Abstract

Let dm(z) be the Lebesgue measure on the unit ball B C C?. For d < v < oo, let
du, (2) be the measure ¢, (1 — |2|?)"~9"'dm(z). Denote by L2(d.,) the weighted
Bergman space of all square integrable holomorphic functions on B.

The space of Hilbert-Schmidt bilinear forms on L2(d,) is decomposed under
the Mdbius group into a sum of irreducible subspaces, each giving rise to some
Hankel forms of certain weight. The Hankel forms of weight zero correspond to
the small Hankel operators, whose Schatten-von Neumann properties have been
studied extensively. In this thesis we study the Schatten-von Neumann properties
of bilinear Hankel forms of higher weights defined by some holomorphic vector-
valued symbol functions.

We characterize bounded, compact and Hilbert-Schmidt Hankel forms in terms
of the membership of the symbols in certain Besov spaces. By interpolation it
follows that the symbol is in a certain Besov space if the Hankel form is of Schatten-
von Neumann class Sp, 2 < p < oo.
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1 Summary and introduction

1.1 Introduction

Hankel operators on the unit disc have been studied extensively, see [Pel], [Zh]
and [JPR]. One of the main problems is to study their Schatten class properties.
Consider the Hardy space H2(T) C L?(T) of holomorphic functions, where T =
{2z € C:|z| =1}. Let P: L?>(T) — H?(T) be the Szegd projection and denote by
H; the Hankel operator on H?(T): H;g = (I — P)(fg), g € H*(T). It can also
be viewed (up to a rank one operator) as a bilinear form Hy on H*(T),

Hy(g1,92) = /8 () dola).

Their Schatten properties were studied by Peller in [Pe2]. It is proved that Hy is of
Schatten class if and only if f is in a certain Besov space. The corresponding prob-
lem for Hankel forms on a Bergman space has been studied in [JPR] and [R2]. It
was realized later that the Hilbert-Schmidt Hankel forms on a weighted Bergman
space can be viewed as the first irreducible component in the irreducible decompo-
sition of the tensor product of two copies of the Bergman spaces, and subsequently
Janson and Peetre [JP] introduced the Hankel forms of higher weights on Bergman
spaces on the unit disc; see also [Ro] where multilinear Hankel forms are studied.

A natural problem is to consider Hankel forms on the unit ball in C¢. In [P1]
Peetre introduced Hankel forms on the unit ball. The spaces of Hankel forms
of higher weights are explicit characterization of irreducible components in the
tensor product of Bergman spaces under the Mdébius group, see [JP], [P1] and [PZ].
However their Schatten-von Neumann properties have not been studied so far. In
this licentiate thesis we will address this problem.

1.2 Notation

Let H; and H, be Hilbert spaces and let T' : H; — H» be a linear operator.
Define the singular numbers s, (T') = inf{||T — K|| : rank(K) <n},n >0. If T is
compact, these singular numbers are equal to the eigenvalues of |T| = (T*T)l/ 2
We denote by S, the ideal of operators for which {s,(T)},>0 € I?, 0 < p < 0.
We remark that Sy, is the class of bounded operators. (The compact operators
correspond to ¢y, not to [*°.)

Let dm denote the Lebesgue measure on the unit ball B ¢ C? and let di(z)
be the measure (1 — |2|2)~%"tdm(z). For d < v < oo let di,(z) be the measure
¢, (1 —|2|*)” du(z), where ¢, is chosen such that

/BdL,,(z) =1,

ie., ¢, = T(v)/(7%T (v — d)). The closed subspace of all holomorphic functions in
L?(du,) is denoted by L2(di,) and is called a weighted Bergman space. Note that



the space L2(dw,) has a reproducing kernel K, (w) = (1 — (w, z))~", that is,
16) = (1K), = [ SR dutw), felidn), zeB. ()

Denote by B(z,w) the Bergman operator on V = C? as in [L], namely
B(z,w) = (1= (z,w))(I —z®@w"), (2)

where z ® w* stands for the rank one operator given by (z ® w*)(v) = (v, w)z.
Viewed as a matrix acting on column vectors it is

B(z,w) = (1 - (z,w))(I - 2@"), 3)
where w? is the transpose of w. B(z,w) is holomorphic in z and antiholomorphic
in w.

The Bergman metric at z € B, when we identify the tangent space with V', is
(B(z,2) " u,v) for u,v € V. We note that

Blz,w) ™ = (1= (5,0)) (1 (2, w))] + 2 @ w"). (4)

Let B!(z,w) denote the dual of B(z,w) acting on the dual space V' of V. When
acting on a vector v’ € V' it is

Bi(z,w)v' = (1 = {(z,w))v'(I — zw?). (5)

Actually we may identify B!(z,w) with (1 — (z,w))(I — wz?).

For a non-negative integer s, let ®°V"’ be the tensor product of s factors V'
and let ®V’ = C. The space ®°V’ is equipped with a natural Hermitian inner
product induced by that of V', so that

s
(V1 ® -+ ®vg,wy ® - ®w,) = [[ (v, w))
i=1

where v;,w; € V', j=1,...,s. _ . _
Let {u1,...,uq} C V'. Denote by ui' ®uy ® -+ ® uy' the sum

il dg!
17'(1ZT"(UI®"‘®U1®“‘®Ud®“‘®ud)
5 TEeS

where i1 + ...+ i3 =8, S = Sg/(S;; X ---x S;,), Ss is the permutation group

acting on the tensor by permutating the factors in the tensor and S;,, ..., S;, are
the subgroups permutating the first ¢;, the second is, ... , the last iz elements
respectively.

Let {e1,...,eq} be a basis for V'. Denote by ®*V"' the subspace of symmetric
tensors of length s

{ Z viel @eR - @el 1 i=(iy,...,0q) €N, viec}.
irteeig=s

Also, denote by ®°B?(z, z) the operator on ®*V"’ induced by the action of Bt(z, z)
on V', where ®°Bt(z,2) = I.



1.3 Hankel forms and main results

The Transvectant T; on L2(di,) ® L2(di,) (introduced in [P1], see also [P2]
and [PZ]) is defined by

T(f9)=) =3 (Z) (181 007 Fo(2) .

P @)k (¥)s—k

where

Z O, ++-0;, f(2)dzj, (2) ® - -- ® dz, (2) € @°V'

Ji...ds=1

and (V) =v(v+1)---(v+k—1), (v)o =1, is the Pochammer symbol.
The Hankel bilinear form H$ on L2(di,) ® L2(dw,) is defined by

Hy(f.g) = /B (8B (2, )Ta(£,9)(2), F(2)) din (2) (1)

where F': B — ©*V' is holomorphic. We call F' the symbol of the corresponding
Hankel form. We remark that

HF fa /f dl‘2l’( )

This is the classical Hankel form studied in [JPR].
With the form Hj, one can associate the operator A% defined by

Hi(f,9) = ([, AR9),

as in [JPR]. Notice that A% is an anti-linear operator on L2(d,). To get a
linear operator one combines A% with a conjugation, i.e., one instead considers
the operator Ay : g — A3 59. We say that H} is of Schatten von Neumann class
S, for 0 < p < oo, if and only if A, : L2(dw,) — L2(dw,) is of class S,.

Finally we present the main results, inspired by Theorem 4.3 in [Ro]7 in the
form of three theorems where we let s be a non-negative integer.

Theorem 1. Let F': B — ©%V' be a holomorphic function.
(o) Hi is bounded if and only if

sup (1 — |2[*)*” @° B'(z,2)F(2), F(2)) < +o0,
z€EB

(b) Hj is compact if and only if

((1 = |2)* ®® B'(2,2)F(2),F(z)) 0 as |2| /1.



Theorem 2. Hj, is of Hilbert-Schmidt class Sz if and only if
/ (1= |2)* ®° Bl(2,2)F(2), F(2)) di(z) < +0.
B
Theorem 3. If Hi. is of class Sp, for 2 < p < oo, then

/B<(1 12 @° Bl(z,2)F(2), F(2))""? du(z) < +oo.

2 Preliminaries

2.1 G = Aut(B): The automorphisms of B

We shall need some results on the group G = Aut(B). We compute the differential
of the Mobius transformations, which gives some refinement of the results in [Ru].

Let P, be the orthogonal projection of C¢ into Cz and let Q, = I — P,. Put
s, = (1 — |2/?)'/? and define a linear fractional mapping ¢, on B by

z—P,w—s,Q,w
1- <w7z)

(o (w) = (8)

If g € G and g(z) = 0 then there is a unique unitary operator U : C¢ — C? such
that

g=Ug..

Sometimes g(z) will be written as gz. Define the complex Jacobian J, by Jy(w) =
det(g'(w)). Then we have J,(w) = det U - J,, (w). This motivates us to calculate
Jy. (w) (see proof of Proposition 1). To do this we need the following lemma.

Lemma 1. Let ¢, be the linear fractional mapping (8) on B. Then

, _ —82P, —5,Q. + s.((w,2) —w® 2*)
pLle) = (1w, 2))? '

The proof of this lemma is at the end of this subsection. The proposition below
is a refinement of Theorem 2.2.6 in [Ru]. Actually, Theorem 2.2.6 in [Ru] is the
same as Corollary 1.

Proposition 1. Let ¢, be the linear fractional mapping (8) on B. Then

To(w) = (1) (ﬁf .

(w, 2
Proof of Proposition 1. The case d = 1 is trivial. We will treat the cases d = 2 and

d > 3 separately. First assume d = 2. Since Q, = I — P, then —s>P,h —s,Q,h =
-5, ((s; = 1)P. + I) h. Then by Lemma 1 we have

_SZ

)= T,

((52 — 1P, 4+ (1 = (w,2))I + A)



where A = wzt. Let

B = (s,—1)P,+(1—(w,2))I+A
s‘zz|—21 |Zl|2 +1- <’U), Z) + Z1wr Slzzl—zl 2921 + Zown

T 2172 + 22w |l 41— (w, 2) + 2w

Then
det B = (1 — (w, 2))s.
so that
det ¢(w) = —= . detB= — 2
T (1w, 2))t T 0= (w,2)3?

Now we consider the case when d > 3. We may assume that w ¢ Cz and that
(w,2) # 0. Then the vectors z and w span a two dimensional subspace V; in C?
and we may write C? = V5 @ Vi where Vi = VOJ-. As in the case d = 2 we shall
find a matrix form of B = (s, — 1)P, + (1 — (w, 2))I] + w ® z*. Let v € C?. Then
we can write v = vg + v; where vg = az + fw € V and v; € V7. On one hand we
have

Bv; = (1 — (w, 2))v; .

On the other hand

Buy = (s, — 1)%,2 + (1 — (w, 2))vo + {az + Pw, z)w
= ((sz -1) (a + ﬂ<|20|’22>) +a(l - (w,z))) z+

+

(50— w20+ alef + 8w, 2) Yo

The vectors z and w are chosen as basis vectors for V5. Thus under the decompo-
sition C¢ =V, @ V4, B has a block-matrix form

b= [ 0 I (e e ]

with _
B | s (wz) (s:—-1) (r;iﬁ) ] ‘
|| 1
This yields
det B = det [ g = (w(,]z))ld_2 ] =(1— (w,2))?2det B
and det B = s, (1 — (w, 2)) so that
s d s d+1

= (r=ge) 2= (=)

This proves the proposition. [l



Corollary 1. Let g € G. Then the real Jacobian Jr 4 of g is

B 2'2 d+1
(hmw=%WW=(—LJiW) .

[1—(w,z

Proof of Lemma 1. We shall calculate ¢, (w+h) where w € B and |h| is sufficiently
small. We have

¢z(w + h) = (1 - <w7z> - <haz))_1 (Z - Pw—5,Q.w— (Pz + SzQz)h)
and
1= (w,z) = (h,2)) " = (1~ (w,2) " + (1~ (w,2)) *(h,2) + O(h[*).
We get

¢ (w+h) = ¢.(w) + (1 - <w,z>)_1(—Pz —5:Qz)h
+ (1 = (w, 2)) " 2(h, 2)(z = P,w — 5,Q,w) + O(|h|?)
so that

%@@hzU-WWJ»4<Q—@m@XfEh—&QM)

+ h2) — Pav = 5.Quw) ).

Thus

/ _ —5,P.h —5.Q.h + s.((w, 2)h — (h, z)w)
Pl = (= (w,2))? |

This completes the proof of lemma, 1. |

2.2 Some elementary properties of the Bergman operator

Let g € G. Combining Proposition IX.1.1 with Proposition IX.2.6 in [FK] we get
B(z,w)™" = (dg(2))" B(gz, gw) ' dg(w) .

This yields

B'(gz,gw) = (dg(2)")" B*(2,w)dg(w)". (9)
Now we consider another property of the Bergman operator. It holds that
B'(2,2) = (1=[2*)(P: +Qz — |2[Pz)

= 1-|2P)Q:+ (1 - 2P,
Thus
(1= |21 < B'(2,2) < (1 = [2[)]; (10)

in particular B(z,z) is a positive operator. Actually ®°B!(z,z) is positive on
®°V'. To prove this we need a lemma.



Lemma 2. Let Hy; and Hy be Hilbert spaces with inner products {-,-)1 and {-,-)s
respectively. Let A and B be positive operators on Hy and Hs respectively. Then
the operator A® B is positive on the induced Hilbert space Hy ® Hy with the inner
product {-,-).

Proof. We compute the inner product {((AQ B)z, z), x € Hy ® Hy. We may assume
that
T = Zvj @ wj
J

for some v1,...,v, € Hy and wy,...,w, € Hs since those elements are dense in
H, ® Hy. We get that the inner product is

<(A®B)(Z'Uj ®w,~>, (Zvj ®'I,Uj)>

> {Avj, 0i)1({Bwj, wi)z

= ) (AP0, A?0)1 (B 2w, B w;)

- <Z<A1/2 ® B')(v; @ wy), Y (A © BY2) (v, ®wj)> >0

J J

This proves the lemma. O
Remark 1. Since Bt(z, z) is positive on V' we have now ®°B!(z, z) is positive for
§=0,1,2,--.

s 2
2.3 The norm of 2 in the Bergman space L;(d.,)

Let a = (a1, sz, ...,aq) denote ordered d-tuples of non-negative integers a; and
denote |a| = a1 + - - - + 4. Then the polynomials {z%} forms an orthogonal basis
for L2(du,) and

; lao) -« - !
12711 Z/ 201 - 202 592y, () = SAE
B (V)|a|

where (V)| = v(v+1)---(v + |a| = 1) = T'(v + |a|)/T'(v), (v)o = 1, is the
Pochammer symbol.

(11)

2.4 Some remarks on boundedness, compactness and S,

Consider the bilinear Hankel form Hj, with symbol F. First observe that the
operator norm of the corresponding operator Z; equals

|HEl| = sup  |Hg(f,9)l.
1£11=llgll,=1



If A, is compact and {g,}2, C L2(di,), with ||gn|l, = 1, gn — 0 weakly as
n — 00, then there is a sequence {c,}32 ; of positive numbers such that

|HE(f; 9n)| < call fllv

for all n. Also ¢, = 0 as n — oco. On the other hand, if {4,}32, is a sequence
of compact bilinear forms on L2(di,) ® L2(di,) such that A, — H§ in operator
norm, then H}, is compact. Also H}, is of Hilbert-Schmidt class S if and only if

o0 oo
IHENS, = Y Y [Hi(eares)]” < oo
/=0 3=0

where e, = 2%/||2%||,. In addition, if A is a bilinear form on L2(di,) ® L2(dw,) of
Hilbert-Schmidt class, then A is compact.

3 The Banach space H}

Denote by HE , = HP  (B,®°V"), 2 < p < oo, the Banach space of all holomorphic
functions S : B — ®*V’ such that

1/p

[1S1lv,s,p = (/B <(1 — |2)*)? ®° B'(2,2)S(z), S(z))p/2 dL(Z)) < 00.

3.1 Transformation properties of Hyp
Define an action 7, of G on L2(di,) by
T g€G, f(w) — g™ w) (Jy-1 (). (12)

Then 7, : ¢ — m,(g) is a projective unitary representation on LZ(dt,), that

is ||7,(9)fll. = lIfll. and 7, (g9192) = C(g1,92)m,(91)ms(g2) for some constant
C(g1,92). This yields the following equality of two operator norms

1H: (0 (9) (), w0 (9) (D) || = 13- (13)
Define an action 7,5 on H2, by
Tus: 9€G, S(2) = (&7 (dg7'(2)") S(g7'2) (1 ()™ . (1)
Then
Hi (m(9) f1,mu(9) f2) = HE(f1, f2) (15)

where S(z) = m, s(g 1) F(2). Equation (15) is a consequence of Lemma 3 below.
Define an action 7, (-) ® 7, () on L2(du,) ® L2(di,) by
T, Q@my,: g€ G > (fl(w1)7f2(w2))

> filg™ 1) falg ™ wa) (Tymr (1)) T (Tymn (w2)) T

(16)

10



The following invariance property of the Transvectant is proved in [P1], see also
[PZ].

Lemma 3. Letm, s and m,(-) @, (-) be the representations given by (14) and (16)
respectively. Let g € G. Then

Ts (mu(9) @ mu(9)) (f1, f2) = Wu,s(g)’];(flafé) .

Remark 2. It follows from Theorem 4 that 7, takes values in ?—l2 In fact, Theo-
rem 4 shows that Ty : L2(d,) ® L} (de,) — H, , is a bounded bilinear form.

Remark 3. As a consequence of Lemma 3 we have (15), namely

113 ((mlo) © ma(a) (. 1)
(

(Ts (mu(9) @ m(9)) (f1s f2), F),y s 0
= <7rVS( ) (f17f2)7 ),,,5’2
= (Ts(f1, f2),ms(g™ ) F

v,s,2

which gives the result if we observe that S =, s(g~')F.

3.2 Reproducing kernel of the space 7,

Lemma 4. The reproducing kernel of’H 18, up to a nonzero constant,

Ky s(z,w) = (1 - (z,0)) "% ®° (B'(z,w)) "
Namely, for any f € ’H,,s and any v € ©°V" it holds that
(f)0) = e(f()Kus(-2)0us2
= o [ (= Py & B, w)f (), Ko ,2)0) di).
B

Proof. For any v € ®°V' we prove that f — (f(2),v) is a continuous functional
on H2 . It follows then by Riesz lemma that there exists a function R(z w) :
O*V' = ©°V' such that (f(2),v) = (f,R(-,2)v)us2. Let {fn}o, C H2, with
fn = f € H., and let z € B. It is enough to show that {fn( )} is Cauchy in
©*V'. Since z = || fn(2) — fm(2)|| is subharmonic then

1/n(2) = fm (2| < Carw /+ . 1fn(w) = fm(w)]| degy (w)

so by Jensen’s inequality

1fa(2) = fm(2)II” < C&,r,u/ [1fn(w) = frn (w)||? dizy (w)

z+rB

11



if z+rB C B. On the other hand, there is a constant d. > 0 such that d,.I <
®°Bt(w,w) for all w € z + rB. Hence

1a(2) = Fm(@IP <
Dagw [ (1= @ B'w,0) (fa(w) = fin0)) s Ja(w) = fun0)) i)
z+rB

so that {f,(2)} is Cauchy in ®*V’. Then the reproducing property at z = 0 reads
as

(£(0),0) = (f(-), R(-,0)0}v,s,2 -

On the other hand, the space of ®*V’-valued polynomials is dense in 7“:2/,3 and
(p(+),v)u,5,2 = 0 for all homogeneous polynomials of degree > 1. Thus if

2) =Y fu(2)
m=0
where f,, are homogeneous polynomials of degree m, then

(F()sv)s2 = (fo(), Vw52 = (£(0),0)v,s,2 = ¢ (£(0),v) .

Therefore 1

(FC) R(0)0)u,5,2 = (£(0),0) = 2 {f(-);0)vs,2

C

so that R(-,0) = ¢I with ¢ # 0. Next we prove that R(z,w) transforms under G
as follows

R(gz,gw) =
(@%dg(=)") ™" Bz ) (& (da(w))") ™ (Jy(2)) >/ (7))

where g € G. Indeed, for all F' € 7'[12;,3

—2v/(d+1)

/ ((1 = |w|*)* ®° BY(w, w)F(w), R(w, 2)v) di(w)
from which it follows that for all f € L2(du,)

(521D & dg(2)! £ (g2),0)

= [ (@ P @ Bt w,w) gy (@) 0 dg(w)' Fgu), Rw, 2)0) difw).
B
(18)

12



On the other hand, it follows from (9)

s (dg(z)t)* v>
)2u/(d+1)

(e, ()" s

/B <®SBt<w,w>f<w),R(w,gz) (7,

dia, (w)

Coy
®° (dg(z)t)* U>

2
)
2v

®° (dg(2))” v>
)Qu/(d+1)

= [ (@B tgw.gui o), Rigu,2) (4,6
B

/B <(1 — [w?)?” @° B (w,w) (Jy ()™ @ dg(w)* f (qu),

®*dg(w) Rlgw, g2) ©° (dg(2)")" >

)2u/(d+1)

(T () (Tyw) du(w).

Comparing this with (18) we get (17). Now both R(z,w)/c and K, s(z,w) satisfy
the same transformation rule (17) and are identity operator at z = 0. Thus they
are the same for all z,w € B. This completes the proof of the lemma. O

4 The Besov space B,

Let s =1,2,3,... and define
B,,= {f : B — C holomorphic ,/ (®°B'(2,2)0° f(2),0° f(2)) du(z) < +oo} )
B

The space B, is called a Besov space. It is a Hilbert space, equipped with the
inner product (-,-),,s given by

B = 0T+ {(#1) 0, (045) 0)
+ /B<®SBt(z,z)6sf(z),asg(z)> du(2) .

Actually B, ; = L2(du,), namely they are equal as sets and their norms are equiv-
alent, as is shown below.

Theorem 4. There exist constants C,, 5, D, s > 0 such that

Cus - Iflly < NIFllvis < Do - |l £l
for all holomorphic f: B — C.

We need first some elementary lemmas.

13



Lemma 5. Let f,, and f, be homogeneous holomorphic polynomials of degree m
and n respectively, with m # n. Then (fm, fn), , = 0.

Proof. Let 0 < # < 2. Then ¥ # 1. Since f,, is a homogeneous polynomial of
degree m we have f,,(e??2) = €™ f,. (). Given m and n with m # n, it is enough
to prove that

<fm7fn>y,s = ei(m—n)& <fm; fn).,,s (19)

The case s = 0 follows directly from the homogeneity. Now consider the case
s = 1. Tt is easy to see that B*(z,z) = Bt(e *z,e7%%). By the chain rule and
homogeneity it follows that

(0 fm) (€ w) = e ?B(fm(e-))(w) = V(D) (w)

so that the equation (19) holds for s = 1. The cases s = 2,3,... now follow
in the same way if we first notice that (0°f,,)(e?w) = e(™m=9)9(5°f,,)(w). This
completes the proof. O

We recall now a result from Rudin (Theorem 12.2.8 in [Ru]). Consider the
space P, of all homogeneous holomorphic polynomials of degree m on B with the
natural group action of the unitary group U(d):

(g f)(2) = f(g7"2), f€Pm, geUd).

Then (Pp,,my) is a unitary irreducible representation of U(d). As a consequence
of Schur’s lemma (Theorem 1.10 in [BD]) we have

Lemma 6. Let m be a non-negative integer. Then there exists a positive constant
Cy,s,m such that

[ fmllv,s = Crsym - || fmllv
for all fr, € Pp,. .

Remark 4. Actually, this lemma is a special case of the result in exercise 1.16.7
in [BD].

Now we can prove the norm-equivalence of B, ; and L2(d, ).

Proof of Theorem 4. It is enough to prove the theorem for f with f(0) = --- =
9*~1f(0) = 0. Write f = > o7 fm where fp, € Pp,. By Lemma 5 we have that
{fm}%_o is an orthogonal set in both L2(d,) and B, s. Also, by Lemma 6 we
have || fmllv,s = Cv,s,m - || fml|» where C, s m does not depended on f,, of degree
m. We compute C, s ,,, and prove that there exist positive constants C,, ; and D, ,
such that

Cu,s S Cu,s,m S Du,s (20)

for all m. We may assume that m > s. Take f,,(2) = 2]*. We shall calculate

fml 2, = /B (B! (2,2)0° fun(2),0° fon(2)) din(2).
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First observe that
<®th(z, 2)0° fm(2), 6sfm(z)>
= (®°B(z,2) (0§21") ®° dz1, (05 2]") ®° dz1)
(B'(2,2)(032")dz, (83 2"z ) - (B (2, 2)dzy, dzn )™

T(m+1)?
I'(m — s+ 1)2

(1= [2P)*(1 = [z *)"|2a [P 2).
We have

Cu [ 1P (= a1 )1 = |2 du(z) =
B

|Zl|2(m—8) (]_ - |zl|2)3 / (1 _ |21|2 _ |zl|2)u+s—d—1dm(z/)dm(z1)
/zl<1 12 |<A/1=]72
and
/ (1 — |z1|2 _ |z/|2)u+sfd71dm(z/) — C,II . (1 _ |z1|2)u+s72 ]
|z'|<4/1—]2"|2

Since

/| P (= ) )
z1|<

(m—-—s+1I'(v+2s—1)

r
— "
=G T(m+s+v)

we get
T'(m+1)°T(v+2s—1)
T'm—-s+1)T(m+s+v)’

||fm||12/,s =ay -

On the other hand
[(m+1)[(v)

Ifnll2 = =For 19

so that )
2 = || fmll3,s - Tim+ 1Ty +2s—1)T'(m +v)
vET | fml)2 Y Tm—s+1DI(m+s+v)T(v)

For m > s we have

I'(m+ DI'(m + v) mm—1)---(m—-s+1)
Fm—s+1I'(m+s+v) (m+s+v—1)---(m+v)
(1-)-- (=)
(L4520 1+ 5)

so that

(1-3)---(-*1) . Tm+1T(m+v)
2 Fm—s+1)I'(m+s+v) —



So (20) follows by putting

and

_ Jay-T(v+2s—1)
e [T

5 Boundedness

5.1 The Banach space HJ
Denote by L7, the space of functions F': B — ©°V' such that

1P ls,00 = sup (1= |22)* @ B'(2,2)F(2), F(2))""* < o0.
zEB

If we write ||F||s,s5,00 = SUP, ¢ ||S(2)||l3 where

1/2
15(2)ls = ((1 Py Bt<z,z)) F(2)

and B = ©°V’, then L, is a Banach space since it is easy to see that, if S, : B — B

S
satisfies
(o]

Y sup|ISu(2)lls < 0o
B

n—1 %€
then there is a S : B — B with sup,¢p [[S(2)||s < oo such that

—0 as N - x.
B

sup
2€B

N
S(2) = > Su(2)
n=1

Denote by Hp°; the space of all holomorphic functions in LJ%. Then HJS is a
closed subspace of L7 which yields that H7°; is a Banach space.

5.2 Proof of Theorem 1 (a)

Proof of sufficiency. The Hankel form in (7) can be written as a sum of certain
integrals, we estimate each one, as follows,

‘ [ (=127 & B 2104) 8 0 Hg(2), F(2) )| <

[1F 5,00 - /B (8°B! (2,20 £(2) © 0 g(2), 8" £(2) © 0" g(2))/* L)

Cy
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and

(®°B'(2,2)0" f(2) ® 9° *g(2),0" f(2) ® 0° ¥ y(2)) =
(®%B(2,2)0" f(2),0" f(2)) - <®s ¥B'(z,2)0° *g(z),0° " g(2))

so that
[ (a1 w0 B0t () 04l F) i)
< ¢ W lvs.co - F vk - [19llvs—k < Cus - [1F]s,00 - [ £1]w - 19l
where the last inequality follows from Theorem 4. O

For notational convenience we denote
(u,v), = (®°*B' (2, z)u,v)
where u,v € ®%V’, and it defines an inner product on @3V,

Proof of necessity. Let v € ©°V'. By Lemma 4 we have

(F(0),v) = c/B ((1 = |2»)* ®° B'(w,w)F(w),v) du(w).

We may write

i i
v = E vier ©---0ey
lij=s

where i = (i1,...,iq) and v; € C. Take

Then f,g € L2(dw,). By (6)

s s k w s—k w s
T(f,9)w) =3 (k)(_l)ka f(w) © 0" Fg(w) _ ((S))(_WM

P @)k (¥)s—k ¥)s()o
where

233 (wit - wf) v = Zs! cviel @ - @ el = slv

lil=s |i|l=s
so that 1y7s!

T w) = T
Hence
(FO).0 = 0)2 - 7 1T (L 0)P (21)



so that

[(F(0),0)* < CuslHEIPIFIZIGNE < Cu sl HEI o]l (22)

Define
S(w) = (m,a(6:)F) (w) = (@°¢L(w)") F($:(w)) (T (w)) ™).
Then S : B — ©®*V"’ is holomorphic. Also by equations (13) and (15)
I1H3[| = [[HE|| < o0,
so by (22) with F replaced by S
(S(0), 0)|* < CIHEIP|ol[* = ClIHE||Jv]>- (23)

Now
5(0) = (9°6L(0)") F(2) (Jo. (0))/¢FV)..
Since —¢/,(0)t = s2P; + 5,Qs > 0 then (—¢.,(0))” = B!(z,z) and by the unique-
ness of positive square root B(z,2)'/? = —¢.(0)’. Thus
(®3Bt(z,z))1/2 = ®°B'(z,2)'/?
= (-1)°®’ ¢.(0)".

Hence
S(0) = (=)™ (1 - |22)” (2°BY(z,2))

so that (23) becomes

F(2)

(FG), (2B, 2) o) < clzI?| (7B ()™ 11“2 (1= |22)~>.
Observe that

<F(z), ((XJ“’Bt(z,z))l/2 v> = <F(z), (®SBt(z,z))_1/2 v>

z

so the result follows from Riesz lemma, for the inner product (-,-),. O

6 Compactness and Hilbert-Schmidt properties

6.1 Compactness

In this subsection we prove Theorem 1 (b).

18



Remark 5. Let {e1,...,eq} be a basis for V'. Then we can write

F(z) = z Fi(z)el' @--- @€l
i1+-eig=s
where i = (i1,...,iq) and F; : B — C are holomorphic. Also

oo

Z ) (2)

(4)

where p,; are homogeneous holomorphic polynomials of degree m.

To prove the sufficiency of Theorem 1 (b) we need the following result.
Lemma 7. Let F : B — ®°V' be holomorphic with the property
(1= [2)* ®° B'(2,2)F(2),F(2)) = 0 if |2| /1.

Let € > 0 be given. Then there exists a number r' with 0 < r' < 1 and a natural
number N such that
|

where

ZZP‘”” -0

lil=s m=0

Remark 6. Remember that we have already defined

1 lh,c0 = sup (1 = |2*) & B(2,2)F(z), F(2))"*
zE

for holomorphic F' : B — @°V".

Remark 7. Let H, and H, be Hilbert spaces and let A;,B, : Hi — H; and
As, B> : Hy — Hs be positive operators. Then

(A1 — B1) ® (A2 + B2) + (A1 + B1) ® (A2 — B2) =2(A1 ® Ay — B1 ® By) . (24)
Thus it follows from (24) that

A1 >B, , A2>By, — A1®A,>B®B;. (25)
Proof of Lemma 7. Let € > 0 be given. Then there exists 0 < ro < 1 such that

62

sup <(1 —21%)* ®° BY(2,2)F(z), F(z )> < 33
ro<|z|<1

Define F.(z) = F(rz) where 0 < r < 1. Since P,; = P; then

Bi(rz,rz) = (1 - r2|z|2)(I - r2|z|2PTz) > B'(z,2)

19



for all 0 < r < 1. By (25) it then follows that
®°Bl(rz,rz) > @°B'(z, 2)
for all 0 < r < 1. Hence,
(1= 12)* ®° B'(2,2) Fr(2), Fr(2))
<{(1—|rzl*)* ®° B'(rz,rz)F(rz), F(r2)) .
Then it follows from the inequalities
(®°B'(2,2) (F(2) = Fr(2)), F(2) = Fr(2))
<{(®°B'(z,2)F(z), F(2)) + (®°B'(z,2)F.(2), F.(z))
+ 2| ®°B'(z z)F(z),Fr(z)>|

and

(®°B'(2,2)F(2), Fr(2))|
<(@°B'(z2)F(), F())"* (9" B' (2, 2) Fy(2), Fo (2))"?
that, if 1 > 7 > ry = 2ro/(1 4+ ro) and Ry = (1 4+ 19)/2,

sup_ (1= [ ©° B'(2,2) (F(2) = Fr(2)) . F(2) = Fr(2)) <
Ro<|z|<1

since, if r; <1 < 1,

sup <(1 — |z|2)2" ®° Bt(z,z)F(rz),F(rz)>
Ro<|z|<1
< sup <(1 — |r2)*)* ®° Bt(rz,rz)F(rz), F(rz))
Ror<|rz|<r
2
sup  ((1—|rz[*)* ®° B'(rz,rz)F(rz), F(rz)) < £
ro<|rz|<1 32

IN

As F,. — F uniformly, r — 1, on every compact subset of B, there is a number r,
such that if ro < r < 1, then

sup (F(2) — Fr(2), F(2) — Fo(2)) < = .
|21<Ro 8

Since BY(z,2) < (1 — |2]?)I < I then (25) yields ®°B!(z,2) < ®°I so that if
ro <r <1, then

S (1= [21)* ®° B'(2,2) (F(2) = Fr(2)) , F(2) — Fr(2))

0|,

< | slli% (F(2) — Fr(2), F(2) — Fr(2)) <

20



Hence for max(ry,r2) < r <1 it holds that

IF = Frll} 500 < S (A= 12" ®° B'(2,2) (F(2) = Fx(2)), F(2) = Fr(2))

2
+ sup ((1—|2*) ®° B'(2,2) (F(2) — Fr(2)) , F(2) = Fr(2)) < EZ :
Ro<|z|<1

oo (2)

Now, take r' such that max(ry,r2) <r' <1. Thesum 3=, _ > ", pm (r'z)et* ®

O} efid converges uniformly to F;.(z) on B. Hence there exists a natural number
N such that

[V

€
1 F = Prll} 5,00 < sup {(Fr(2) = Pn(2), B (2) = Pn(2)) <
zE
where Py (2) = 325, >N PR 2) el o e, This yields
IF = Pllv,s,00 < |1F = Frorlly,s,00 + [[Fr = PN|lv,s,00 < €
which completes the proof of the lemma. O

Now we can prove the sufficiency.

Proof of sufficiency of Theorem 1 (b). Let € > 0 be given. Then it follows from
Lemma 7 that there is a Py such that ||F — Pn||v,5,00 < €. Then the bilinear
Hankel form Hj. p = Hj — Hp  with F — Py is bounded. In fact, the operator
norm || - || satisfies

|Hp = Hpy || < Cl|F = PNllys,00 < Ce.

If we can prove that Hj, is compact then we are done. Actually we shall find that
Ht, is of Hilbert-Schmidt class Sz and thus especially compact. By construction

(see Lemma 7) Py is a linear combination of terms 27 e” = 27 el ©--- ® e} so
it is enough to prove that stﬂl,67 € S,. Consider

S, (2% 20) = / <®th(11),w)7;(z"‘,zﬁ)(w),w"”ei’1 ©---0O e;"’> dia, (w) .
B
First we observe that
<(§§>$Bt(w,w)7f9 (2%,2°) (w),w e]' ®--- e;“>

is a linear combination of terms
< ®° Bt (w,w) (8} -+ %) (w*) (6{1 ---(‘9(’1"*) (WP) ur ®us ® -+ ® u,

W QU@ ® vs> (26)
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where 41 ® --- ® ug and v; ® -+ - ® v, contains iy + jx copies and 7y, copies of e
respectively. We may assume that ay > i, and Sy > ji for k = 1,2,...d. Denote
i=(i1,..-,1q) and j = (J1,-..,J4)- Then the term (26) equals

Ci,j(l _ |w|2)sw(a+5)*(i+j)u—ﬂl H (i, V) — (U, BB, 0y ))

m=1

But this term yields a nonzero integral only for those a and 3 with |a+8| < |y'|+s.
Thus

2
e (,27)
z , 2
'7 e
IHZ, 15, = -
VerllS Z llz>(12]122]|2
with a finite sum. Hence Hz,,,e,, € Sz so that Hp, € Ss. O

Now we prove the necessity.

Proof of the necessity of Theorem 1 (b). Let F be a symbol such that Hj is com-
pact. Since ®°V"' is a finite dimensional Hilbert space we need only to prove that
(up,v) = 0 as n — oo where

2

tun = (1= |2a)? @ Bt(2n, 20))""* F(23)

and |z,| /1 asn — oo, for any v € ®°V'. As in the proof of the necessity of
Theorem 1 (a) we write

U—Zv, @e
li|=s

and let

w) = Zwil---wf;-vi and g(w)=1.

lil=s

So for any symbol S we have

[(S(0), v)| = Co,s|H3(f, 9)| 5

by the same arguments as for (21) in the proof of the necessity of Theorem 1 (a).
Let

S(w) = s (¢2,) F) (w) @° ¢, (w)' F(¢s, () (J., (w))™ Y

so that

S(0) = ®°¢. (0)'F(2a) (J5., (0))™/ 1. (27)
By Proposition 1,

5., (0) = (1)1 = |za[) ¥V and B (2, 20)"/% = 4L, (0)'
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so that
1(5(0),v)| = [(un,v)|. (28)
On the other hand
H3(f,9) = Hy (0 62, - 5/, ke, )
where
a (1= |2af*)""?
(1= (w, zn))¥

so that k., (w) — 0 weakly as n — oo and ||k, ||, = 1. Since H§ is compact then
there is a sequence {c,}52, of positive numbers such that ¢, — 0 and

ko, () = (g0 62,) (W) (Jp., ()" = (<1)

|HE (b, k., )| < cnllhl]y
2 _ v/(d+1) _ . .
for all h € L3(di,). Let h= fo ¢, - J,! =7, (¢,,) f which yields

II1 = 111115 -

Thus
|(un,v)| < Cusenllflly < Cnlz,scn”U“

so that {un,v) = 0 as n — 0o, which, combined with the equalities (27) and (28),
implies that

{1 — |2n]%)* ®° Bt(2n, 20)F(2n), F(2n)) = 0 as |24 /1.

6.2 Hilbert-Schmidt properties

In this subsection we prove Theorem 2. Denote by H,, , the space of all holomorphic
functions F' : B — ®°V’ such that the corresponding bilinear Hankel form on
L2(du,) ® L2(dw,)

Hy(f,g) = /B (8°B! (2, 2)Talf,9)(2), F(2)) di (2)

is of Hilbert-Schmidt class S;. By Proposition 8, it is a Hilbert space with an
inner product (F, S), ; = (H}, H§)s, where

(Hp, H)s, = Hp(easep)Hi(earep)

0

ek
NE

18]

and e, = 2%/||2%||s-
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Lemma 8. The space H,, ; is a Hilbert space.

Proof. Let {F,};2, be a Cauchy sequence in #,, .. Then {H}, }72, is Cauchy in
operator norm so that {F,}52, is Cauchy in || - ||l, s,00- Then thereis a F' € Hp%
such that Fy, = F in || - [|s,5,00- Thus Hy — H} in operator norm. On the other
hand, the space of all bilinear forms of Hilbert-Schmidt class S» is a Hilbert space
so that Hy — H € Sy in || - ||s,- Then H — H in operator norm so that
H=Hj. Thus F € H),, and F, —» F in |- ||s,. O

We now shall see that ’Hj, = ’H?, s, namely they are equal as sets and the norms

are equivalent, as is shown below. Actually, Theorem 2 is a direct consequence of
Theorem 5.

Theorem 5. There is a constant C,; > 0 such that
IE1L,s = Cosl1Fllu,s,2
for all holomorphic F : B — &%V,
To prove Theorem 5 we need some lemmas.

Lemma 9. Let {e1,...,eq} be an orthonormal basis for V'. Then the spaces H,,

and 7-[,2, s contains the element e] =e1 ® --- Q@ ey.

Proof. Clearly ef € 1, ,. The fact that ej € H,, , follows from (26), letting ' = 0
and y; =s-0y; for j=1,...,d. O

Lemma 10. The action 7, s, defined in (14), is unitary on both H,

v,s

2
and H; ;.

Proof. Clearly, 7, s is unitary on H2 .. That m,, is also unitary on H/, _ follows
from Lemma 3 and the fact that =, defined in (12), is unitary on L2(dLV) O

Lemma 11. The space Hl,s is irreducible with respect to the action m, s, defined

in (14).

Proof. Let Ho C H2, be invariant under the action m, 5(g), g € G, and assume
that h € Hy for some h # 0. We may assume, by replacing h by an action of
Ty,5(g) on h if necessary, that h(0) # 0. We need to prove

feH,, ., fLH, = [f=0. (29)
Take such an f € #Z . Since e? : z — €z is in G and
Ho 3 (mus(€)h) (2) = (7)Y it p(eitz)

then h(e?z) € Ho. Hence, by the mean value property,
2w

h(0) = h(e?z)df € Ho .
0
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Then we have found a nonzero element in ©®*V’ which is also contained in Hy. Then
v € Hy for any v € @°V' (by Theorem 12.2.8 in [Ru]). Then [m, s(¢y)v] (2) =
¢+ K(z,w)v is in Hy, for any v € @°V’, where K (-,w) is the reproducing kernel
for 12 , and c is a nonzero constant. Hence

f 1 K( ,’IU)U
so that
fw)=0 forall weB
by the reproducing property. This proves (29). O

Now we can prove Theorem 5.

Proof of Theorem 5. As a consequence of Theorem VI.23 in [RS] we can make
the following identification of the space Sa2(L2(du,), L2(dw,)) of Hilbert-Schmidt
bilinear forms on L?(dt,) with the tensor product, that is,

Sy (L2(dvy), L2(dey)) = L2(di,) ® L2(duy) -

Moreover L2(di,) ® L2(dw,) can be decomposed into irreducible subspaces H,, ,

of Hankel forms of weight s with an intertwining operator T : H2 & — Ho,s,
(see [HLZ]). Also, Hr defined in (7) is a Hankel form of weight s and by Lemma 9
there is a nonzero element in H2 , which yields a nonzero element in %}, ,. Thus

1 g2
%V,s - %V,s

whose norms are the same up to a constant, by Corollary 8.13 in [K]. O

7 Schatten-von Neumann properties

In this section we prove Theorem 3. Let LP _, for 2 < p < oo, be the space of

v,89

measurable functions S : B = ®*V’ such that

1/p
1S1lv,s,p = (/B <(1 — |2)*)? ®° B'(2,2)S(z), S(z))p/2 dL(Z)) < 00.

Then L} . is a Banach space and H} ; is a closed subspace of L} ;. Also, the spaces
Ay = L]+ L, and Ay = H,, |+ HY, are Banach spaces with the norms

»8

1]

o= inf{annu,s,Q [ Fsollunso © F = Fy+ Fog € A}

i = 1,2, respectively, by Lemma 2.3.1 in [BL]. Denote by F; = F(A4;), i = 1,2,
the space of all functions with values in A;, which are bounded and continuous on

the strip
S={z€C:0< Rz< 1}
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and holomorphic on the open strip
So={2€C:0< Rz <1}

and moreover, the functions ¢t — f(j + it) are continuous functions from the real
line into L2, L%, and H2 ,, H°, respectively, which tends to zero as [t| — oo.

v,57 s v,s) Tlys

Then F;, i = 1,2, are Banach spaces with the same norm

by Lemma 4.1.1 in [BL]. Now let 0 < # < 1 and denote by (L,2,,87Lfs)[9] and
(7-[,2,’5,7{%)[9] the space of all S € A; such that

[I£[l7 = max (Sup £ (@)lv,s,2 , sup [|f(1 +dt)|

1Sl o1 = inf{nfnf  f0)=5, fe f,} <o,

i = 1,2, respectively. As a direct consequence, the space (7—[,2,,5,7{,‘3?5)[1 /2] consists
of holomorphic functions and
2 2
(oo M) © (L6 L)
for 2 < p < 0.
If we claim that

(Li,s,Lfs)[l/I,} =LY, , 2<p<oo, (30)
then we have the following lemma.
Lemma 12. If2 < p < oo, then

2
(7‘[,,’5,7{,(3?5)[1/1)] C ,Hrlj,s .

The identity (30) can be proved by slightly modifying Theorem 5.1.1 in [BL]
using

I1E]

vsp = sup{ ‘/ ((1 = |2*)* ®° B'(2,2)F(2),S(2))du(z)| :
B

S bounded with compact support , ||S|]s,s,¢ = 1} (31)

where 1/p+ 1/q = 1. Indeed, to prove (31) let F : B — ®°V’' be measurable.
Then
H=(1-|-»)*& B'(,))*F: B> oV
is measurable and we may write H = (Hq, ..., Hy), where dim (®*V"') = N. For
1 < j < N we can find bounded functions bJ, with compact support in B such
that |b%| /* |Hj|. Let
o= oot
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Then s are bounded with compact support and
Hj - sh = |Hj| - b))
Let s, = (si,...,sY) and put
2\2v s pt —1/2
ta(2) = (1 — |2|*)* ®° BY(z,2)) sn(2).

Then t, : B — ®%V’ is measurable and

(1= =) &° B'(2, tn(2), ta(2)) = isfg(z) sh(z) = i 642)] - (=)
) ) = =
SWACTLICTED IS = (1= )™ &° B'(2, 2)F (), ta(2)) -
= - (32)
Now, let
512y = S0 87 B 2)in(@), tn ) taz).

tall?52

Then S, : B = ®*V' is measurable,

wy=1 and / (1= |2P)* ®° B'(2,2)Su(2), ta(2)) di(2) = lltullurs,

so by (32)

vy < lim [t ||,S,p_11m/< 12)? ®° Bl (2, 2)Sn(2), ta(2)) dul2)
<l1m/< |22)? @ B(2,2)Sa(2), F(2)) di(z) < M, (F)

where

M, (F) = sup{ ‘/B (1 - |22 ®° B'(z,2)F(2), S(z)) du(z)| :

S bounded with compact support , ||S||,,s,4 = 1} .
On the other hand

‘/B (1= [2[)* ®° B'(2,2)F(2),G(2)) du(2)| < IFllv,sp - Slv.s.q

which proves (31). The rest is almost the same as in [BL] loc. cit., only replacing
the usual absolute value |g(z)| of scalar functions g(z) by the norm ||S(2)||, =
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I ((1 =]z ° Bt(z,z))l/2 S(z)|| of vector-valued functions S(z), also E(z) =
(f(2),9(2)) by

H(z):/B<(1—|z|2)2" ®° B'(2,2)F(2),5(2) ) dil).

Also, by Theorem 1 (a), Theorem 2 and Theorem 2.10 in [S],

Hi € Sp=(52,80)pyy & FE€ (/HQ"’S’LZ?S)U/@]

if 2 < p < 0co. Then Lemma 12 together with (33) yield Theorem 3.

8 Further work

In the previous section we proved a necessary condition for the Hankel forms to
be in Schatten-von Neumann class Sp, 2 < p < oo. A natural question is to ask
whether this condition is sufficient or not. This seems harder to answer at the
moment.

Another problem is whether there is an atomic decomposition for the space of
symbols or not. If we can find one, then it could give rise to sufficient and necessary
conditions for the Hankel forms to be in trace class S, see [Pel] and [R2].

Also, one might be interested in finding a Kronecker theorem for Hankel forms
of higher weights, see [R1].
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