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Abstract

We consider the volume fraction of two random models of non-intersecting
grains: the intact grains of Matheron’s “dead leaves” model, and a generali-
sation of one of Matérn’s hard-core processes. In both models the grains are
supposed to have a fixed, convex shape, while the sizes and orientations may
be random. The focus is on how the shape of the grains affects the volume
fraction. In particular, we show that for grains of a fixed shape and orienta-
tion, centrally symmetric sets give the highest volume fraction, while simplices
give the lowest. If the grains are randomly rotated, then the volume fraction
achieves its highest value only for spheres, and the lower bound of the volume
fraction is zero.
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1 Introduction

Models for random patterns of non-intersecting grains are of importance in
many areas, such as material sciences, forestry, physics and chemistry. The
grains can, for instance, represent inhomogeneities in a material, or trees in a
forest. Spherical grains are obviously an important special case.

One kind of random models for non-intersecting spheres are the so-called
hard-core point processes. In these models the constituent points are not al-
lowed to lie closer than some minimum distance D. By regarding the points
as centres of spheres with the diameter D, we can interpret hard-core point
processes as models for random patterns of non-intersecting spheres with fixed
radii.

In a forestry context, Matérn (1960) introduced two hard-core point pro-
cesses. These processes are obtained in two steps. First a stationary Poisson
point process is generated. Then the point pattern is thinned so that no points
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are closer than the minimal distance D. To obtain Matérn’s first model every
point with its nearest neighbour closer than D is excluded. In the second model,
referred to as Matérn’s hard-core model in the sequel, weights are independently
assigned to the points according to a uniform distribution over (0,1). A point
is then kept if there is no other point with a lower weight within the distance
D.

In Stoyan and Stoyan (1985), Matérn’s hard-core model is generalised by
letting random, independent radii be associated with the points of the Poisson
process. A point in x with the radius rx is then retained if there is no other
point with lower weight within distance rx. If the radii are fixed, this process
coincides with Matérn’s hard-core model, in which the associated spheres are
non-intersecting. However, if the radii are random, then spheres may intersect.

In Månsson and Rudemo (2002), the sphere-process associated with Matérn’s
hard-core model is generalised from fixed-sized spheres to convex grains of pos-
sibly varying sizes and orientations. Furthermore, the weights are allowed to
have a more general distribution, and possibly depend on the sizes of the corre-
sponding grains. In the case of spherical grains of a fixed radius and continuous
weight distribution, this model also coincides with Matérn’s hard-core model.
In contrast to the generalisation by Stoyan and Stoyan (1985), the resulting
process now consists of non-intersecting grains, also when the sizes are random.

Another model closely related to Matérn’s hard-core model is the dead leaves
model introduced by Matheron (1968). The dead leaves model is mostly de-
scribed in two dimensions; one can think of random leaves falling to the ground
from time −∞ to 0. The intact leaves are then the leaves which are intact at
time zero, when you look from above. A proper description of this model is
given in Section 2.

In a material science context a model for non-intersecting spheres was pro-
posed by Stienen (1982). In his model, each point of a stationary Poisson pro-
cess is the centre of a sphere with diameter equal to the distance to its closest
neighbour. In a related model, the dynamic lily-pond model (see Häggström
and Meester (1996)), let spheres grow radially at the points of a stationary
Poisson process at unit speed until they meet another sphere. The union of the
spheres of the Stienen model is a subset of the spheres of the lily-pond model, if
one starts with the same Poisson process. Note that in neither of these process
one can control the radius distribution of the spheres; it is determined by the
underlying Poisson process.

Another type of model is the random sequential adsorption model, RSA,
or simple sequential inhibition model, SSI. Grains are placed sequentially and
randomly in a bounded region. Only grains which do not intersect any of the
previous ones are retained. There are also versions of this model for unbounded
regions. See the review papers by Evans (1993) and Talbot, Tarjus, Van Tassel
and Viot (2000). Yet another process for non-intersecting spheres, of possibly
random sizes, is the Poisson hard-core model, which is a kind of Gibbs process,
see Mase, Møller, Stoyan, Waagepetersen and Döge (2001).

In any model where random, closed grains are placed at the points of some
d-dimensional point process, the union of all grains can be considered a random
closed subset of Rd. The volume fraction of this union set Ξ, is in the stationary
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case defined by ρ = E(ld(Ξ ∩ [0, 1]d)) = Pr(o ∈ Ξ), where o denotes the origin
and ld denotes the d-dimensional Lebesgue measure. If the grains are non-
intersecting, the volume fraction can be written as

ρ = λV , (1.1)

where λ is the intensity of the points and V denotes the mean volume of a
typical grain. The size of a convex grain K ⊂ Rd we measure by D(K)/2,
where

D(K) = sup
x,y∈K

|x− y|.

is the diameter of A. Note that for a sphere, the size equals the radius.
The main aim of this paper is to present results for the volume fraction of

one of the models introduced in Månsson and Rudemo (2002), referred to as
Model I here, and of the intact grains of the dead leaves model. The results are
first derived for Model I. It turns out that, asymptotically, Model I coincides
with the intact grains of the dead leaves model, so that results for the intact
grains model follow directly from results for Model I. The grains all have the
same convex shape, but are of possibly varying sizes and orientations. The focus
is on how the volume fraction depends on the shape of the grains. Furthermore,
we derive the distribution of the sizes of the grains, given the original, so-called
proposal, distribution. Many ideas and some results in the present paper come
from Månsson and Rudemo (2002).

The plan of the paper is as follows. In Section 2, the two models of concern
here are presented, and it is shown that Model I equals a finite version of the
dead leaves model. The technique which is used to derive the volume fraction
is illustrated by two examples in Section 3, and the notation is introduced in
Section 4. After that the volume fraction and size distribution are derived for
varying-sized convex grains of fixed or random orientations. In Section 5, Model
I is dealt with, while Section 6 discusses the dead leaves model. In Section 6
we also show which shapes are extreme, in the sense of producing models with
the lowest and highest possible volume fraction among the convex grains, and
we look more carefully at some examples when the sizes are fixed. The paper
ends with some concluding remarks.

2 The models

2.1 The dead leaves model

The original dead leaves model was introduced by Matheron (1968) and is a
random tessellation of the space, as well as a model for non-intersecting sets.
It can be defined as follows. Consider a stationary Poisson process {(xi, ti)}
with unit intensity in Rd× (−∞, 0]. Interpret ti as the arrival time of the point
xi ∈ Rd. Let d-dimensional possibly random, compact grains be implanted at
the points xi sequentially in time, so that a new grain deletes portions of the
“older” ones. At time t = 0 the space Rd is completely occupied, and the grains
which are not completely deleted constitute a tessellation of Rd which is called
the dead leaves model.
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The grains which are intact, that is not intersected by any later ones, con-
stitute a model of non-intersecting grains. This model we refer to as the intact
grains of the dead leaves model or, for short, the intact grains model (IGM).
Note that the union of the intact grains constitute a random closed set in Rd.

A finite version of the dead leaves model is constructed as above, but with
a finite time interval. Let the corresponding intact grains model be referred
to as the finite intact grains model (FIGM), and denote the grains of a FIGM
with the time interval restricted to [−T, 0] by ΨT . Letting Ψi, i = 1, 2, . . ., be
based on the same Poisson process, it follows that Ψi ⊂ Ψi+1, and the limiting
random set ∪∞i=1Ψi equals the intact grains of the IGM.

The dead leaves model and generalisations of it, for instance the colour dead
leaves, are studied in a number of papers by Jeulin, see e.g. Jeulin (1997). Re-
sults on the intensity and size distribution of the intact grains may be found
in Jeulin (1989). In Stoyan and Schlater (2000) the dead leaves model is con-
structed in an alternative way, which is useful when comparing with Matérn’s
hard-core model, and with the RSA model.

2.2 Model I

This model was already introduced in Section 1 as a generalisation of Matérn’s
hard-core model by Månsson and Rudemo (2002). It is constructed in two steps
as follows:

1. In the first step we generate a Poisson process with constant intensity in
Rd. At the points of this process independent grains of a given shape, but
possibly of random size and orientation, are implanted. Furthermore, to
each grain a weight is given, according to a uniform distribution on (0, 1).
The weights are independent of each other and of everything else.

2. In the second step we thin the process by letting all pairs of grains which
intersect ’compete’. A grain is kept if it has the higher weight in all
pairwise comparisons.

The resulting process consists of non-intersecting grains, and we refer to it as
Model I. Obviously the intensity after thinning is lower than the intensity before
thinning. Furthermore, the size distribution of the grains has changed and the
sizes and orientations are no longer independent. We will come back to these
issues later.

The original Poisson process together with the grains can be seen as a pro-
posal model. In accordance with this, we let λpr and Fpr denote the proposal
intensity and proposal distribution function of the sizes of the grains, respec-
tively, before thinning. The intensity measure and distribution function of the
sizes in Model I, will be denoted by λth and Fth, respectively.

2.3 The relation between Model I and the FIGM

In the constructions of Model I and of the FIGM, the following processes are
used:
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Model I: A Poisson process with intensity λpr in Rd, with independent and
identically distributed d-dimensional grains of a given shape, but possibly of
random size and orientation, implanted at the points. Associated to the points
are independent weights, uniformly distributed on (0, 1).

FIGM: A Poisson process in Rd×[−T, 0], where the last coordinates are con-
sidered time instances, and with d-dimensional grains distributed as in Model
I, implanted at the points in Rd.

First note that the weight distribution in the construction of Model I need
not be uniform on (0, 1); it can be replaced by any other continuous distribution,
since it is only the order of the weights which is of importance, not their actual
values. Now let λpr = T , and let the weights be uniformly distributed on [−T, 0]
in Model I. Then the points of the original Poisson process together with the
weights can be regarded as a Poisson process in Rd× [−T, 0] with unit intensity,
which coincides with the Poisson process used to construct the FIGM. Since
high weights in Model I correspond to late arrivals in FIGM, the grains which
are retained in the thinning step in Model I equal the intact ones in the FIGM.
This means that results concerning Model I with λpr = T also hold for the
FIGM with the time interval [−T, 0].

Results for Model I, and thus also for the FIGM, can now be used to achieve
results for the infinite IGM. For instance, the volume fraction of the IGM is
achieved by letting λpr = T → ∞ in the volume fraction of Model I (see
Theorems 5.4 and 5.5). This can be described as follows: Let Ei denote the
event that the origin belongs to Ψi. Then the volume fraction of Ψi is ρ =
P (o ∈ Ψi) = P (Ei). If the origin belongs to Ψi, then it also belongs to Ψj ,
j > i, so that Ei, i = 1, 2, . . . is an increasing sequence with ∪∞i=1Ei = {the
origin belongs to the IGM}. It follows that P (Ei) tends to the volume fraction
of the IGM.

3 Two illustrating examples

Consider a stationary point process Φ with intensity λpr. As is common in the
literature, we will here use the term typical point of Φ. The probability of an
event involving a typical point is calculated by means of the Palm distribution
Po (see Stoyan, Kendall and Mecke (1995)). By a typical grain we mean a grain
at a typical point. Assume that Φ is thinned, and that pret is the probability
that a typical point is retained. Then the intensity of the thinned process Φth

is

λth = λprpret. (3.2)

In Model I

pret =
∫ 1

0

∫ ∞

0
pret(r, w)dFpr(r) dw,

where pret(r, w) is the probability that a typical point with weight w and as-
sociated grain of size r is retained in the thinning. Recall that a point and its
associated grain are retained if they “win”, that is have the higher weight, over
all intersecting grains.
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To illustrate how the intensity and volume fraction can be derived for Model
I and the intact grains in the dead leaves model, we start by two examples.

Example 3.1. Discs in R2 with fixed radius r0.

1. Consider a typical point at the origin with weight w, which we denote by
[o, w]. The points which win over [o, w] are those which lie in the disc
with the radius 2r0, centred at the origin, and have a weight which is
higher than w. The number of such points is Poisson distributed with the
parameter λpr(1 − w)4πr2

0. If no points beat [o, w], it is retained, which
thus happens with the probability pret(r0, w) = exp{−λpr(1− w)4πr2

0}.

2. By integrating over the weight, the retaining probability of a typical point
follows:

pret =
∫ 1

0
pret(r0, w) =

1− exp{−λpr4πr2
0}

λpr4πr2
0

.

By (3.2), the intensity of the point process after thinning, Model I, is

λth =
1− exp{−λpr4πr2

0}
4πr2

0

.

Since all discs have the radius r0, the mean area is V = πr2
0, and, by (1.1),

the volume fraction of Model I is

ρ = λthπr2
0 =

1− exp{−λpr4πr2
0}

4
.

3. By letting λpr → ∞, it follows that the intensity of the intact discs in
the dead leaves model is λig = (4πr2

0)
−1, and that the volume fraction is

ρ = λigπr2
0 = 1/4.

�

Example 3.2. Let K ⊂ R2 be a triangle of fixed size and orientation. As in
the above example we consider a typical point [o, w]. The points which win
over the typical point are those which have a weight which is higher than w,
and lie in the set {x ∈ R2 : K ∩ (K + {x}) 6= ∅}. This set is a polygon with six
edges which has area 6l2(K). This is easily seen by drawing a picture, or by
using (4.3) and (4.5) below. Continuing as in the above example we get

λth =
1− exp{−λpr6l2(K)}

6l2(K)
and ρ =

1− exp{−λpr6l2(K)}
6

,

for Model I. It follows that in the IGM the intensity is λig = (6l2(K))−1 and
that the volume fraction is ρ = 1/6. �

Note that the intensities of the IGMs, when the grains are discs and triangles
with fixed size and orientation, are (4l2(K))−1 and (6l2(K))−1, respectively,
and the volume fractions are 1/4 and 1/6, respectively. Hence it is the shape
and the volume of the grains which determine the intensity, while it is the shape
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which determines the volume fraction. As we will see later in (6.22), the above
examples are extremal in the sense that the intensity and volume fraction for
all other shapes of convex grains lie between those for discs and triangles.

The procedure in the above examples will be generalised to arbitrary convex
grains, higher dimensions, random sizes, and random orientations in Sections 5
and 6. Before that we need some more notation.

4 Notation and convex set theory

We will now introduce further notation and some necessary theory of convex
sets. Most of the concepts and results presented here can be found in Schneider
(1993).

As already introduced, ld denotes the d-dimensional Lebesgue measure and
o denotes the origin. Furthermore, let Bd(z, r) = {x ∈ Rd : |z − x| ≤ r} denote
the d-dimensional ball centred at z with radius r, and let κd = ld(Bd(o, 1)) be
the volume of the unit ball in Rd. Then rdκd is the volume of Bd(z, r). The
surface area of Bd(o, 1) is denoted by ωd.

For K, L ⊂ Rd and c ∈ R the Minkowski sum and scalar multiple are defined
as

K ⊕ L = {x + y : x ∈ K, y ∈ L} and cK = {cx : x ∈ K},

respectively. If c = −1 we get Ǩ = {−x : x ∈ K}, which we call the reflected
set of K. For x ∈ Rd, K + {x} is the translate of K by x. If K = Ǩ + {x}
for some x ∈ Rd, K is said to be centrally symmetric. An alternative way of
writing the Minkowski sum is

K ⊕ L = {x ∈ Rd : K ∩ (Ľ + {x}) 6= ∅}. (4.3)

For the set xK⊕yL, where x, y ∈ R+ and K, L ⊂ Rd are non-empty convex
sets, the volume can be written as:

ld(xK ⊕ yL) =
d∑

i=0

(
d

i

)
xiyd−iVi,d−i(K, L), (4.4)

where Vi,d−i(K, L) = V (

i︷ ︸︸ ︷
K, . . . , K,

d−i︷ ︸︸ ︷
L, . . . , L) are the mixed volumes (areas in R2)

of K and L. Note the special cases Vd,0(K, L) = ld(K) and V0,d(K, L) = ld(L).
A set which is of special interest in the present paper is K ⊕ Ǩ = {x ∈ Rd :

K ∩ (K + {x}) 6= ∅}, which is called the difference body of K ⊂ Rd. If K is
convex, then

2dld(K) ≤ ld(K ⊕ Ǩ) ≤
(

2d

d

)
ld(K), (4.5)

where the lower bound is attained if and only if K is centrally symmetric, and
the upper bound is attained if and only if K is a simplex.

Furthermore, if K is a convex set, then

ld(K) ≤ Vi,d−i(K, Ǩ) ≤ dmin{i,d−i}ld(K), (4.6)
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with equality on the left-hand side iff K is centrally symmetric or i(d− i) = 0.
On the right-hand side, there is equality in dimension 2 and 3 if and only if K
is a triangle and a tetrahedron, respectively, or i(d − i) = 0. It is furthermore
conjectured by Godbersen (1938) and Makai jr. (1974) that

Vi,d−i(K, Ǩ) ≤
(

d

i

)
ld(K), (4.7)

with equality if and only if K is a simplex (see Schneider (1993) p.412). For
arbitrary polygons in R2 and R3, a simple formula for the mixed volumes can
be found in Eggleston (1963, p. 85). For polytopes in Rd, d ≥ 2, a formula is
given in Betke (1992).

Let Sd−1(K) denote the (d − 1)-dimensional surface area and b(K) the so-
called mean width of the convex set K ⊂ Rd. The mean width can be defined
as follows: For each line g through the origin, let g(K) denote the smallest
distance between two parallel hyperplanes perpendicular to g such that K is
in between them. Then b(K) is the average value of g(K) over all lines g. A
formula for the mean width of a general convex set can be found in Schneider
(1993) p. 42, while a formula for the mean width of a convex polytope K in R3

is given in Santaló (1976) p. 226:

b(K) =
1
4π

mK∑
i=1

(π − αi)li, (4.8)

where mK is the number of edges of K, li the lengths of the edges, and αi the
corresponding dihedral angles (i.e. the angles between adjacent sides).

Next, we introduce the so-called intrinsic volumes Vi(K), i = 1, . . . , d, for
compact, convex K ⊂ Rd,

Vi(K) =

(
d
i

)
κd−i

Vi,d−i(K, Bd(o, 1)). (4.9)

Note that V0 = 1 and that Vd is the volume. Furthermore 2Vd−1 = the surface
area and 2κd−1V1/ωd = the mean width.

Let Cd denote the family of compact, convex sets K with interior points in
Rd, such that o ∈ K and with the size D(K)/2 = 1. Furthermore, let K(z, r)
denote a set with the same shape as K, translated by z and with size r > 0,
that is K(z, r) = {ry + z : y ∈ K}, and ld(K(z, r)) = rdld(K). Note that if
K ∈ Cd, then K(o, 1) = K.

5 Volume fraction and size distribution of Model I

In Examples 3.1 and 3.2 we derived the volume fraction when the grains were
discs or triangles of fixed size and orientation. We will now generalise the
method used there to convex grains of the same shape as K ∈ Cd, of possibly
random size and orientation. By (1.1) and (3.2) the volume fraction of Model
I is

ρ = λthV th = λprpretV th, (5.10)
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where λpr is the proposal intensity, pret is the probability that a typical point
of the original point pattern and its associated grain is retained in the thinning
step, and V th denotes the mean volume of a typical grain after thinning. Letting
Fth denote the distribution function of the sizes of the grains after thinning, we
get

V th = ld(K)
∫ ∞

0
rdFth(dr), (5.11)

since ld(K(o, r)) = rdld(K(o, 1)) = rdld(K) for any r > 0, if K ∈ Cd. To
calculate the mean volume we thus need to derive Fth. The size of a grain after
thinning equals its size before thinning, given that it is retained. Hence the
distribution function is given by

Fth(r) = 1− 1
pret

∫ ∞

r
pret(s)Fpr(ds), (5.12)

where pret(s) is the probability that a typical grain of size s is retained, and

pret =
∫ ∞

0
pret(r) Fpr(dr). (5.13)

By (5.10) – (5.13) we note that we need pret and pret(s) to calculate the
volume fraction and the size distribution after thinning. The next step is thus
to derive these probabilities. This is done separately for the two different cases
of fixed and random orientations of the grains in the next two sections. In
Section 5.3 we return to the volume fraction and the size distribution after
thinning.

5.1 Retaining probability when the orientation of the grains is
fixed

As seen in Examples 3.1 and 3.2, the points which are possible “winners” over
a typical point at the origin lie in the set {x ∈ Rd : K ∩ (K + {x}) 6= ∅}, if
size and orientation of the grains are fixed. By (4.3) this set can be written
as K ⊕ Ǩ. In order to derive the retaining probability pret when the size is
random rather than fixed, we need to find the corresponding set for possible
winners over a typical grain of a given size r. Let Rpr be a random variable
with distribution Fpr. We introduce the notation Λfix(K, r) for the expected
volume of {x ∈ Rd : K(o, r) ∩ (K(o,Rpr) + {x}) 6= ∅} = K(o, r) ⊕ Ǩ(o,Rpr),
that is

Λfix(K, r) =
∫ ∞

0
ld(K(o, r)⊕ Ǩ(o, y))Fpr(dy)

=
d∑

i=0

(
d

i

)
riVi,d−i(K, Ǩ)E[Rd−i

pr ], (5.14)

where the equality follows by (4.4). If all grains have the size r0, then

Λfix(K, r0) = rd
0ld(K ⊕ Ǩ) = rd

0

d∑
i=0

(
d

i

)
Vi,d−i(K, Ǩ). (5.15)
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Lemma 5.1 Using the notation introduced above, the retaining probability for
a typical grain of size r, K(o, r) where K ∈ Cd, in the case where the orientation
of the grains is fixed, is given by

pret(r) =
1− exp{−λprΛfix(K, r)}

λprΛfix(K, r)
.

Proof. View the homogeneous Poisson process of points in Rd before thinning,
together with the sizes and the weights of the points, as an inhomogeneous
Poisson process in Rd×R+× [0, 1], with the intensity measure λpr dxFpr(dy) dz.

Let a typical point at the origin with associated grain of size r and weight
w be denoted by [o, r, w]. Recall that a point “wins” over [o, r, w] if its weight
is higher than w, and if its associated grain intersects K(o, r), that is if it lies
in the set

{x ∈ Rd : K(o, r) ∩K(x, y) 6= ∅} = K(o, r)⊕ Ǩ(o, y).

Since the points that win over [o, r, w] is the result of an independent thinning of
the original Poisson process, they constitute an inhomogeneous Poisson process
in Rd × R+ × [0, 1], whose intensity measure is

λpr1{w ≤ z}1{x ∈ K(o, r)⊕ Ǩ(o, y)} dx Fpr(dy)dz.

The total number of points of this process is Poisson distributed with the ex-
pectation

λpr

∫ ∞

0

∫
K(o,r)⊕Ǩ(o,y)

∫ 1

w
dz dxFpr(dy) = λpr(1− w)Λfix(K, r).

Since [o, r, w] is retained if no points beat it,

pret(r, w) = exp{−λpr(1− w)Λfix(K, r)},

and by integrating over the weight, we get the retaining probability of a typical
grain of size r at the origin:

pret(r) =
∫ 1

0
pret(r, w)dw

=
1− exp{−λprΛfix(K, r)}

λprΛfix(K, r)
.

5.2 Retaining probability when the grains are randomly ro-
tated

A rotation about the origin is a map m : Rd → Rd, which can be represented
in the form mx = Ax, x ∈ Rd, where A is an orthogonal matrix with detA=1.
Let SO(d) denote the group of rotations about the origin. By a uniformly
distributed rotation we mean an element from SO(d), chosen according to the
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Haar measure ν, with ν(SO(d)) = 1 (see e.g. Schneider and Wieacker (1993)
for details).

In this section we let the grains be rotated according to the uniform distri-
bution described above, and furthermore, the rotations are independent of each
other, the sizes of the grains and the positions. The expected volume of the
set where the possible winners over a typical point [o, r, w] can lie, when the
orientation and size is random, is∫ ∞

0

∫
SO(d)

ld({x ∈ Rd : K(o, r) ∩ (ϑK(x, y)) 6= ∅})ν(dϑ)Fpr(dy)

=
∫ ∞

0

∫
SO(d)

ld(K(o, r)⊕ ϑǨ(o, y))ν(dϑ)Fpr(dy)

=
∫ ∞

0

∫
SO(d)

ld(K(o, r)⊕ ϑK(o, y))ν(dϑ)Fpr(dy). (5.16)

Since the distribution ν is rotation invariant we can apply the generalised
Steiner formula (see eg. Weil and Wieacker (1993), p. 1407), from which it
immediately follows that∫

SO(d)
ld(K(o, r)⊕ ϑK(o, y))ν(dϑ) =

1
κd

d∑
k=0

κkκd−k(
d
k

) rkVk(K)yd−kVd−k(K).

(5.17)

Recall from Section 4 that κd is the volume of the d-dimensional unit ball, and
that Vi is the ith intrinsic volume, defined in (4.9). Letting Λrot(K, r) denote
this expected volume, we get by (5.16) and (5.17)

Λrot(K, r) =
∫ ∞

0

∫
SO(d)

ld(K(o, r)⊕ ϑK(o, y))ν(dϑ)Fpr(dy)

=
1
κd

d∑
k=0

κkκd−k(
d
k

) rkVk(K)E[Rd−k
pr ]Vd−k(K). (5.18)

If all grains have the size r0, then

Λrot(K, r0) = rd
0

∫
SO(d)

ld(K ⊕ ϑK)ν(dϑ)

=
rd
0

κd

d∑
k=0

κkκd−k(
d
k

) Vk(K)Vd−k(K). (5.19)

Note that Λrot(K, r) = Λfix(K, r) for spheres.

Lemma 5.2 Using the notation introduced above, the retaining probability for
a typical grain of size r, K(o, r) where K ∈ Cd, in the case where the grains are
independently and uniformly rotated, is given by

pret(r) =
1− exp{−λprΛrot(K, r)}

λprΛrot(K, r)
.

11



Proof. The proof of this lemma is identical to the proof of Lemma 5.1, where
the orientation was fixed, except for an adjustment which handles the random
rotations. Now the Poisson process of points which beat a typical point [o, r, w]
is defined on Rd × R+ × [0, 1]× SO(d), and has the intensity measure

λpr1{w ≤ z}1{x ∈ K(o, r)⊕ ϑK(o, y)} dx Fpr(dy) dz ν(dϑ),

with expected total number of points

λpr

∫ ∞

0

∫
SO(d)

∫
K(o,r)⊕ϑK(o,y)

∫ 1

w
dz dx ν(dϑ) Fpr(dy)

= λpr(1− w)
∫ ∞

0

∫
SO(d)

ld(K(o, r)⊕ ϑK(o, y)) ν(dϑ) Fpr(dy)

= λpr(1− w)Λrot(K, r).

Since the number of points that beat the typical one is Poisson distributed also
when the orientation is random, the proof proceeds as for Lemma 5.1.

5.3 Size distribution and volume fraction of Model I

Now we are able to state the main results for Model I, by combining results
from previous sections. We start to present the size distribution.

Theorem 5.3 Assume that the grains have the same shape as K ∈ Cd, and
let Λ(K, r) = Λfix(K, r) if the orientation is fixed, and Λ(K, r) = Λrot(K, r)
otherwise, where Λfix(K, r) and Λrot(K, r) are given by (5.14) and (5.18), re-
spectively. Then the size distribution of the grains in Model I is given by

Fth(r) = 1− k

∫ ∞

r

1− exp{−λprΛ(K, s)}
Λ(K, s)

Fpr(ds), (5.20)

where
k−1 =

∫ ∞

0

1− exp{−λprΛ(K, x)}
Λ(K, x)

Fpr(dx).

If the original size distribution is continuous with density fpr, then the dis-
tribution of the sizes in Model I is also continuous with density

fth(r) =
(1− exp{−λprΛ(K, r)})Λ(K, r)−1fpr(r)∫∞

0 (1− exp{−λprΛ(K, x)})Λ(K, x)−1fpr(x)dx
.

Proof. This result follows from (5.12), (5.13), Lemmas 5.1 and 5.2.

The above theorem gives the size distribution of the grains in Model I given
the proposal size distribution. However, when trying to fit this model to data,
it is natural to go the opposite way: for a desired size distribution of the final
process, one needs to find the proposal distribution. In general this is a much
more difficult task, and it seems hard to find an explicit expression for Fpr given
Fth. Instead we have to use some iterative method for computing Fpr from Fth.
One such method is described in Månsson and Rudemo (2002).

In the next two theorems we give the volume fractions for the cases of fixed
and random orientations.

12



Theorem 5.4 (i) Using the notation introduced above, the volume fraction of
Model I when the grains have the same shape and orientation as K ∈ Cd, is

ρ = V th

∫ ∞

0

1− exp{−λprΛfix(K, r)}
Λfix(K, r)

Fpr(dr),

where Λfix(K, r) is given by (5.14) and V th by (5.11).
(ii) If both the orientation and size of the grains are fixed, then

ρ =
ld(K)

ld(K ⊕ Ǩ)
(1− exp{−λprΛfix(K, r0)}),

where r0 is the size and Λfix is given by (5.15).

Proof. (i) The results follows directly by (5.10), (5.13) and Lemma 5.1.
(ii) For fixed size r0 the mean volume is V th = rd

0ld(K), which combined with
(5.15) and (i) gives the result.

Theorem 5.5 (i) Using the notation introduced above, the volume fraction of
Model I with uniformly and independently rotated grains of the same shape as
K ∈ Cd, is

ρ = V th

∫ ∞

0

1− exp{−λprΛrot(K, r)}
Λrot(K, r)

Fpr(dr),

where Λrot(K, r) is given by (5.18) and V th is given by (5.11).
(ii) In particular, for fixed size r0,

ρ =
ld(K)∫

SO(d) ld(K ⊕ ϑK)ν(dϑ)
(1− exp{−λprΛrot(K, r0)})

= ld(K)

(
1
κd

d∑
k=0

κkκd−k(
d
k

) Vk(K)Vd−k(K)

)−1

(1− exp{−λprΛrot(K, r0)}),

where Λrot is given by (5.19).

Proof. (i) Combining Lemma 5.2 with (5.10) and (5.13) gives the result.
(ii) Since V th = rd

0ld(K), the result follows by (i) and (5.19).

Remark 5.6. Since
ρ = λthV th,

it is clear that by the above theorems we also get λth, the intensity of Model I.
�

6 Intact grains of the dead leaves model

In this section we consider results for the IGM. However, we start by considering
the FIGM. Recall that in Section 2.3 we concluded that the intact grains in a
FIGM, based on a Poisson process restricted in time to the interval [−T, 0], ΨT ,
coincide with the grains of Model I with λpr = T . Hence we immediately have
results on the size distribution and volume fraction of the grains of the FIGMs.

Lemma 6.1 For a FIGM restricted to the time interval [−T, 0], ΨT , Theo-
rems 5.3, 5.4 and 5.5 hold if λpr is replaced by T .
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6.1 Size distribution of the intact grains

Recall from Section 2.1 that the limiting set ∪∞T=1ΨT equals the intact grains
of the dead leaves model. By Lemma 6.1 and Theorem 5.3 we thus get the size
distribution for the grains of the IGM directly, by letting λpr = T →∞.

Theorem 6.2 Assume that the grains have the same shape as K ∈ Cd, and
let Fig and Fpr denote the distribution function of the sizes of the grains in the
IGM and the original size distribution, respectively. Then

Fig(r) = 1−
∫∞
r Λ(K, s)−1Fpr(ds)∫∞
0 Λ(K, x)−1Fpr(dx)

,

where Λ(K, r) = Λfix(K, r) if the orientation is fixed, and Λ(K, r) = Λrot(K, r)
otherwise, where Λfix(K, r) and Λrot(K, r) are given by (5.14) and (5.18), re-
spectively.

If the original size distribution is continuous with density fpr, then the dis-
tribution of the sizes in the IGM is also continuous with density

fig(r) =
fpr(r)

Λ(K, r)
∫∞
0 Λ(K, x)−1fpr(x)dx

.

As is easy to believe, the probability for small grains to stay intact is larger
than that for large grains. This is illustrated by the following example.

Example 6.3. Consider a mixture model of discs with two different sizes, r1

and r2, where r2 = 2r1, and with the probability 1/2 for each size in the
original process. By Theorem 6.2 we get pig(r1) = 25/38 and pig(r2) = 13/38.
This example was considered in Månsson and Rudemo (2002), for an arbitrary
relation between the sizes of d-dimensional spheres. �

By (5.11) it follows that the mean volume for a typical grain of the IGM is

V ig = ld(K)
∫ ∞

0
rdFig(dr), (6.21)

where Fig is given by Theorem 6.2. Furthermore, if the original size distribution
is continuous with density fpr, then

V ig = ld(K)

∫∞
0 rdΛ(K, r)−1fpr(r)dr∫∞
0 Λ(K, x)−1fpr(x)dx

.

6.2 Volume fraction

The following theorem follows immediately from Theorems 5.4 and 5.5 by letting
λpr →∞.

Theorem 6.3 (i) Using the notation introduced above, the volume fraction in
the IGM with grains of the same shape and orientation as K ∈ Cd, is

14



ρ = V ig

∫ ∞

0
(Λfix(K, r))−1 Fpr(dr),

where V ig is given by (6.21) and Λfix is given by (5.14). In particular, if both
size and orientation are fixed, then

ρ =
ld(K)

ld(K ⊕ Ǩ)
=

ld(K)∑d
i=0

(
d
i

)
Vi,d−i(K, Ǩ)

.

(ii) The volume fraction in the IGM with independently and uniformly rotated
grains of the same shape as K ∈ Cd, is

ρ = V ig

∫ ∞

0
(Λrot(K, r))−1 Fpr(dr),

where Λrot is given by (5.18). In particular, for fixed size and random orienta-
tions

ρ = ld(K)

(∫
SO(d)

ld(K ⊕ ϑK)ν(dϑ)

)−1

= ld(K)

(
1
κd

d∑
k=0

κkκd−k(
d
k

) Vk(K)Vd−k(K)

)−1

.

Example 6.4. In Example 6.3 a mixture model with discs of two sizes was
introduced. By Theorem 6.3 (i) we get the volume fraction ρ = 75053/255035 ≈
0.294. Note that this is higher than 1/4, which is the volume fraction in the
case of a fixed size of the discs (Example 3.1). �

6.3 Bounds on the volume fraction

As was remarked after Example 3.2, the intensity and volume fraction depend on
the shape of the grains; for instance the volume fraction is higher for discs than
for triangles of a fixed size and orientation. In the formulas in Theorem 6.3 it
can be seen that the volume fraction depends on the shape through the mixed
volumes if the orientation is fixed. If the orientations are random, it is the
intrinsic volumes rather than the mixed volumes which involve the shape.

Fixed orientation

We will now use the inequalities concerning mixed volumes in Section 4 to give
upper and lower bounds on the volume fraction.

Corollary 6.4 (i) Let the grains have the same shape and orientation as K ∈
Cd, and let Rig and Rpr be random variables with distribution functions Fig
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and Fpr, respectively. Then the volume fraction in the IGM has the following
bounds:

ρ ≥ E[Rd
ig]
∫ ∞

0

(
d∑

i=0

(
d

i

)
ridmin{i,d−i}E[Rd−i

pr ]

)−1

Fpr(dr),

ρ ≤ E[Rd
ig]
∫ ∞

0

(
d∑

i=0

(
d

i

)
riE[Rd−i

pr ]

)−1

Fpr(dr),

where the upper bound is attained if and only if K is centrally symmetric. In
d = 2 and d = 3 the lower bound is attained if and only if K is a triangle and
a tetrahedron, respectively. Furthermore, if the conjectured inequality (4.7) is
true, then

ρ ≥ E[Rd
ig]
∫ ∞

0

(
d∑

i=0

(
d

i

)2

riE[Rd−i
pr ]

)−1

Fpr(dr),

with equality if and only if K is a simplex.
(ii) If both size and orientation are fixed, then the volume fraction in the IGM
has the following bounds:

1(
2d
d

) ≤ ρ ≤ 1
2d

, (6.22)

where the upper bound is attained if and only if K is centrally symmetric, and
the lower bound is attained if and only if K is a simplex.

Proof. (i) Follows from Theorem 6.3, (4.6) and (4.7).
(ii) Follows from Theorem 6.3 and (4.5).

Random orientations

Now we present upper bounds on the volume fraction when the orientations
of the grains are random. The lower bound is zero, which can be motivated
as follows. If the size is fixed, the volume fraction in two dimensions is, by
Theorem 6.3,

ρ =
l2(K)

l2(K)2 + S1(K)2/(2π)
, (6.23)

where S1(K) denotes the perimeter of K. Think of a triangle of a fixed area.
The more the triangle is stretched out in one direction, while keeping the area
fixed, the larger is the perimeter, and hence, by (6.23), the closer to 0 is the
volume fraction.

Corollary 6.5 (i) Using the notation introduced above, the volume fraction for
the IGM with independently and uniformly rotated grains of the same shape as
K ∈ Cd, is

ρ ≤ E[Rd
ig]
∫ ∞

0

(
d∑

i=0

(
d

i

)
riE[Rd−i

pr ]

)−1

Fpr(dr),
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with equality if and only if K is a sphere.
(ii) If the size is fixed and the orientations are random, then

ρ ≤ 1/2d,

with equality if and only if K is a sphere.

Proof. (i) From the Brunn-Minkowski theorem it follows that

ld({x : K(o, r) ∩ ϑK(x, y) 6= ∅}) ≥ (r + y)dld(K),

with equality if and only if K and ϑ(Ǩ) are translates. Hence∫ ∞

0

∫
SO(d)

ld({x : K(o, r) ∩ ϑ(K)(x, y) 6= ∅})ν(dϑ)Fpr(dy)

≥
∫ ∞

0
(r + y)dld(K)Fpr(dy)

= ld(K)
d∑

i=0

(
d

i

)
riE[Rd−i

pr ],

with equality if and only if K is a sphere, since K and ϑ(Ǩ) are translates for
all ϑ ∈ SO(d) if and only if K is a sphere. By Theorem 6.3 and (5.18), the
result in (i) follows.
(ii) Follows immediately from (i).

Contrary to the case of fixed orientations, the centrally symmetric sets do not
all behave in the same way now – here spheres are the only sets for which
the upper bound of the volume fraction is attained. Furthermore, all triangles
and tetrahedra do not give the same volume fraction when the orientations are
random.

6.4 Discs, triangles and other extremal sets

Finally, we calculate the volume fraction for the IGM with fixed-sized grains of
the following shapes: discs, squares and equilateral triangles in two dimensions,
and spheres, cubes and regular tetrahedra in three dimensions. The results are
presented in Table 1.

For fixed orientations we have according to (6.22)

1
6
≤ ρ ≤ 1

4
, if d = 2,

1
20
≤ ρ ≤ 1

8
, if d = 3,

with equalities on the right-hand sides if and only if K is centrally symmetric
(for instance for discs, spheres, squares and cubes), and equalities on the left-
hand sides if and only if K is a triangle and a tetrahedron, respectively.

17



Dimension 2
Fixed orientation Random orientation

Disc 1/4 1/4
Square 1/4 (2 + 8/π)−1 ≈ 0.22
Equilateral triangle 1/6

√
3(2
√

3 + 18/π)−1 ≈ 0.19
Dimension 3

Fixed orientation Random orientation
Sphere 1/8 1/8
Cube 1/8 1/11
Regular tetrahedron 1/20 (2 + 18

√
1.5(1− arccos 3−1/π))−1 ≈ 0.068

Table 1: The volume fraction in some special cases.

In the case of random orientations, some more effort is needed. First note
that from Theorem 6.3 it follows that

ρ =


l2(K)

l2(K)2 + S1(K)2/(2π)
, if d = 2,

l3(K)
l3(K)2 + S2(K)b(K)

, if d = 3,

where S1 is the perimeter, S2 is the surface area and b is the mean width. Note
that the volume fraction does not depend on the size of the grains, and hence
one can choose a size for which is it easy to determine these quantities. For the
examples we have chosen in two dimensions, the quantities are straightforward
to calculate. In three dimensions, there are no problems with the sphere, and
for a cube of side-length 1 we get the mean width 3/2 by (4.8). For the more
complicated tetrahedron, the following values are given in Månsson and Rudemo
(2002) if the size is 1: l3(K) = 2

√
2/3, S2(K) = 4

√
3 and b(K) = 3

π (π −
arccos 3−1).

Note that for squares and cubes the volume fraction is lower if the grains
are randomly rotated than if they have a fixed orientation, while for triangles
and tetrahedra it is the other way around.

7 Conclusions and future work

In this paper we have showed how the shape of the grains affects the volume
fraction of two random models for non-intersecting grains. For instance, if
the grains have a fixed shape and orientation, the volume fraction assumes
its highest value for all centrally symmetric sets and its lowest value for all
simplices. To be more precise, it is the mixed volumes that determine the
volume fraction if the orientation is fixed, while it is the intrinsic volumes if the
orientations are random. Is it the same quantities that determine the volume
fraction also for other models of non-intersecting grains? In, for instance, the
RSA model the answer to this question is no. In two dimensions, simulation
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studies proposes that squares and discs do not give the same volume fraction,
see Evans (1993) p. 1293 and 1312. A natural question to pose is then which
geometrical properties of the grains determine the volume fraction in other
models.

We have considered grains of either a fixed orientation or uniformly rotated
in the original process. Which distribution of the orientations of Model I and
of the IGM does a uniform proposal distribution give, and which distribution
should we start with to have uniformly rotated grains at the end? Furthermore,
it would be interesting to study which size and orientation distributions are
beneficial from a volume fractions perspective. For instance, in Example 6.4 we
saw that the volume fraction increased when we had two sizes of the spheres –
which relation between the radii gives the highest volume fraction? And if the
grains are triangles, it might be a good idea to let them have only two possible
directions, which are opposite to each other and have equal probability.
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