Statistical modelling and uncertainty analysis
of data on accidents, flow and emission

Urban Hjorth

Department of Mathematical Statistics, Chalmers,

41296 Goteborg, Sweden

February 18, 2003

Vinnova project 1156-4022, DNR 2001-03881; (KFB 1999-0260) Final report.

Abstract: Three different aspects of vehicle traffic, that have been modelled and
analysed statistically, are reviewed in this project overview. The extraction of
subflow proportions and travelling time distributions from traffic counts, the
estimation of relative collision safety of different vehicles from data on injury
classes in collisions, and environmental questions related to measures of vehi-
cle emissions and catalyst function. Methods for estimation and uncertainty
evaluation from complex data are at focus.
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1 Background

This project started with grants from the former Swedish Transport & Com-
munications Research Board (KFB) for the period 1999 — Feb. 2003, and was
the third in a series of projects on statistics in transport research with an open
formulation of its goals. In the reorganisation of research boards, the project
was inherited by Vinnova in 2001. This report summarises research since 1999.
We are grateful to Vinnova and KFB for their support.

In the work we have cooperated with The Swedish Road and Traffic Research
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Institute (VTI), Volvo Truck, IVL, the Department of Chemistry and the
Environmental Section at Chalmers and have also used data from SCB.

2 Information on traffic low from counts

Although it is obvious that traffic counts give direct information about flow
at the measurement spot, the challenge in our approach has been to get more
details about subflows between different measurement places without costly
extra equipment. Our basis of information is the variability itself, in other
words, the randomness of the traffic flow. Part of the fluctuations at one
measurement spot will persist at downstream measurement spots and produces
dependency between the counts. This brings information about the subflow
between the measurement places in terms of both the proportions using that
link and the distribution of travelling times. This opens new possibilities for a
more measurement based estimation of traffic streams in a network where not
every link has to be measured or individual vehicles followed. This can be a
complement and sometimes a substitute to origin-destination (OD) estimates
based on optimisation with entropy maximisation, often made without direct
empirical input from flows.

Our modelling approach belongs to a tradition of dynamic OD estimation dat-
ing back to the eighties, with Cremer and Keller (1987) as one early reference.
It has been tried on well-defined objects like for example crossings. An intro-
duction to this tradition is given in Hjorth (1999) and will not be repeated
here. Let us only mention that a modelling rather close to ours was made by
Jarret and Wright (1990) but seems to have overlooked an important filtering
when applied to real data.

2.1 Modelling the counts

Discretise time with a time step that can be chosen, depending on distances
and traffic volume, somewhere between a second up to a few minutes. In our
case the original data were in continuous time so any time step was available.
Under the assumptions of 1° independent driver behaviour and 2° uncongested
network, the relation between traffic counts X (¢) at one place A and Y (¢) at
another (downstream) place B, is written



and .
=> U (t—7)+Yi(2). (2)
7=0
Here U, (t) is the subflow passing A at time ¢ and B at t + 7, X;(¢) denotes
the flow at A which will not pass B and Y;(¢) is the flow at B having other
origins than past A. We also assume that Y] is independent of X and U. In
this setting we derive the covariances in Hjorth (1999) as

Cov(X(t),Y(t+ 1)) Zp YCou(X (), X (t+ 7 —7")), (3)

where p(7) is the probability that a driver at A will be counted at B after 7
time units. When counts at A are uncorrelated in time, the sum simplifies to
a single term which gives

_ Cov(X(1),Y(t+71))
p(r) = Var(X(®) 4)

otherwise the preceding equation will give the system of equations from which
a (finite) vector of p(7) can be solved from estimated variances and covariances
for the flow. They can also be solved from a corresponding regression equation.
The estimation part uses a certain time period and in principle the situation
should be stationary for the estimates to represent more momentaneous covari-
ances but this is not fulfilled for real traffic. Instead systematic fluctuations in
the total volume of traffic flow may cause “false” covariation in the estimates
if not properly met. This is a pitfall where earlier efforts have failed. Our
solution is to use local estimation of flow levels, regard these as time varying
expected values and estimate covariances from the remaining fluctuations. We
can regard this as local kernel regression estimate or as a filter taking out low
frequency variation and keeping the informative high frequency part. Details
of this filtering are in Hjorth (1999, 2002) where also the estimates are illus-
trated. In Hjorth (2002) the methods above are generalised to more general
stochastic processes and applied to a more complex traffic link with traffic
lights and crossings. The distribution of travelling times and route choice was
estimated by the corresponding probabilities p;;(7) for flow between positions
7 and j. Since traffic lights were not synchronised with our time steps, their
phase varied during the estimation period and the traffic lights did therefore
not destroy the estimates of the proportions and the travelling time distribu-
tion (where we include waiting in the travelling time). In this formulation the
modelling has similarities with signal processing models using filters on the
data and filter descriptions of the traffic elements.




2.2 Modelling classified counts

Our discussion so far has assumptions about uncongested flow and independent
driver behaviour, which means that the vehicles should have very little inter-
action. At higher traffic intensities, other factors like bottlenecks at crossings
will determine the traffic fluctuations and mask the covariation due to vehicles
driving between the measurement points. In Bergendorff (1999) the subflow
problem was analysed based on a classification of the vehicles. Any such clas-
sification will do in principle, the one available was in terms of vehicle length
measured as distance between first and last axes. Instead of counting just the
numbers, she showed how the fluctuating proportions of vehicle types could
be utilised in subflow estimation. The basic inference idea was to condition
on flow at A, total flow at B and derive either a conditional likelihood or the
moments for classified flow at B. Some different estimation methods were com-
pared and two of them, one weighted moment estimator and one conditional
maximum likelihood estimator could be recommended.

2.3 Uncertainty analysis of subflow estimates

Knowing the uncertainty of complex parameter estimates is an important part
of the inference. Usually the uncertainty estimation is harder than the param-
eter estimation itself. Analytical uncertainty estimates are possible under a
Poisson process modelling of the traffic flow. This was utilised in Hjorth (1999)

to derive a covariance matrix for the estimated p(7)-vector, 7 =0,..., m..
Cy = AC, A, (5)
where
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X(t) is X (t) minus the estimated expected value or in other words the output,
from the high pass filter, a(t) = X (¢)/ X7 X (s)?,

n+m

Cp= > X&)(C)+diag(Var (Yi(-))) (7)

t=1-m



where finally (C); is a (large) matrix having the matrix C' = —pp' + diag(p) in
position (t,t) and upwards and zeros in the other positions.

Asymptotic variance/covariance results give simpler expressions which are use-
ful for large amounts of data and as guidelines in the planning of data volumes
needed for successful estimates. Under conditions stated in Hjorth (1999) the
variance converges as

. . 2
. p(z) — p(e A
nVar(() - PP Lo pe + 32 (@)
Here A\, denotes the (mean) traffic intensity of the flow z. Based on the variance
expressions, confidence intervals for the estimated route selection/travelling

time parameters was also derived.
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Figure 1: Bootstrapped estimates of travelling probabilities as function of
travelling time.

For the more general modelling, analytical variance/covariance analysis seems
out of reach. Instead computer intensive methodology comes in handy and
bootstrap (Efron-Tibshirani 1993, Hjorth 1994) is the most convenient tool.
This means that we resample data from the original data in ways that will keep
the important random variation and the dependency of the original data. In
Bergendorff (1999) dependency in time was handled by a block bootstrap where
the original data were seen as blocks of a certain length and the resampling
draw at random the starting times of such blocks until as much data were
collected as in the original set. Repeated estimates on these data give the



bootstrap estimated variability of the estimates. In Hjorth (2002), data from
several days were collected and were seen as independent from day to day.
Instead of the block resampling, now a high level of resampling was possible
using the entire dayly data as resampling units. This will keep all dependencies
within the same day of the data and the bootstrap variability estimates the
variability of the parameter estimates and produces confidence intervals. For
an example, see Fig. 1.

3 Modelling and analysing accident data

Traffic safety problems can be approached from at least two points of view.
One is to reduce the amount of accidents, in particular the most serious ones,
and the other is to limit the consequences of accidents that occur. Vehicles’
inner safety and their protection of driver and passengers is an important part
of the second approach. Information about this safety is available from true
accidents, but since speed and circumstances are usually very badly known,
the information is typically hard to extract. Another source of information
is collision testing in controlled experiments. However, there is no one to one
relation between such results and the statistics from true accidents with a much
larger variation of speed, hitting points and forces and with humans involved.
It is therefore of high interest to extract as much information as possible from
the accidents that do occur and to explore statistical tools for doing this.

3.1 Vadeby’s collision model

In data on real collisions, the forces are usually unknown but we know at least
that both colliding vehicles are exposed to the same forces and can therefore
be compared statistically. This requires a modelling with relevant parametri-
sation of the vehicle safety and the forces and since every collision brings in
new parameters, the statistical analysis has a theoretical challenge in terms
of a vector of so called incidental parameters which is growing in proportion
to the number of data. In the thesis work, Vadeby (2003), different types
of analyses with incidental parameters and estimation of the parameters are
studied together with methods for uncertainty evaluation. In the application
to accident data, all these analyses are based on the same collision model given
in Vadeby (1998). This model uses a basic random process, a so called birth
model, to describe the probability that a driver ends up in different injury
classes. This process starts in the state “unhurt”, and moves at random into
more serious damage. Depending on the collision forces and the safety param-



eter a driver will spend a certain “time” in this process. Since the collision
forces are unknown, we only have information about the ratio of these “times”
for the two colliding drivers. The approach in Vadeby (1998) is to define in-
cidental parameters representing the forces or equivalently the times spent in
the damage process. If this parameter is given for one of the drivers, the other
driver is given a value adjusted for the ratio of vehicle weights and the ratio
of the vehicles’ safety parameters. We use here that heavy vehicles experience
less change of speed than light vehicles in a collision between them, according
to the law mi Av; = my/Avy where m is mass and Avw is change of speed. With
this model, an explicit expression for the likelihood can be given. Since the
model has three types of parameters: the safety parameters, the parameters of
the injury class process, and the vector of collision forces, where each param-
eter type can be estimated relatively easy by numerical methods if the other
two are known, it follows that iteration of the three numerical steps will give
the maximum likelihood estimates.

In Vadeby (2000) the model is extended with information about driver’s age
and sex, since these factors are known to affect the risk of death and probably
also the probability for the other injury classes in the same direction. If some
vehicle types had very different driver populations in these respects, the rel-
ative safety parameters could be misleading without parameters allowing for
this. Now a fourth type of parameters is included to take care of the driver
characteristics and iterations are over four steps instead of three. Only minor
effects on the estimated safety parameters was observed in this set of data, but
the possibility to allow for such factors is demonstrated.

By this modelling, estimates and confidence intervals for the relative safety
are given for a number of frequent car makes, see some examples below. In
the interpretation of results we must remember that the safety parameter has
been adjusted for vehicle weight and the comparison therefore represents equal
change of speed (retardation) for the vehicles during collisions.

3.2 Estimation uncertainty

Since the likelihood estimation is an iterative solution, it has no closed and
explicit form. However, the likelihood itself can be expressed and differenti-
ated. Due to the growing vector of incidental parameters, standard asymp-
totic tools, based on likelihood derivatives and the information inequality (see
Lehmann-Casella, 1998) are not useful for the variance of our maximum like-
lihood estimates. One possible approach to this problem is bootstrap analysis
where the entire estimation is repeated on data resampled from the original
data. For the estimation of parameters from data on injury classes, a certain



number of collisions is needed with each considered car model. Data involving
very rare models were therefore excluded early on. In a resampling of colli-
sions, the problem may happen again in the resampled data and the measures
of variability could then represent the variations in number on top of the vari-
ations in accident outcome. This was avoided by resampling conditional on
approximately the same number of collisions as in the original data for each
car model. In practise, collisions with less frequent cars were resampled first
in order to keep their numbers and the most frequent car make (in Sweden
Volvo) was allowed to vary somewhat in order to compensate for this. The
entire bootstrap analysis is quite computer intensive but works and gives esti-
mated variances and confidence intervals demonstrating that some car makes
are significantly better than others in their protection of the driver. Some
examples are

Comparison 90 % bootstrap interval
Volvo rel. Vw  0.19 < o < 0.58
Saabrel. Vw 0.2 < < 0.84
Audirel. Vw  0.18 < aa < 0.91.

Here oo < 1 means safer than Vw given the same change of speed. In a later
analysis (Vadeby 2003b), using a subset of the data with only collisions between
five vehicle makes, the first two estimates changed to

Volvorel. Vw  0.19 < a < 0.72
Saab rel. Vw  0.17 < aa < 0.97

showing that also collisions with other makes will contribute to the precision
of the estimates.

3.2.1 Alternatives for deterministic incidental parameters

In Vadeby (2002a, 2003a) the discussion is extended to two other methods
based on the profile likelihood and the delta method, After an overview of
the rather rich literature she compares uncertainty estimates for these meth-
ods and the bootstrap. Since the collision data are tricky to handle, these
methods are investigated in a simpler Poisson model of similar type i.e. with
incidental parameters and indirect integer valued data coming in pairs. Here
the different approaches can be theoretically analysed and compared. In this
model (Y;1,Y}s) are independent Po(6;) and Po(ab;) given the incidental pa-
rameter 6;. Estimates of o are studied for both deterministic and random 6;
and without conditioning on any sufficient statistics for 6; in order to keep
the similarity with car crash models. Putting in estimates for # and neglect-
ing their uncertainty in an information matrix will vastly underestimate the
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uncertainties about «. Using instead the profile likelihood
L,(a) = max L(«,0)

and the asymptotic variance relation

d*logL,

Var(ay) = —(B[*— 52)""

we get the result (o + )/ 3 6; (or rather that the denominator times the
variance converges to (o + ). Vadeby then shows that the same result is
achieved asymptotically by the bootstrap in spite of an induced dependency
there and also that the delta method, based on series expansion and the cen-
tral limit theorem, gives convergence to a normal distribution with the same
asymptotic variance in spite of the complication that the estimate is a ratio
without mean and variance for finite sample. The same properties up to first
order are seen for random incidental parameters as for deterministic.

The similarity between variance estimates for the different approaches gives
support for an assumption that the same equivalence could be valid also in
the collision model. The analysis can be seen as a theoretical support for the
bootstrap results already discussed as well as for the other methods.

3.3 Bayesian models and McMC

The growing vector of incidental parameters, which represents the unknown
forces in the collisions, can be avoided by a different modelling where these
values are seen as independent random variables from some parametrised dis-
tribution. In principle this is nice since the parameters are now a fixed vector
of reasonable dimension. However, this does not give attractive computations
in the Vadeby model as long as the other parameters are still deterministic.
A computationally better analysis is achieved in a full Bayesian model. This
approach is made on both the Poisson model and on the larger collision model.
Now prior distributions must be defined as probability densities for all the pa-
rameters. How this is made using Gamma distributions, inverse Gamma dis-
tributions and hierarchical (two level) models is described in Vadeby (2003b).
The structure is designed as to not impose conclusions that are not indicated
by the data themselves. These prior densities multiplied with the likelihood,
i.e. with the probability of our data as function of the parameters, gives
the posteriori probabilities of the parameters up to a proportionality constant
(which is impossible to integrate out). This is where another computational
method, using Markov chain simulations, is the ideal tool for our needs.



3.3.1 Markov chain monte carlo

When we have a multivariate probability density known up to a normalising
constant, it is possible and surprisingly simple to create a Markov chain having
this density as its stationary distribution and jumping around ergodically so
that the time spent in different regions will after long time be proportional
to the stationary probability of the region. The Bayesian posteriori distri-
bution is conveniently studied in this way. See e.g. Gilks et al. (1996). In
practise, only low-dimensional marginal distributions will converge fast enough
and usually one- or two-dimensional parameter distributions are searched but
the simulations may take place in high dimension and many low-dimensional
distributions can be studied from the same series of simulations.

Since the Markov chain can be defined in many different ways, especially for a
high-dimensional problem, some chains are more effective than others because
they converge faster. In order to optimise the chains we need measures of con-
vergence. The more advanced measures need analytical knowledge about the
target distribution in order to give bounds for the speed of convergence. Often
such knowledge is not at hand and the more general criteria must be based on
the simulation output itself. Reviews of such criteria are given in Brooks and
Roberts (1998), Cowles and Carlin (1996) and Mengersen et al (1999). Since
the existing convergence indicators were either too informal for optimisation of
the simulations or had other disadvantages for our application in their defini-
tions or performance, we decided to develop a new measure in Hjorth-Vadeby
(2002). This is based on the well-known Kullback-Leibler distance between
distributions and was designed to compare the distribution of subsequences in
the simulation with the result for the entire simulation or to compare paral-
lel simulations with the joint result. This measure seems to work very well
and has a series expansion where the leading term can be interpreted as the
relative uncertainty (o/p) for cell frequencies in the subsequences. When the
convergence is acceptable, this leading term also dominates the measure in the
cases we have studied and this makes the measure easy to interpret. The new
KL-measure compares favourably to Gelman and Rubin’s (1992) method with
parallel chains and its generalisation by Brooks and Gelman (1998) and also to
Yu and Mykland (1998) who base their method on the behaviour of cumulative
sums. In Vadeby (2003b) this measure is used to optimise the proposal distri-
butions used in the definition of her Markov chains (by Metropolis Hastings
method). The measure is also used as the prime diagnostic for the convergence
of the McMC analyses based on both Gibbs and Metropolis-Hastings methods.
From the analyses we get simulated posteriori-distributions for the parameters
of interest and in particular, credible intervals for the most probable values of
the relative safety parameters.
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4 Models related to vehicle emission.

Under this heading we will report one work on analyses of catalysts, another on
environmental certification problems in vehicle engine production and a third
work on remote measurements of vehicle emissions. All three in cooperation
with other departments or companies.

4.1 Catalyst aging analysis

The chemistry around catalysts is studied in detail by several research groups.
However, the functioning of used cars’ catalysts is a statistical mixture of
different types of catalysts and different uses of the cars and is therefore not
a simple function of basic chemical knowledge. For that reason, data on used
catalysts were collected from scrapped cars of different ages and makes. This
collection was made by the Department of Inorganic Environmental Chemistry.
Our contribution was modelling and synthesis of these data in terms of light off
temperatures, i.e. the rather distinct temperatures where the catalysts start to
work efficiently, and the steady state properties at typical working conditions.
Test equipment and background is described more fully in Chan (2000) and to
some extent also in Hjorth et al. (2002), where otherwise the modelling and
handling of these data is at focus.

For light off temperatures of CO, HC, and NO, a modelling with regression on
age was written as

y=Po+ iz + oz’ +¢ (1)

where y is light off temperature, x is age (minus average age) defined as driving
distance in 100000 km,

Bo = Bo(m,u) = Boo(m) + Bor(m)u,

B = Bi(m,u,v) = Bro(m) + Bri(m)u + fra(m)v,

Bo = Ba(m),

and m means car make, u the model year, v the kilometres driver per year.

The model was tested against sub-models with simpler structure and some of
the parameters were excluded before most of the analyses were made. For
details about models and results see the reference above. Since, for practical
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Figure 2: Light off temperature estimates and 95% conf. int. as function of
driving distance x in 100000 km. Results for the average catalyst in data. CO,
HC, NO from above. From Environmetrics 13, 2002, p. 840.

reasons, it was impossible to sample catalysts from a well-defined population,
a new summary concept was defined as “the average catalyst in data”. For this
concept the aging function is illustrated with confidence limits in the following
figure from Environmetrics (Hjorth et.al. 2002).

In a multivariate regression based on the full model above, the dependency
of light off temperatures for CO, HC, NO, was illustrated by an estimated
correlation matrix:

1 060 0.95
p=1060 1 0.53
095 053 1

In particular CO and NO had a high and positive correlation in this analysis
where the deviations (residuals) from the regression equation are the correlated
objects. Notice that this correlation measures if catalysts are simultaneous
good or bad for the different substances emitted, and do not describe variation
within the same catalyst, where correlations of different sign may occur.

For steady state measurements, the character of data motivated a modelling
in terms of categories. Using car makes and driving distance as predictors, a
generalised regression model for the category probabilities was defined. Signifi-
cant degradation with age, in terms of increased probability for worse category,
was shown for CO and NO but not for HC. The overall impression of this in-
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vestigation was, however, that used catalysts keep their performance better
than expected up to the ages of around 150000 km driving distance. If higher
vehicle emissions with age are observed, during this period, other parts of the
engine regulation system may contribute to this. For longer driving distances
the collected data were not very informative.

4.2 Environmental certification

Certification of (diesel) engines on different markets is a challenge for vehi-
cle producers in particular since the emission limits are tightened over time.
The engine producer, Volvo, takes basic measurements on every produced unit
including a few environmentally related data like fuel consumption and soot.
More detailed environmental data are, however, complicated and resource con-
suming and are therefore only taken on a very limited sample of engines from
the production. Based on these results, the company must convince authorities
about the emissions quality and must also be prepared to prove for example by
a sequential test procedure, that the requirements are met. Since the burden
of proving this is on the producer, it is necessary to have a certain margin to
the limits. With a too small such margin, the sequential test may take many
costly testing units and in worst case fail to be accepted.

The statistical challenge is now to make inference from the small samples of
environmental data to the entire population of thousands of produced engines
and decide which margin is needed in the samples in order to have an appro-
priate margin for the whole production with high probability. This analysis
can also give information about the sampling of test units in terms of how
they should be selected and their number. Analyses of the available data from
the entire production showed that data from different vehicles were not inde-
pendent but had a time series dependency which was not very strong but still
of some importance for the problem. Together with Volvo Truck, a project
was defined on these problems and some more specific ones not discussed here.
The project ended up in the report Nilsgren (2002).

4.2.1 Learning from other variables

The important environmental variables were only available from a relatively
small number of sampled units. The sampling had not been random but in
groups of a few almost simultaneously produced engines taken quarterly. The
good thing with this was that variation within groups and variation between
groups could be compared and give information about the time dependency
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of the data. The most critical substance in this study was NO, and part
of the modelling concentrated on this substance.. It turned out that one of
the variables that were measured on every unit had very similar estimated
relations between neighbours and distant (in time) engines and did also look
similar in its distribution. This was a power variable which had also good
correlation to the NO, if low power was associated with high emission. Instead
of a theoretical modelling (which was first at mind) it seemed like a more
close empirical model was available in this variable measured on thousands of
units. Here the dependency and natural variation of the production process
was automatically included. The problem was therefore analysed as if these
data were the environmental values. Different sampling plans were compared
by simulation in this set of data. The effect of different margins based on
samples from the long series of data could also be simulated on these data.
The margins were of course based on measures from the sampled units only in
order to imitate the uncertainty of a real situation.

This study gave recommendations to sample smaller groups of engines well
spread out in time. Statistically optimal for the precision of a margin was to
take one unit at a time, but pairs of engines was only slightly less efficient and
had advantages in terms of continued information on dependency. The benefit
of sampling enough engines was also clearly demonstrated.

4.3 Analysis of remote vehicle emission data

Light beam technique can be used to measure the exhausts from vehicles in
real traffic. The physical basis of this method is the absorption of light at
certain substance-specific wavelengths in a beam crossing the traffic lane and
mirrored back. The measurement technique is named FEAT (fuel efficiency
automobile test) from another type of application and has been introduced in
Sweden for remote vehicle emissions by IVL who have made rather extensive
measurements over the last ten years, see for example Sjoédin-Lenner (1995).
Due to the turbulence, the exhausts move very randomly and the amount
crossed by the beam is not in itself a relevant measure. Instead all other
absorptions are related to the absorption due to the release of carbon dioxide,
and we get measured proportions of different substances. Since the air is
not clean between the vehicles, the measurements have to be calibrated for
the background levels, and only the increase will be registered. Calibration
programs come with the instrument and have so far been accepted as they
are. Hopefully they give unbiased values, however, there are several sources
of random error, and one consequence of this is that some percent of the
observations are negative.
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In Bokelund (2003) such data together with observations of vehicle number
plates, vehicle speed and acceleration have been analysed. Statistical models
of different types have been put forward. From the number plates much details
about the vehicles is available such as weight, age, catalysts etc. Regression
models give estimated expected values of the exhaust proportions as functions
of known variables. The uncertainty is also analysed and the significance of
differences between vehicle groups and of speed and acceleration and weight
and their combinations are studied by both regression and other technique.

For a subset of the measured vehicles we have more than one observation.
This gives an opportunity to measure how representative one observation is as
a predictor of later observations on the same vehicle. The result can be seen
as a combined measure of both the stability in exhaust proportions over time
for a vehicle and of the randomness in the measurements. For the deviations
(residuals) from the estimated expected values it was seen that on average
73%, 46% and 31% of the CO, NO,, and HC proportions did remain from
one measurement to the next. An optimal prediction of future levels should
therefore shrink the observations towards the regression estimated values by
these factors.

The true emission levels (relative the COs levels) have to be positive. They are
also small and far below any theoretical upper limit so they can be modelled
by a statistical distribution on the entire positive axis from 0 to infinity hav-
ing its mass concentrated at low values. The log normal, the Weibull and the
Gamma are examples of possible such distributions and the Beta or Pareto are
useful alternatives if the upper limit is finite. In Bokelund (2003) the obser-
vations are modelled as Gamma distributed true levels observed with random
and normally distributed measurement errors. The errors are postulated to
have expected value zero and constant variance for all emission levels of the
same substance. In the Gamma distribution, the expected values are supposed
to follow the estimated regression function. In order to have a manageable pa-
rameter estimation, one of the two parameters in the Gamma distribution is
held fixed (at an estimated value) and the other will be proportional to the ex-
pected value taken from the regression function. The estimated measurement
uncertainty was rather large according to this modelling. However, since many
assumptions are made, modelling errors may be part of the explanation for this
result and further investigation of measurement error seems motivated and can
be made both from a theoretical point of view on existing data and from an
experimental point of view. The modelling used so far gives an interesting
starting point for the theoretical approach.
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5 Exchange of knowledge

Under this heading we will cover publications, seminars and conferences and
the like. Our project has also influenced traffic research at VTI, at the Section
of Traffic planning, Lund, and at the Department of Infrastructure, KTH,
where analysis of uncertainty by computer intensive methods is now more
widely used.

5.1 Conferences and seminars

Hjorth, U.: On modelling car catalyst degradation. ECAS, Garpenberg, Sept.
6-10, 1999.

Hjorth, U.: Estimating traffic sub-flows from filtered counts. 3rd KFB Re-
search Conference, Stockholm, June 13-14, 2000.
Internet publication www.kfb.se/conf/trans2000.

Hjorth, U.: On space-time covariance for geostatistical data. Ties/SPRUCE
2000, Sheffield, Sept. 4-8, 2000.

Environment and Statistics Workshop, Stockholm, Nov. 28-29, 2000. Spatial
problems, emission and spread were at centre in this meeting with main speak-
ers from France and Finland and contributions from VTI, IVL, FFA and uni-
versity departments. www.math.chalmers.se/Centres/SC/envstat2000. Chair
of program committee and main organiser, U. Hjorth.

Transportforum, Link6ping, Jan. 10-11, 2001. U Hjorth, A Vadeby.

Vadeby, A.: Vad séger kollisionsdata om sékerheten i fordon. (What is collision
data telling us about safety in vehicles?) Transportforum, Linkoping, Jan 11,
2001.

Hjorth, U.: A Markov model of speed and gap in rural traffic. Trafikdage pa
Aalborg Universitet, 27-28 Aug. 2001.

Hjorth, U.: Opponent to the PhD-thesis: A Bayesian approach to retrospec-
tive detection of change-points in road surface measurements by F. Thomas.
Stockholm Sep. 24, 2001.

Hallbar utveckling i Sverige och globalt; Miljokonferens Goteborg Nov. 22,
2001. U Hjorth.
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Vadeby A.: Inference in models with incidental parameters. Linképing Uni-
versity, Sept 19, 2001.

Umea Statistical Winter Conference. (Topic: Mixed Effects Models), Mars
10-15, 2002. U. Hjorth.

Nordstat, Stockholm, June 9-13, 2002. U. Hjorth, A, Vadeby.
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