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Abstract: The relation between the presence of an understory vegetation species and
the influence of tree species was studied using measurements gathered in plots dis-
tributed all over Finland. The presence of the understory was observed in several
quadrats within each plot. The collective influence of the trees was quantified by the
influence potential index, based on the size of the individual trees and their spatial
distribution. Given the size of the study area, large scale factors, such as climate and
latitude, were expected to be significant. To avoid such factors, a conditional logis-
tic model was derived, where the probability of presence was conditioned on another
event also subject to large-scale factors. The resulting model may be interpreted as
a matched case-control study: the case is the observed set of quadrats in the plot in
terms of absence and presence of the vegetation in the individual quadrats; and the
controls are permutations of this set. The results from the odds ratio were valid for
both conditional and unconditional logistic models. The analysis of Vaccinium vitis
idaea indicated that the odds of presence decreased with the increasing influence of
Scots pine and Norway spruce; for Calamagrostis arundinacea, the decrease was due to
the influence of Norway spruce.

Keywords: Boreal forest, Conditional logistic regression, Ecological field theory, Influ-
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1 Introduction

The abundance of many understory vegetation species has decreased in the Finnish
forest since the 1950s, as reported by Reinikainen, Mékipdd, Vanha-Majamaa, and
Hotanen (2000). As reasons for the decline, they mention forest management and agri-
cultural practices, which have modified site conditions, age class distribution, and tree
species composition (see also e.g. Mdkipda and Heikkinen 2002). The understory is de-
tined as the layer of vegetation beneath the canopy of the trees and includes grasses,
herbs, dwarf bushes, and mosses. It plays an important role in the forest by giving
shelter to animals, protecting and enriching the soils, and providing fodder. Efforts to
model the understory vegetation have been limited (McKenzie and Halpern 1999), al-
though such models could help to evaluate and predict the effect of alterations like the
ones mentioned before, as well as those caused by natural disturbances and climate
change.

It is known that canopy trees affect the understory, but further details and quan-
tification of the effect have not been studied extensively. The influence potential (IP)
index was introduced by Kuuluvainen and Pukkala (1989) and Kuuluvainen, Hokka-
nen, and Jarvinen, and Pukkala (1993) to quantify the collective effect of single trees on
other plants. The index has also been modified and applied by Saetre (1999) and Ok-
land, Rydgren, and Jkland (1999). Throughout these studies, IP was used to model
the effect of the trees on the understory vegetation in small and relatively homoge-
neous boreal stands of Scots pine (Pinus sylvestris) (Kuuluvainen and Pukkala 1989;
Kuuluvainen et al. 1993), mixed Norway spruce (Picea abies) and hairy birch (Betula
pubescens) (Saetre 1999), and Norway spruce (Jkland et al. 1999). Moreover, the un-
derstory was grouped into categories (Kuuluvainen and Pukkala 1989, Jkland et al.
1999) or described by principal components (Saetre 1999).

Our specific objective was to model the presence of individual understory vegeta-
tion species as a function of IP from different tree species. For this study, the observa-
tions were gathered in the permanent sample plots of the 1985-86 National Inventory
of Finland. The database consists of more than 3000 plots distributed over the entire
country, and thus includes information from different tree stand compositions, ecolog-
ical conditions, and management practices.

As the data was collected in an extended study area, an additional challenge emerged:
large-scale factors, such as climate and latitude, interfered with the signal from IP. The
large-scale effects were not of interest, but the local-scale process, i.e. the effect of the
nearby trees as measured by IP, was of importance. This condition alone made the
logistic model unsuitable for the purposes of the study. The search for a model that
avoided the undesired large-scale factors led to a conditional logistic regression, which
can be transformed into a matched case-control model. In this application, the cases
consisted of observed plots, while the controls were hypothetical plots based on per-
mutations of the observed ones. The fitted models provided estimates of the effect that
a tree species had on the presence of an understory species, thereby obtaining results
regarding the relationship between tree and understory species.

Sections 2 and 3 of the paper describe the data and the IP function applied. We
then present the unconditional logistic model and show why it was not appropriate
for this study. The conditional logistic model is described in Section 5, and an example
is provided. An application to the presence of Vaccinium vitis idaea and Calamagrostis
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arundinacea using IP of Scots pine, Norway spruce, and hairy birch and silver birch
(Betula pendula) serves as an illustration in Section 6. The last section provides math-
ematical details on how the conditional logistic model was derived for this problem,
and the Annex includes additional the mathematical results.

2 Data

The Finnish Forest Research Institute (METLA) gathered data on trees and understory
vegetation from the permanent sample plots (PSP) during the 1985-86 National Forest
Inventory. The PSP were established for monitoring purposes and consisted of 3009
circular plots located on forestry land. The plots had a radius of 9.77 m (A = 300 m?)
and were distributed in clusters on a grid over Finland (4 = 337 000 km?®). The clus-
ters in Southern Finland consisted of four plots on a north-south transect, with 400 m
between plots and 16 km between clusters; in Northern Finland, the clusters were
formed by three plots, with 600 m between plots, and 24 km north-south and 32 km
east-west between clusters.

Figure 1: Permanent sample plot of the 1985-86 National Forest Inventory of Finland: The
diamonds represent the quadrats, and the circles, the trees, where the different shades of grey
represent species. The quadrats were 2 m?, and the radius of the plot was 9.77 m. The ar-
rows shows in a schematic way, how every tree influences each quadrat, and each quadrat is
influenced by every tree.

The understory vegetation was assessed visually in six quadrats of 2 m?, which
were located at 3 m and 8 m north and south of the plot center, and at 6 m east and
west; see Fig. 1. Not all six quadrats, however, were consistently measured, and there-
fore the number of observed quadrats in a plot varied between one and six. Informa-
tion on trees with diameter at breast height (DBH) larger than 10.5 cm was additionally
recorded, particular for our study were species, location, and DBH. Other information
on the plot included the identification of tree stands, and soil type of the quadrat and
of the tree stand.

We believe that the results from this data will be relevant for Finland, as well as for
other similar boreal forests in the same latitudes, such as those in Sweden, Norway,
and Russia.



3 Influence potential of trees

Ecological field theory (EFT) was originally introduced by Wu, Sharpe, Walker, and
Penridge (1985) as a theoretical approach to the study of interactions among individ-
ual plants. EFT assumes that a field or domain exists around every plant, where the
plant influences the availability of resources according to its own characteristics and
other environmental factors. As the plant adds or subtracts resources, it facilitates or
suppresses the growth of other plants situated inside the influence field. This general
framework allows different individuals from the same community to be compared
by: 1. considering specific characteristics of each plant, and 2. incorporating the spa-
tial configuration through the physical domain of the plant. Furthermore the way the
plant influences its domain can be described mathematically (Wu et al. 1985; Walker,
Sharpe, Penridge, and Wu 1989).

Kuuluvainen and Pukkala (1989) and Kuuluvainen et al. (1993) applied the idea of
EFT to a single-tree index that quantified the influence of the trees on other vegeta-
tion. The calculation of the influence potential (IP) consists of two steps: the effect of
an individual tree on the location is described as a kernel function based on the size
of the tree and distance between the tree and the vegetation; then the effects of the
trees are aggregated into the total influence potential exerted on the vegetation. Saetre
(1999) and Ukland et al. (1999) also applied IP using slightly different mathematical
formulations from the original.

In this study we used an influence potential function similar to that of Kuuluvainen
et al. (1993) and Saetre (1999): influence potential on a quadrat ¢ (IPQ) from trees of
species T was defined as

t— 2
IPQ(¢;T) = > Dy exp(' q”),

teT ‘r

where D, is the DBH of tree ¢; t is the spatial coordinates of the tree; q is the spatial
coordinates of the quadrat; || t — q || is the Euclidean distance between the tree and the
quadrat; and cr is a parameter specific for the tree species 1" and reflects the range of
influence of the tree species. IPQ(q,T) sums the effects of all trees of species 1’, where
the effect of an individual tree decreases exponentially with the squared distance be-
tween the tree and the quadrat (Fig. 2), and is adjusted according to the tree’s DBH.
The range of influence of a tree species is defined as y/—10g(0.01) cr, i.e. the distance at
which the unadjusted effect of a tree reaches 0.01 (Fig. 1); a tree beyond that distance is
not expected to have a significant influence on the quadrat. Furthermore, the absence
of a tree species results in IPQ equal to zero.

Other possible influence functions can be defined (cf. Kuuluvainen et al. 1993; Jk-
land et al. 1999; Saetre 1999). One generalization is to let the parameter ¢ depend on
DBH. Although this is biologically reasonable, it also introduces additional complexity
in the estimates, and we have therefore opted for the current simpler form.
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Figure 2: Influence range: Effect function exp(—s®/cr) plotted against the distance s for
different values of cr, where s is the Euclidean distance between the tree and the quadrat. The
larger cr is, the larger the influence range of the species, i.e. the distance at which the effect
drops to 0.01. In IPQ, the effect of every tree is scaled by its DBH.

4 Logistic regression

4.1 In general

Binary data are observations of an event Y with two possible outcomes, for example
an event where success (Y = 1) or failure (Y = 0) may occur. The presence and
absence of an understory species is also an example of data of this type. A model for
these situations estimates the probability of the outcomes for each k-th observation, i.e.
P(Yy =1) = py and P(Y}; = 0) = 1 — py, using information from independent variables
or covariates X, where X represents the design matrix (see e.g. Hosmer and Lemeshow
1989; McCullagh and Nelder 1989; and Collett 1991). In this particular problem, we are
interested in modeling the probability of the presence of an understory species, using
as covariates the influence potential of Norway spruce, Scots pine, and birch.

One possible model for this type of data is the logistic model (McCullagh and
Nelder, 1989)

T = 10g<1 Pk ) = x,3; (1)
Dk

where x}, = [Zk, - .., zks] is the k-th row vector of covariates. The inverse transforma-
tion gives the success probabilities as

_ exp(x}03)

1 +exp(x;8)

The assumption behind the logistic model is that the conditional distribution of
Y | xi is Bernoulli with expected value py.
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4.2 For the PSP data

Before setting up a logistic model as Eq. 1, we need to consider additional issues re-
lated to the problem. The data collected in the PSP consists of measurements carried
out throughout a very extensive study area, where large-scale factors are responsible
for much of the variation observed. For example, certain species prefer warmer con-
ditions and are present more often in plots situated in the South of Finland (see e.g.
Reinikainen et al. 2000). Therefore large-scale factors must be specified in the model
together with the influence potential of the trees. Since the plots are relatively small,
however, the large-scale factors affect all the quadrats in the plot in similar way, and
thus the large-scale factors are plot-level covariates. Furthermore, some large-scale
factors that have been measured, e.g. latitude, can be specified explicitly in the model,
but other factors, unknown or unmeasurable, can be included through a plot-level in-
tercept. IPQ, however, is different for each quadrat, since it depends on the distance
from the tree to the quadrat.

A logistic model for the presence of an understory vegetation in quadrat ¢ in plot &
that includes both the large-scale factors and IPQ could be

_ eXp(ak + g;ca + X;cqlB)
14 exp(ay + g +x},8)

P(Wig=1) @
where Wy, is the presence or absence of the understory plant in quadrat ¢ of plot &; a,
the plot-level intercept; g;, the row vector of explicit large-scale factors for plot &; x;,,
the row vector of IPQ measurements from the different tree species for the quadrat ¢
in plot £; and o and 3 the corresponding coefficients.

We are, however, more interested in modeling the relationship between understory
and the influence of the trees at the local-scale than on the large-scale factors. As large-
scale factors vary more clearly throughout the study area than the local-scale factors,
the large-scale factors are expected to dominate the model.

5 Conditional logistic regression

51 In general

One way to avoid the large-scale factors is to condition on them. In other words, we
calculate probabilities conditioned on another event that is also subject to the same
large-scale factors. In this way, the large-scale factors are canceled if the model is
appropriate, leaving the local-scale characteristics for further study. Such a model is
called conditional logistic regression. Its mathematical structure coinsides with the
matched case-control model used in medical applications (Collett 1991; Woodward
1999). Matched case-control is a better description of the way the data is collected in
medical studies, while conditional logistic regression describes the technicality of the
model and the solution to our problem at hand.

In matched case-control models, strata are formed consisting of cases and control.
All subjects in one strata are matched according to characteristics that are not relevant
for the study, but that affect the probability of success or failure. The case is the success,
and the control is the failure. The probabilities of success are then obtained as functions
of covariates of interest, given the matching characteristics.
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A matched case-control study in a medical context would compare patients that
have a particular disease, i.e. the cases, with patients that do not, i.e. the controls. Both
cases and controls are matched in each stratum according to non-relevant character-
istics, for example age and sex. The researcher conducting this study will want to
tind out which covariates affect the presence of the disease and to what degree, while
avoiding the effects of age and sex.

In analogous way, we wish to estimate the probabilities of finding an understory
vegetation in the forest as a function of IPQ, but conditioning on the large-scale factors.
The large-scale factors are known to affect the probabilities of presence and absence,
but are not of interest for the study, and for this reason can be considered as matching
characteristics.

A conditional logistic model, in general, compares the values of the covariates x of
the cases with those of the controls in the same strata & as in

—1
P(casek | matchk) = {1 + Z exp |:(X§0ntrol - X}c{ase)lﬂ} } )

control

5.2 For the PSP data

The strata for the PSP data are constructed based on an observed case and several
hypothetical controls. Instead of modeling the presence of an understory species in an
individual quadrat, we consider the set of all quadrats in the plot,

W;:(wl,...,wq,...,wnk), (3)

i.e. the set of quadrats ¢ = 1,...,n, in plot k, where ny, = 1,...,6 is the number of
quadrats measured in the plot. Each w, indicates whether the understory vegetation
is present in the quadrat (w, = 1) or absent (w, = 0).

The matching is carried out according to the number of measured quadrats n;, and
the number of quadrats z; where the understory species was present, i.e. the number of
times w, = 1. Given n; and z;, we can construct different patterns of wy. For example,
if three quadrats were measured in a plot (n; = 3), and the understory species was
found in two of them (2, = 2), then any of the following wys are possible: (0, 1, 1), (1,
0,1), or (1,1, 0). In other words, the understory species might be present in quadrats 2
and 3,in 1 and 3, orin 1 and 2.

In this way, the stratum consists of all the possible patterns w;, matched according
to n; and 2. Only one of them, however, was in fact observed in the field, and this one
we designate as the case; the other patterns are hypothetical, and therefore considered
to be controls. The number of patterns possible in a plot, given n; and z, is

<k

Furthermore we designate a specific pattern as w,(cj ), with j = 0 for the case, and j =
1,..., My, for the controls.
As mentioned before, the covariate IPQ is different for each quadrat. If the col-

umn vector xj; = [Tk 4, - -, Tkn, i| Tepresents the i-th covariate for the n; quadrats of



plot k, a value for that covariate at pattern-level is obtained by evaluating the original
measurements according to where the understory species was present:

Wi = wrw?) + zroswd) + o+ Do, ). 4)

The values of z,; from the quadrats where the understory species was present are
added, and those where the species was absent are ignored, and so (4) represents
the total value of covariate 7 for the plot k£ weighted by the j-th pattern. We call this
pattern-level IP, influence potential of the pattern (IPP):

1PPY) = x, wil).

With the definitions of what are cases, what are controls, what are the matching
variables, and what covariates to use, we can apply the conditional logistic model to
the presence of an understory species as

-1

P(w | z4,ny) = {1+Zexp[(X§cwk X}cw,(f))lﬁ”. (5)

The derivation is explained in detail in section 7. The model compares IPP from the

pattern observed in the field (X}, w,(co)) to IPP from the hypothetical patterns (X}, w,(f h.
The complete design matrix of IPP comparisons from all plots, (X' w() — X' w(®), is of
size (M x I): the number of rows is equal to the total number M of hypothetical pat-
terns in all plots (M = )", M;), and the number of columns corresponds to the number
of IPQ variables I. The likelihood (Eq. 9 in Appendix) of the conditional probabilities
in (5) is used to obtain the maximum likelihood estimates of 3; in this particular model,
the log likelihood of the null model, i.e. when 8 = 0, simplifies to a constant equal to

> e log(M, +1).

5.3 Example

As an example of how to adjust the original IPQ measurements according to the pat-
terns, we present a plot where quadrats 1, 2, 3, and 4 were recorded; the understory
species was observed in quadrats 1 and 3, and the following values of IPQ of Scots
pine and Norway spruce were obtained:

Quadrat Presence IPQ(pine) IPQ(spruce)
1 1 2 0

2 0 5 0
3 1 1 0
4 0 8 0

The influence potential of Norway spruce is zero since no trees of that species were
found in the plot. Here nj, = 4 and z; = 2, and so six patterns are possible. The matrix
of original IPQ measurements is the same for all patterns, but after it is multiplied by

the patterns w,(cj ), a different IPP is obtained for each as in Table 1. The matrix with the
differences between the controls and the case of IPP(pine) and IPP(spruce) becomes
the new design matrix for the conditional logistic regression.
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Table 1: Example: IPQ measurements are weighted by the pattern Wk) to obtain IPP. Y
indicates which pattern is a case (Y = 1)and which are controls (Y = 0).
IPQ(pine) IPQ(spruce) IPP(pine) IPP(spruce)
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5.4 (dds ratio

In logistic regression, an important measure is the odds p/(1 — p), i.e. the relation be-
tween the probability of success and the probability of failure. The odds ratio

pi/(1—p1)
po/(1 = po)
compares the odds of two events with probabilities of success py, and p; (Woodward
1999).

In a conditional logistic model with all covariates fixed except IPP;, the odds ratio
is calculated as

¥ =

U, = exp [((IPPi 1) - IPP1-> m] .

From this follows that exp(/3;) can be interpreted as the odds ratio when IPP; in-
creases by one unit and all other covariates are kept constant. In other words, it in-
dicates how much more likely a pattern with IPP; + 1 is relative to a pattern that has
IPP;. This is often more interesting and useful than estimating the actual probability

P(w,(cj ) | 2k, ni), because it gives information on the effect of the covariate on the odds
of the studied event.

Furthermore, the odds ratio exp(f;) also applies to the unconditional probabilities,
since the coefficients in the conditional model in (5) are the same as those in the un-
conditional model in (2) (see section 7 on derivation of the model). This means that
the interpretation of the effect of a covariate is valid both in terms of IPP and of IPQ.

6 Application

The conditional logistic regression was applied to the study of the presence of Vac-
cinium vitis-idaea L., and of Calamagrostis arundinacea L.. For the analysis, a homoge-
neous subset of plots was selected, consisting of those plots with only one tree stand
and with all quadrats situated on mineral soils. As covariates, the influence potential
of Scots pine, Norway spruce, and birch (hairy and silver birch) were analyzed; these
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tree species represented the dominating species in the study area. The IPQ measure-
ments were corrected for edge-effects; see Kithlmann-Berenzon (2002) for details on
the method.

For each understory species, only those plots where 0 < z; < nj were used, since
otherwise there is only one possible pattern. The analysis was carried out with the
statistical package R v. 1.4.1 (Ihaka and Gentelman 1996), using the package survival
v. 2.8-2, which contains a function for fitting conditional logistic model. When using
this software, it is not necessary to calculate the covariate matrix explicitly; instead it
suffices to provide the IPP and Y columns as in the Table 1, where Y indicates whether
the pattern is a case (Y = 1) or a control (Y = 0). Alternatively, the Newton-Raphson
algorithm may be used to find the estimates; the likelihood and the first and second
derivatives are provided in the Appendix for this purpose.

Before carrying out the analysis, the likelihood for the model including IPQ of Noz-
way spruce, Scots pine, and birch was numerically maximized in order to obtain the
optimal value of the cr for each species. With these given cr, further analysis were
carried out. In general, the distributions of IPQ were highly negatively skewed, and
logarithms did not normalize the observations.

The goodness of fit of the models was tested with the likelihood ratio test at the 5%
level of significance. Main effects were first included, and subsequently interactions.
Residual plots were also used to check for outliers, in particular Pearson residuals
(Hosmer and Lemeshow 1989; Collett 1991), and the delta-beta graphs of Pregibon
(1984); the latter show the change in the estimate of a coefficient when a complete
stratum is ignored. No particular outliers were observed in any of the cases.

6.1 Vaccinium vitis idaea

According to Reinikainen et al. (2000), V. vitis idaea, known as cowberry, is one of the
most frequent field layer species, and it is most abundant on relatively dry and poor
sites with open canopy. Older Scots pine stand are known to be preferred habitat type
for this berry.

From the 3009 plots contained in the database, only 211 plots fulfilled the criteria
for the analysis, i.e. one tree stand, all quadrats located in mineral soils, and the berry
present in at least one quadrat, but not in all the quadrats of the plot. In these plots,
98% of the recorded trees were Norway spruce, Scots pine or birch; some relevant
additional statistics are given in Table 2.

Table 2: Vaccinium vitis-idaea: Mean (st.dev.) number of trees per plot, DBH per tree, and IPP
with optimal cp in observed and hypothetical patterns; and influence range based on optimal

Cr.
Tree Species

Pine Spruce Birch
Number of trees per plot 853 (6.26) 6.18 (5.24) 3.08 (2.48)
DBH of tree (cm) 1733 (5.97) 16.83 (5.59) 14.38 (4.25)
Influence range (m) 1.11 6.28 3.45
IPP(Observed) 0.448 (1.75) 5.315 (10.37) 1.057 (3.49)
IPP(Hypothetical) 0.743 (2.63) 6.071 (12.38) 1.042 (3.82)

10



The optimal ¢y for Scots pine, Norway spruce, and birch were 0.27, 8.56, and 2.58.
Additional 768 hypothetical patterns were possible to construct. The mean and stan-
dard deviation of IPP for observed and hypothetical patterns according to tree species
is shown in Table 2. Although there was a larger number of Scots pine trees and their
mean size was also larger, its mean IPP was relatively low. The reason was the small
cr: at 0.27 it corresponds to a range of influence of 1.11 m, i.e. Scots pine trees located
further than 1.11 m away from the quadrat had virtually no influence on the cowberry
in the quadrat; for Norway spruce, the corresponding range was 6.28 m, and for birch,
3.45 m.

The most parsimonious model, with a log likelihood -309.15 (log likelihood of null
model = -314.68), included the influence potential of Scots pine and Norway spruce.
The estimated odds ratio indicate that with every increase of one unit in IPP of Scots
pine, the odds of finding cowberry decreased 10.5%; in the case of Norway spruce, the
decrease in the odds was of 3.7% (Table 3).

Table 3: Vaccinium vitis-idaea: Estimates, standard errors, odds ratio, and 95% confidence
interval of odds ratio for IPP(pine) and IPP(spruce).

Coef. s.e.(coef) Oddsratio 95% CI Odds ratio

IPP(Pine) _ -0.1107 _ 0.0510 0.895 (0.810; 0.989)
IPP(Spruce) -0.0375  0.0167 0.963 (0.932; 0.995)

6.2 Calamagrostis arundinacea

Calamagrostis arundinacea is a type of reed grass abundant only in southern Finland
and known to be frequent on relatively humid site types. This grass is most abundant
in young stands, and its abundance decreases by stand age.

For the analysis of C. arundinacea, 236 plots were used. The dominating tree species
in terms of number of trees per plot was Norway spruce, with an average of more
than 10 trees per plot (Table 4). The optimal cr for Scots pine, Norway spruce, and
birch were 0.07, 9.10, and 0.15, and the corresponding influence ranges were 0.57 m,
6.48 m, and 0.83 m. Norway spruce, additional to being the dominating species, also
had the widest influence range, which was reflected in the large means of IPP for
both observed and hypothetical patterns (Table 4). The design matrix included 236
observed cases and 1003 hypothetical controls.

The best possible model included only IPP of Norway spruce as significant covari-
ate (B = —0.0233, s.e.(B) = 0.00691); the log likelihood of the model was -362.29, and
of the null model, -368.23. As the estimated coefficient was negative, this meant that
an increase of one unit in IPP (or IPQ) of Norway spruce led to a decrease by 0.977 in
the odds ratio, with a 95% confidence interval of (0.964,0.990).

7 Derivation of the conditional logistic model for PSP

Model (2) is not appropriate for studying the local-scale effects of IPQ on the presence
of understory species, since the large-scale effects dominate and are not completely
11



Table 4: Calamagrostis arundinacea: Mean (st.dev.) number of trees per plot, DBH per tree,
optimal cr, and IPP with optimal cr in observed and hypothetical patterns; and influence range
based on optimal cr.

Tree Species

Pine Spruce Birch
Number of trees per plot 844 (7.94) 1028 (6.83) 3.78 (3.19)
DBH (cm) 1942 (7.48) 1879 (6.95) 18.40 (6.95)
Influence range (m) 0.57 6.48 0.83
[PP(Observed) 0.168 (1.38) 25.112 (34.16) 0.041 (0.52)
IPP(Hypothetical) 0.175 (1.22) 33.051 (39.03) 0.066 (0.68)

known. For simplicity, we will assume that a; includes all large-scale factors, both
those that can be specified and those that cannot, and proceed to derive in detail the
conditional logistic model for the problem.

7.1 The modeling object

Since the large-scale factors are nuisance variables, and they affect at a plot level, then
the strata for the conditional logistic model must consist of plots. One possibility is to
model the set of quadrats in the plot wy as in (3), instead of the quadrats individually.

7.2 The conditioning event

The conditioning event must also be subject to the same large-scale factors as wy.
Given that a species is prone to grow in warmer areas, we would expect the number
of quadrats where the species was present to be greater in the south than in the north;
similar arguments can be used for any other condition. This provides us with an event
that is also subject to large-scale factors, namely, the number of quadrats where the
species was present. This event, denoted by z, can be applied plot-wise, and in fact,

ng
2= Wk (6)
g=1

7.3 The matched stratum

With the modeling object w; and the conditioning event 2, it is possible to construct
the different patterns of wy, where all patterns have the same n; and z;; ny, must also
be considered, since otherwise z; is expected to increase or decrease depending on the
number of measured quadrats. In the matched case-control terminology, the case is the
pattern w;, observed in the field, while the controls are all other patterns, and together
they build one stratum. If the species is present in all or absent in all the quadrats
of a plot, then only one pattern is possible, i.e. the observed one, and in that case no
valuable information is obtained from that plot, thus such cases are excluded from the
analysis.
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7.4 The probabilities

Using the logistic model (2), the probability of presence or absence of an understory
species in a quadrat, can be written as

exp |w(ag + x}cqﬂ)]
1 +exp(a; + X, B)’

where w may be 0 or 1 to indicate absence or presence. By assuming independence
among the quadrats, the probability of the pattern wy, is obtained from the probabilities
of the individual quadrats as

P(qu = w)

Ng

P(w) = []P(wk)

g=1
nk eXp [wkq(ak + xjcq,['])]

1+ exp(ax + x;,8) @

q=1

Furthermore, by Eq. 6, the probability of z; is based on those patterns wy, that have
ny and z;. The set containing those patterns is denoted by

N
A, = {j : Zw,(ch) =zk,j=0,...,Mk}.
qg=1

From Eq.(7) for each pattern, the probability of observing the understory in z; out
of ny quadrats is calculated as

P(Zy=2) = ZP(WI(CJ'))

€Az,

"k exp [w,(c?(ak + x3,,8)

- Z H 1 + exp(ay, + x;,,8)

jeAZk q:1

(8)

7.5 The conditional probability

The conditional probability of wy, given zj, and ny is obtained by combining equations
Egs. (7) and (8) in

an exp |:w’(c?1) (ak—{—x;cqﬂ)]
q=1 1+exp (ak+x96q;8)
e exp |:w](c]q) (a,k +x’kq,8)i|
ZjEAzk Hq:1 1+exp (ak-l—x;cq,B)
This represents the probability of the observed pattern in relation to the probability
of all possible patterns with the same number n; of measured quadrats and the same

number of occurrences zj, of the understory species.
13

P(WI(CO) ‘ zk,nk) =




With further simplifications (see Appendix), the conditional probability may be
expressed as

12, exp (w2 18)
My 117k (4)
ijo Hq:l exp (wkq chqIB>

My . !
= i+ o]t - et 5] |
j=1

The advantage of this approach is that the large-scale factor a; affecting the plot
is canceled out. This is possible because all patterns in a plot, both observed and
unobserved, are subject to the same large-scale effects a;, and because they all have
the same number of 0’s and 1’s as specified in (6).

Pw | z,my) =

-1

8 Discussion

Our objective was to study the presence of an understory vegetation species as a func-
tion of the surrounding trees. The effect of the trees was measured using the influence
potential on a quadrat IPQ, which took into account both the characteristics of the
individual trees as well as the spatial pattern of the stand. Since the data was col-
lected in an extensive study area, the measurements on the presence of the understory
species reflected large-scale factors as well as local-scale effects. In order to isolate
the local-scale effects measured by IPQ, we derived a model that was conditioned on
the large-scale factors and which resulted in a conditional logistic model or matched
case-control model. Consequently, the model fulfilled the two criteria required by the
problem: it modeled the presence of the understory species, and it concentrated on the
local-scale effects, avoiding the large-scale factors.

In this application, the event of interest was not the presence of the understory
species in an individual quadrat, but rather the pattern observed in the quadrats of the
plot in terms of the presence and absence. Hypothetical patterns were subsequently
created by considering all other possible patterns with the same number of quadrats
and occurrences. The patterns were also used to adjust the IPQ measurements ac-
cordingly: the influence potential of the pattern IPP represented the total sum of IPQ
weighted by the pattern. The regression model then compared the hypothetical pat-
terns to the observed pattern in terms of the IPP covariates. The advantage of this
approach lies on the fact that specification of large-scale factors is not required, since
the factors shared by the cases and the controls are canceled.

Shifting the event of interest from the presence of the understory species on a
quadrat to the pattern was not important when the results were interpreted in terms of
the odds ratio. The relative change in the odds ratio due to the effect of a tree species
was the same in terms of IPQ and IPP, since the coefficients in the conditional and the
unconditional logistic models are the same.

The results obtained from analyzing V. vitis-idaea showed that an increasing influ-
ence of Scots pine and Norway spruce decreased the odds of finding cowberry in the
forest. In other words, the greater the presence of Scots pine and Norway spruce, the
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less cowberry is likely to be found in the forest. In the case of the grass C. arundinacea,
an increasing influence of Norway spruce also caused a decrease in the odds ratio.
These results coincide with previous ecological knowledge regarding the habitat of
these species, i.e. that they require light conditions and poor soils most often related to
Scots pine and Norway spruce.

The main assumption of the model presented is that the quadrats within a plot are
independent, or independent given the covariates if these are random. This assump-
tion, of course, may be questioned for the current problem. An alternative possibility
is to use random effects that would account for the correlation among the quadrats, as

done by Chowdhury and McGilchrist (2001).
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9 Appendix: Formulas for conditional logistic model

9.1 Simplification and matrix notation

P(wi | 2,m) =
[15%, exp [w,(cg) (a + x}cqﬂ)} [I;5, 1 +exp (ak + x}cqﬂ)
[T 1+ exp(ax +x,8) 3% [Tk, exp[wfl (o + %,8)]
Hq exp <w,(£1) ak> Hq exp (w,(;;)xﬁcq,é’)
> [H exp (w,(fq)ak) [1,exp (w,(ch)xjcqﬂﬂ
exp <ak > w,(cq)> [1,exp (w,(;;)xﬁcqﬁ)
> [exp (ak > w,(ch)) [1,exp (w,(fq)xgcqﬂ)]
exp(ax 2x) [, exp (w,(c?]) x}cqﬂ)
> [eXP(ak z) [ 1, exp (w;(c{;) Xfcqﬂ) }
[15%, exp (w,ﬁ?x}cqﬂ>
S Tt exp (wfh)x),8)
exp (Z:il w,(;;)x;cqﬂ)
Z;'wzko €xp (qul wl(cjg'{) X3 )

o)
e (v
-1
_ Wi X )’
= {1 + ;eprX 7 — X wy ),B}} )

9.2 Likelihood

Assuming that the plots are independent:
-1
L= H{l—i—Zexp[(Xﬁcwk - X w”) ﬂ]} . 9)

9.3 First derivative

(X, represents the matrix of covariates and patterns of plot k; x;; the column vector of
covariate ¢ for plot k; [ = log L).

16



. ! .
Zjﬂiﬁ exp[(X;CW](CJ) - X;cwl(c())> IB:| . (X;ciw(J) - X;ciwl(c()))

a
oB; Z 14+ Z;V[:kl exp [(chwl(cj) - XZ“’I@)%}

k

9.4 Second derivative

2l
9Bi0fm

. !

{zexp [(Kw - Xwl”) B (i — xpwi”)

j:
M, ,
3 oo (3 31?) ] (st i?) -
7=1

!

v exp| (Xpwl? = Xiwi”) 8] (xwl = x,wl”) (xuwi? = x4, w1 )
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