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Abstract

This paper describes how simple modifications of the Krylov sub-
space method for IR can be used to steer what documents to retrieve
and thus improve retrieval performance.

In our experiments retrieval performance, measured in average pre-
cision, is in general better for those queries that are at a smaller angle
to their subspaces of relevant documents.

Improved query vectors are used directly in the vector model to
rank documents for relevancy, and also for explicit restart of the bidi-
agonalization procedure in the Krylov subspace method.

The bidiagonalization process used in the Krylov subspace method
is rewritten so that only directions orthogonal to subspaces spanned
by irrelevant documents will be taken into account.

Starting the bidagonalization procedure with subspaces spanned
by the terms in the queries, or a block of relevant retrieved documents
will further improve the ranking of relevant documents. We replace
the Golub-Kahan bidiagonalization procedure in the Krylov subspace
method for IR with a band Lanczos procedure.

The modifications we make are based on relevance feedback and
quite naturally our experiments show a significant increase in retrieval
performance for the modified methods compared to the original Krylov
subspace method used for IR.
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1 Introduction

An information retrieval (IR) system matches user queries (formal statements
of information needs) to documents stored in a database. For each query en-
tered the IR system will rank all the documents in relevance order. In vector
space models queries and documents are encoded as vectors in m-dimensional
space, where m is the number of unique terms in the collection. Documents
are sorted for relevancy measuring the angles between each document vector
and the query vector. The vector model has some major drawbacks. The
terms used in the query vectors are often not the same as those by which
the information searched has been indexed in the document vectors. In the
vector model all document vectors that have no term in common with the
query vector will be orthogonal to the query vector (and there by be ranked
as irrelevant).

In Blom and Ruhe [7, 6] we discussed how a few iterations in the Golub-
Kahan bidiagonalizing procedure could (at least in theory) overcome this
problem and further improve the document ranking. In this paper we de-
scribe how simple modifications of the methods used in [6] can be used to
steer what documents to retrieve and thus improve retrieval performance.

In IR query exzpansion is used to change the terms in the query vector
in order to formulate a new improved query vector Harman [13], Ide [15],
Rochio [17], Xu and Croft [20]. The original query is replaced with the
expanded query and the documents are ranked again. The expected effect is
that the new query is moved towards the relevant documents and away from
irrelevant documents and there by improve the ranking.

In our experiments there is a relationship between the query vectors close-
ness in angles to their relevant subspaces (the subspaces spanned by column
vectors corresponding to relevant documents) and retrieval performance in
vector models. For query vectors close in angles to to their relevant sub-
spaces, often retrieval performance (measured in average precision) is better
than for queries further away from their relevant subspaces.

We discuss how simple projections of the original query vector ¢ can be
used to formulate improved query vectors. We use the retrieved relevant doc-
uments from the vector model to create new query vectors that (hopefully)
are closer in angles to the relevant subspace.

For Krylov subspace methods ezplicit restart means replacing the starting
vector ¢ with an improved starting vector ¢+ and restart the bidiagonalization
procedure with this new vector. (In eigenvalue computations explicit restart

is often used to limit the sizes of the basis set). We use the retrieved rele-
vant documents from the Krylov subspace method to construct new starting
vectors for the explicit restart.

The two alternating steps of matrix-vector multiplications, A”q and Ap,
in the bidiagonalization procedure in the Krylov method can be roughly
interpreted as finding all documents containing the terms in the query ¢ and
finding all the terms contained in the documents represented by p. It is easy
to see that after several iterations this process will bring in some relevant
documents as well as many irrelevant ones. Controlling this growth process
will improve retrieval efficiency for the Krylov subspace method.

Technically it is easy to rewrite the bidiagonalizing procedure to exclude
unwanted (irrelevant) search directions. We use the retrieved irrelevant docu-
ments to construct subspaces spanned by unwanted directions to avoid in the
bidiagonalizing procedure.

Starting the bidiagonalizing procedure with a block of relevant documents
(relevant directions) instead of only one vector will improve performance
significantly. This is done by replacing the Golub-Kahan bidiagonalizing
procedure used in the Krylov subspace method for IR with a band Lanczos
algorithm.

This article is organized as follows:

In section 1.1 we present measures for retrieval efficiency used in this
article. The measures are standard in the IR community. The notation and
some symbols frequently used throughout the article are listed in section 1.2.
In section 1.3 we give a short mathematical background for some concepts
further used.

Section 2 gives a short presentation of the Krylov method used for IR [6].
(The Golub-Kahan bidagonalization procedure used in the Krylov method is
shortly presented in appendix A).

In section 3 we introduce the relevant subspace (the subspace spanned by
relevant document vectors) and it’s complement. We discuss how the query
vectors may be projected onto the relevant subspace or orthogonal to the
complement. We also introduce an optimal scoring.

In section 4 we introduce techniques for how to approximate the projected
query vectors from section 3 and how to approximate the optimal scoring.

In section 4.2 improved query vectors are used for explicit restart of the
bidiagonalization procedure. We also discuss how the bidiagonalization pro-
cedure can be modified to search only in directions orthogonal to unwanted
directions.




Section 4.3 introduce query subspaces (subspaces spanned by the terms
in the queries). A short description of the band Lanczos procedure and how
it can be used for IR is given.

In section 5 some numerical experiments are presented.

1.1 Measures

The retrieval efficiency of an information retrieval system depends on two
main factors. The ability of the system to retrieve relevant information and
the ability to dismiss irrelevant information. The ability to retrieve relevant
information is measured by recall, the ratio of relevant documents retrieved
over the total number of relevant documents for that query. A systems
ability to reject irrelevant documents is measured by precision, the ratio of
the number of relevant documents retrieved for a given query over the total
number of documents retrieved. Precision and recall are usually inversely
related (when precision goes up, recall goes down and vice versa).

When we evaluate a query ¢, all the documents are ranked and we receive
an ordered list £ of documents. Assume ¢ documents are relevant to the query
and let ¢;, 7 = 1...1 be the position for the ith relevant document in L.
The average precision (non interpolated) for a single query is defined as

The mean average precision for multiple queries is defined as the mean

of the average precisions for all queries.
Precision can be computed at any actual recall level

(where t is the number of relevant documents to the query).

Let 7; be the jth recall level from the 11 standard recall levels 0,0.1,0.2. .. 1.

The interpolated average precision for a query at standard recall level r; is
the maximum precision obtained for any actual recall level greater that or
equal to r;.

The Recall level precision averages for multiple queries are the means of
the interpolated average precision values at each (standard) recall level for

the queries. Recall level precision averages are used as input for plotting the
recall-precision graphs.
For further details, see Harman [14].

1.2 Notation

The notation used in this article is rather standard in the numerical linear
algebra community. We use uppercase letters for matrices and lowercase let-
ters for vectors. Lowercase Greek letters usually denotes scalars. Component
indices are denoted by subscript. For example, a vector ¢ and a matrix M
might have entries ¢; and m;; respectively. On the occasions when both an
iteration index and a component index are needed, the iteration is indicated
by a parenthesised superscript, as in ¢ to indicate the jth component of the
rth vector in a sequence. Otherwise ¢; may denote either the jth component
of a vector ¢ or the jth column of a matrix C. The particular meaning will
be clear from its context.

The range of a matrix M is the subspace spanned by the columns of M
and is denoted R(M).

Some symbols are frequently used throughout the article. They are listed
below. For a detailed description please see each reference.

A: Term document matrix (section 2).
q: Query vector (section 2).
Q: The query subspace (section 4.3.1).

A: We use A for R(A), the range of A. It is spanned by the columns of A
and has the dimension r, the rank of A.

R, C: The relevant subspace and the complementary subspace (section 3).

R, C: The subspace spanned by the relevant retrieved documents and its
complement in the residual collection (section 4.1).

Some of the notations not listed here that are used throughout the article
are introduced in section 1.3.




1.3 Mathematical background

Orthogonal projections Let M be any m x n matrix. The orthogonal
projection of the column vectors in M onto the space S is denoted PsM.
The column vectors in M may also be projected orthogonal to S, M —PsM.

Principal angles The relative orientation of two subspaces can be de-
scribed by principal angles, the angles formed by principal vectors in the
spaces. Let F,G € R™ be two subspaces whos dimensions satisfy p =
dim(F) > dim(G) = s > 1. The first principal angle 6, between F and
G is the smallest angle that can be formed by a vector f; € F and a vec-
tor g, € G. Since the angle is minimized when the cosine is maximized the
smallest angle satisfies

208 6 — T — T

cos B ?&%gcn;gng 9=/ i

subject to 1A =1lgll =1

The vectors f; and g are called principal vectors. The second principal angle
0y is defined to be the smallest angle that can be formed between a vector in
F that is orthogonal to f; and a vector in G that is orthogonal to g;. The
principal angles 64, ...,60; between F and G are defined recursively by
T T
cosf = r}lea;cr;lggf 9= fi 9k
subject to

I = lall =1,
fff; =0, i=1...k—1,
glgg = 0, i=1... k-1

For further reading on principal angles see Watkins [19].

Let F' be an m X p matrix and let G be an m X s matrix. Assume that
both F' and G have linearly independent columns and let F' = QpRp and
G = QgRg be the QR-decompositions of F' and G respectively. Using the
SVD the principal angles and vectors for the ranges R(F) and R(G) can be
computed [4]. Let

USV" = QLQq (1)
be the singular value decomposition of Q%Qq. The cosines of the principal
angles are the singular values in S and the principal vectors for F' and G are
QrU and Q¢V respectively.

Krylov subspaces The Krylov subspace K,(B,z) of the square matrix B
and starting vector z is spanned by the r vectors

z,Bx,B%x,...,B" 'z

where z is any nonzero starting vector. The block Krylov subspace K, (B, X)
is spanned by the pr vectors in the block Krylov sequence

X,BX,B2X,...,B"'X

where the columns in X = [ml Ty ... :vp] are linearly independent.

Theorem Let vectors 1, 9, ...z, be orthonormal and starting vectors for
the p sequences spanning the Krylov subspaces K,(B, 1), K,(B,x2), ...,
K, (B, x,) respectively.

Then the block Krylov subspace is the union of the p Krylov subspaces,

K,(B,X) = O’CT(B793J')

j=1

proof The proof follows from a simple permutation of the vectors that
span the block Krylov subspace, we have
K.(B,X) = span{w,s,...,3p, Bz, Bxs,...,Bap,...,B" 'z, B 'xs,...

T—1 r—1
span{z1, Bzy,...,B" 21,29, Bxs,..., B '2y,...,z,, By, . ..

P
UK (B,z)).
j=1

2 Krylov subspace methods for information
retrieval

In vector space models both queries and documents are encoded as vectors
in m-dimensional space, where m is the number of unique terms in the col-
lection. The document vectors are stored as columns in an m x n term
document matrix A. The query vectors are stored as m x 1 vectors ¢ and
query matching can be viewed as a search in the column space of the term
document matrix A.




In the vector model the documents are scored measuring the cosine of the
angles between the query vector ¢ and each document vector a; in A,

qTaj
llallzl a2’

¢ = i=12,...,n. (2)
The smaller the angle (i.e. the larger cosine value) the higher relevance score.

For the Krylov subspace methods we will use the Golub Kahan bidiago-
nalization procedure [12] applied to the term document matrix A starting at
the query vector ¢ to compute the two basis matrices Qy41 and P, and the
(r +1) x r lower bidiagonal matrix B, , satisfying

B, = szJrlAPr (3)

The column vectors in the basis matrices @,; and P, span bases for the
two Krylov subspaces K, 1(AA”,q), in the document space (spanned by
the query ¢ and the columns of A) and K,(ATA, ATg), in the term space
(spanned by the rows of A) respectively. The Golub-Kahan bidiagonalization
procedure is further described in appendix A.

We let W form an orthonormal basis for the column vectors in the reached
subspace span(AP,).

The reached subspace W, the basis matrices Q, 1, P, and the B,
matrix are used to score the documents in relevance order to the query (see
Blom Ruhe [6]). The similarity measures we use for this article are:

e In the subspace projection measure the documents in A are sorted ac-
cording to their closeness measured in angles to the Krylov subspace
Kry1(AAT, ). The relevance is measured using

¢ = QFasllzy G=1,2,...,n (4)
e A projected query vector
Gg=wwq (5)

is constructed using the reached subspace. In the ezpanded query mea-
sure the documents are scored using the angles between the expanded
query vector ¢ and each document vector in A,

T
qaj;

=——2— ji=12,...,n 6
Talalasls ©

Cj
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Note that if the starting vector ¢ € A, the range of A, then the pro-
jected query § = ¢ and the cosines (6) are simply the vector model
scoring (2).

The subspace spanned by relevant docu-
ment vectors

When a user issues a search for information on a topic, the information
retrieval system will start to return documents that are relevant from the
system’s point of view. From the user’s perspective the total database will
be divided logically into four parts. There will be relevant and irrelevant
documents retrieved. And among the documents not retrieved there will be
both relevant and irrelevant documents.

Let A be the subspace spanned by the column vectors in the term doc-
ument matrix A and assume r documents are relevant to query g. The
subspace

RCA (7

spanned by the document vectors in A that correspond to the 7 relevant doc-
uments we call the relevant subspace. We define the complementary subspace
by the set difference between the range of A and the relevant subspace,

C=A-R. 8)

It is important to note that with this definition of the relevant subspace
the relevant document vectors are completely in R. The irrelevant document
vectors are spanned by vectors both in the relevant subspace and in the
complementary subspace.

The relevant subspace R for a query q is discernible if no irrelevant docu-
ment vectors are completely in R. For all sets we have studied® the relevant
subspaces for all queries are discernible?.

'The Adi, Cici, Cranfield and Medline data sets [9] (see also [2]) and the Financial
Times and Congressional Records from the TREC data sets [1].

2How the document vectors in the term document matrices were set up is described in
section 5.




3.1 Query vector and the relevant subspace

The query vector ¢ can be divided into three orthogonal parts ¢;, ¢ and g3
where ¢, is in the relevant subspace (7) of ¢, ¢o is in A, the range of A but
not in the relevant subspace and g3 is orthogonal to .A.

q=q+aq+ag 9)

and ||ql3 = |la1l3 + ll@2ll3 + llgsll3. In our experiments ||gs||» is in general
larger than ||¢1]|2 and ||gz||2, and ||ga||2 is in general larger than |/g||.

It is not always the case that the query vector is closer to the subspace of
relevant documents than the irrelevant document vectors are. Quite often we
will find irrelevant document vectors making a smaller angle to the relevant
subspace than the query vector itself.

This is clearly seen in figure 1 where cosines of the angles between the
relevant subspace R and each document vector and the query vector are
plotted. 15 irrelevant document vectors make slightly smaller angles to the
relevant subspace than the query vector.

We have also found several query vectors being orthogonal to their rele-
vant subspaces.

There is a tendency that average precision (using any of the ranking
algorithms presented in this article) is better for queries (or expanded que-
ries) close to their relevant subspaces (7) than for queries further away from
their relevant subspaces.

When sorting the retrieval performance (measured in average precision for
the vector model (2)) for each query vector ¢ within a data set according to
|lq1 |2 there is a relationship (see figure 2 (right plot))?®. Average precisions for
query vectors orthogonal to or with a small part in their relevant subspaces
is very moderate. Average precisions for query vectors closer in angles to
their relevant subspaces tend to be higher.

3.2 Projected query vectors

We can move the query vector ¢ away from irrelevant documents (measured
in angles) by projecting it orthogonal to the complementary subspace C (8)

q—Pg=a+a (10)

3Similar relationships seems to occur when sorting the retrieval performance for each

query g according to HZ—;H%.

where ¢; and ¢z are the parts of ¢ that are in the relevant subspace for ¢ and
orthogonal to the range of A respectively as defined in (9). We can move the
query vector towards the relevant subspace by projecting it onto the relevant
subspace R (7)

Prq=q. (11)

Clearly both the projected queries (10) (11) are orthogonal to the comple-
mentary subspace C. Unless ¢ is completely in the range of A the projected
query vectors (10) (11) are not equal®,

3.3 Optimal scoring

An optimal scoring will rank all relevant documents better than irrelevant
documents.

Assume the relevant documents for a query span a discernible subspace.
Since Pra; = a; for all relevant document vectors a;, then optimality is
obtained if all documents are sorted in descending order according to their
angles to the relevant subspace

Pra;llz _ lla; — Peay|

1 =1,2,...,n. 12
e laf, I hEen az)

The angles between the projected query vector Prgq and each document
vector a; in the term document matrix

(Pra)'a; _ (Praj)’a _ (a; —Peay)'q
[Prallzllajlls  Prallallajlls  1Prall2llasle’

=1,2,...,n (13

does not necessarily give an optimal scoring.

This is easily verified. For relevant document vectors a;, the angle be-
tween the projected document Pra; and the query vector ¢ is the same as
the angle between the document vector itself and the query vector,

(PRa])Tq _ a'][q
llasll2 llajllz’

i=1,2,...r

For the data sets we have studied, (the Adi, Cici, Cranfield and Medline data sets [9]
the FT and the CR sets from TREC [1]), g is never completely in A.

5Since ||Prg]l2 in the denominator is constant for all j = 1,2,...,n it will not affect
the scoring and can be omitted.




(Pra;)'q
llasl2
between the projected irrelevant document vectors and the query vector.
Some of the irrelevant documents may be ranked higher than relevant docu-

ments.

Clearly the scoring (13) is not optimal. In experiments this scoring (not
surprisingly) performs very well measured in average precision.

However, the documents forming the relevant subspace for a query are
not known in advance (in fact we are trying to find them). In reality we can
only compute approximations to the projected query vectors (10), (11) and
rankings (12), (13).

We cannot gurantee that this quantity, , is smaller than the angles

4 Using relevance feedback

Both the vector model and the Krylov subspace method have a limited recall.
Usually some relevant documents are retrieved to a query, but almost never
all the relevant documents. In this section we will discuss some techniques
that may be used together with the Krylov method to further increase the
recall (mostly the techniques will also increase precision).

To steer the process of what documents to retrieve, we will use relevance
feedback. In a relevance feedback cycle, the user is presented a list of retrieved
documents, and after examining them, marks those that are relevant. The
main idea is to use the information provided by the user to make a new
(hopefully) improved search®.

4.1 Formulating improved query vectors

Assuming that relevant documents resemble each other it is natural to for-
mulate an initial query and to incrementally compute vectors of the relevant
and/or the complementary subspaces.

Assume that ¢ retrieved documents have been returned back to the user at
some point. Assume that s of these were identified as relevant and ¢ — s were
irrelevant. Let the columns of A; correspond to the ¢ retrieved documents.

SRelevance feedback can also be performed without involving a user. In pseudo rel-
evance feedback new queries are constructed using the top retrieved documents, see for
example Xu and Croft [20].

Let
R C R(A,) (14)

be the subspace spanning the s retrieved relevant document vectors and let
C=R(A)-R (15)

be it’s complement in the range of A;.

Clearly the subspace spanned by the relevant retrieved document vectors
is in the relevant subspace (7), R C R. The complement C to R in R(A,)
may not be completely in the complementary subspace C (8)

We will mimic the two projected query vectors (10) and (11) with the
two ezpanded query vectors

¢ =q¢—Psq and q" =Ppg (16)

respectively. Note that ¢ is in A, the range of A, while ¢~ might not be
completely in A. It is possible to add tuning constants to the expanded query
vector ¢~. Letting

¢ =aq+ fPsq (17)
and with appropriate choices of « and S retrieval performance for the ex-
panded query vector ¢~ may improve.

If no relevant documents were found among the ¢ best scored documents
then it is not possible to form the expanded query vector g*. One option
could then be to look further down the ranked list of retrieved documents in
order to find some relevant documents. Often this is wasted effort, the vector
model will pull in too many irrelevant documents and there is an upper limit
to how many documents we can expect a human user to judge for relevance.
Forming the other expanded query vector ¢~ is also likely to fail since the
query vector ¢ will be projected orthogonal to the subspace €. The number
of retrieved documents ¢ is then much less than the number of document
vectors n in A and the subspace C will be a very poor approximation of the
complementary subspace C (8).

There are three classic (and rather similar) ways to calculate an improved
query vector for vector models [10].

In standard Rochio [17] the new query vector is computed using the orig-
inal query vector ¢ and the retrieved relevant document vectors in A, and
the retrieved irrelevant document vectors in A;_

B 0
Grocmio = a4 + gAses - EAHeH

18




where e; and e; , are the vectors of ones and «, § and 7y are used as tuning
constants. Sometimes v is set to 0. For the two other methods, Ide Regular
and Ide dec hi [15] other tuning constants are used and for the Ide dec hi
method the highest ranked irrelevant document vector is subtracted instead
of the sum of the irrelevant document vectors.

The last vector A; se; s in the standard Rochio expansion can be di-
vided in two parts, one part that is in the subspace spanned by the relevant
retrieved documents R (14) and one part that is in the complement C (15).

The standard Rochio expansion can be formulated

Qrocuio = Qq + Pﬁ(gAses - %At—set—s) - %Pc"At—set—s- (18)

Let the residual collection
An_y (19)

be the columns of A with the ¢ document vectors that correspond to the
retrieved documents removed.

We cannot formally prove that any of the three expanded query vectors
(16) — (18) are closer in angles to their relevant subspaces in the residual
collection than the query vectors q. In our experiments’ some trends are
clear though. In general ¢ and grocmo are moved towards their relevant
subspaces in the residual collection. For & = = 1 the expanded query
vectors ¢~ are moved away from the irrelevant document vectors but rarely
towards their relevant subspaces in the residual collection. If an expanded
query vector is moved towards its relevant subspace in the residual collection
retrieval performance, using any of the ranking algorithms presented in this
article, is in general better than performance for the original query vector q.

In figure 1 we used the ten best scored documents from the vector model
(2) and constructed the expanded query vector ¢* (16). The expanded query
vector ¢* is not completely in the subspace spanned by the relevant docu-
ments in the residual collection, however the expanded query vector is closest
in angle to the relevant subspace in the residual collection compared to all
document vectors in the residual collection.

Twith the Adi, Cici, Cranfield and Medline data sets [9] (see also [2]) and the Financial
Times and Congressional Records from the TREC data sets [1].

4.1.1 Ranking documents

When using relevance feedback only the document vectors in the residual
collection A, ¢ (19), where the ¢ removed document vectors correspond to
the ¢ documents used for the feedback cycle, will be scored for relevance.

In order to mimic the optimal scoring (12) we have sorted the documents
in relevance order using any of the measures

”szajHZ’ (20)
llasll2
lla; — Peay |2
lla;ll2
respectively, where a; is in the residual collection A,_;.
In the vector model (2) documents are scored measuring angles between
the query vector ¢ and each document vector in A. It is natural to score

documents measuring angles between the expanded query vectors and each
document vector in the residual collection.

(¢9)"q,
llajll2

. i=12,... (21)

(22)

N\T
(q ) a‘]" (23)
llas2
(qR()CHIO)Taj
lla;ll2
respectively. The vectors (22) — (24) are sorted in descending order.

Note that the three scorings (22) — (24) in general are not equal.

In average, performance is better for all three rankings (22) — (24) using
the expanded query vectors compared to the vector model (2).

In figure 1 forming the expanded query vector ¢ we are able to capture all
four remaining relevant documents only by considering in total 30 irrelevant
documents (compared to the vector model where we had to consider in total
107 irrelevant documents).

The scorings (22) — (24) does not improve average precision for all queries
compared to the vector model. Sometimes it is better to use the original

. i=1,2... . n—t (24)

20




query vector when scoring documents for relevance. In figure 4 the scor-
ings (22) — (24) are compared with the vector model for documents in the
residual collection. A few relationships can be noticed. Queries loosing in
performance for ¢ also looses in grocmo. Queries where performance im-
provement is large for ¢ is also large for grocuo-

Retrieval performances for the scorings (20) — (24) and the vector model (2)
are compared in figure 5. In average, performance is better for all three ex-
panded query vectors compared to the vector model. Precision is much better
but also a small improvement in recall can be seen. The expanded query ¢*
gives largest improvement while the ¢~ score documents rather similar to the
original vector model. With other tuning constants for the Rochio queries or
the expanded query vector ¢~ performance might improve. The approximate
optimal scoring (20) using the relevant retrieved subspace (14) is also good,
while the approximated scoring (21) using the complement (15) is not very
effective.

4.2 Explicit restart

Explicit restart means replacing the starting vector ¢ with an improved start-
ing vector and restart the bidiagonalization procedure with this new vector®.
In eigenvalue computations explicit restart is often used to limit the sizes
of the basis set. In the context of IR we want to restart the bidiagonaliza-
tion procedure with a vector that better captures the connections between
the groups of relevant documents. The basic idea is to start the bidiagonal-
ization procedure with the original query vector ¢ and rank the documents
using any of the rankings in section 2. Based on relevance feedback informa-
tion from the user, new improved starting vectors for the bidiagonalization
procedure are constructed.

4.2.1 Simple explicit restart

Figure 6 is a recall-precision graph. We constructed expanded query vec-
tors ¢, ¢~ and grocmo from section 4.1 using relevance feedback. For each
query the user judged the 10 top ranked documents from the expanded query
measure (6) (using the original query vector ¢ as starting vector in the bidi-
agonalizing procedure). The bidiagonalization procedures were restarted and

8The bidiagonalization procedure is further described in [6]. A summary can be found
in appendix A

the documents in the residual collections were ranked using the subspace pro-
jection measure (4). Retrieval performances for the different starting vectors
are compared in the figure. In general performance is improved by explicit
restart.

Even though we measure performance only for the documents in the resid-
ual collection, it is important to keep the relevant retrieved documents in the
term document matrix when bidiagonalizing. Otherwise performance will de-
crease’. Quite often retrieval performance is further increased by removing
the irrelevant retrieved documents from the term document matrix before
bidiagonalizing.

4.2.2 Modifying the bidiagonalization procedure

The retrieval performance can be further increased by using the feedback in-
formation also when bidiagonalizing. Assume the subspace € span directions
we want to avoid. Starting the bidiagonalizing procedure with any vector or-
thogonal to £ will start a search orthogonal to the unwanted directions, but
it is not enough to guarantee the orthogonality between the basis vectors in
Qr+1 (3) and €. Technically it is easy to rewrite the BIDIAG procedure to in-
crementally compute vectors ¢; € @, orthogonal to £, and thus completely
avoid all directions in the subspace while bidagonalizing (further details are
in appendix B).

Start with ¢, = ﬁ, Bi=0
for k=1,2,...r do

arpr = AV — Brpr—1

y = Apr — arqi

Brs1Ghi1 =y — Pey
end.

The vectors spanning £ need to be chosen with some care. In order not to
increment the computational load too much the number of vectors spanning
& needs to be rather moderate. There must be document vectors in A that
are not completely in £ otherwise the procedure will vanish.

9In order to keep the effect of relevant documents resembling each other in the bidiag-
onalization procedure it seems to be important that all the relevant document vectors are
kept otherwise the resembling effect will be to weak.
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& could for example be chosen to span irrelevant retrieved directions,
& =€ (15). Another option is to let £ be spanned by one vector containing all
terms that are in the irrelevant retrieved documents but not in the retrieved
relevant. This procedure could also be useful for boolean queries.

4.3 Query subspaces and the union of Krylov sub-
spaces

In this section we will consider query subspaces instead of query vectors.
Instead of using the Golub Kahan bidiagonalizing procedure (3) we will
use the band Lanczos procedure starting with the query subspace (or sub-
spaces spanned by document vectors corresponding to relevant retrieved doc-
uments).

4.3.1 Query subspace

One way to broaden the query is to use query expansion, where more terms
are added to the query vector to make it broader. Another way to broaden
the query is to let the terms in the query span a subspace Q.

Assume the query vector ¢ consist of s terms, then we let the query
subspace Q be spanned by s m X 1 vectors, each vector with one nonzero
element corresponding to a term in the query.

Any vector that can be expressed as a linear combination of terms in the
query belongs to the query subspace Q, in particular the query vector ¢ € Q.

As for the query vector (9), the query subspace can be divided into
three orthogonal subspaces, Q;, Qs and Qs where Q) is in the relevant
subspace (7), Qs is in the range of A, A but not in the relevant subspace and
Q3 is orthogonal to A.

The query subspace can be projected onto the subspace spanned by rele-
vant retrieved document vectors (14) @ = P Q or orthogonal to the com-
plement (15) @ = Q — P;Q

We may score the documents for relevancy measuring the angles between
the query subspace and each vector in the term document matrix. The
cosines of the angle between the query subspace and each document vector
in A

Poas 2
are sorted in decreasing order, and the documents corresponding to the larger
cosines are ranked high.

We may also mimic the scorings (22) (23) from section 4.1.1 and score the
documents according to the closeness in angles to the projected subspaces
respectively

[Po+aj|2

and
Po-ajlla-

4.3.2 The band Lanczos algorithm

The band Lanczos algorithm [18] (see also [3]) is based on block Krylov
subspaces induced by a square matrix B and a block of s linearly independent
starting vectors

Y1,Y2,- -, Ys- (25)
The band Lanczos algorithm constructs orthonormal vectors that form a
basis for the subspace spanned by the first linearly independent vectors of
the block Krylov sequence

Y1, Y2, - - '7y87By17By27 e '7By37B2y17B2y2- ..
If we apply the band Lanczos algorithm to the matrix
0 A
T
where A is the m x n term document matrix, with the starting block
_ | 42 .- Gs
@ = [0 0o ... 0}
with orthonormal columns that is a basis of the subspace spanned by
Y1,Y2, ---,Ys, it reduces to the BANDL procedure below.
Define hj; = 0 when ¢ < 1. The following procedure compute the basis

matrices @y and P, and the (r +s) x r lower (s+ 1) lower diagonal matrix
H,,,, satisfying

Hyisr = Q’#rsAPT' (27)




ALGORITHM BANDL(A4, Qs,7)
Start with s orthonormal vectors forming Qs = [q1 q ... qs].
for j=1tor do
hyip; = ATq; —pjshjj s — Py srthyjser— - —DPjshjjs
w = Ap; — ¢ih;
fori=j+1toj+s—1do
hij = ¢} wiw = w — gihy;
end
hj+s,ij+s =w
end

With H, 4, = [hij], the matrix H,,, is of size r + s x r and lower (s+1)-
diagonal. In the first part, where computing p;, previously computed subdi-
agonal elements or H are used while h;; is computed to give p; unit norm.
In the second part, where computing g; ., the subdiagonal elements of H are
computed as Gram Schmidt orthogonalization coefficients.

Define Qs = [@1 @2 --. @r4s) and P, = [p1 po ... p;]. In exact
arithmetic we will have Q7 ,Q,1s = I and PT'P, = I. After r + s iterations
the basic relations

ATQ, P.H"
APr Qr+sH7‘+s,r

will hold. The columns of @,,s will be an orthonormal basis of the block
Krylov subspace K, (AAT, Q,) in the document space, spanned by the start-
ing block @, and the columns of A.

The columns of P, similarly span a basis of the block Krylov subspace
K.(ATA, ATQ,) in the term space spanned by the rows of A. The singular
values of H,,, will be approximations to those of A.

As for the original bidiagonalizing procedure from section 2 it is easy to
rewrite the BANDL procedure to incrementally compute vectors ¢; € Qs
orthogonal to a subspace & (section 4.2.2)

4.3.3 The band Lanczos procedure for IR

The BANDL applied to the term document matrix A gives us an opportunity
to start with a block of (orthonormal) vectors spanning relevant information.
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Let columns in the m x s matrix Qs be orthonormal forming a starting block.
We apply the BANDL algorithm to the term document matrix A starting at
Qs to receive the two basis matrices @Q,;s and P, and the r + s x r lower
(s+1)-diagonal matrix H, s,. We let W form an orthonormal basis for the
reached subspace spanned by the column vectors in AP,.

As for the bidiagonalization procedure (3) the reached subspace W, the
basis matrices Q,5, P, and the H,,, matrix are used to score documents
in relevance order to the query. A few examples were presented in section 2.

e In the block subspace projection measure the documents are sorted ac-
cording to their closeness measured in angles to the block Krylov sub-
space K,11(AAT,Q;). The closer the document is, the more relevant.

¢ =@l j=1...n. (28)

Sorting the documents according to @, in general give a better scoring
than sorting the documents according to @, 1 in the subspace projec-
tion measure (4) from section 2.

For the block expanded query measure a projected query vector § =
WW™"q is constructed using the reached subspace. The documents are
sorted using the cosine scoring between ¢ and each document vector in
A. o
_Tq
C]' = ,
llasl|

The larger the cosine value the more relevant document.

j=1...n (29)

A few relations should be observed:

If we let the s vectors in the starting block @, span be the relevant re-
trieved subspace R (14) and stop the iterations in the BANDL procedure when
r = s, then the block subspace projection measure (28) is the approximate
optimal scoring (20) and the block cosine scoring (29) is the cosine of the
angle between the expanded query ¢+ from section 4.1 and each document
vector (22).

If the starting block only consists of the query vector ¢ then the BANDL
procedure reduces to the BIDIAG procedure in section 2, otherwise letting
Qs = [q1 Q@ ... qs] and using theorem in section 1.3 column vectors in
Qrys and P, from the BANDL procedure form the union of the s Krylov
subspaces K,(AA7, g;) and K,(AY A, A%q;), j =1...s respectively.
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Let the column vectors in @, span the relevant retrieved subspace R (14)
The Krylov subspace K, (AA”, ¢T) received when using the bidiagonalization
procedure from section 2 with A and the expanded starting vector ¢* (16) is
a subspace of the block Krylov sequence K, ;(AAT, Q;) received when using
the BANDL process with A and the relevant retrieved directions spanned by
Qs, thus we will have Q,;1 C Q,s, where @, is the basis matrix (3) from
the BIDIAG procedure and the @, is the basis matrix (27) from the BANDL
procedure.

Used properly the BANDL procedure performs very well. Figure 7 is a
recall-precision graph for the block expanded query measure.

4.4 Starting at scoring vector

Sometimes we start the bidiagonalization procedure with a scoring vector p, a
weighted combination of documents. Then it is natural to reduce the matrix
A to upper bidiagonal form by computing orthonormal bases for the Krylov
subspaces K, (AT A,p) and K, 1(AAT, Ap), using the bidiagonalization pro-
cedure

pruy = Apg — Opup_
Oki1perr = Alug — prpy

with £ = 1,2...7, pr = p/||p|l2 and 0; = 0. If we start the iteration with
p = A”q this bidiagonalizing procedure can be derived from the BIDIAG
procedure discussed in section 2. The relationships between the bidiagonal-
izations are discussed by Paige and Saunders [16] and also by Golub [11].

5 Numerical experiments

We present our experiments using the Cranfield collection, however the re-
sults are general and valid for other sets as well'®. The overall retrieval per-
formance varies between the sets. For the Medline set retrieval performance
is very good while performance for the FT set is more moderate.

10Gimilar experiments were performed using the Adi, Cici, Cranfield and Medline data
sets [9] (see also [2]) and the Financial Times and Congressional Records from the TREC
data sets [1].

Cranfield is a small collection (1400 documents) with a large number of
queries (225 queries). The data set consist of document abstracts in aerody-
mancis originally used for tests at the Cranfield Institute of Technology in
Bedford, England.

We choose to report our experiments with a sequence of figures with
appropriate captions.

Preparing the term document matrix We have used a simple term
frequency weighting to construct the term document matrix

0 if term ¢ not present in document j
A= [aij] - { t;; if term ¢ is present in document j. (30)
where ;; is the number of times term ¢ appears in document j. We use
one row normalization followed by one column normalization in order to
deemphasize common terms and long documents'!. All rows corresponding
to terms appearing in more than 10% of the documents were removed. For a
further discussion about weightings for the Krylov subspace method please
see [5].

In experiments where relevance feedback is used one initial run is made
and the user is shown the top 10 documents. These documents are then used
for relevance feedback purposes. Queries where no relevant documents were
found among the top 10 or all relevant documents were among the top 10
were removed.

For evaluation measures the residual collection method is used. The eval-
uation of the results compares only to the residual collection A, 1y, that is
all documents except the ten previously shown to the user are ranked and
evaluated. The residual collection method provides an unbiased and realistic
evaluation of feedback. However, because highly ranked relevant documents
have been removed from the residual collection, there is a risk that the recall-
precision figures will be lower than those for standard evaluation methods,
and cannot directly be compared.

Relevance is always judged by comparing the results of an algorithm to
relevance judgments provided with the test sets. These have been compiled
by a panel of human experts who have considered at least all those documents
marked as relevant.

1The column normalization will destroy the previous row normalization but not com-
pletely. Some deemphasizing effect of common terms still remain.
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cos(query vector, Relevant subspace).

) cos(not retrieved document,Relevant subspace).
cos(retrieved document, Relevant subspace).
In total 107 irrelevant documents are retrieved.
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m  cos(expanded query vector, Relevant subspace (residual collection)). H
> cos(not retrieved document, Relevant subspace (residual collection)).
® cos(retreived document, Relevant subspace (residual collection)).
In total 30 irrelevant documents are retrieved.

10 15 30
document

Figure 1: Upper plot. Cosines of the angles between the relevant subspace (7)
and cach document vector and the query vector for query no. 5 from the Cranfield
set (only the 50 largest cosines are shown). In order to retrieve all five relevant
documents using the vector model(2) 107 irrelevant documents were returned.
Lower plot. Cosines of the angles between the relevant subspaces in the residual
collection (19) and each document vector and the expanded query vector g™ (16) for
query no. 5 from the Cranfield set. (Only the 50 largest are shown). The expanded
query vector g+ was formed using the ten best scored documents from the vector
model (2). In order to retrieve all four relevant documents in the residual collection
measuring the angles between the expanded query and each document vector in the
residual collection 30 irrclevant documents were returned. In each plot the cosine
for the query vector is marked with a black square. The cosines corresponding to
the documents are marked with circles and the documents retrieved in order to
capture all the relevant documents are marked with filled circles. Query no. 5 has
five relevant documents. Using the vector model one relevant document is scored
among the top 10. The query is typical in the sense that in order to retrieve
all the relevant documents using the vector model many irrelevant documents are
retrieved (making precision rather moderate)
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Figure 2: Left. Mean average precision for the Cranfield queries when the
vector model (2) is used. Each bar is mean average precision when 0,1,2. ..
irrelevant documents has smaller angles to its relevant subspace (7) than
the query vector. The breadth of each bar is proportional to the number
of queries used to compute the mean average precisions. Right. Average
precision for the 225 Cranfield queries (the stars) when the vector model
scoring (2) is used. The queries are sorted according to their closeness to
the relevant subspace (7) (the black line). In each plot In general average
precisions for query vectors orthogonal or with a small part in their relevant
subspaces are very moderate. Average precisions for queries closer in angles
to their relevant subspaces tend to be better.
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Figure 3: Mean average precisions for the Cranfield queries when the block query

subspace projection measure (28) is used to score the documents. The queries
are sorted according to first principal angle between the subspace R spanned Figure 4: Differences between average precisions for the ranking algorithms
by relevant retrieved document vectors (14) and the subspace spanned by (22) (23) (24) using the expanded query vectors from section 4.1 and the

relevant not retrieved document vectors for each query. Some correlation vector model (2). Plots from top to bottom are ¢*, ¢~ and grocmio. In all
plots the queries are sorted according to the differences in the top plot. Only

documents from the residual collection are used when computing average
precisions.

difference

seems to appear.
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Figure 5: Recall-precision graph for the Cranfield collection comparing the
rankings presented in section 4.1.1. The approximate optimal scoring using
the relevant retrieved subspace (20) correspond to the upper solid and the
approximate optimal scoring using the complement (21) correspond to the
lower solid. For all test collections we have tried the ¢* ranking (22) and the
approximate optimal scoring (20) are the best. Performance of the ¢~ (23)
and grocmo (24) scorings depend on what tuning constants are used, but
performance is rarely above the approximate optimal and the ¢™ ranking. All
rankings except the approximate optimal scoring (21) give better retrieval
performance than the vector model (2).
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Figure 6: Recall-precision graph for the Cranfield collection. The bidiagonal-
izing procedure was restarted with the expanded vectors ¢, ¢~ and grocuio
from section 4.1 respectively and the subspace projection measure (4) was
used for ranking the documents in the residual collection. For all test col-
lections we have tried explicit restart improves the retrieval performance
compared to no explicit restart.
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Figure 7: Recall-precision graph for the Cranfield collection. The block ex-
panded query measure (29) is compared with the vector model (2). For all
test collections we have tried any of the block measures, block expanded
query measure (29) and block subspace projection measure (28), are the best
rankings compared to all the other rankings presented in this article.
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Figure 8: Upper plot. Differences in average precisions for block expanded
query measure (29) and the vector model (2). Lower plot Differences in
average precisions for block cosine measure (29) and the ¢* ranking (22)
from section 4.1.1. The queries are sorted as in figure (4).
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A The Golub-Kahan bidiagonalization pro- is the projection of A into these Krylov subspaces and the singular values of
cedure B,H:,. will be approximatior}s of those of A.

It is well known [8] that if the query vector ¢ has large components along
some singular vectors that do not correspond to the largest singular values of
the term document matrix A then the first few basis vectors in Q41 (31) will
contain large components along these singular vectors. If the components in
q are not large enough or if the components correspond to the largest singular
values then the first basis vectors in @,;1 will be dominated by components
from the singular vectors corresponding to the largest singular values.

The Golub-Kahan bidiagonalization procedure is a variant of the Lanczos
tridiagonalization algorithm and it is widely used in the numerical linear
algebra community.

We start the Golub Kahan algorithm with the normalized query vector
¢ = ¢/||g|| and use the term document matrix A, and computes two or-
thonormal bases P and @, adding one column for each step k, see [11] in
section 9.3.3.

ALOGRITHM BIDIAG(A,q,r):
Start with 1 = q/||ql|, B =0
for k. =1,2,...7r do
QxPr = ATQk — BrPr—1
Brr1Qrr1 = Apr — gy
end.

The scalars oy and S are chosen to normalize the corresponding vectors.
Define

Qr = [(11 qQ .. l1r+1]: (31)
Poo=[p o b,

[e%] -‘
B s
Br+1,r .

Qr

,3r+1
After r steps k we have the basic recursion
A'Q, = P.BY

AP, = Qr+1Br+1,r-

The columns of @, will be an orthonormal basis of the Krylov subspace
Kr41(AAT q) and the columns of P, forms an orthonormal basis for the
Krylov subspace K, (A" 4, A”q). The lower bidiagonal matrix By, = QY| AP,

39




B The-Golub Kahan bidiagonalization pro-
cedure modified

Assume the subspace £ span directions we want to avoid and let the columns
of F span the subspace €.

Using the matrix (I — EE"T)A instead of A in the BIDIAG procedure
together with a query vector orthogonal to C we get

; _ _(U-EET) _
Start with ¢, = m, B =0
for k=1,2,...r do
arpr = AT(I — EE")q, — Bepr—1
Benaern = (I — EET) Apy, — ongy,
end.

Noting that ETq, = 0 for all k, the first row in the loop becomes
orpr = A" qx — Bupr-1.

Since we have EET Ap;, = EE" (Apy, — axqy) the seco nd row in the loop is
equal to the two rows

Yy = Apr— gk
Brs1@er1 = y—EE"y.

Thus it is enough to keep the ¢ vectors orthogonal to £. The BiDIAG
algorithm can be rewritten to

Start with ¢ = %, Bi=0
for k. =1,2,...7r do

oupk = AT — Bibr—1

Yy = Apr — kG

Bergr =y — EE"y
end.




