PREPRINT

On the Error-Detecting Performance of the Delsarte-Goethals Irreducible Binary Cyclic Codes and Their Duals

R. DODUNEKOVA

Department of Mathematical Statistics
CHALMERS UNIVERSITY OF TECHNOLOGY
GÖTEBORG UNIVERSITY
Göteborg Sweden 2004
On the Error-Detecting Performace of the Delsarte-Goethals Irreducible Binary Cyclic Codes and Their Duals

R. Dodunekova
On the error-detecting performance of the Delsarte-Goethals irreducible binary cyclic codes and their duals

Rossitza Dodunekova*

Mathematical Sciences
Chalmers University of Technology
and Göteborg University
412 96 Göteborg, Sweden

Abstract In this note we complete the classification with respect to properness carried out in [4] for the Delsarte-Goethals irreducible binary cyclic codes and for some of their duals, by proving that the dual codes not considered there are in fact non-proper. We also prove that the Delsarte-Goethals irreducible binary cyclic codes, shown in [4] to be non-proper, are actually not even good for error detection.

Key words: cyclic code, dual code, error detection, good code, proper code.

1 Introduction

The irreducible binary cyclic codes $C(r,t,s)$ introduced in 1970 by Delsarte and Goethals [1], see also [8], pp. 228–229, depend on three parameters r, t, and s, which are positive integers satisfying $r \geq 1$, $t > 1$, $s > 1$, and $s|2^r + 1$. The dimension k and the length n of the code $C(r,t,s)$ are

$$k = 2rt, \quad n = \frac{2^{2rt} - 1}{s}. \quad (1.1)$$

The code has two non-zero weights,

$$\tau_1 = \frac{2^{2rt-1} + (-1)^t(s-1)2^{rt-1}}{s}, \quad \tau_2 = \frac{2^{2rt-1} - (-1)^t2^{rt-1}}{s}, \quad (1.2)$$

*Supported by the Swedish Research Council under grant 621-2003-5325.
and its weight distribution is given by

\[A_{r_1} = n, \quad A_{r_2} = (s - 1)n. \]

The error detecting performance of the codes \(C(r, t, s) \) and of some of their dual codes \(C^\perp(r, t, s) \) has been studied in [4]. It was shown there that \(C(r, t, s) \) and \(C^\perp(r, t, s) \) are proper when \(t \) is even, and also when \(t \) is odd and \(s = 3 \), and that \(C(r, t, s) \) is non-proper when \(t \) is odd and \(s \neq 3 \).

While in [4] the classification with respect to properness was complete for the codes \(C(r, t, s) \), it was not for the dual codes, since the codes \(C^\perp(r, t, s) \) with \(t \) odd and \(s \neq 3 \) still remained not studied. However, it was conjectured in [4] that these codes are non-proper. We give a proof of this conjecture in Theorem 1 of Section 3. We also give a better insight into the codes \(C(r, t, s) \) with \(t \) odd and \(s \neq 3 \), shown in [4] to be non-proper. It turns out, that these codes are in fact not even good for error detection, which we prove in Theorem 2 of Section 3. In Section 2 we present a technical lemma, which is basic for the proofs of the theorems.

For completeness, we first recall the concepts of a proper and a good linear error detecting code, restricting ourselves to the binary case.

When a linear binary \([n, k, d]\) code \(C \) is used to detect errors on a symmetric memoryless channel with symbol error probability \(\varepsilon \), the probability of undetected error is expressed in terms of the code weight distribution \(\{A_0, A_1, \ldots, A_n \} \) as

\[P_{ue}(C, \varepsilon) = \sum_{i=0}^{n} A_i \varepsilon^i (1 - \varepsilon)^{n-i}, \quad 0 \leq \varepsilon \leq \frac{1}{2}, \]

or, in terms of the dual weight distribution \(\{B_0, B_1, \ldots, B_n \} \), as

\[P_{ue}(C, \varepsilon) = 2^{-(n-k)} \sum_{i=0}^{n} B_i (1 - 2\varepsilon)^i - (1 - \varepsilon)^n, \quad 0 \leq \varepsilon \leq \frac{1}{2}. \]

The code \(C \) is proper for error detection if \(P_{ue}(C, \varepsilon) \) is an increasing function of \(\varepsilon \in [0, 1/2] \), and good if \(P_{ue}(C, \varepsilon) \) takes its largest value in the worst case channel condition \(\varepsilon = 1/2 \), see [6] and [7]. Thus a proper code is also a good code, but a proper code has the advantage of performing better on better channels, i.e., on channels with smaller symbol error probability. Another way of looking at a proper \([n, k, d]\) binary linear code is to say that its behavior in error detection is similar to the behavior of an “average” code in the set of all \([n, k]\) binary linear codes since, as shown in [9], the procedure of averaging \(P_{ue}(C, \varepsilon) \) over this set results in an increasing function of \(\varepsilon \).

Some examples of proper codes are the Perfect codes over finite fields, the Maximum Distance Separable codes, some Reed-Muller codes, some Near Maximum Distance Separable codes, and the Maximum Minimum Distance codes and
their duals, see also the survey [2] on proper codes. Many cyclic codes are proper, and there are non-proper standardized Cyclic Redundancy-check codes, see [5]. The Kerdock and the Preparata codes, and codes satisfying the Grey-Rankin bound are examples of non-linear binary codes which are proper in the above sense, see [3].

2 A basic technical Lemma

Let \(r, t, \) and \(s \) be the parameters of the binary cyclic code \(C(r, t, s) \) with \(t \) odd and \(s \neq 3 \). Setting \(m = 2^{t-1} \), the length and the non-zero weights of the code are, cf. (1.1) and (1.2),

\[
 n = \frac{4m^2 - 1}{s}, \quad \tau_1 = \frac{2m^2 - (s - 1)m}{s}, \quad \tau_2 = \frac{2m^2 + m}{s}. \tag{2.1}
\]

The parameter \(s \) is odd, since \(s|2^r + 1 \), and thus \(s = 5, 7 \ldots \). Define \(\delta_s \in (0, 1/2) \) as

\[
 \delta_s = \frac{1}{2} - \frac{\alpha_s}{2}, \quad \alpha_s = \begin{cases}
 \frac{5}{3m}, & \text{if } s = 5, \\
 \frac{s}{2m}, & \text{if } s \geq 7,
 \end{cases} \tag{2.2}
\]

and with \(n, \tau_1, \) and \(\tau_2 \) as in (2.1),

\[
 G(\delta) = \frac{1}{s} \left[\delta^{\tau_1} (1 - \delta)^{n - \tau_1} + (s - 1)\delta^{\tau_2} (1 - \delta)^{n - \tau_2} \right]. \tag{2.3}
\]

Lemma. It holds

\[
 2^n G(\delta_s) > 1.021. \tag{2.4}
\]

Proof. We have \(t \geq 3 \), because \(t \) is odd and \(t > 1 \), and \(r \geq 2 \), because \(s|2^r + 1 \) and \(s \geq 5 \). Therefore

\[
 m \geq 32, \quad \frac{m}{s} \geq \frac{2^{r-1}}{2^r + 1} \geq \frac{2^5}{5} = 6.4 = c. \tag{2.5}
\]

From (2.1), (2.2) and (2.3) we have

\[
 2^n G(\delta_s) = \frac{1}{s} \left[(2\delta_s)^{\tau_1} (2(1 - \delta_s))^{n - \tau_1} + (s - 1)(2\delta_s)^{\tau_2} (2(1 - \delta_s))^{n - \tau_2} \right] \\
 = \frac{1}{s} \left[(1 - \alpha_s)^{\tau_1} (1 + \alpha_s)^{n - \tau_1} + (s - 1)(1 - \alpha_s)^{\tau_2} (1 + \alpha_s)^{n - \tau_2} \right] \\
 = \frac{1}{s} \left[(1 - \alpha_s)^{\tau_2} (1 + \alpha_s)^{n - \tau_2} [(1 - \alpha_s)^{n - \tau_1} (1 + \alpha_s)^{\tau_2 - \tau_1} + s - 1] \right] \\
 = \frac{1}{s} (1 - \alpha_s^2) \frac{2m^2}{s} (1 - \alpha_s) \frac{m}{s} (1 + \alpha_s)^{-\frac{m+1}{s}} [(1 - \alpha_s)^{-m} (1 + \alpha_s)^m + s - 1]. \tag{2.6}
\]
Consider first \(s \geq 7 \), in which case \(\alpha_s = s/(2m) \). Since the functions \((1 + \frac{1}{x})^x \) and \((1 - \frac{1}{x})^x \) are increasing for \(x > 1 \) and
\[
\left(1 + \frac{1}{x}\right)^x \to e, \quad \left(1 - \frac{1}{x}\right)^x \to e^{-1}, \quad x \to \infty,
\]
we obtain using (2.5), for the factors in the last line of (2.6),
\[
\begin{align*}
(1 - \frac{s^2}{4m^2})^{\frac{2m^2}{s}} &\geq (1 - \frac{1}{4c^2})^{2c^{2s}} > (0.605)^s, \\
(1 - \frac{s}{2m})^c &\geq (1 - \frac{1}{4c})^c > 0.59, \\
(1 + \frac{s}{2m})^{\frac{s}{2m+1}} &> e^{\frac{1}{2m} - 1} > e^{-1/2} > 0.59, \\
(1 - \frac{s}{2m})^m &> e^{s/2}, \\
(1 + \frac{s}{2m})^m &\geq (1 + \frac{1}{2c})^{cs} > 1.618^{s}.
\end{align*}
\]
Substituting the above bounds into (2.6) we get
\[
2^nG(\delta_s) > \frac{(0.59)^2}{s}\left[(0.605 \cdot e^{1/2} \cdot 1.618)^s + (s - 1)(0.605)^s\right] \\
> 0.3\left[(1.6)^s + (s - 1)(0.6)^s\right].
\]

The function
\[
f(s) = \frac{a^s}{s} + \frac{(s - 1)b^s}{s}, \quad a = 1.6, \quad b = 0.6,
\]
is increasing for \(s \geq 7 \), since
\[
\begin{align*}
f'(s) &= \frac{1}{s}\left[a^s(\ln a - 1/s) + b^s((s - 1)\ln b + 1/s)\right] \\
&> \frac{1}{s}\left[a^s(\ln a - 1/7) + b^s \ln b\right] > \frac{b^s}{s}\left[(\frac{a}{b})^s \cdot 0.3 - s \cdot 0.6\right] \\
&> \frac{0.3b^s}{s}(2^s - 2s) > 0.
\end{align*}
\]
Therefore we have for \(s \geq 7 \) that \(f(s) \geq f(7) > 3.8 \), which gives in (2.8),
\[
2^nG(\delta_s) > 0.3 \cdot 3.8 > 1.1, \quad s \geq 7.
\]
Consider now $s = 5$. We have $\alpha_5 = 5/(3m)$ and by (2.5) and the monotonicity of the functions in (2.7) we obtain, for the factors in the last line of (2.6),

$$\left(1 - \frac{25}{9m^2}\right)\frac{m}{3}\geq \left(1 - \frac{1}{9c^2}\right)^{10c^2} > 0.3286,$$

$$\left(1 - \frac{5}{3m}\right)^m \geq \left(1 - \frac{1}{3c}\right)^c > 0.7101,$$

$$\left(1 + \frac{5}{3m}\right)^{-m} > e^{-\frac{5}{3m}} = e^{-1/3-1/3m} > e^{-1/3-1/3\cdot 2^s} > 0.7091,$$

$$\left(1 - \frac{5}{3m}\right)^m > e^{5/3} > 5.2944,$$

$$\left(1 + \frac{5}{3m}\right)^m \geq \left(1 + \frac{1}{3c}\right)^{5c} > 5.0769.$$

Substituting the above bounds in (2.6) gives

$$2^n G(\delta) > \frac{1}{5} \cdot 0.3286 \cdot 0.7101 \cdot 0.7091 \cdot (5.2944 \cdot 5.0769 + 4) > 1.021,$$

which together with (2.9) proves the Lemma.

3 Main results

We consider the codes $C(r, t, s)$ and $C^\perp(r, t, s)$ with t odd and $s \neq 3$. For these t and s the non-zero weights τ_1 and τ_2 are as in (2.1), and also the Lemma holds true.

Theorem 1. The code $C^\perp(r, t, s)$ is non-proper when the parameter t is odd and $s \neq 3$.

Proof. The probability of undetected error of $C^\perp(r, t, s)$ is, by (1.3) and (1.5),

$$P_{ue}(C^\perp(r, t, s), \varepsilon) = 2^{-k}[1 + n(1 - 2\varepsilon)^{\tau_1} + n(s - 1)(1 - 2\varepsilon)^{\tau_2}] - (1 - \varepsilon)^n, \quad 0 \leq \varepsilon \leq 1/2,$$

and hence

$$P'_{ue}(C^\perp(r, t, s), \varepsilon) = -2^{-k+1}[n\tau_1(1 - 2\varepsilon)^{\tau_1-1} + n(s - 1)\tau_2(1 - 2\varepsilon)^{\tau_2-1}] + n(1 - \varepsilon)^n, \quad 0 \leq \varepsilon \leq 1/2.$$

Therefore

$$\frac{P'_{ue}(C^\perp(r, t, s), \varepsilon)}{n(1 - \varepsilon)^{n-1}} = 1 - 2^{-k+1}\left[\tau_1\left(\frac{1 - 2\varepsilon}{1 - \varepsilon}\right)^{\tau_1-1}\left(\frac{1}{1 - \varepsilon}\right)^{n-\tau_1} + (s - 1)\tau_2\left(\frac{1 - 2\varepsilon}{1 - \varepsilon}\right)^{\tau_2-1}\left(\frac{1}{1 - \varepsilon}\right)^{n-\tau_2}\right]$$

$$= 1 - 2^{-k+n}\left[\tau_1\delta^{\tau_1-1}(1 - \delta)^{n-\tau_1} + (s - 1)\tau_2\delta^{\tau_2-1}(1 - \delta)^{n-\tau_2}\right],$$

(3.1)
where we have put
\[\delta = 1 - \frac{1}{2(1 - \varepsilon)}, \quad 0 \leq \delta \leq 1/2. \]
(3.2)

Consider (3.1) at \(\varepsilon_s = 1 - \frac{1}{2(1 - \delta_s)} \in (0, 1/2) \), where \(\delta_s \) is as in (2.2). From \(\tau_1 < \tau_2 \), cf. (2.1), and \(2^{-k} = 4m^2 \), cf. (1.1), we get
\[\frac{P_{ue}'(C^{'1}(r, t, s), \varepsilon_s))}{n(1 - \varepsilon_s)^{n-1}} < 1 - \frac{s\tau_1}{4m^2 \delta_s} 2^n G(\delta_s). \]
(3.3)

When \(s \geq 7 \), (2.1) and (2.2) give
\[\frac{s\tau_1}{4m^2 \delta_s} = \frac{2m^2 - (s - 1)m}{4m^2(1/2 - s/4m)} = \frac{2m^2 - (s - 1)m}{2m^2 - sm} > 1, \]
(3.4)

and when \(s = 5 \),
\[\frac{s\tau_1}{4m^2 \delta_5} = \frac{2m^2 - 4m}{4m^2(1/2 - 5/6m)} = 1 - \frac{2}{6m - 10} \geq 1 - \frac{2}{6 \cdot 32 - 10} > 0.989, \]
(3.5)

since \(m \geq 32 \), according to (2.5). Applying (3.4) and (3.5) in (3.3) and using (2.4) we obtain
\[\frac{P_{ue}'(C^{1}(r, t, s), \varepsilon_s))}{n(1 - \varepsilon_s)^{n-1}} < 1 - 0.989 \cdot 2^n G(\delta_s) < 1 - 0.989 \cdot 1.021 < -0.009, \]

showing that the function \(P_{ue}(C^{1}(r, t, s), \varepsilon) \) is decreasing at \(\varepsilon_s \) and thus that the code \(C^{1}(r, t, s) \) is non-proper.

Theorem 2. The code \(C(r, t, s) \) is not good when the parameter \(t \) is odd and \(s \neq 3 \).

Proof. The probability of undetected error of \(C(r, t, s) \) is, by (1.3) and (1.5),
\[P_{ue}(C(r, t, s), \varepsilon) = n\varepsilon^{\tau_1}(1 - \varepsilon)^{n-\tau_1} + n(s - 1) \varepsilon^{\tau_2}(1 - \varepsilon)^{n-\tau_2} = nsG(\varepsilon), \]
(3.6)

and in the worst-case channel condition \(\varepsilon = 1/2 \) we have
\[P_{ue}(C(r, t, s), 1/2) = ns2^{-n}. \]
(3.7)

From the Lemma,
\[\frac{P_{ue}(C(r, t, s), \delta_s)}{ns2^{-n}} = 2^n G(\delta_s) > 1.021, \]
(3.8)

and thus the code \(C(r, t, s) \) is not good.
References

