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Abstract  We establish the properness of some classes of binary block
codes with symmetric distance distribution, including the
Kerdock codes and codes which satisfy the Grey-Rankin
bound, and also the properness of the Preparata codes, thus
augmenting the list of the very few known proper nonlinear
codes.

Keywords error detection, proper code, Grey-Rankin bound, weight
distribution.

1 Introduction

The performance of an [n,k,d], linear code C' in detecting errors on a g¢-ary
symmetric memoryless channel with symbol error probability ¢ is estimated by
the probability of undetected error P,.(C,e). In terms of the Hamming weight
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distribution {Ay, A1, ..., A,} of C this probability is expressed as
P, (C,e) = iA,(LY(l —e)"' 0<e< —— (1.1)
7 Z:d q _ 1 7 f— f— ’

and in terms of the dual Hamming weight distribution {By, By, ..., B,} as

Po(C,e) = g~H) ZBi(l - q‘gl) —(1-e)", 0<e< qT' (1.2)
1=0

We notice that when a nonlinear distance invariant code C' = (n, k,d), is
used for error detection on a symmetric memoryless channel with symbol error
probability €, the probability of undetected error of the code is given by the right
hand side of (1.1) with A; replaced by the corresponding term of the distance
distribution, i.e., by the number of pairs of codewords at distance ¢ in C. In
particular, (1.1) remains true for the probability of undetected error of a nonlinear
distance invariant code for which the distance distribution and the code weight
distribution coincide.

A code is proper for error detection on a ¢g-ary symmetric memoryless channel
with symbol error probability ¢ if the undetected error probability of the code
increases in € € [0, %] (see [7], [8])-

The problem of establishing properness of parametric classes of linear codes
has been considered in a number of works, see the monograph [7] and the re-
cent summary [2], and it has become clear that most often analytical study of
the function P,.(C, €) would not work, unless the formulas of the code weight
distribution are relatively simple, which is the case here.

In this work we study several classes of block codes with respect to properness.
For completeness, in Section 2 we recall basic facts about these codes, together
with a technical lemma which will be used in the sequel. In Section 3 we establish
the properness of binary block codes with sufficiently large minimum code dis-
tance, among which the Kerdock codes and codes which satisfy the Grey-Rankin
bound, and in Section 4 we prove that the Preparata codes are proper. In this
way we augment the list of the very few nonlinear codes known to be proper in
error detection.

For all results and notions which are not introduced here we refer to the
monographs [7] and [10].

2 Preliminaries

Here we recall some basic facts about the codes to be studied below.
The Kerdock codes [6] and the Preparata codes [11] are most interesting
classes of nonlinear binary codes. They are both Hamming-distance invariant,



for both the distance distribution coincides with the code weight distribution, and
their weight enumerators are MacWilliams dual just as if the codes were linear,
see [14] and Sections 15.5 and 15.6 in [10]. The above phenomenon was explained
in [4], where it was shown that Kerdock and Preparata codes are self-dual as
Z,-linear codes. Thus formulas (1.1) and (1.2) for the probability of undetected
error apply for these codes as well.

For even integer m greater than two, the Kerdock code K(m) has basic pa-
rameters

n=2"|K(m) =2, d=2""'-2""

and the weight distribution is given by the following table.

weight ¢ the number of codewords of weight i
0 1
gm-1 _ 9™3* om(gm=1 _ 1)
gm—1 om+1 _ 9
gm=1 4 9™5* om(2m-1 _ 1)
2m 1

The properness of the Kerdock codes will follow from Theorem 1 which establishes
properness of codes with symmetric weight distribution, while the properness of
the Preparata codes will be shown by using (1.2), which in this case involves the
basic parameters and the weight distribution of the Kerdock codes.

Consider a binary code C = (n, M, d) for which 1+ ¢ € C for every codeword
c € C. For such a code the number of pairs of codewords at distance 7 equals the
number of pairs of codewords at distance n — i, i.e., the distance distribution of
the code is symmetric. It has been shown that the parameters of C' satisfy the
inequality (see (17.46) in [10], Chapter 17)

8d(n — d)

M< —
~n—(n-2d)?

(2.1)
provided the denominator is positive. The inequality is known as the Grey-
Rankin bound, see [3] and [13]. As above, the properness of codes meeting or
satisfying this bound will follow from Theorem 1. We provide also examples of
interesting families of proper codes meeting the Grey-Rankin bound.

The following technical lemma will be used in the sequel.

Lemma. Let n, 7 and 7, be positive integers such that 0 <7, < § <7 < n,
and let a > 0, b > 0. Then the function

Gle)=ae"(1—e)" T 4+ be™(1 —e)" ™
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is increasing in € € [0, 3] if

a(n — 2m) < b(21, — n) (2.2)

and if either
T1T2 (’7’1+7'2—1)2

< d 2.3
1+ T < nan n 2 Am-1) (2.3)
or
71+ 7 >nand (n—271) (215 —n) < n. (2.4)
Proof. Denote ey =2 < 1 and e, =2 > 1. From
[€7(1—&)" ™) =ne™ 11 —e)" (g —€) (2.5)
we obtain
1 — To—T1 & —
G'(e) = nbe™ (1 — &)™ (ey — ¢) [1 _ %( - 5) ’ 1; _5;]. (2.6)

It follows from (2.5) that G’'(¢) is non-negative in [0, €1). It thus suffices to
establish that G'(¢) is non-negative in [e1, 1/2]. Obviously, the sign of G'(¢) in
this interval is the same as the sign of the function in the brackets on the right
side of (2.6). Setting

l—e\m2ne—g
= <e<L
q(e) ( . ) s g1 <e<1/2,
we get
iy (L2l g — g o _ _
v0=(7") " sp-pli-9e-ne-a)@-a, @D

where the function in the brackets,

Ge) = (n—1)e? +[1 — n(ey + &2)]e + ne1ey

- (n—ﬂ(%— )T (7142:2_—1)1) |

takes its minimum at

T1+T2—1 27’1_6
2n—1) ~ 2n "

Assume first that (2.3) holds. Then £ < 3 and we have

g

. » - T1T2 (7'1+T2—1)2
min g(e) = g(g) = — > 0.
min, §(6) = §() = 7% = TR >




Assume (2.4). If the first part there holds with equality we have € = 1/2, other-
wise € > 3. Then
1 (n—27m)2m—n)

in §(e) = §(1/2) = - —
611232%9(8) 9(1/2) = § ™

> 0.

Since in both cases j(e) is non-negative on [e1, 1], ¢(¢) in (2.7) is non-negative
in this interval as well. Therefore

n—27'1
<g(l/2) = <e<1/2
g(g)_g(/) 27_2_,”’ €1 5€% /a
and, by this and (2.2),
a a(n — 27)
- < —=<1 <e<L1/2.
bg(g)_b(QTg—n)_ e sesl/

This shows that G'(¢) in (2.6) is non-negative in [e1, 3], and the Lemma thus
follows.

3 Codes with symmetric weight or distance dis-
tribution

For simplicity, we will let {Ag, A1,...,A,} denote as before the code weight
distribution, when the code under consideration is linear, but also the distance
distribution, when the code is nonlinear.

Theorem 1.

B

(i) A linear code C = [n,k,d] with d > 5" g and symmetric weight
distribution is proper.
(ii) A nonlinear distance invariant code C' = (n, k,d) with d > g - 4 and

symmetric distance distribution is proper.

Proof. In both cases, the probability of undetected error of C' is given by (1.1)
with Ay, ..., A, representing the code weight distribution in the first case and
the distance distribution in the second one. Since A; = A,,_; for 1 <i<n—1
we obtain in both cases

P, (C,e) = Z [Aisi(l—5)”_i+An_i5”_i(1—5)i +A%5%(1—5)%+An5”, (3.1)

d<i<n/2

where A» = (0 when n is odd, and A, equals either 0 or 1. The functions
Gi(e) = Aie'(1 — )" "+ A,_ie" (1 —¢)', d<i<n/2,

5



satisfy the condition (2.2) of the Lemma since
Ai(n—2i) = Api(2(n — i) — n),
and also the condition (2.4) since
i+(n—1i)=n
and
(n—2i)(2(n—14) —n) = (n—2i)2 < (n—2d)> < (n— (n — v/n))? = n.

By the Lemma, the functions G;(¢), d < i < n/2 in (3.1) are increasing in
e € [0,%]. Since also the sum of the last two terms in (3.1) is an increasing
function in this interval, C' is proper.

The Kerdock codes given in Section 2 satisfy the condition (i7) of Theorem 1
and we have therefore

Corollary 1. The Kerdock codes K(m), m =2, 4,..., are proper.

Assume now that C' = (n, M, d) is a binary code satisfying the Grey-Rankin
bound (2.1). Since the distance distribution of C' is symmetric and

1 1
n—(n—2d)?%>0 iff §(n—\/ﬁ) <d< §(n+\/ﬁ),
for such a code part (iz) of Theorem 1 implies the following.

Corollary 2. Any binary distance invariant code which satisfies the Grey-Rankin
bound 1is proper.

Moreover, since a code satisfying the Grey-Rankin bound with equality is
distance invariant (see [9]), the above corollary implies for such a code

Corollary 3. Any binary code which meets the Grey-Rankin bound is proper.

Examples. Below we give some interesting families of codes which meet the
Grey-Rankin bound and thus are proper, by Corollary 3.

A. Brouwer constructed in [1] a family of g-ary two-weight projective codes
(i. e., codes with minimum dual distance greater than two) with parameters

e-1 _ 1 se—e L_e
n:(q )(@* ¢ +q> )’ k= se.

qg—1

where s and e are arbitrary positive integers such that s is even and e is greater
than one. The two weights are

wr = (@' =D, wa=w +q?

6



In the case ¢ = 2, s = 2, the resulting code Ci(e) has parameters

n=2%1_921 k=292, and w =2%2-2¢1 |, =2%"2

The code C(e), spanned by C; and the all-one vector 1, is a projective self-
complementary [n, k + 1, wi]-code with nonzero weights wi, ws and n, which
meets the Grey-Rankin bound. The code is thus proper.

Consider the first order Reed-Muller code RM (1, 2e). Since the code C(e) is
projective, the code

D(e) = RM(1,2¢) \ C(e),

which consists of the column set of RM(1,2e) with the columns of C'(e) deleted,
has parameters

[n=2%"+2"" k=2+1, d=2%"],

nonzero weights 22672, 22672 4 2¢=1 and 22¢~! 4 27! and it meets the Grey-
Rankin bound. Thus D(e) is proper. We note that the codes C(e) and D(e)
possess interesting combinatorial properties, see [9] and [5].

4 The Preparata codes

Theorem 2. The Preparata codes P(m), m =2, 4,..., are proper.

Proof. Consider a Preparata code P(m) of parameter m. We know that both
formulas (1.1) and (1.2) apply for the probability of undetected error of this code.
In terms of the formally dual Kerdock code /C(m) this probability is then

P, (P(m), €) = % d A (1-2) - (1—g)", 0<e<1/2 (4.1)

where, as given in Section 2,

To = 05 ATO = 1a
n—+/n n(n —2)

T = 9 ) An = 2 )

™=3, Ar, =2(n—1), (42)
n++/n n(n —2)

T3 = 9 3 A7'3 = 92 )

Ty =N, AT4 :11



and n = 2™ for m = 2, 4, 6.... We thus have

4

2 Ti—1 n—1
P;e(P(m)v 5) = _ﬁ ;:1 AnTi(l - 25) + Tl(l - 6) ) 0 S € S 1/27 (43)
and
P! (P(m), ¢) 2 o 1—2\n-1, 1 \n-7
ue ’ 1- 25" A,
L 2 () (L)

on 1 Ti—1 1 n—r;
=10 ;Aﬂ'”’(l T o= g)) <2(1 - g)) (44)
- D AmsiTH - o)

where we have put

1
=] —— <0< 1/2. 4.
b=1-gq—p 0<0<V/ (4.5)

Obvioulsly, to prove the theorem it suffices to show that the last expression to
the right in (4.4) is a non-negative function of 6 € [0, 1/2], i.e., that the function

4
S©O) =) A6 (1 - o) (4.6)
i=1
satisfies ;
S(5) < Z—n 0<6<1/2. (4.7)
We first claim that the above inequality holds for § € [y, 1/2], where
1 3
do == — ) 4.
72 n-6 (48)

Indeed, since for the minimum code distance of the code P(m) we have d = 6
for all possible values of m, all terms ¢*(1 — )" ¢ appearing in the right hand
side of formula (1.1) applied to this code are increasing functions of € in the
interval [0, &], as is easily seen from (2.5). Consequently, P, (P(m), &) > 0 in
this interval and thus the last expression to the right in (4.4) is a nonnegative
function of  when, cf. (4.5),

1 1 n—12 1 3

—>6>1— = — - __° _
3202 20-9)  2(n—6) 2 n—6 %0;

i.e., the inequality of (4.7) holds in the above interval, and, in particular,

w

S() < 55 (4.9)



It follows therefore that (4.7) now has to be established only for § € [0, ).
Put 6; = =t so that

n—1
n—yn—-2 1 1
51:7_

2n—1) 2 2(y/n-1)

s m=2 1 1
2n—1) 2 2(n-1) (4.10)
5 :n+\/_—2:1+ 1
T 2tn—1) 2 2(/n+1)
04 = 1.

Note that the function S(§) in (4.6) is increasing in the interval [0, ;] since
all its terms  §7~'(1—6)""" are, by (2.5). When n = 2% we obtain from (4.10)
and (4.8) that 6, =1/3 >1/5= 27y, which implies that S(§) increases in
0<d <4, and hence

3
S(0) S S() < 50 00Dy, (4.11)

where we have used (4.9). Thus the theorem is valid for n = 2% and we can then
assume in the rest of this proof that n > 2% = 64. It is easily seen that for these
values of n we have §; <y and d; > 0y for ¢ = 2, 3, and 4, which shows
that except for the first term of S(J) all other terms are increasing functions
in [0, dp], while the first function increases in [0, 0;] and decreases in
[01, do]. Nevertheless, the function S(J) turns out to be increasing in [0, &y
which follows from the next proposition.

Proposition. The function
G1(0) = 0™ M1 = 8" 4 16T (1 — 5V
increases in the interval [0, Jo].

Proof. It suffices to show that the derivative of G1(J) is positive in (0, Jo].
This function is of the same form as the one considered in the Lemma of Sec-
tion 2. As (2.6) shows, G%(d) will be positivein (0, d] if

4

T1(1_5>73T1(5—51 >0 (4.12)

T 65— 0

T3

in this interval. As in (2.7), the derivative of the function

(1—5)mn5—51

910 == 05— 0



40 = ()" Rl - 9= (=6 -5)E-d). (@13)

where by using (4.10) the quadratic function in the brackets is computed to be

§() = (n—2)8 — (n—3)5 + ”;4.

It is easily seen that the solutions of ¢;(6) = 0 are the points % — ﬁ and % and

since

1118

2 n—-2" 2 n-—6 ’
G1(6) is positive in (0, &) which means that ¢} > 0 in this interval and
hence, after a simple calculation,

73 \/n—6 ( 12 )‘/ﬁ
_ — 13, 1 -
Og}%{go g1(9) = g1(do) 71 /n+6 n—12

In this way the desired inequality (4.12) is equivalent to

12 \V» /n+6
1 ) 4.14
( 12 <\/_—6’ (4.14)

where, we recall, n > 64. Put x = y/n and consider for z > 8

z+6 12
f@) ==~ (1+x2_12).

We have

12 12 924
! — = J—
Fe)=-5"3 ln(1+x2—12)+x2—12‘

Using the Taylor series of the logarithmic function we obtain
12 2 (=1)kF 12 \k

~mn(1 )= (7=

(It o) = o

12 1 12 \2 K (=1)k1 12 \k
-t aletn) R ()
2 —12 2\zx2-12 prt k 2 —12

_{ [%(x21—212)3 B i(x21—212)4] + [%(m21—212)5 B é(x21—212)6} +}




where the last inequality is due to the fact that
12

x2 —

0< 2<1,x28

so that the terms in the brackets on the line next to the last are positive. Hence

o) < - 12, 12 +1( 12 )2
22 -36  22—12  2\z2 —12

B 2. 122 1/ 12 \2
T T @312 §(x2 — 12)

(o) [ e |

2—12/ 2 22-36

(o) -2 <0
2 —12) 12 '

Thus f(z) is a decreasing function for z > 8 and hence

f(z) > lim f(z) =0,

T—00

which implies (4.14) for n > 64. This proves the Proposition.

To end the proof of the theorem we just notice that the function S(§) in-
creasesin [0, &), since the sum of the first and the third terms does, according
to the Proposition, and also the second and the fourth terms do. Then (4.11)
holds even in this case and the code P(m) is thus proper.
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