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Abstract

In a previous report we have described how simple Krylov subspace
methods can be used for information retrieval. We used the Golub
Kahan bidiagonalization procedure to generate an approximation to
a low rank representation of the documents. The process is query
based and a new approximation is made for every new query. The
Krylov method often shows better retrieval performance than the raw
vector model (where documents are scored measuring angles between
the query and the original documents).

In this report we explore the effects of 107 different combinations
of term weighting schemes for the term document matrix together
with 27 different weighting schemes for the queries in cach of four
test collections. Also, for cach weighting performance of three simi-
larity measures for the Krylov method are compared to performance
of the vector model, and for the best and worst performing weighting
combination for each set also with the LSI.

Our results are rather consistent with results from similar experi-
ments carried out previously.

There is a large difference in performance between the best per-
forming weighting scheme and the worst performing weighting scheme.

There is no overall best weighting, but in general using a term
weighting based on the distribution of a term within the whole collec-
tion improved performance.

A weighting that is bad for the Krylov subspace method is also
bad for the vector model and the LSI.




1 Introduction and Summary

In a previous report [5] we have described how simple Krylov subspace meth-
ods can be used for information retrieval. We used the Golub Kahan bidiago-
nalization procedure to generate an approximation to a low rank representa-
tion of the documents. The process is query based and a new approximation
is made for every new query. The Krylov method often shows better re-
trieval performance than the raw vector model (where documents are scored
measuring angles between the query and the original documents).

This report investigates the effect on retrieval performance when different
term weightings are used. Simple weighting schemes are constructed using
the one-norm, euclidean norm and max-norm. These simple weightings are
compared to more sophisticated weighting schemes such as inverse document
frequency and the entropy weighting. The weighting schemes used for this
report are presented in section 2.

For the Krylov subspace method three similarity measures for scoring
documents, the LSI-like measure (c(1)), the expanded query measure (c(?)
and the subspace projection measure(c(s)) are compared to the vector model
(c). For the best and worst performing weighting combination for each set
(performance is measured in average precision) we compare the LST [4],[9]
with the expanded query measure and the vector model. A short summary
of the similarity measures and of the Krylov subspace method is given in
section 3.

In order to make our experiments comparable to several other similar
weighting experiments in the past, we use the four data sets Adi, Cisi, Cran
and Med. These sets are old and rather small. The data sets are presented
in Appendix B.

In section 4 the numerical results are presented. We explore the effects
of 2889 different weighting combinations for the term document matrix and
the query vectors in each of four test collections.

Our results are in general consistent with similar experiments carried out
previously by Dumais [8], Salton et al [18], Kolda et al. [16],[15], see also
Harman [13]. A few trends can be observed.

1. There is a large difference in performance between the best performing
weighting scheme and the worst performing weighting scheme. Perfor-
mance is measured in average precision.

. There is no overall best weighting for all similarity measures and all four

test sets, but in general using a term weighting based on the distribution
of a term within the whole collection improves performance.

. Tt seems important which query weighting is chosen (or at least the
combination of term weighting and query weighting seems to be im-
portant).

. In general the more sophisticated weighting schemes give better per-
formance compared to the simpler vector norm weightings. But the
euclidean norm is not far behind. The one-norm weighting in general
decreases performance and should not be used.

. A weighting that is bad for any of the Krylov subspace similarity mea-
sures (the LSI-like measure, the expanded query measure and the sub-
space projection measure) is also bad for the vector model and the
LSI.

Notations The notations used in this report are rather standard in the
Numerical Linear Algebra community. We use upper case letters for matrices
and lower case letters for vectors. Lower case Greek letters usually denotes
scalars. Component indices are denoted by subscript. For example, a vector ¢
and a matrix M might have entries c; and m;; respectively. On the occasions
when both an iteration index and a component index are needed, the iteration
is indicated by a parenthesised superscript, as in cgr) to indicate the jth
component of the rth vector in a sequence. Otherwise ¢; may denote either
the jth component of a vector ¢ or the jth column of a matrix C. The
particular meaning will be clear from its context.

The pseudo inverse of a matrix B is denoted B*.

All of the vector norms we will use are instances of p-norms, which for a
real p > 1 and a vector z of dimension n are defined by

llzlly = (Y la:l") 7.
i=1

The special cases we use are
one-norm:

n
lzlls = il
i—1




euclidean norm:

llzllz = (D lal?)"/2
i=1

and maz-norm
el = masxa|.

All norms on R™ are equivalent, i.e. if |||/, and | - ||g are p-norms on
R™, then there exist positive constants ¢; and ¢, such that

alzlla < lzlls < coll2]a (1)

A Krylov subspace of a square matrix M, starting at the vector v, is a
subspace of the form

K, (M, v) = span{v, Mv, M?v,... M" 'v}.

Measures The retrieval efficiency of an information retrieval system de-
pends on two main factors. The ability of the system to retrieve relevant
information and the ability to dismiss irrelevant information. The ability
to retrieve relevant information is measured by recall, the ratio of relevant
documents retrieved over the total number of relevant documents for that
query. A systems ability to reject irrelevant documents is measured by pre-
cision, the ratio of the number of relevant documents retrieved for a given
query over the total number of documents retrieved. Precision and recall are
usually inversely related (when precision goes up, recall goes down and vice
versa).

When we evaluate a query ¢ all documents in the set are ranked and we
receive an ordered list £ of documents. Assume ¢ documents are relevant to
the query and let ¢;, ¢ =1...t be the position for the ith relevant document
in £. The average precision (non interpolated) for a single query is defined

as ,
1 Z i
tio b
The mean average precision for multiple queries is defined as the mean
of the average precisions for all queries.

i
Precision can be computed at any actual recall level -, 7= 1...1 (where

t is the number of relevant documents to the query). Let r; be the jth

5

recall level from the 11 standard recall levels 0,0.1,0.2...1. The interpolated
average precision for a query at standard recall level r; is the maximum
precision obtained for any actual recall level greater that or equal to ;.

The Recall level precision averages for multiple queries are the means of
the interpolated average precision values at each (standard) recall level for
the queries. Recall level precision averages are used as input for plotting the
recall-precision graphs.

For further details, see Harman [14].

2 The term document matrix

In vector space models both queries and documents are encoded as vectors
in m-dimensional space. The choice m is the number of unique terms in the
collection. The documents are stored as columns in a m x n term document
matriz A. The elements in A are the occurrences of each word in a particular
document, i.e.

A = [ay]
where a;; is nonzero if term 7 occurs in document j, zero otherwise.

A term weight has three components; local, global and normalization [18].
Local weights are used to transform the term’s frequency within the docu-
ment. Each term in the collection is assigned a global weight to indicate its
importance as an indexing term. A normalization factor is used to normalize
the documents. We let

aij = gilijd;
where /;; is the local weight for term 4 in document j, g; is the global weight
for term ¢ and d; is the document normalization factor.

Specifically we can write

lai) = A= GLD @

where the elements in L = [l;;] are the local weights. G and D are diagonal
matrices and g;; in G is the global weight for term ¢ and d;; in D is the
normalization factor for document j. The global weighting correspond to a
row scaling of the term document matrix and the normalization corresponds
to a column scaling.

There are several local and global weightings that can be used. For
nice summaries see for example Frakes and Baeza-Yates [11], Salton and
McGill [19] or Kolda [15].




The queries are stored the same way as the document vectors, that is
q = [ai

where ¢; is nonzero if term; appears in the query. As for the elements in
the term document matrix local and global weightings are used. The local
weights are computed using the term frequency within the query vector and
the global weights are computed from the frequency counts in the documents.
Normalizing the query makes no difference when ranking the documents and
is not used !.

For convenience [16], let

(z) = 1 ifz>0
XT)=Y0 irz=0

Various combinations of weights are used for the documents in the term
document matrix and for the queries. Each term weight combination is
described using two three letter strings, representing the weightings for the
term document matrix (first triple) and the query terms (second triple). The
letters in each string represent the local, global and normalization component
respectively.

Formulas and symbols for the weightings used for this report are shown
in tables 1 - 3.

For example the classical idf weight [18] is described by the string

bfx - bfx,

which implies the local, global and normalization components

L = x(tfy)
n
gi = logy( at. )

d

for the elements in the term document matrix. The term frequency tfy; is
the the number of times term 7 appears in document j, and the document

!n the Krylov subspace method used in this report (section 3 gives a short summary)
the query vector is always normalized using euclidean norm before the bidiagonalization
procedure is started.

frequency df; is the number of documents to which term 4 is assigned. The
local global and normalization components for the query vector elements are

li = x(tf)

n
9i logQ(d—fi)
d = 1.

Here tf; is the term frequency for the terms in the query (i.e. the number
of times term ¢ appears in the query) and df; is the document frequency for
term ¢ in the collection.

The binary local weighting (b) and the local frequency weighting (t) listed
in table 1 are simple but with some major drawbacks. The binary weighting
gives every word that appear in a document equal relevance. (This might be
useful when the number of times a word appears is not considered important.)

The local frequency weighting give more credit to words that appear more
frequently which might serve the recall function. For example a term such
as melon appearing with reasonable frequency in some documents indicates
that they deal with melons. The assignment of the term melon with high
weight will then help to retrieve these documents in response to appropriate
queries.

On the other hand, high precision implies high ability to distinguish indi-
vidual documents from each other (to be able to prevent unwanted retrievals),
therefore when common terms are not concentrated in a few documents but
instead are spread out in the whole collection, precision is likely to drop.

More concretely, if the whole document collection deals with melons, al-
most all documents will contain the term melon many times, giving high
credit to melon, will not help to identify the wanted subset of documents.

For a more detailed discussion see for example Salton [17] (or Salton and
Buckley [18]).

The (local) augumented normalized term frequency (n) will give basic
credit (0.5) to any word that appears and then give additional credit to
words that appear more frequently.

The logarithmic weight (1) will deemphasize the effect of high frequency.

The choice for local weightings depends on the vocabulary used for the
collection. Some general recommendations can be made [3]. Local binary
term weighting schemes are recommended for sets where the term list (the
number of rows in the term document matrix) is short. The local frequency
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Figure 1: Comparison of local term weighting schemes. The term frequency
range from 0 to 20 (x-axis) and the weights (y-axis) range from 0 to 10 in
the figure.

weighting is recommended for varied vocabularies, eg. popular magazines,
and the augumented normalized term frequency is recommended for technical
or scientific vocabularies.

The four local weightings are compared in figure 1. The term frequency
range from 0 to 20. The raw frequency grows very quickly compared to the
other local weightings grow more slowly.

As mentioned above, precision might be better served by using very spe-
cific terms that will match the most relevant documents in the collection,
because such terms are able to distinguish the few documents in which they
appear from the many from which they are absent. All of the global weighting
schemes in table 2 (except x) give less weight to frequent terms. So in order
to fulfill both the requirements of high recall and of high precision, i.e. to
credit those terms that occur frequently in individual documents but rarely
in the remainder of the collection, the combination of local term frequency
weighting and any of the global weightings may be used.

The global weightings n, n; and n,, are based on simple vector norms
and will normalize the length of each row in the term document matrix in
some norm. This has the effect of giving high weight to infrequent terms. If
a few rare terms appear frequently in only a few documents the max-norm
is giving the most credit to these terms, followed by the euclidean norm and
then the one-norm.

The entropy global weighting (e) uses concepts from information theory.
In information theory the least predictable terms in a running text, those ex-
hibiting the smallest probabilities, carry the greatest information value. The
weighting assign weights between zero and one. Zero for a term appearing
with the same frequency in every document and one for a term that appears
only once.

The weights given by the different global schemes to two different terms in
a collection are compared in figure 2. For both terms the local term frequency
(t) was used. The term in the upper plot appears once in one document
and three times in another. The term is rare in the set and all of the global
weighting schemes give high credit to the term in the two documents where it
appears. In the lower plot a term appears in all but one document. This term
is common in the set. The global schemes will not emphasize the appearance
of the term as they did for the rare term. All the weighting schemes give
slightly more credit to the term in the document where it appears three
times.

The normalizing factors will normalize the length of each column in the
term document matrix. This has the effect of giving higher weights to all
terms in short documents and giving lower weights to all terms in long doc-
uments. If using the angles between the query and the document vectors in
the therm document matrix when ranking documents for relevancy there is
a tendency that shorter documents will be ranked more relevant than longer
documents. In order to retrieve documents of a certain length with the same
probabilities the pivoted cosine normalization scheme has been proposed for
indexing the TREC collection [6], [20].

In this report we always apply first the local weighting, then the global
weighting and at last the normalization factor. For example, the matrix
weighting tnc corresponds to first normalizing the rows in the term document
matrix using euclidean norm, then normalizing the columns (using euclidean
norm). Note that the column normalization might destroy the previous row
normalization, but not completely. Some deemphasizing effect on common
terms still remain.




Figure 2: Comparison of global term weighting schemes when the local term
frequency weighting (t) is used. The bars are the term frequencies. The
global weighting schemes are: no weighting x (the bars), inverse document
frequency £ (o), GfIdf g (o), entropy e (), normal n (+), one-norm n; (>)
and max-norm n,, (<).

LocAL WEIGHTING DESCRIPTION

b x(tfi5) Binary weight [18] equal 1 for terms present in vector,
zero otherwise. The term frequency tf;; is the number
of times term i appears in document j.

tf; Raw frequency weight [18] is number of times a term
appears in a document or a query.

logy (1 + tf35) Logarithmic weight [8][13] takes the log of the term
frequency, thus dampening effects of large differences in

frequencies.

: (X(tfi]-) + @’?@) Augumented normalized term frequency [18][13]. The

term frequency tf;; is normalized by maximum
appearance of term in document j and further norma-
lized to lic between 0.5 and 1.0%.

Table 1:

2A more general formula was proposed by Croft [7]. The formula was parameterized by

o tf; .
a value K (a sliding importance factor), ¢;; = x(tf;;)K + (1 — K)W It is suggested

that K be low for large documents and high for short documents.
3In [8] li]‘ = tfij
‘In [18] l,’j = tfij.




GLOBAL WEIGHTING DESCRIPTION

x 1 No change in weight [18].

£ logQ(#) Inverse document frequency (Idf) [18] where n is number

i

of documents in collection and df; is the document
frequency (the number of documents to which term ¢ is
assigned).

GfIdf [8]. gf; is the global frequency (the total number

of times term; appears in the whole collection). df; is the

document frequency.

Entropy [8][13]. n is number of documents in collection

and p;; = taf’i where tf;; is the raw term frequency and

gf; is the global frequency.

Normal [8], where l;; is received after applying any

of the local weightings presented in table 1 3.

where I;; is received after applying any of the local

weightings presented in table 1.

where I;; is received after applying any of the local

weightings presented in table 1.

Table 2: .

NORMALIZATION FACTOR DESCRIPTION
x 1 No normalization factor is used [18].

L
V2 i(gili;)?
T
>
1

max; gil“-

c Cosine normalization [18] *.

n
1.
]

Do

Table 3: The local weightings /;; and global weightings g; are received after
applying any of the local and global weightings respectively presented in
tables 1 and 2

3 The Krylov subspace method for Informa-
tion retrieval

Query matching can be viewed as a search in the column space of the term
document matrix A. One of the most common similarity measures used
for query matching is to measure the angle between the query vector and
the document vectors in A. The smaller the angle is the more relevant the
document is. In the vector model the cosines between the query vector ¢ and
document vectors a; are used to score the documents in relevance order,

T
q a;

¢ = ji=1,...,n (3)

lallzllajll2’

For the Krylov subspace methods we will use the Golub Kahan bidiag-
onalization procedure [12] applied to the term document matrix A starting
with the query vector ¢ to receive the two basis matrices @y, and P, and
the r + 1 x r lower bidiagonal matrix B, :

[@r+1, Bry1, Pr] = BIDIAG(A, ¢, 7) (4)

The column vectors in the basis matrices @,,; and P, span bases for the
two Krylov subspaces K,1(AAT,q), in the document space (spanned by
the query ¢ and the columns of A) and K,(ATA, ATq), in the term space
(spanned by the rows of A) respectively. We let the reached subspace W
form an orthonormal basis for the column vectors in AP, .

The Bip1AG procedure is further described in section 3.1.

The reached subspace W, the basis matrices )1, P, and the B, ; matrix
are used to score the documents in relevance order to the query (see Blom
Ruhe [5]). A few examples of similarity measures are:

e For the subspace projection measure the documents in A are sorted
according to their closeness measured in angles to the Krylov subspace
K, 1(AAT ). The closer the document is the more relevant the docu-
ment is. The cosine of the angle between the basis matrix @, for the
Krylov subspace K,;,(AA”, q) and each document vector in A

3 .
C;) = |‘Qz\+1aj|‘a j=1...,n, (5)

is used to sort the documents. Note that for » = 0 in the Bibiag
procedure the subspace projection measure is simply the vector model
scoring (3).




e A projected query vector
G=WWw'q (6)

is constructed using the reached subspace. In the ezpanded query mea-
sure the documents are sorted measuring the angle between ¢ and each
document vector in A,

(M)

In the LSI-like measure we mimic the LSI ® and the documents are
scored measuring the angle between ¢ and each projected document
vector in A -

WMo 1% j=
N L
The smaller the angle the more relevant the document is. Note that if
the starting vector ¢ € R(A) then the projected query § = ¢ and the

cosines (7) is simply the vector model scoring (3).

1,...,n. (8)

3.1 The Golub Kahan bidiagonalization procedure

The Golub Kahan bidiagonalization procedure is a variant of the Lanczos
tridiagonalization algorithm and it is widely used in the numerical linear
algebra community.

The Golub Kahan algorithm starts with the normalized query vector ¢, =
q/lq||, and computes two orthonormal bases P and @, adding one column
for each step k, see [12] in section 9.3.3.

ALGORITHM BIDIAG(A,q,7):
Start with ¢1 = q/||q||, 1 =0
for k=1,2,...r do
arpr = A gy — Bipr
Brt1@r1 = Apr — kg
end.

5In LSI, Berry et al [4], Dumais et al [9], see also Berry and Brown [3], the m x n term
document matrix is represented using a rank-k approximation, k¥ < min(m,n), from the
singular value decomposition of A. Documents are scored measuring the angles between
the query and the column vectors in the approximation.
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The scalars oy and [ are chosen to normalize the corresponding vectors.
Define

Qir = [ @ - @),
P, [pl p2 .- pr]a

aq

Ba
Br+1

[e7%

ﬂr+l
After r steps k we have the basic recursions

AYQ, = P.BY
APr Q’I‘+1B’I‘+1'

The columns of @, will be an orthonormal basis of the Krylov subspace
Kr11(AAT ) and the columns of P, forms an orthonormal basis for the
Krylov subspace
K,(ATA, A"q). The lower bidiagonal matrix B,;; = QY AP, is the pro-
jection of A onto these Krylov subspaces and some of the singular values of
B, 1 will be approximations of those of A.

With r large enough the bidiagonalization procedure BIDIAG(A,g,r) can
be used to compute a solution z;, = P,B;, e; for the least squares problem

mzinHAx — qlf2.

Let k& < 7. The projected query vector (6) § = Az¥) where 2¥) = P,B[", e
is an approximation to x, received after k iterations in the BIDIAG procedure.

3.2 Numerical aspects of using weighting schemes

Let A = GLD be the term document matrix defined in (2). If no global
weighting or normalization factor is used (i.e. global weighting and normal-
ization factor x respectively is used) then A = L. Consider the least squares
problem

min||Lz — ]l (9)
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A solution z, to this problem can be obtained by using the BIDIAG procedure
with L and starting at ¢ (see for example [12] or [2]).

If no global weighting (i.e. global weighting x from table 2) is used for
the term document matrix then A = LD where D is the n x n diagonal
matrix defined in (2). Assume D is nonsingular (i.e. assume all documents
has at least one term) and consider the least squares problem

min | LDy = glp (10)

Multiplying L by a diagonal matrix from the right corresponds to a column
scaling of L and the solution z, to problem (9) can be obtained by finding the
minimum 2-norm solution ¥y, to problem (10). If rank(L)= n then 2, = Dy,
otherwise Dy, is the minimum D-norm solution ° to (9).

However it is well known that column scaling affects singular values and
that the number of iterations needed in the BIDIAG procedure before the
solution is reached heavily depend on the distribution of singular values in
the matrix that is used. When we use the BIDIAG procedure for IR purposes
we stop iterating after » < 10 steps, that is long before a solution to any
of the least squares problems (9) and (10) is reached. This means that we
cannot use the relations between x;, and y,, directly when computing scorings
cMand ¢,

Assume only global weighting is used (i.e. normalization factor x) and
consider the weighted least squares problem

min ||G(Ls — g}l (11)

where G is the m x m diagonal matrix with global weights defined in (2).
(In equation (11) we have assumed that the terms in the query vector are
weighted using the same global weighting as for the term document matrix 7).
Multiplying L by a diagonal matrix G from the left correspond to a row
scaling of the matrix L (and query vector ¢). It is well known that row
scaling affects the solution to a least squares problem & and there is no simple
relation between the solutions to (9) and (11).

$D-norm is defined by ||z||p = ||[D~"2||2.

"In the experiments performed (see section 4) we have also tried combinations when L
and ¢ have different global weights.

8An exception occurs when ¢ € R(L). In this case the solution to (9) and (11) are
equal. In all test sets we tried the query vector g is never completely in R(A).
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4 Experiments

For our experiments four test sets were used, Adi, Cisi, Cran and Med. The
sets are further described in appendix B .

We have tried all possible combinations of local, global and normalization
factors from tables 1, 2 and 3 for the term document matrix. In tables 5 and
6 all weighting combinations we used are listed. For each weighting on the
term document matrix the queries were weighted using all combinations of
local and global weightings listed in table 6. (The document frequencies and
the global frequencies are taken from the term document matrix.). In total
we explored the effect of 105 27 = 2889 different weighting combinations.

Using these data sets and weighting schemes makes our experiments com-
parable for example with the LSI experiments made by Dumais in [8], some
of the experiments made by Salton et al [18] and with the LSI and LDD
experiments made by Kolda et al [16].

For each weighting combination four similarity measures were used to
score the documents, the vector model ¢ (3), the LSI-like measure ¢ (8), the
expanded query measure ¢® (7) and the subspace projection measure ¢
(5). For the Krylov subspace methods the iterations in the BIDIAG procedure
were stopped when maximum average precision before the number of steps
r = 10 for each query was reached.

For the best and worst weighting combination for the expanded query
measure we computed recall level average precisions for the LSI [4],[9]. For
the LSI we need to chose a rank & (the number of singular vectors to use) for
the low rank approximation of the term document matrix. We chose £ < 100
(for Adi we let £ < 60) to be the rank where where maximum mean average
precision was found.

Computational Results For each weighting the number of times each
of the four similarity measures gave best mean average precision is shown
in figure 3. The expanded query measure ¢® generally give best average
precision in Cran and Med. In Adi and Cisi the LSI-like measure () gave
best average precision in a little more than half of the weighting combinations.
The vector model ¢ is never the best one. Observe that since BIDIAG is
stopped when best average precision before the number of steps r = 10
is reached the subspace projection measure ¢® never score worse than the
vector model.




C. 3

1
Sl ]

Figure 4: Comparison of mean average precisions for the vector model ¢ (3).
The weighting scheme nxx was used for the term document matrix. Mean
average precision for each query weighting from table 6 is marked (the black
lines). The grey lines are maximum and minimum mean average precision
respectively for the vector model scoring in each set.

Figure 3: For each weighting the number of times each of the four similarity
measures ¢(3) ¢V (8), ¢? (7), and ¢® (5) gave best mean average precision.




Figure 5: Comparision of mean average precisions for the LSI-like measure

e (8). In the left plot of each pair mean average precisions for weight-
ing schemes where global entropy weighting (e) are used for both the term
document matrix and the queries are marked (the black lines). In the right
plot of each pair mean average precisions for weighting schemes where global
one-norm weighting (n;) is used for both the term document matrix and the
queries are marked (the black lines). The grey lines are maximum and min-
imum mean average precision respectively for the LSI-like measure in each
set.
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lex'nfx

nfx-tgx
nfx-1gx
nex-tgx
nex-1gx
nfx-ngx
nnx-tgx
nex-ngx
nnx-1gx
lgx 1fx

C

o

Cran

2

)

ngx-1fx
ngx-bex
ngx-nfx
ngx-lex
ngx-bfx
ngx-nex
lgx-bfx
lgx-nfx
ngx-tex

O OO OO OO OO

1fc-bgx
1fc-ngx
1fc-1gx
lec-bgx
lec-ngx
1fc-tgx
lec-tex
lec-1gx
lec-lex

O OO OO OO OO

.44
.44
.44
.44
.44
.44
.44
.44
.44

ngx-lnx
ngx-nnx
NgMN NNX
ngne-1nx
ngc-nnx
lgx-1nx
ngc-1nx
lgc-1nx
ngc-bnx

O OO OO OO OO

ngc-1fx
ngc-bex
ngc-lex
ngc-nfx
ngc-bfx
ngc-nex
ngc-tex
ngc-tfx
lgcnfx

O OO OO OO OO

C

)

Med

2

)

.57
.57
.57
.57
.56
.56
.56
.56
.56

ngx-bex
ngx-bfx
ngx-nex
ngx-nfx
1gx-bex
lgx-bfx
ngx-1fx
ngx-lex
nex-bgx

QOO OO OO OO OO0

lec-bgx
1fc-bgx
lecngx
1fc-ngx
lec-1gx
1fc-1gx
tfc-bfx
tfc-bex
tfcnfx

OO OO OO OOO0

.65
.65
.65
.65

.64
.64
.64
.64

ngNeo bnx
ngc-bnx
ngx-bfx
1gneo-bnx
2ngx-1nx
lgc-nnx
ngc-nnx
ngx-bnx

ngx-nnx

O OO OO OO OO

.68
.68
.68
.68
.68
.68
.68
.68
.68

1fc-bgx
ngc-bnx
lec-bgx
ngc-bfx
1fc-ngx
1fc-bfx
1fc-bex
lec'ngx
lec-bfx

O OO OO OO OO

.62
.61
.61
.61
.61
.61
.61
.61
.61

Table 4: The nine best performing weighting schemes for each set and each
similarity measure. Performance is measured in mean average precision.
Since the vector norms used as normalization factors are equivalent (1) they
have no effect for the vector model (3) and are not listed in the table.




Tables 4 show numerical results for the Adi, Cisi, Cran and Med data
sets. For each test we report the mean average precision for all queries in the
set.

As we can see there is no overall best weighting for all similarity measures,
however a few trends can be seen. We observe that for the vector model ¢
(3) the matrix weightings ngx and 1gx give the best results for all test sets.

The binary matrix weighting bxx and the raw term frequency weighting
txx combined with no global weighting for the query vector tend to be ranked
towards the bottom.

For the LSI-like measure ¢V (8) the global entropy weighting (e) is good.
The matrix weightings ten; and lex are good for Adi and Cisi respectively
and the weighting lec is good for Cran and Med. But also the global inverse
frequency weighting (f) and the GfIdf weighting (g) are good. The weightings
bgc and bgn,, are good for Adi. Weighting 1fc is good for Med and Cran
and weighting 1fx is good for Cisi.

Also for the expanded query measure ¢ (7) the global inverse frequency
weighting (f) and the GfIdf weighting (g) work well. Matrix weightings bgc
and bgn,, are good for Adi and weighting tgx is good for Cisi. For Cran and
Med weightings ngx and ngc are good. But also the global entropy weighting
(e) seems to work well.

Among the poor performing weighting combinations the global one-norm
weighting (n;) is frequent. And for Adi also the global max-norm weighting
(neo) is bad.

For the subspace projection measure ¢!® (5) the global inverse frequency
weighting (£) and the GfIdf weighting (g), but also the entropy global weight-
ing (e) works well.

One trend found in weighting experiments is that the use of global weights
improves performance (or at least does not hurt performance) [13]. In our
experiments in general the use of global weights improves performance ex-
cept when the global one-norm weighting (n;) is used. The global one-norm
weighting is bad for all sets but the Adi. In figure 5 the mean average pre-
cision for the global entropy weightings and the global one-norm weightings
are compared.

For the local weightings in general the binary weighting (b) appear among
the poor performers, however the weighting works well for the Adi. This
might be due to the small size of the term document matrix

It seemed to be important which query weighting was chosen. In figure
4 we plotted mean average precision for the matrix weighting nxx and all
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27 different query weightings listed in table 6 for all test sets. As we can
see the differences in mean average precisions are large. In general using
a global weight for the query vector, preferably any of entropy (e), inverse
document frequency (£), GfIdf (g) or normal (n), seems to improve retrieval
performance.

Our results for the vector space model are quite consistent with those
reported by Kolda [15]. Somewhat surprisingly she found that it makes little
difference which query weighting is chosen.

In [8] Dumais report good performance for the lec matrix weighting on
the matrix and Salton’s best weighting reported in [18] was tfc-tfx. In
general these weightings also work well in our experiments.

The weighting tnc-txx used by Blom Ruhe in [5] is among the average
(sometimes above average) performing weighting schemes.

Figure 6 are recall-precision graphs for the best and worst performing
weighting combinations for the expanded query measure ¢® (7) in each set.
For each set interpolated average precision for the vector model ¢ (3), the
expanded query measure ¢® and the LSI are compared. We observe that a
weighting combination that is bad for the expanded query measure ? also
performs poorly for the ¢ and the LSI.
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Figure 6: Recall-precision graphs for the best and worst performing weighting
combinations for the expanded query measure ¢ (7) in each set. In each plot
interpolated average precision for the vector model ¢ (3) (...), the expanded
query measure (x-) and the LSI [4],[9] (-) are shown.

A Weighting combinations

Local and global weigthing combinations

bxx bfx bgx bex bnx bn;x
txx tfx tgx tex tnx tnix
Ixx 1fx 1gx lex Inx Inx
nxx nfx ngx nex nnx nn;x

Local and normalization factor combinations
bxc bxn; (bxng) txc txn; tXny,
1xc 1xn, 1xn, nxc nxn, nxn,,

Local, global and normalization factor combinations
bfc bfn; bfn,, bgc bgn; bgn.,
bec ben; ben,, bnc bnn, bnn,,
bnic bnin; bnny, (bngc) (bngn;) (bngng)
tfc  tfnm tfn, tge tgn tgne
tec  ten; teny tnc tnn; tnng,,

tnin; tning tn,C theny thoono
1fc 1fn, 1fn, 1gc 1gn; 1gn,,
lec len; leng, 1nc 1nn, 1nn,,

In;c 1lnjn; 1lnjng 1n,.cC 1n,n; 1n, Ny
nfc  nfn nfn,, ngc ngn; ngne,
nec  nen; nen,, nnc nnn, nnn,,
nn;c nnjn;  nnyng nn,.c nn,.n; NN No

Table 5: Weighting combinations used for the term document matrices. The
weightings surronded by parentheses have no effect and are not used.




Local and global weighting combinations

bxx bfx bgx bex bnx bnx (bnyx)
txx tfx tgx tex tnx tmx theeX
Ixx 1fx 1gx lex 1nx 1Imx  1Ingx
nxx nfx ngx nex nnx nmxX ON.X

Table 6: Weighting combinations used for the queriy vectors. The weighting
surrounded by parentheses has no effect and is not used.

B Data sets

E.A. Fox at the Virginia Polytechnic Institute and State University has as-
sembled nine small test collections in a CD-ROM. These test collections
have been used heavily throughout the years for evaluation of information
retrieval systems and they provide a good setting for preliminary testing.
Among these nine sets we used four for our evaluation.

Adi Adiis a very small test collection of document abstracts from library
science and related areas.

Cisi The data set consist of document abstracts in library science and re-
lated areas extracted from Social Science Citation Index by the Institute for
Scientific Information.

Cran The Cranfield collection is a small collection with a large number
of queries. The data set consist of document abstracts in aerodynamics
originally used for tests at the Cranfield Institute of Technology in Bedford,
England.

Med The Medline set is a small collection with a small number of queries.
It has been extensively used in the past. The documents are abstracts in
biomedicine received from the National Library of Medicine.

For a further summary on test sets see [1]. See also Fox [10].

Documents and queries are represented as vectors. Before the representa-
tion can be constructed a list of index terms must be compiled for each set. A
list of all words (non-zero length strings of characters(A-Z,a-z) delimited by
white space) found in the documents was constructed. Each word occurring
on the SMART [19] stop list was removed. The remaining words form the
set of index terms.

Table 7 summarizes some characteristics of the data sets and queries. All
of these sets are rather small in size. For all the sets a large portion of the
documents are relevant to some query. For all but the Medline set there are
documents that are relevant to more than one query. All sets have more
terms than documents and in general there are more terms per document
than documents per term. All document vectors are longer than the query
vectors.




Cisi

Cran

no of docs

82

1460

1400

no of indexing terms

10325

7776

no of queries

35

35

225

30

no of relevant documents

72

467

924

696

no of <query,relevant doc> pairs

170

1742

1838

696

max/min/avr no of terms in docs

101/14/35

299/9/65

358/0/95

292/12/80

max/min/avr no of docs per term

44/1/2

644/1/7

703/0/11

262/1/5

max/min/avr no of terms in queries

13/3/7

18/3/8

21/4/9

23/2/11

0.1 0.1
0.08 0.08
0.06 0.06
0.04 0.04

0.02 0.02
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Figure 7: Portion of documents (y-axis) versus length of documents (x-axis)
for the data sets.

In Cisi, Cran and Med the length of the documents (length is measured
by number of terms) are more spread out than for the Adi set (see figure 7).
This is probably due to the small size of the set. A few zero length documents
appear in the Cranfield set.

nonzero clements in matrix (%) 2.1 0.48 0.79 0.46

Table 7: Some characteristics of the data sets Adi, Cisi, Cran and Med.
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