(r) =P{Rn =7}, r=0,1,..., m—1,
respectively. Since
P{L,=0R,=r}=P{X=ml+r}
the conditions of the theorem imply

6ulr) = pipn =gy Prall ¢ swhihat P{lu=f}>0

and r=0,1 when m=2, r=0,1,2 when m > 3.

Lemma 1. The probabilities py in the probability mass function (2) of the ran-
dom variable X are positive for k=0, 1, ....

Proof. Let s > 0 and n > s be the smallest number and the next to the smallest,
respectively, among those numbers & for which p, > 0. We consider two cases,
depending on the value of n.

Case 1: n=1

We get s = 0 in this case, thus py > 0 and p; > 0. According to the conditions
of the theorem, there is at least one more positive probability in (2). Let the
number v > 2 be the smallest with p, > 0. We must have v = 2, because
otherwise v — 1 > 2 and we would then have

P{L, 1=0}=P{0< X <v—1}>py >0,

P{L,.1=1}=P{v—-1<X<2wv-1)}>p, >0,

which together with p,_; = 0 and (3) would give the contradiction

_ Do
ﬂv—l(o) = P—{Lv_l — 0} >0
and
_ Dy—1 .
fo-1(0) = P{L,_ =1} 0.



Thus the first three probabilities in (2) are positive in this case. We will show now
that the rest of them are positive as well. Assume that p, >0 for k=0, ..., u,
where u > 3. From

P{L,=0}=P{0< X <u}>p >0,

P{L,=1}=P{u< X <2u} >p, >0,

and (3) we obtain

b1 Put1
Bull) = P{L,=0} P{L,=1}

which implies that also p,,; > 0. By induction, py > 0 for k£ > w.

In this way, all probabilities py in (2) are positive in the present case.

Case 2: n > 2.
From
P{L,=0}=P{0< X <n}=ps; >0,
P{L,=1}=P{n< X <2n} >p, >0,
we get

Dbo DPn
Gul0) = P{L,=0} P{L,=1}

and since p, > 0 we must have p, > 0 as well, which implies s = 0. Now, the
values n > 3 are impossible, since for these values n — 1 > 2 and we would then
have

P{L,1=0}=P{0< X <n—-1}=p; >0,

P{L, 1 =1}=P{n—-1< X <2(n—1)} >p, >0,

which by (3) would give the contradiction

_ D1 _
ﬂn—l(l) - P{Ln_l — 0} - 0
and
_ Pn
o) =pg =13 7"
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In this way, it is impossible in this case that n > 3, and we have to assume that
n = 2. Now, there are at least three values of X with positive probabilities, of
which 0 and 2 are the smallest ones. Let w > 3 be the next smallest value for
which p,, > 0. Since w — 1 > 2 we have

P{L,.1=0}=P{0< X <w—-1}>py >0,

P{L, 1=1}=P{lw—-1<X<2(w—-1)} >p, >0,

which implies the contradiction

_ b1 _
Bu-1(1) = Plw =0} "
and
Boi(l) = =L >y,
P{Lw,1 = ].}

Thus neither n = 2 is possible here, i.e., the present case is not possible at all.

In this way, only Case 1 (n = 1) takes place and then, as shown there, all p; in
(2) are positive. O

We can now write the conditions (3) as

Pmet - A Pmesn—1 _ 1 for 0=0.1,...
Pmt4r ﬁm(r) (4)
and r=0,1 when m=2, r=0,1,2 when m > 3.

Lemma 2. The probabilities py in the probability mass function (2) of the ran-
dom variable X satisfy the relationship py = cFpy, k=1, 2, .. ..

Proof. By setting m =2 and r =0 in (4) we obtain

Pok + Pok+1 _ 1
D2k B2(0)

Let ¢ = ﬁ%(()) — 1. Thus pogy1 = cpar, Kk > 0, and the sequence of probabilities

k=0,1,....

in the probability mass function (2) of X is of the form

Po, CPo, D2, CPa, P, CPay ... Doky  CDoks .- (5)

We will now use (5) in (4). With m =3, r=1, £=0 and then /=1 (4)
gives

Do+ Cpo+ D2 CP2+ Ps+ CPs (6)

CPo P4




and withm =3, r=2, £=0 and then /=1 it gives
Do +¢Cpo+Dp2  CPp2+ Ps+Cps

b2 CP4

Dividing the above two inequalities we obtain p, = ¢?py and then from (6) we
get py = c?py = c¢'py and from (5) ps = c*py and ps = py.

In this way, using (4) with the values m = 2 and m = 3 we have shown that
pr=Ccpy fork=1,...,5.

We complete the proof of the lemma by induction. Let mg > 3 be fixed and
assume that

pe=C"po, k=1,..., 2my— 1. (7)
This, (4) with m = mo+1, r =0 and first with £ =0 then with £ =1, and (5)
give
Po+cpo+ ..+ ™ ?pg + ™ Ipg + c™0py
Po

1 2 2mo—1
™ py + ™0 pg + L 4 P Do + Doy + CDamg

Cm0+1p0 )
or

(1 + C) p2m0
cmotl py 7

ld+c+...+c™ 24l dm—T4c+...4+™ 24

which implies po,, = c*™p, . By this and (5) again, poy, 1 = ™ 'py . Thus
the assumption (7) holds for mg + 1 as well. By induction, (7) is true for any
k >1 and the lemma is proved. OJ

We are now ready for the

Proof of Theorem 1

Since by Lemma 2 the probabilities py, in the probability mass function (2) of X
satisfy pr = c*py, k=1, 2, ..., the number ¢ must be equal to 1 — py and X is
then geometric with parameter pyg. Il

From Theorem 1 and (1) we obtain the following characterization of the geometric
random variable in terms of the quotient and the remainder of division by a
positive integer.



Theorem 2. A non-negative integer valued random variable X with at least three
values with positive probabilities is geometric if and only if the quotient of the di-

viston of X bym, L, = {%J , and the remainder R,, = X —mL,, are independent
for all m > 2.

The following example shows that theorems 1 and 2 above do not remain true
when dropping the assumption that the random variable under consideration has
at least three values with positive probabilities.

Example. Consider a random variable X with two values, 0 and 2, taken with
probabilities pg > 0 and p, = 1 — pg > 0, respectively. It is easy to see that for
this random variable P{Ry, = 0} = 1 and P{L,, = 0} = 1 when m > 3. Thus
the random variables L,, and R,, are independent for all m > 2, although X is
not geometric.

3 Characterization of the exponential random
variable

One particular result on the relationship between the geometric and exponential
distributions presented in [2] is the following.

Let X be a non-negative random variable with distribution function F'(z) such
that 0 < F(z) < 1 for x > 0. For a specified number ¢ > 0 consider the random
variable £X and introduce its discrete analogue

Yt:LtXJ:kI{kStX<k+1}, k=0,1,..., (8)
taking values £ = 0,1, ... with probabilities
P{Yi=k} =P{k<tX <k+1}.

Theorem 3. The random variable X is exponential if and only if the discrete
analogues Y; of tX are geometric for all t > 0.

The proof of this result may be found in [2], p. 81. a

We now will use the above characterization and the characterization of the geo-
metric random variable obtained in Theorem 2 to characterize in a similar way
also the exponential distribution.



Let X be a non-negative random variable and Y be its discrete analogue as
defined in (8):

YV=|X|=kI{k<X<k+1}, k=0,1,....

As in the previous section, we let L,, and R,, denote the quotient and the re-
mainder in the division of X by the integer m > 2.

Lemma 3. Let X be a non-negative random variable with distribution function

F(zx) such that 0 < F(x) <1 for x >0, and let Y be the discrete analogue of
X. If the random variables L,, = {%J and R,, = X —mL,, are independent for

all m > 2, then the random variable Y is geometric.

Proof. Denote by L, and R the quotient and the remainder in the division of
the random variable Y by m. Form >2 and /=0,1,...,r=0,1,..., m—1,
we have

P{L,, =¢ R, =r}=P{Y =ml+r}
=P{ml+r<X<ml+r+1}=P{L,=¢ r<R,<r+1}

= P{L,, ={}P{r < R, <r+1},

where we have used the independence of the random variables L,, and R,, and
where the term P{r < R,, < r + 1} in the last line does not involve ¢. Conse-
quently,

P{R,, =r}=) P{L,=¢ R, =r}
=0

=P{r<Rn<r+1}» P{Ln=0=P{r<R,<r+1}
=0

and hence
P{L, =1¢}=P{L,, =/}

as well. Thus the random variables L] and R,, are independent for m > 2. Since
the distribution function of X is such that 0 < F(z) <1 for z > 0, the discrete
analogue of X cannot have less than three values with positive probabilities. In
this way, the random variable Y satisfies the conditions of Theorem 2 and is then
geometric. O



Theorem 4. A non-negative random variable X with distribution function F(x)
such that 0 < F(x) <1 forx >0 is exponential if and only if the random vari-
ables

tX
Lt = [—J and Rl =tX —mlLt,

m m

are independent for allm > 2 and t > 0.

Proof. Assume first that If X is exponential with parameter A and let £ > 0.
The random variable tX is exponential with parameter ¢\ and we have for all
m > 2 that

P{L! =¢, R <r}=P{ml<tX <ml+r}
= 67%\1(1 — efﬁ) = (1 — efg)ef%\l e
1—e

Sl

, £=0,1,..., 0<r<m,

WH]

showing that L! is geometric with parameter 1 — e~ix, R! is truncated
exponential with parameter t\ in [0, m), and that L!, and R!  are independent.

Assume now that LY, and R!, are independent for all m > 2 and t > 0.
The random variable tX satisfies the conditions of Lemma 3 and its discrete
analogue Y; is then geometric. Then by Theorem 3 the random variable X is
exponential. O
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