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Radical x-doubles of finite-dimensional algebras

Volodymyr Mazorchuk and Lyudmila Turowska

Abstract

We classify the x-representation types for the radical *-doubles of finite-dimensional
associative algebras over the field of complex numbers.

1 Introduction

Let C denote the field of complex numbers and - : C — C denote the complex conjugation.
All algebras we consider in the present paper are over C and are assumed to have a unit
element. All tensor products and dimensions are taken over C.

Recall that for two complex associative algebras A and B the map ¢ : A — B is called an
anti-homomorphism provided that ¢(Aa + pb) = Ap(a) + pp(b) and ¢(ab) = p(b)¢(a) for
all \, . € C and a,b € A.

Let A be a finite-dimensional algebra with n generators. Consider two free associative C-

algebras A, e = 1,2, with respective generators 3:56), ..,z Denote by o : AY) — AP
the unique anti-homomorphism satisfying a(:c§~1)) = x§2) forall j =1,...,n. Let I be an

ideal of A", such that A ~ A /I. Then the set o(I) is an ideal in AP and we can

consider the algebra A* = AP /o(I). It is easy to see that A* does not depend on the
presentation of A up to an isomorphism.

Construct now a new algebra, A(x), which is the quotient of the free product AL of AD
and AP (i.e., the free algebra with 2n generators xgl), e, xg), x?), . xg)), modulo the
ideal J, which is generated by I and o(I). The algebra A(x) is identified with the free
product (over C) of A and A* in a natural way. The algebra AL possesses a natural
x-structure, defined by (xg-l))* = :c§-2), j =1,...,n, and one sees that J is a *-ideal with
respect to this structure. Hence, A(x) inherits a *-structure and the corresponding x-
algebra is called the x-double of A, see [MT]. It is easy to see that, up to a *-isomorphism,
the algebra A(x) does not depend on the presentation of A. The x-representation types of
x-doubles of finite-dimensional algebras were classified in [MT]. It was shown that A(x) is
+-finite if and only if A = C, A(x) is of type I if and only if dim(A) < 2, and A(x) is *-wild
(in the sense of [0S2]) in all other cases.
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In the present paper we study the *-representation types of a more subtle construction,
which we call the radical *x-doubling. The difference is that for the usual *-doubling we
add independent x-adjoints to all elements of the original algebra, whereas for the radical
x-doubling we add independent x-adjoints only to the elements from the Jacobson radical
of the algebra, preserving the natural *-structure on a maximal semi-simple subalgebra.
We classify the x-representation type for the radical *-doubles of all finite-dimensional
algebras, and the answer we obtain is much more interesting than that of [MT]. The
principal advantage of the new construction is that the *-representation type of the radical
x-doubles happens to be a Morita invariant of the original algebra. The list of those A,
whose radical x-doubles are of type I, is also much more interesting and contains all semi-
simple algebras and all finite-dimensional algebras, the length of indecomposable modules
over which is bounded by 2. As a consequence we also obtain a tame-wild dichotomy
for our problem (which is not automatic in the x-case in contrast with the usual finite-
dimensional associative algebras, for which it was proved by Drozd, [Dr], in a very general
setup). Some analogous problems were earlier considered in [Bel, Be2, Se], see also [OS2]
and the references therin.

The paper is organized as follows: in the next section we present a rigorous definition of
the radical *-double of a finite-dimensional algebra, in Section 3 we recall basic facts about
the x-representation types, in Section 4 we formulate our main result, which classifies the
x-representation types of the radical *-doubles of finite-dimensional algebras. The rest of
the paper is devoted to the proof of the main result, which is spread over three sections.
In Section 5 we collected several auxiliary lemmas classifying the x-representation types of
the radical *-doubles of certain finite-dimensional algebras. In Section 6 we establish the
Morita invariance of the %-representation types of the radical x-doubles. The latter study
has led us to a very interesting question, which seems to be both quite natural and rather
nontrivial: describe, up to unitary equivalence, all projections in the full matrix algebra
M, (C*(F2)), where F; is a free group with 2 generators. The answer to this question
would substantially clarify the notion of #-wildness in the sense of [OS2], see Remark 4.
Finally, the proof of our main result is completed in Section 7.

2 Radical *-doubling

In this section we give a thorough definition of the intuitive construction of the radical
x-doubling, described in Section 1.

Let A be a finite-dimensional associative complex algebra, S be a maximal semi-simple
subalgebra of A and Rad (A) be the Jacobson radical of A. Then A decomposes, as a
complex vector space, into a direct sum A = S @ Rad (A). Note that A is not isomorphic
to the direct sum S @ Rad (A) of associative algebras.

Being semi-simple, the algebra S admits a decomposition into a direct sum of full matrix
algebras M, (C), n; € N, by the Wedderburn-Artin Theorem. Every M, (C) has a natural
k-structure associated with the transposition of a matrix. In every M, (C) we can choose
a standard basis, consisting of matrix units. Let {by,...,bs} be a list of all diagonal matrix
units in all M, (C) (they are self-dual with respect to *, i.e. bf =b;, i =1,...,s), and
{c1,-..,¢c:} be a list of all upper triangular matrix units in all M, (C). Then {cj,...,c}



will be a list of all lower triangular matrix units in all M, (C). Note that the basis,
constructed above, is closed with respect to .

Fix some basis, {a,...,ax}, in Rad (A), and let B denote the basis of A, formed as the
union of the bases for S and Rad (A), which we have just fixed. For z,y,2 € Blet o} , € C
be the corresponding structural constant, i.e. for x,y € B we have

_ 2z
Ty = E Q2.

z€B

Denote by A(Rad — %) the associative algebra, generated over C by the elements from
BU{aj,...,a}}, subject to the following relations:

Ty = Zafmyz, z,y € B;

z€B
my:Zo@*,z*z*, zeB\{a,...,ar},y €{al,...,ar};
z€B
oz % % %
:r;y:Zozy*’w*z, z€f{al,...,a },y € B\ {ay,...,a}.
z€B

We will call the algebra A(Rad — ) the radical *-double of the algebra A. It is straightfor-
ward that A(Rad — *) inherits a natural -structure from that on BU {aj,...,a;}. It is an
easy (but quite lengthy) exercise to show that, up to a *-isomorphism, A(Rad — %) does
not depend neither on the presentation of A, nor on the choice of S, nor on the choice of

{al, .. .,CLk}.

Both A and A* are subalgebra of A(Rad — ) in a natural way. However, in contrast
with A(x), A(Rad — *) is no longer a free product of A and A* over C, but rather a free
product of A and A* over the “common subalgebra” S. Remark that S can be arbitrary
semi-simple finite-dimensional algebra. In particular, S can be non-commutative. Neither
is S central in A in general. However A(Rad — %) = A(x) (as *-algebras) in the case when
A is local and basic.

3 Basic definitions and facts about the x-representa-
tion types

In this section we list some notation and definitions related to *x-wild and *-tame algebras.
In this exposition we follow [KS2, OS2]. All x-algebras considered here are unital with
the unit 1 and representations of *-algebras are unital *-homomorphisms into B(H), the
x-algebra of all linear bounded operators on a separable Hilbert space H. For a *-algebra,
A, we denote by Rep (A) the category of all x-representation of A. Given a *-algebra,
A, of operators on H, denote by A’ its commutant, ie. A = {C € B(H) | [C,A] =
0 for every A € A}.

Definition 1. Let A be a x-algebra. A pair, (fl; p: A— fl), where A is a x-algebra and
 is a unital *-homomorphism, is called an enveloping *-algebra of the algebra A if for any
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s-representation 7: A — B(H) of A there exists a unique *-representation 7: A — B(H)
such that the diagram

A
4

N
A—— B(H)

is commutative, and any operator X : H; — H, which intertwines representations 7, : A —
B(H;) and 73 : A — B(H3) of A is also an intertwining operator for the representations
71 and 79 of the algebra A.

It is easy to see that (A;1d: A — A) is an enveloping *-algebra of A.

Let M, (A) (= M,(C)®.A) be the full matrix algebra over A with the natural *-structure. If
A is a C*-algebra then M, (.A) carries also the structure of a C*-algebra. Any representation
7w : A — B(H) of Ainduces the representation m,: M,(A) - B(H®...®H) of the algebra
M, (A). The representation , determines the representation 7, of an enveloping algebra,
(M, (A), ¢), of M,(A) on the same Hilbert space. If ¢ is a unital *-homomorphism of a
s-algebra B to the algebra M, (A) then 7, o ¢ defines a representation of B. So we can
define a functor, Fy,: Rep (A) — Rep (B), in the following natural way:

o Iy(m) =7, o1, for every m € Rep (A),
e Fy(c) =diag(c,...,c) for a morphism, ¢ : m; — w9, of representations 7, m of A.

Definition 2. We say that a x-algebra, B, majorizes a *-algebra, A, denoted by B > A,
if there exist n € N, an enveloping algebra, M,(A), of the algebra M,(A), and a *-
homomorphism, ¢: B — M, (A), such that the functor Fy: Rep (A) — Rep (B) is full.

We say that B strongly majorizes A (B =° A) if there exist n € N and a *-homomorphism,
¥: B — My(A), such that the functor Fy,: Rep (A) — Rep (B) is full.

Note that to define strong majorization we consider M, (.A) as an enveloping *-algebra of

M, (A).

Clearly, B =* A = B > A. Note that both the majorization and the strong majorization
are quasi-order relations: C > B and B > A imply C > A, and C >* B and B >=° A imply
C>* A

It follows easily from the definition that if B > A then two representations mp, w5 of A
are unitarily equivalent if and only if the representations Fy(m), Fy(m) of B are uni-
tarily equivalent, a representation 7 of A is irreducible if and only if the representation
Fy () is irreducible. Thus the problem of unitary classification of the representations of
the x-algebra B contains, as a subproblem, the problem of unitary classification of the
representations of the x-algebra A.

Practically, in order to verify that the functor Fy, is full, it is sufficient to show that for
each representation m € Rep A on H and C € B(H) the inclusion C' € Fy(m)(B)" implies
C = diag(c, .. .,c), where c € T(A)'.



Let C[F;] denote the group x-algebra of the free group F» with two generators, u, v, and
involution defined on the generators in the usual way: u* = u~!, v* = v~!. Let C*(F,) be
the full C*-algebra of F», i.e. the completion of C[F;] with respect to the norm

|la|| = sup{7(a) : # € Rep (C[F])}-

Definition 3. A x-algebra, A, is called x-wild if A > C*(F,). We say that A is strongly
x-wild if A strongly majorizes the group x-algebra C[F].

Clearly, any strongly *-wild algebra is x-wild. A motivation for such definition of *-wildness
was a result proved in [KS1, KS2] saying that C*(F,) majorizes any finitely-generated x-
algebra.

Since the majorization is a quasi-order, to prove that a *-algebra, A, is *-wild it is enough
to find some *-wild algebra which majorizes the algebra A. One very important x-wild
algebra, which we will frequently use in the paper, is the following. Let &y = Cla1, a9 | a1 =
a},as = ab). Consider, for some fixed 0 < m < n, the semi-norm ||a|| = ||a||mn = sup7(a)
on the *-algebra G5, where the supremum is taken over all representation 7 of G, such
that mI < m(a;) < nl,i=1,2, I being the identity operator. Denote by

C=Chpn=C"(a1,00:m<a;=a <n,i=1,2)

the C*-algebra which is obtained by the completion of Gs/(a : ||a|| = 0) with respect
to || - ||. Clearly, the elements a; and as become invertible in € and positive in every
bounded representation. The following statement was proved in [MT, Lemma 4], but the
formulation there contained only the first part of the statement below.

Lemma 1. The C*-algebra € is x-wild. Moreover, there exists a homomorphism v : € —
M, (C*(F2)) such that (a;) € M4(C[F2]) and the corresponding functor Fy is full.

Remark 1. From Lemma 1 it follows that a finitely generated x-algebra A is strongly
x-wild if A majorizes € and the corresponding homomorphism % is such that the image
¥ (A) is contained in M, ({(a1, as)), where {(ai, as) is the (not completed) *-subalgebra of €.

Definition 4. A x-algebra is called *-finite if it has only finitely many irreducible repre-
sentations up to unitary equivalence, and x-tame if it is of type I (see [Di, Chapter 9]) and
not x-finite.

Remark 2. A finitely generated *-algebra, A, is of type I if and only if for any irre-
ducible representation 7 of the algebra A on a Hilbert space, H,, the operator closure
7(A) contains a compact operator, and therefore contains all compact operators on H,
([Di, Theorem 9.1,Corollary 4.1.10]). Clearly, if a *-algebra has only finite-dimensional
irreducible representations, it is of type I.

4 Main Result

To formulate the main theorem we have to introduce the following notation: for every
positive integer n we denote by A, and A, respectively the path algebras of the quivers

A, : B 2 3 ng? gl z Rad %(4,) =0,




An . 1 / ) n;?’ n;2 n;l Rad 2(An) =0

modulo the relation that the radical square of the algebra is zero. In particular, the algebra
Ay is isomorphic to C and the algebra A; is isomorphic to C[z]/(z?).

Theorem 1.  (I) Let A be a finite-dimensional indecomposable associative complez al-
gebra and A(Rad — ) be its radical *-double.

1 A(Rad — %) is x-finite if and only if A is simple if and only if A ~ M,(C) for
some n if and only if A s Morita equivalent to C.

2 A(Rad — *) is x-tame if and only if A is Morita equivalent to either A, for some
n > 1 orto A, for somen.

3 A(Rad — %) is x-wild if and only if A is not Morita equivalent to any of A, or A,
for all n.

(II) Let A and B be two finite dimensional algebras.

1 (A® B)(Rad — %) is *x-finite if and only if both A(Rad — x) and B(Rad — ) are
x-finite.

2 (A® B)(Rad — %) is x-tame if and only if it is not x-finite and both A(Rad — *)
and B(Rad — x) are either *-finite or x-tame.

3 (A®B)(Rad—x*) is x-wild if and only if at least one of A(Rad—%) and B(Rad— %)
15 x-wild.

Remark 3. We remark that the algebras A, and A, are precisely those finite-dimensional
indecomposable algebras, which do not have indecomposable representations of length (=
the number of simple subquotients) greater than 2. This is very well-known and can be
proved for example using the following argument. Let A be a basic algebra, which does not
have indecomposable representations of dimension greater than 2. Consider the quiver of
A. First one shows that any vertex x of the quiver is a starting point of at most one arrow
and is an ending point of at most one arrow, since otherwise the idempotent, representing
z, and elements of A representing two different arrows starting from (ending at) x define a
3-dimensional indecomposable representation of A. This implies that the quiver of A is a
disjoint union of quivers of A, and A,. If Rad ?(A) # 0 we get that there are two arrows,
in the quiver, whose product is non-zero. With the idempotent, representing the common
vertex, we again get a 3-dimensional indecomposable representation of A. This implies
that A is a direct sum of algebras of type A, and A,.

Hence Theorem 1 can be reformulated as follows.

Corollary 1. The radical x-double of an indecomposable associative complez finite-dimen-
sional algebra A is x-finite or x-tame (that is of type 1) if and only if A does not have
indecomposable representations of length greater than 2.
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5 Preparatory lemmas: tame and wild collections

Lemma 2. The radical x-double of the algebra A, and A, is x-tame.

Proof. Let eq, ..., e, be the orthogonal primitive idempotents of A, (or A,) corresponding

to vertexes of the quiver A, (A, respectively) and let z;,;1 be the element of A, (4,

respectively) which corresponds to the arrow §_ _*“gl.

Let m be a non-zero irreducible representation of A,(Rad — ). Denoting p; = 7(e;),
X; = w(x;;4+1), we have that p; # 0 for some i, X; : p,H — p;y1H,i=1,...,n—1, and
X;p;H = 0 if j # 1. Choose the smallest ¢ such that p; # 0. If ¢ # 1 we have X; = 0 for
any 7 =1,...,¢:— 1. If X; =0, then any subspace U C p;H is invariant with respect to =
and therefore 7 is one-dimensional. If X; # 0, one can easily show that for any subspace
U C p;H which is invariant with respect to X}X;, the direct sum U & X;U is invariant
with respect to m. Then using the fact that = is irreducible we get that U is necessarily
one-dimensional and generated by an eigenvector of XX, and the representation 7 is
two-dimensional. This shows that A, (Rad — %) is *-tame.

Since radical *-double of A; coincides with its x-double and A; ~ C[z]/(2?) we have, by
[MT], that A;(Rad — %) is *-tame. Consider now A, (Rad—*), n > 1. Let 7 be its non-zero
irreducible representation. Keeping the above notation we have that X; X, | X;X; =0 =
X7X;X;_1X] , and therefore either ker X, ;X ; = ker X" ; or ker XX, = ker X, is non-
zero for some i. If ker X* | # {0} (resp. ker X; # {0}) then this kernel is invariant with
respect to X} X; (resp. X;_1 X} ;) and for any subspace U C ker X} ; (resp. U C ker X;),
which is invariant with respect to X;X; (resp. X; 1X; ), we have that U @ X,;U (resp.
U@ X} ,U) is invariant with respect to 7. Since 7 is irreducible, using the same arguments
as above we conclude that U is one-dimensional and the representation 7 is one or two-
dimensional. Therefore we have that A,(Rad — %) is *-tame for any n. O

Lemma 3. The radical x-double A of the quiver algebra e <*—e 39 , with the relations
y? = xy = 0 is strongly x-wild

Proof. We let f to be the primitive idempotent, corresponding to the right point. The
homomorphism ¢ : A — M;3(€), defined by

e 00 0 a 0 000
b(f)=10e 0], 9F=|00 0/, d@={0 00
000 00 0 0 a 0

generates a full functor Fj, : Rep(€) — Rep(A). In fact, let 7 be a representation of

¢. To prove that F is full it is enough to show that any operator C' = C* = [cij]f,jzl,

which intertwines the representation 73 o 1 of A, is diag(c, ¢, ), where ¢ intertwines the
ci ci2 0

representation 7w of €. If [C,73(¢(f))] = 0 then C = | ¢a1 c2 0 |. Taking into
0 0 C33

account that 7(a;), i = 1,2, are invertible one gets from [C, 73(¢(y))] = 0 that ¢12 = ¢o1 =0

and c¢y17m(a1) = (a1 )cog, coom(ar) = w(ay)err. Since ¢1; and cop are necessarily self-adjoint,

we obtain from this that cy;m(a;)? = m(ay)?cy; and therefore, by the positivity of the
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operator m(ay), c11m(a;) = m(a1)c;r. Thus we have m(aq)ce = epnm(ar) = m(aq)er; and,
using invertibility of 7(aq), it yields ¢;1 = cgo. Similarly, from [C, 73(¢(x))] = 0 we have
Coo = €33, giving A > €. Since (A) C (a1, a2) C €, the *-algebra A is strongly *-wild by
Remark 1. O

Lemma 4. The radical x-doubles of the following quiver algebras are strongly *-wild:

(a) o—w>o—y>07
(b) o<m—o—y>o7
(c) o—w>o<y—o,

T
—

(d) e o, with the relation xy = 0,
(e) ® .,

(f) e<"—e 31/ , with the relation y? = 0,
(g9) o —">e 31/ , with the relation y? = 0.
Proof. We shall only give homomorphisms 7 from the corresponding *-algebras, A, to
M, ({a1,a2)) C M,(€) which generate full functors Fy, : Rep(€) — Rep(A). We denote by

f1, fo and f3 the primitive idempotents for the quiver algebras, which correspond to the
points, counted from the left.

(a)

e 00 000
¢(f1)_ 000 ) ¢(f2)_ 0 e 0 )
000 000
0 00 0 0 O
(@)= a 0 0 |, Yy)=10 0 0
0 00 0 a; O
Similar for the case (b) and (c).
()
e 00 0 00 00 0
v(f)={0e 0], H@)=[000], Yy=|00 a
0 00 ap 0 0 00 0

Similar for the case (e).

(g) The strongly *-wild algebra from Lemma 3 is a factor-algebra of A. Therefore A is
strongly *-wild.

(f) is similar to Lemma 3 and (g). O
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Lemma 5. 1 A direct sum of x-algebras is *-finite if and only if all summands are *-finite.
2 A direct sum of x-algebras is of type 1 if and only if all summands are of type 1.

3 A direct sum of x-algebras is x-wild if and only if some of the summands is *-wild.

Proof. The first statement of the lemma is obvious. To prove the rest, it is certainly enough
to consider the case A = A; & Ay, where A;, A, are x-algebras.

Let 7 be a representation of A and let 14, denote the unit in A;. Then p = 7(14, @ 0) is
a self-adjoint projection commuting with any element of A. Therefore m = 7 @ 7y, where
m(a) = 7(a)p, ma(a) = w(a)(1 —p), a € A. By [Di, 5.4.3], 7 is of type I if and only if both
71 and 7y are of type I. We have m1(a; @ az) = 7(a1) and ma(a; & az) = 7(az), a; € A;. If
A;, 1 = 1,2, are both of type I, the restrictions of 7 to each A; are representations of type
I and therefore the representation 7 itself also is of type 1.

Let A be a type I algebra. Assuming that, say A; is not of type I, we have that there exists
a representation m; of A; such that the von-Neumann algebra generated by m(.A;) is not
of type I. Now, setting 7(a; & as) = m1(ay1), a; € A;, we get a non-type I representations
of A giving a contradiction.

Assume that A is a x-wild. Let ¢ : A — M, (C*(F,)) be a x-homomorphism generating
the full functor F, : Rep (C*(F2)) — Rep (A). Then m(p(A)) = 7(M,(C*(F2))" for any
representation m € Rep (M, (C*(F3))) (see, for example, the proof of [OS2, Theorem 50]).
By [0S2, Lemma 14], ¢(A) = M,(C*(F2)), where bar indicates the closure in the C*-
algebra M, (C*(F3)). It is well-known that M, (C*(F3)) is an irreducible algebra. In fact,
it is well-known that C*(F,) has a faithful irreducible representation, 7, (see, for example
cite[Theorem VII.6.5]davidson), and hence so does M, (C*(F3)): id®n. On the other hand,
0(A) = (A180)Dp(06.Ay). Therefore, either p(A;B0) or p(0d.Az) is zero implying that
either A; or Ay is *-wild with the corresponding x-homomorphisms ¢; : A; — M, (C*(F))
defined via @i(a1) = ¢(a; & 0), a; € Ay, and ps(az) = ¢(0 ® ay), as € A,, respectively.
The converse statement is trivial. 0

6 Preparatory lemmas: Morita equivalence

Let A be a *-algebra and let 1 =e; + ey + ...+ e, be a decomposition of the identity of
the algebra A into a sum of pairwise orthogonal projections. Set A;; = e;Ae; and consider
a vector space B = @F,_,B;; where By; = C™ ® A;; ® C™, {m;} are positive integers.
We write elements of B as matrices (b;;), bj; € B;j. B possesses an algebra structure: if
bij = fl R ai; ® g, and Cij = U; @ dz'j K wj with fi,uz- € Cmi, g, W; € (ij, aij,d,-j € .Aij, we
define a product of (b;;) and (c;;) by

(big) - (cij) = (i),
Sij = > p Dik * Chjs bik - ki = (Gk, k) fi ® @igvj @ wj,

where bar indicates the complex conjugation and (g, ux) is the scalar product in C™ of
9k, Uk.
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B is a x-algebra with involution defined as follows:

(bij)* = (b;i)a b;'z' =0i® a;'z' & fT]

Taking a trivial decomposition of the identity (n = 1) we get B ~ M,,,(C) ® A with an
isomorphism ¢ given by ¢(f; ® a ® f;) = e;; ® a, where {f;} is the standard basis in C™
and e;; are the matrix units in M,,, (C). In general, considering in My, tmy+...+m, (A) the
projection p = diag(er ® I, €2 @ Iy, ..., €, @ Iy, ), where I, is the identity matrix in
M,,,(C), we have B ~ pMy(A)p, where N = my +mg + ...+ m,,.

Let p be a x-representation of 4 on H and set ¢; = p(e;). p generates a *-representation
II(p) of B on H = & ,H;, where H; = C™ @ ¢;H: if h; = v; ® w;, with v; € C™ and
w; € qu and bij = fz ® Qij ® 9j,

n

I(p) (b)) (B, hoy - ooy hy) = (ur, w2, - un), i = Z(gja ;) fi ® plaij)w;.

i=1

The representation II(p) comes from the following representation II(p) of the x-algebra
pMy(A)p: The representation p naturally induces the representation py of My(A). Let
H=",C" @ H. Then H = pn(p)H. For a € My(A), we set I1(p)(pap) = pn(pa)|y as
a representation on the Hilbert space H.

Lemma 6. Any x-representation m of B is unitarily equivalent to II(p) for some x-repre-
sentation p of A.

Proof. Let m be a x-representation of B on H and let p; be the projection onto the subspace
7(By)H. Since b;; - b;; = 0 for b; € By, bj; € Bj; and i # j, we have p;p; = 0if i # j and
> pi = 1so that H = @} H;, where H; = p;/H. We also have that 7(B;;)H) = 0 if
k # j and w(B;;)H; C H;. Since each B;; is an algebra isomorphic to M,,,(C) ® A;; with
the unit I,,, ® e; and any representation of the later is unitarily equivalent to id ® p;, where
pi is a representation of A;; on a Hilbert space H;, we have that there exists a unitary
operator V : @ H; — H = @& ,C™ ® H; such that for the representation 7' = VxV !,

7 (bii) lemi gy = (1d @ pg) (@i(bii)) = T1(pi) (bii),

where b; € B;; and ¢; @ Bi; — M, (C) ® A;; is the isomorphism of the corresponding
algebras defined above.

Let {fF} be the standard basis in C™. Then Ran 7'(f* ®p; ® f¥) C fF® H;, and we have
' (ff ® ay; ® f]l')fjs Qw; =7'(ff @pi® fE)n'(ff ® ai; ® f]l')ﬂl(fgl' p; ® f]l')ff ®w; =
' (fF @pi @ fH)n'(fF @ ai; @ (L ) L@ w; = (f], £3) fF @ ;.

for some w; € H;. Since f] @ a;; ® f; =(flfop® B (ffoa;® fjl) : (fjl dp; ® f]t) one
easily checks that @'(ff ® ai; ® f})f; @ w; = (f}, f]) I ® Wi so that @; depends only on w;
and Q-

Let X,;; be the mapping from Hj; to H; which sends w; to w;. It is easy to check that it
is a linear bounded operator and that
7' (fi ® aij @ gj)u; @ w; = (g5,%;) fi @ Xay;w;

Qg

14



for arbitrary f; € C™, g;,u; € C™, and w; € H;. We extend X, to the whole space H in
the trivial way and denote the resulting mapping by the same letter. What is left to prove is
that p(a) := > /5 Xpap, » @ € A, is a x-representation of A on ®}_, H;. Direct verification
shows that Xo, 15, = Xo;; + Xp,; and Xy, = AX,,; implying p(a + b) = p(a) + p(b) and

p(Aa) = Ap(a).
o (B (£r) £ (S o)

and, if hy € C™ such that (hy, hy) = 1
™ (fi ® piabp; ® g;)(u; @ w;) = 7' (fz‘ ® Z(piaplc - prbpj) ® gj) (u; ® wy) =
k=1

= 7(f ® piape ® hi)7 (he ® pibp; ® g;) (u; ® wy) =
k=1

=Y 7' (fi ® piapk @ hi) (95, ;) bk ® Xippp;w5) =

k=1
= (95, 85) [ ® (E: Diapk pkbp] )

On the other hand, 7'(f; ® p;abp; ® g;)(u; ® w;) = (g5, Us) fi ® Xp,abp;wj, giving us

pzabp; E: Diapy pkbp]

and

Z piabp; = Z Z piapeXpibp; = P(a)p(b)-

3,7=1 2,j=1 k=1

Since p(a*) = 3271 Xpiarp; and p(a)* =377, X, to show that p is a *-representation

we have to prove that Xpe-p, = X7 .. The verification of this is an easy task and we left

it to the reader. 0
Lemma 7. Any idempotent in the algebra M, (C[Fs]) is equivalent to an idempotent of the
the form q ® e, where q is an idempotent in M,(C) and e is the unit in C[F,].

Proof. By [Co, Corollary 3], the algebra C[F3] is a free ideal ring. Hence the statement of
the lemma follows from [Co, Lemma 2.5]. O
Lemma 8. 1 A is x-finite if and only if B is x-finite.

2 A is of type 1 if and only if B is of type 1.

3 If A is strongly x-wild then B is x-wild.

Proof. The first statement follows from Lemma 6.
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Assume A is of type I. Then so is the algebra My(A). In fact, any *-representation of
Mny(C) ® A is unitarily equivalent to p = id ® 7, where 7 is a *-representation of A.
Therefore the von-Neumann algebra generated by p(My(C) ® A) is My(C)QN, where
N is the von-Neumann algebra generated by m(A). Since N' and My (C) are of type I
so is My(C)®N ([Ta, Theorem 2.30]). Like A, My(A) is a finitely generated algebra.
Therefore, by Remark 2, if p is an irreducible representation of My(.A) on #, the closure
p(Mpy(A)) contains a compact operator K. Let p be the projection given the isomorphism
pMn(A)p ~ B. Clearly, for P = p(p), the operator PK P is compact as an operator
from B(H), where H = PH. Thus for the representation II(p) of the algebra pMy(A)p,
the operator closure of the image II(p)(pMy(A)p) contains a compact operator. Since,
by Lemma 6, any representation of pMy(A)p is unitarily equivalent to II(p) for some
p € Rep A, this implies that pMy (A)p and therefore B is of type I. We leave the converse
statement (which we do not need) to the reader.

Assume now that A is a strongly *-wild algebra. To prove *-wildness of B ~ pMy (A)p it
is enough to show that there exists a *-homomorphism 1 : pMy(A)p — M, (C*(F;)) such
that ¥(pMny(A)p) is dense in M, (C*(Fz)). In fact, since (m,(M,(C*(F2))) = M,(C) ®
(7(C*(F))) = CI, @ (w(C*(F))) for any 7 € Rep (C*(F2)), we would have in this
case that C € Fy(m)(pMn(A)p)' = (mn(Mn(C*(F)))" = CI, ® (7(C*(F2)))", giving the
statement. We know the existence of a *-homomorphism ¢ : A — Mg (C*(F)) satisfying
this density condition (see the corresponding arguments in the proof of Lemma 5) and,
moreover, the condition ¢(A) C Mg (C[F;]). Let oy be the x-homomorphism My (A) —
My (C[F;]) induced by ¢. Then

on(pPMn (A)p) = on(p)pn(Mn(A))eon(p)

is dense in @y (p) My (C*(F2))on(p). ©n(p) is a projection in My (C([F2])) and there-
fore, by Lemma 7, is equivalent to a projection of type ¢ ® e, where ¢ is a projection
(say, of rank n) in Myk(C). Let T € My (C([F2])) be an invertible element giving the
equivalence. Then

on (P)Myk (C*(Fa))on(p) = T (g ® e)TMy g (C*(F))T g @ e)T =
=T q® e)Myk(C*(F2))(g® e)T.

Since (¢ ® e)Myk(C*(F2))(g @ €) =~ M, (C*(F3)), we have on(p)Myk(C*(F2))pn(p) =
M, (C*(Fz)). If 6 is the corresponding isomorphism, § o ¢y : pMy(A)p = M, (C*(F2)) is
the required *-homomorphism ¢ : pMy(A)p — M, (C*(F3)). O

Remark 4. Using similar arguments one can prove that if B is strongly *-wild, then A is
x-wild. We do not know if strong *x-wildness can be replaced by *-wildness. This would
be true if we could prove that any projection in M, (C*(F2)) is unitarily equivalent to an
elementary one, that is ¢ ® e, where ¢ is a projection in M, (C). However, at the moment
we do not know how to prove the last statement (and we do not know if it is correct).

7 Proof of the main result

The second statement of the theorem follows from Lemma 5. For the first statement we
can assume that the algebra A is indecomposable and basic using Lemma 8.
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If A is basic and is isomorphic to A;, then it is obvious that A(Rad — x) ~ A is x-finite.
In fact it has (up to a *-isomorphism) only one irreducible *-representation, which is the
trivial one.

By Lemma 2, the radical *-double of both A4, and A, is *-tame. In Remark 3 we have
seen that the algebras A, and A, are characterized as those finite-dimensional basic inde-
composable algebras whose dimensions of indecomposable representations do not exceed
2. To complete the proof it is now left to show that the radical x-double of a basic inde-
composable algebra A, admitting a 3-dimensional indecomposable representation, 7 say, is
strongly *-wild. Let us denote by B the quotient of A modulo the annihilator of 7. We
note that B is basic and indecomposable and that 7 induces a 3-dimensional indecompos-
able representation of B. It is of course enough to show that the radical *-double of B is
strongly *-wild. We will now show that this essentially reduces to Lemma 4.

We have the following three possibilities for 7:

(I) 7 has exactly one 1-dimensional subrepresentation which we denote by 7, and ex-
actly one 1-dimensional quotient representation which we denote by .

(IT) 7 has exactly one 1-dimensional subrepresentation which we denote by 7, but more
than one 1-dimensional quotient representations.

(III) 7 has exactly one 1-dimensional quotient representation which we denote by 7, but
more than one 1-dimensional subrepresentations.

In what follows we are going to study all possibilities for B case by case.

Assume first that 1 is a primitive idempotent. Then the radical *-double of B and the
usual *-double of B in the sense of [MT] coincide and the statement follows from [MT,
Corollary 1] (remark that all x-wild #-doubles in [MT] are in fact strongly *-wild by the
constructions used in [MT] and Remark 1).

Let us now assume that B has two non-equivalent orthogonal primitive idempotents f and
1— f. Since both these elements do not annihilate 7, we can assume that the image of f is
2-dimensional and the image of 1 — f is thus 1-dimensional. In the case (I) we have three
possibilities:

1. 1 — f is not annihilated by m;. In this case the algebra B is (via m) the algebra of
the following matrices:

b d
B = 0 [ | :a,bcdleCy,
0 a

o QO

and one easily constructs an isomorphism to the algebra of Lemma 4(f). Using the
latter lemma we conclude that B(Rad — *) is strongly -wild.

2. 1— f is not annihilated by 5. In the same way as above, it is easy to see that in this
case B is isomorphic to the algebra of Lemma 4(g) and hence B(Rad — *) is strongly
*-wild.
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3. 1 — f is annihilated by both 7m; and my. It is easy to see that in this case B is
isomorphic to the algebra of Lemma 4(d) and hence B(Rad — x) is strongly *-wild.

In the case (II) we have two possibilities:

1. 1 — f is not annihilated by 7. It is easy to see that in this case B is isomorphic to
the algebra of Lemma 4(e) and hence B(Rad — %) is strongly *-wild.

2. 1 — f is annihilated by m;. It is easy to see that in this case B is isomorphic to the
algebra of Lemma 4(g) and hence B(Rad — ) is strongly *-wild.

In the case (III) we have two possibilities:

1. 1 — f is not annihilated by m,. It is easy to see that in this case B is isomorphic to
the algebra of Lemma 4(e) and hence B(Rad — *) is strongly *-wild.

2. 1 — f is annihilated by 7. It is easy to see that in this case B is isomorphic to the
algebra of Lemma 4(f) and hence B(Rad — %) is strongly *-wild.

Finally, let us assume that B has three non-equivalent pairwise orthogonal primitive idem-
potents e, f and 1 — f — e. Then the rank of each of them under 7 is 1-dimensional.
Hence in the case (I) we get that B is isomorphic to the algebra of Lemma 4(a) and hence
B(Rad — ) is strongly *-wild. In the case (II) we get that B is isomorphic to the algebra
of Lemma 4(c) and hence B(Rad — %) is strongly *-wild. In the case (III) we get that B is
isomorphic to the algebra of Lemma 4(b) and hence B(Rad — %) is strongly *-wild. This
completes the proof.
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