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Error detection with a class of irreducible binary
cyclic codes and their dual codes

R. Dodunekova* Olivier Rabaste**
Mathematical Sciences Ecole Nationale Supérieure
Chalmers University of Technology des Télécommunications de Bretagne

and Goéteborg University Signal and Communications Department

José Leén Vega Paez™™
Michoacan 31, Col. San Jose de los Olvera

Queretaro city, Queretaro State

76901 Mexico

Abstract The irreducible binary cyclic codes of even dimension intro-
duced by Delsarte and Goethals in 1970 constitute a para-
metric class with three parameters. We determine for these
codes whether they are proper for error detection or not,
and show the properness of a major part of their dual codes.

Key words: linear code, dual code, error detection, proper code.

1 Introduction

When a linear binary code C' = [n, k,d] is used to detect errors on a symmetric
memoryless channel with symbol error probability e, the probability of undetected
error is expressed in terms of the code weight distribution {Ag, Aq,...,A,} as

P.(C,e) =) Ai'(l—e)"", 0<e< 5 (1.1)
i=d

or, in terms of the dual weight distribution {By, By,...,B,}, as

Pu(C,e) =2""PY "Bi(1-2) — (1—¢)", 0<e< (1.2)

1=0

*Supported by the Swedish Research Council under grant 621-2003-5325.
**The work was done during these authors’ study in the International Master Program
Digital Communication Systems and Technology at Chalmers University of Technology in 2003.



The code C' is proper for error detection if P, (C, €) is an increasing function of
e € [0,1/2], see [16] and [17]. Thus a proper code performs the worst in the worst
case channel condition ¢ = 1/2, and performs better on channels with smaller
symbol error probability. Moreover, since the procedure of averaging P,.(C, ¢)
over the set of all [n, k] linear binary codes results in an increasing function of ¢,
see [20], a proper code is sufficiently appropriate for error detection in the sense
that it performs like an “average” error detecting code in the class.

Many linear codes known to be optimal or close to optimal in one sense or an-
other, turn out to be proper, see for example the survey [11]. Such are the Perfect
codes over finite fields [18] and [16], the Maximum Distance Separable codes [13],
see also [8], some Reed-Muller codes [15], some Near Maximum Distance Sepa-
rable codes [7], [10], the Maximum Minimum Distance codes and their duals [6],
[9]. Many cyclic codes are proper as well, see e.g.[2], [3], [4], [14]. Tt is interesting
to mention in this connection that some standardized Cyclic Redundancy-check
codes are non-proper, as shown in [14]. Examples of nonlinear binary codes which
are proper in the above sense are the Kerdock and the Preparata codes, and codes
satisfying or meeting the Grey-Rankin bound, see [12].

In this paper we study the properness of a class of irreducible binary cyclic
codes C(r,t,s), introduced by Delsarte and Goethals in [5], see also [19], pp.
228-229, and also the properness of their dual codes. The parameters of the
class are positive integers satisfying r > 1, ¢>1, s>1 and s|2"+ 1. The
dimension and the length of the code C(r,t,s) are

227‘75 -1
k=2rt, n= : (1.3)
s

respectively. The code has two non-zero weights,

227‘75—1 -1 t -1 27‘t—1 227"t—1 — (=1 t2rt—1
B e G Gt ) Co
S S

and its weight distribution is given by
A, =n, A, =(s=1)n. (1.5)

Our study of the codes C(r,t,s) and C*(r,t,s) in this note will reveal the
following:

e When the parameter ¢ is even, C(r,t,s) and C*(r,t,s) are proper for any
possible values of r and s.

e When the parameter ¢ is odd and s = 3, C(r,t,3) and C*(r,t,3) are
proper for any possible values of r.

e When the parameter ¢ is odd and s # 3, C(r,t,s) is non-proper.



Thus we fully classify the codes C(r,t,s) regarding properness, and show
that a major part of their dual codes are proper. The codes not studied here
are Ct(r,t,s) with ¢t odd and s # 3. Simulations suggest that these codes are
non-proper.

We study the codes C(r,t,s) in Section 2 and the codes C*(r,t,s) in Section
3. Section 4 concludes the paper.

The following technical lemma is basic for the proofs.

Lemma [12]. Letn,a, and b be integers such that 0 < a <5 < b <n, and let
a and [ be positive constants. The function

G(e) = ae®(1 — )" + Beb(1 — )" ° (1.6)
is increasing for € € [0, 3] if
a(n —2a) < B(2b—n) (1.7)

and if either
ab _ (a+b—1)>

b< d >
a+0<mn an > 4(n—1)

- (1.8)
" a+b>n and (n—2a)(20—n)<n. (1.9)

The proof of the Lemma uses standard analysis and may be found in [12].

Throughout the rest of the work we will use the notation m = 27!, and we will
also make use of the relationships

Sn+1_
5 =

T4 (s—1)n = 2m?, (1.10)

(s — 1)12(21, — n) — 71(n — 271) = 2m?, (1.11)
which are easily obtained from (1.3) and (1.4).

2 The codes C(r,t,s).

Theorem 1. When the parameter t is even, the code C(r,t,s) is proper.
Proof. The probability of undetected error of C(r,t,s) is, by (1.1) and (1.5),
P, (C(r,t,8),e) =(s—=1ne™?(1 —&)" 2 +ne™(1—e)" ™, 0<e<1/2,

where, in accordance with (1.3) and (1.4),

4m? — 1 2m? + (s — 1)m
n = s T =
s s

n n
> — =< . 2.1
2’ TQ 2 ( )



The function P, (C(r,t,s), €) is of the form (1.6) with a = 7, b = 71, and
o= (s —1)n, f =n. We will show that this function is increasing for ¢ € [0, 3]
by using the Lemma. The condition (1.7) holds since

n(2r —n) — (s — Dn(n — 27m) = n[2(m + (s — 1)12) — sn| = n,
where we have used (1.10). Since

4m? + (s — 2)m
T+ To = . >n

and

2m—1 (s—1)2m+1 s—1)4m? — (s —2)2m — 1
(n—2m)(2m1 —n) = . N )s :( ) sg )

(s—1)4m?*—(s—2)—1 s—1 4m?> -1
< . = :
s s s
(1.9) holds as well. Thus P, (C(r,t,s), €) increases for € € [0,3] and hence C
is proper.

<n,

Theorem 2. When the parametert is odd and s = 3, the code C(r,t,3) is proper.
Proof. The probability of undetected error of C(r,t,3) is, by (1.1),
Pue(C(r,t,8),e) =ne™(1 —&)" ™ +2ne™(1 — )" ™,

where

_4m?—1 _2m2—2m<n _2m2+m>n (2.2)
- 3 y T1 = 3 9 To = 3 9" .
The condition (1.7) of the Lemma holds for the above function since by (1.10)

with s = 3 we have

n

2n(2my —n) — n(n — 2m) = n[2(n + 212) — 3n] = n.
The first inequality of (1.8) holds as well, since from (2.2)

A4m? —m
7'1+7'2:T<n.

To show the second inequality we consider
4(n — D1 —n(n + 1 — 1)?
:n[ — (T2 — 7'1)2 -+ 2(’7’1 -+ 7'2) — ].):| — 4’7'17'2

2_2
—n -t B ],
1
=5 [(4m? — 1)(5m® — 2m — 3) — 4(2m” — 2m)(2m* + m)]
1 1
:5(4m4 —9m® +2m + 3) > 5 [4m*(m® — 16)] > 0,
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where in the last inequality we have used the fact that m = 27! > 4, since
t > 1 is odd by assumption and thus ¢t > 3, and also r > 1.

By the Lemma, the function P,.(C(r,t,3), ¢) is increasing for ¢ € [0,1/2]
and hence C' is proper.

Theorem 3. When the parameter t is odd and s # 3, the code C(r,t,s) is
non-proper.

Proof. In this case we have

4m? — 1 2m? — (s —1 2m?
n o Am o= m* — (s )m, = m”+m (2.3)
s s s
Put -
gi=—, i=12
n

It is obvious from (2.3) that

1 1
Eo > —. (24)

81<§, 5

From
[€7(1—&)" ™) =ne™ Y1 —e)" T (g —¢)
and (1.1) we have
P! (C(r,t,s), €)
=n2e" 1 —e)" " ey —e) F (s = D)n%e™ T (1 — )" 2 gy —€)

_ o 1 e—¢€1 /1 —e\m2m
=(s—1n2? 11 —e)" 2 ey —g)|1 — . ( ) }
(s = e (1 ey (e o) 1 - g E7 (1

(2.5)

The relationships (2.4) and (2.5) show that when ¢ € [0, 1/2] the sign of
P! (C(rt,s), ) is the same as the sign of the function in the brackets in the
right-hand side of (2.5). To prove the theorem we will show that, under the
assumptions of the theorem, this function is negative at the point

s—2 1
= . - = 1/2 2.6
o= e+ Il e (e,1/2), (26)
or, that
1 80—81<1—80)7271
= . >1 2.7
J(e0) s—1 ey—go\ &g 2.7)



when ¢ is odd and s # 3. First we find

1 go—er 1 %(%—51)
s—1 ea—eo s5—1 (82—e1)—=2(1 —¢)
s—2 s — €1
Ts—1 (s—1)(e2—1) —(s—2)( —ey)
s—2 z— &1
_8—1.8(82—%)—(614—82)—{-1

s—2 n—2n

s—1 s(2m—n)—2(r+7)+2n
From this and (2.3),

1 60—61_8—2 (s—l)?m—l
s—1 gg—¢g s—1 s2@m+1)+2[(s—2)m — 1]

s—2 (s—1)2m—1
s—1 (s—1){@dm+1)—1

m 1_42:11
:(1_311)(4773—%1_(3—1)(4m+1)—1>
:(1_ 1 )(1 1/2 1/2 + 22 )

s—1/\2 4m+1 (s—1D@dm+1)—1

Obviously, the above expression increases in s and m, and also m = 2"~! increases
in rt. Since t > 1 is odd by assumption, we must have ¢t > 3, and also r» > 2, since
if r =1, s would equal 3, while by assumption s # 3. Also, the minimum possible
value of s is b, since s|2" + 1 and s thus is odd. Note that either r¢ > 9 or 7t = 6
with » = 2 and ¢t = 3. We consider these cases separately. In the first case, the
minimum value of m is 28 = 256. Put s = 5 and m = 256 in the expression on
line two in the above chain to get the bound

1 o — &1 3 8-256—1

> 2.
s—1 epg—eg — 4 4(4-256+1)—1

> 0.374, (2.8)

which as we recall is valid when s # 3, £ odd, and r¢ > 9. Under the same
assumptions on the parameters, consider now the other factor of f(gp) in (2.7).
Using the inequality
v
l1+y>etv, y>0,

(see [1], chapter 4), we obtain

(]. — 60)7—277-1 _ (1 + ]_ — 280)m > 6411__2‘:0 .m, (29)
€o €o




where

1-2 2- =3 —¢e1) 1—2¢g
l—egp H(s—-1-e1—3(s—2) 5-¢&
n— 27 (s—1)2m—1
—9. —9.
sn — 27 s(4m? — 1) —4m? + (s — 1)2m
B (s —1)dm —2
S (s=1D@Am2+2m—-1) -1
Thus
1—2¢ (s — 1)4m? — 2m
-m =
1—¢o (s—1)4m?+2m—1)—1
_ 4m? s—1— 2%
4m2+2m—1 8—1—47"'2_}_%
1 1
_ 4m? ( _ 2m dAm?iom 1
4m2+2m—1 S_l_m

Since the last expression increases in s, and since s > 5, we obtain from the first
line of the above chain

1 —2¢ 4.4m? — 2m 16m? — 2m
-m =
1—¢p ~4(4m2+2m—1)—1  16m2+8m—5
B 2(4m - 2)
(4m +1++/6)(4m + 1 —/6)
5 1 5 1
>l—-2.——— >1-Z. > 0.997,
2 Am+1+V6 2 4.256+1+ 6

where in the last line we have used the fact that m > 256.
We now apply the above bound in (2.9) and use the result together with the
bound in (2.8) to get, for f(eg) in (2.7),

f(go) > 0.374 - %997 > 0.37-2.71 > 1.0027.
This proves the inequality (2.7) which together with (2.5) show that
P! .(C(r,t,5), &) < 0.

Hence the code C(r,t,s) is non-proper, when ¢ is odd, s # 3, and rt > 9.

It now remains to prove the statement in the case ¢t odd, s # 3, and 7t = 6,
ie., r=2, t=3, and s =5. Computations show that even for these values of
the parameters we have for f(gg) with ¢y as in (2.6)

(o) > 1.005,
and again by (2.5), the code C(2,3,5) is non-proper.

The codes C(r,t,s) are thus now fully classified regarding properness in error
detection.



3 The codes C*(r,t,s).

Theorem 4. When the parameter t is even, the code C1(r,t,s) is proper.

Proof. To show the properness of C1(r,t,s) we will use (1.2). In this case 7
and 7, are as in (2.1) and we have

Pue(C*H(r,t,5), ) =27*[1 + n(s — 1)(1 — 2¢)™
+n(l-=2)"=(1—-¢)", 0<e<1/2
and also

P! (C*(r,t,5), &) = — 27" [n(s — 1)m(1 — 2¢)™*
+nm(1=26)" " +n(l-e)"", 0<e<1/2.

Hence
(CL(T; t, S)a 5) 1 27k+1 [ (1 — 25)T2—1( 1 >n—72
=1~ )T:
n(l—e)»1 2\ 7 1.
1

+7_1(11—_2€6)71 1<1_€)n TI]

. 1 To—1 1 n—7To
=1-2" -[[(s—DTz(“ﬁ) (2(1—€)>
+ﬁ(1 = ))ﬁ ()]

k+n[ 7_ 5T 1(1 . 5)n772 + 7_167171(1 . 5)nf’rli|,
(3.1)
where we have put
d=1 ! 0<6<1/2 (3.2)
B 2(1—¢)’ - - '

As (3.1) and (3.2) show, in order to establish the properness of C*(r,t,s), it
suffices to prove that the function

G1(6) = (s — )™ 11 —6)" ™ + 6™ 11— 5)" ™ (3.3)
satisfies the inequality
Gi(6) <2k 0<d§<1/2 (3.4)

We will first show by using the Lemma that the function G,(J) increases for
§ € [0, 1/2]. The condition (1.7) holds because of (1.10) and (1.11):

n2(m—-1)—(mn-1)]=(s=Dnl(n—1)—2(r —1)]
=(s—1)n@2rn—n)—nn-21n)—[rn+(s— 1) =0.
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We will now show that (1.9) holds as well. First,

(5—2)m—s+1:(s—2)(m—1)—1

(m=1)+(m-1)= (-1 =220 :

>0

bl

since s > 3 and m > 2. Thus the first inequality of (1.9) is satisfied. The second
inequality follows from

(n=1)=[(n—=1)=2(n - DI2(n - 1) = (n = 1)]
dm?’—=1-5s 2m+s-1 (s—=1)2m-1)

= 81—2[4m2— (s—1)(s—2)2m — 35+ 1]
= %[47)12— (s—1)*2m+ (s — 1)(2m — 3) — 2]
> 25—2”[27”_(8—1)2} >0

since
(s —1)2< 2% < 2" =2m.

By the Lemma, the function in (3.3) is increasing for ¢ € [0, 1/2]. Therefore,

_ — 9—n+l _ — 9k-n
()gslgi(/Q Gl(é) = G(]_/Q) =2 [(8 1)7'2 + ’7'1] 2 5

where again we have made use of (1.10) and also of (1.3). This shows (3.4) which
gives, together with (3.1) and (3.2), that P,.(C*(r,t,s),e) >0 for € € [0,3],
i. e., C*(r,t,s) is proper.

Theorem 5. When the parameter t is odd and s = 3, the code C+(r,t,3) is
proper.

Proof. From (1.2) we obtain
Pe(CH(r,t,s), &) =27F[14+n(l —2e)™ 4+ 2n(1 — 26)™] — (1 —¢)",
where 7 and 7» are as in (2.2). As in (3.1),

P! (Ct(rt,s
n(l—e)n-

)1,6) =127 [ (1 — )" + 218™ L1 — 8)" ], (3.5)

In order to prove the properness of C1(r, ¢, s) we will establish that the function

G2(0) =6 (1= 6)" ™ + 216 (1= 6)"

9



in the right-hand side of (3.5) satisfies the inequality
Go(6) <27 0<§<1)2 (3.7)

We will first show by means of the Lemma that G4 () is increasing for § € [0,1/2].
The condition (1.7) holds in this case since by (1.10) and (1.11) we have
215[2(p = 1) = (n = 1)] = m[(n — 1) — 2(1y — 1)]
=212 —n) —n(n—2n)— 2rn+m)=0.

Since g
(71—1)+(72—1):y—2<n—1,

the first inequality of (1.8) holds as well. We show the second by using again the
fact that m =271 >4

dn=-2(m—-1)(-1)-n-1)(rn-1)+(m-1)-1)
=(n— 1)[— (7o —7'1)2 +2(n+1m—-2)— 1)} —4(r = 1)( = 1)

(n—1)[—m2+ 2_2’"—5] —4(n —1)(rp — 1)

3

8m

1
5 [(4m® — 4)(5m> — 2m — 15) — 4(2m> — 2m — 3)(2m” + m — 3)]
4 4

= §(m4 —6m* —m+6) = §[m2(m2 —16) + m(10m — 1) + 6] > 0.

By the lemma, the function G2(0) is increasing for 6 € [0,1/2]. Therefore

_ _ —n+1l _ ogk—n
0;1512?/2 G2(0) = G2(1/2) = (11 + 273)2 =28 "
and the inequality (3.7) thus holds true. Together with (3.5) and (3.6) it implies
that C*(r,t,3) is proper.

4 Conclusion

We have shown that the irreducible binary cyclic codes C(r,t,s) introduced by
Delsarte and Goethals are proper for error detection when the parameter ¢ is
even and when the parameter ¢ is odd and s = 3, and that they are non-proper
when the parameter ¢ is odd and s # 3. We have therefore fully classified the
codes C(r,t,s) regarding properness.

We have also shown that the dual codes C*(r,t,s) are proper for error detec-
tion when the parameter ¢ is even and when the parameter ¢ is odd and s = 3.
To complete the classification of the dual codes regarding properness, it remains
to investigate the codes C(r,t,s) with ¢ odd and s # 3. As mentioned before,
we believe that these codes are non-proper.

10
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