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and their duals
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Abstract In this note we complete the classification with respect to
properness carried out in [4] for the Delsarte-Goethals irre-
ducible binary cyclic codes and for some of their duals, by
proving that the dual codes not considered there are in fact
non-proper. We also prove that the Delsarte-Goethals irre-
ducible binary cyclic codes, shown in [4] to be non-proper,
are actually not even good for error detection.

Key words: cyclic code, dual code, error detection, good code, proper
code.

1 Introduction

The irreducible binary cyclic codes C(r,t,s) introduced in 1970 by Delsarte and
Goethals [1], see also [8], pp. 228-229, depend on three parameters r, ¢, and s,
which are positive integers satisfying » > 1, ¢>1, s> 1, and s[2"+ 1. The
dimension £ and the length n of the code C(r,t,s) are

22rt -1
k = 2rt, n = . (1.1)
s
The code has two non-zero weights,
227"75—1 -1 t -1 2rt—1 22rt—1 — (=1 t27‘t—1
I (e i ot
s s
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and its weight distribution is given by
A, =n, A, =(s=1)n. (1.3)

The error detecting performance of the codes C(r,t,s) and of some of their
dual codes C*(r,t,s) has been studied in [4]. It was shown there that C(r,t,s)
and C*(r,t,s) are proper when ¢ is even, and also when ¢ is odd and s = 3, and
that C(r,t,s) is non-proper when ¢ is odd and s # 3.

While in [4] the classification with respect to properness was complete for the
codes C(r,t,s), it was not for the dual codes, since the codes C*(r,t,s) with
t odd and s # 3 still remained not studied. However, it was conjectured in [4]
that these codes are non-proper. We give a proof of this conjecture in Theorem
1 of Section 3. We also give a better insight into the codes C(r,t,s) with ¢ odd
and s # 3, shown in [4] to be non-roper. It turns out, that these codes are in
fact not even good for error detection, which we prove in Theorem 2 of Section
3. In Section 2 we present a technical lemma, which is basic for the proofs of the
theorems.

For completeness, we first recall the concepts of a proper and a good linear
error detecting code, restricting ourselves to the binary case.

When a linear binary [n, &, d] code C' is used to detect errors on a symmetric
memoryless channel with symbol error probability €, the probability of undetected

error is expressed in terms of the code weight distribution {Ag, Aq,...,A,} as
n . . 1
P.(C,¢e) = z;Aisz(l —e)"", 0<e< 2’ (1.4)
1=

or, in terms of the dual weight distribution {By, By, ..., B,}, as

P.(C,e)=2""PY "Bi(1-2) - (1-¢)", 0<e<

1=0

. (15)

DN | =

The code C is proper for error detection if P,.(C, ) is an increasing function of
e €[0,1/2], and good if P,.(C, €) takes its largest value in the worst case channel
condition € = 1/2, see [6] and [7]. Thus a proper code is also a good code, but
a proper code has the advantage of performing better on better channels, i.e.,
on channels with smaller symbol error probability. Another way of looking at a
proper [n, k,d] binary linear code is to say that its behavior in error detection is
similar to the behavior of an “average” code in the set of all [n, k] binary linear
codes since, as shown in [9], the procedure of averaging P,.(C, ¢) over this set
results in an increasing function of €.

Some examples of proper codes are the Perfect codes over finite fields, the
Maximum Distance Separable codes, some Reed-Muller codes, some Near Maxi-
mum Distance Separable codes, and the Maximum Minimum Distance codes and



their duals, see also the survey [2] on proper codes. Many cyclic codes are proper,
and there are non-proper standardized Cyclic Redundancy-check codes, see [5].
The Kerdock and the Preparata codes, and codes satistying the Grey-Rankin
bound are examples of non-linear binary codes which are proper in the above
sense, see [3].

2 A basic technical Lemma

Let r, t, and s be the parameters of the binary cyclic code C(r,t,s) with t odd
and s # 3. Setting m = 277!, the length and the non-zero weights of the code
are, cf. (1.1) and (1.2),

4m? — 1 om? — (s — 1 2m?
oo 2m L (s )m, = ™ (2.1)
s s s
The parameter s is odd, since s|2"+1, and thus s =5, 7 ... . Define §; € (0,1/2)

as

5
—, if s=25,
8, = 1 _ %’ = 3Im (2'2)
2 2 s )
—, if s>7,
2m
and with n, 71, and 7, asin (2.1),
1
G(9) = B [(5“(1 =0 4+ (s—1)6"(1 - (5)"_72}. (2.3)
Lemma. It holds
2"G(6s) > 1.021. (2.4)

Proof. We have ¢t > 3, because ¢ isodd and ¢ > 1, and r > 2, because s[2"+1
and s > 5. Therefore

m > 32, > >

S 2r+1

23r—1 25
s S =64=c (2.5)

From (2.1), (2.2) and (2.3) we have

2"G(d,) = %[(255)7—1 (2(1 = 6,))" ™ + (s — 1)(26,)™(2(1 — 6,))" ]
= = e (14 ) o (5= 1)(1 — ) (14 ay)" "]
i’ (2.6)
= 21— )1 0 [ - ) (1 4 ) s 1]
- 2(1 — 0 (1= )T (L4 ay) " [(1 = ay) ™(1 4+ ay)™ + 5 — 1]
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T
Consider first s > 7, in which case oz = s/(2m). Since the functions (1 + %)
T
and (1 — %) are increasing for x > 1 and

1\2 1\=
(1 + —) — e, (1 - —) —el, 17— o0, (2.7)
T T

we obtain using (2.5), for the factors in the last line of (2.6),

2 | 2m? 2¢2
s . 1 c?s s
(=)~ 2(1-5) > (005,
= 1
(1- 21) > (1 _ 2—)0 > 0.59,
m c
s _ m+1
(1 n 2_) S e_";_;l — e 12-1/2m o —1/2-1/64 0.59,
m
(-5 "> "
m

m 1 cs
(1 + i) > (1 + —) > 1.618".
2m 2¢

Substituting the above bounds into (2.6) we get

0.59)2
2"G(,) > % [(0.605 -e!?.1.618)° 4 (s — 1)(0.605)°
(2.8)
1.6)° —1)(0.6)°
>0.3[( A G CE) |
s s
The function
s —1)p®
fo) =L B e b—os
s s
is increasing for s > 7, since
! 1 S S
fi(s) = = [a (Ina —1/s) + b°((s — 1) Inb + 1/5)}
11, s b*rray\s
> 3 [a (Ina—1/7)+b slnb] > ;[(5) -0.3—s5- 0.6]
> O'ib (2° —2s) > 0.
Therefore we have for s > 7 that f(s) > f(7) > 3.8, which gives in (2.8),
2"G(ds) >0.3-3.8>1.1, s>T. (2.9)



Consider now s = 5. We have a5 = 5/(3m) and by (2.5) and the monotonicity
of the functions in (2.7) we obtain, for the factors in the last line of (2.6),

25 \ 2* 1 102
(1 ) > (1—9—) > 0.3286,

9m?2 c?

(-5m)

_m+1

(1422) 7 > e m = e s s 5 g1,
m
(1 — i)_ > e3> 5.2044,

m
5

1\¢
> (1 - —) > 0.7101,
3c

5 \m 1\ 8¢
(1+22)" > (1+5)" > 5.0769.
3m 3c
Substituting the above bounds in (2.6) gives

1
2"G(85) > - 0.3286 - 0.7101 - 0.7091 - (5.2944 - 5.0769 + 4) > 1.021,

which together with (2.9) proves the Lemma.

3 Main results

We consider the codes C(r,t,s) and C+(r,t,s) with ¢ odd and s # 3. For these
t and s the non-zero weights 7, and 7, are as in (2.1), and also the Lemma
holds true.

Theorem 1. The code C*(r,t,s) is non-proper when the parameter t is odd
and s # 3.

Proof. The probability of undetected error of C*(r,, s) is, by (1.3) and (1.5),
Pue(CH(ryt,5), ) = 27*[1 +n(1 — 26)™
+n(s=1)(1=2e)?]—(1—¢)", 0<e<1/2,
and hence
P! (C*(rt,5), e) = =2 ¥ nr (1 — 2¢)™ 1
+n(s—Dr(1-2e)" N+n(l-e)"!, 0<e<1/2

Therefore

AlC gt cro [ (F2) ()

- m() " () (3.1)

1—¢ 1—¢

=12 H g (L= 6)" T (s — D)md™ (1 - 8) 7
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where we have put

1
0=1———, 0<6<1)/2 3.2
s 061 (5.2)
Consider (3.1) at e, = 1— m € (0,1/2), where d; is as in (2.2). From 7 < 79,
cf. (2.1), and 27% = 4m?, cf. (1.1), we get
P! (C*(rt,5), €5)) STy
uel v 5), 1- 2"G(6.). 3.3
n(l—egs)n! < Am?2 (%) (3:3)

When s > 7, (2.1) and (2.2) give

s 2mP—(s—L)m _ 2m’—(s—1)m
4m25,  4m2(1/2 —s/4m)  2m? — sm

> 1, (3.4)

and when s = 5,

st 2m? — 4m B 2
4m26s  4m2(1/2 —5/6m)

2
-2 _>1-_—*°* 3y .
om—10>""5.32—10 > %% ()

since m > 32, according to (2.5). Applying (3.4) and (3.5) in (3.3) and using
(2.4) we obtain

Py (C=(r,t, 5), €))
n(l — ;)1

<1-0.989-2"G(ds) < 1—0.989-1.021 < —0.009,

showing that the function P,.(C*(r,t,s), ) is decreasing at ¢, and thus that
the code C+(r,t,s) is non-proper.

Theorem 2. The code C(r,t,s) is not good when the parameter t is odd and
s # 3.

Proof. The probability of undetected error of C(r,t,s) is, by (1.3) and (1.5),

P, (C(r,t,s),e)=ne™(1—¢e)" " +n(s—1)e™(1 —e)" ™ =nsG(e), (3.6)
and in the worst-case channel condition ¢ = 1/2 we have
P,.(C(r,t,s),1/2) =ns2™ ™. (3.7)

From the Lemma,

P, (C(r,t,58),05)
ns2—"n

= 2"G(d,) > 1.021, (3.8)

and thus the code C(r,t,s) is not good.
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