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Nonlinear Observability and Identifiability:
General Theory and a Case Study of a Kinetic Model for S. cerevisiae
Milena Anguelova

Department of Mathematics
School of Mathematical Sciences
Chalmers University of Technology and Göteborg University

Abstract

Observability is a structural property of a control system defined as the
possibility to deduce the state of the system from observing its input-output
behaviour.

The first part of this report presents a review of two different methods
to test the observability of nonlinear control systems found in literature.
The differential geometric and algebraic approaches have been applied to
different classes of control systems. Both methods lead to the so-called rank
test where the observability of a control system is determined by calculating
the dimension of the space spanned by gradients of the Lie-derivatives of its
output functions. It has been shown previously that for rational systems with
n state-variables, only the first n − 1 Lie-derivatives have to be considered
in the rank test. In this work, we show that this result applies for a broader
class of analytic systems.

The rank test can be used to determine parameter identifiability which is
a special case of the observability problem. A case study is presented in which
the parameter identifiability of a previously published kinetic model for the
metabolism of S. cerevisiae (baker’s yeast) has been analysed. The results
show that some of the model parameters cannot be identified from any set
of experimental data. The general features of kinetic models of metabolism
are examined and shown to allow a simplified identifiability analysis.

Keywords: Nonlinear observability, identifiability, observability rank
condition, nonlinear systems, metabolic model, kinetic model, metabolism,
glycolysis, Saccharomyces cerevisiae
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Chapter 1

Introduction

1.1 Motivation for studying observability and

identifiability

Consider a culture of yeast cells grown in a reactor and the chemical reactions
that take place in their metabolism. Thus far, our ability to observe what
occurs inside a single cell as far as metabolic fluxes are concerned is very
limited. It is therefore not unnatural to consider the cell as a box where we
see what goes in (nutrients) and what comes out (secreted products), but
not what happens inside.

THE CELLnutrients secreted
products

There is, however, extensive knowledge of the chemistry and biology that
takes place within the cell, and based on that, models are made for the
transformation that occurs inside the box. In preparation for a mathematical
description of the situation, we transform the above picture as follows:

Unknown state
C

u y
Can be

controlled
Can be

observed

1



We will now label the part that we can control - for example, the amount
of food given to the cells - u and call it “input”, or ”control variable”. The
part that can be observed - e.g. the different secreted products the fluxes of
which can be measured - is denoted by y and called “output”. What happens
inside the cell is accounted for in terms of changes in the concentrations of the
different chemical species present with respect to time; these concentrations
are referred to as “state-variables” and denoted by c. We also have a num-
ber of parameters that come with the model used for cellular metabolism,
denoted by p. The following “state-space” model can now be formulated:




ṗ = 0
ċ = f(c, p, u)
y = g(c, p)

.

We assume a hypothetical setting where we start feeding an input u to the
cell at time zero when the system is at an unknown state c and we observe
the cell’s behaviour in terms of the outputs produced. It is assumed that u
is a function of time that we can choose, and that the values of y and all its
time-derivatives at the starting point (time zero) can be measured. ċ denotes
the time-derivative of the state-variables.

It is often the case that the model parameters, besides being numerous,
have, many of them, unknown values. The only means of estimating them is
from observing the input-output behaviour of the system. The property of
identifiability is the possibility to define the values of the model parameters
uniquely in terms of known quantities, that is, inputs, outputs and their
time-derivatives.

1.2 Problem statement

A generalisation of identifiability is the property of observability. Consider
the following ”control system” which generalises the example above:

Σ

{
ẋ = f(x, u)
y = g(x, u)

.

In this system, x are the state-variables, the inputs are denoted by u and
the outputs by y. Note that parameters can be considered state-variables
with time-derivative zero. We have no knowledge of the initial conditions for
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the state-variables (or, respectively, of the parameter values). It is assumed
that we have a perfect measurement of the outputs so that they are known
as functions of time in some interval and all their time-derivatives at time
zero can be calculated. The observability problem consists of investigating
whether there exist relations binding the state-variables to the inputs, out-
puts and their time-derivatives and thus locally defining them uniquely in
terms of controllable/measurable quantities without the need for knowing
the initial conditions. If no such relations exist, the initial state of the sys-
tem cannot be deduced from observing its input-output behaviour. In the
biological setting above, for instance, this can mean that there are infinitely
many parameter sets that produce exactly the same output for every input
and thus the model parameters cannot be estimated from any experimental
measurements.

Before we define the problem of observability, consider the following ex-
ample of a control system taken from [20]:

ẋ1 = x2

x1

ẋ2 = x3

x2

ẋ3 = x1θ − u
y = x1 .

In this system, x1, x2 and x3 are state-variables, θ is a parameter, there is a
single input u and a single output y. In the following we use capital letters
to denote initial values of a function and its derivatives, i.e. u(r)(0) = U (r),
y(r)(0) = Y (r) for r ≥ 0. By computing time-derivatives of the output at
time zero, we obtain the equations:

Y (1) = ẋ1 = x2

x1

Y (2) = ẍ1 = ẋ2x1−ẋ1x2

x2
1

=
x3
x2

x1−x2
x1

x2

x2
1

= x3

x1x2
− x2

2

x3
1

Y (3) = x
(3)
1 = ẋ3x1x2−x3(ẋ1x2+x1ẋ2)

x2
1x2

2
− 2x2ẋ2x3

1−x2
23x2

1ẋ1

x6
1

=

=
(x1θ−U(0))x1x2−x3(

x2
x1

x2+x1
x3
x2

)

x2
1x2

2
− 2x2

x3
x2

x3
1−x2

23x2
1

x2
x1

x6
1

=

= θ
x2

− U(0)

x1x2
− x2

3

x1x3
2
− 3x3

x3
1

+
3x3

2

x5
1

.

For this simple example, it is actually possible to explicitly calculate the
initial values of the state-variables and the parameters in terms of the inputs

3



and outputs and their time-derivatives at time zero as shown in [20]:

x1 = Y (0)

x2 = Y (0)Y (1)

x3 = Y (0)Y (1)((Y (1))2 + Y (0)Y (2))

θ = 1
Y (0)

((
(Y (1))2 + Y (0)Y (2)

)2
+ Y (0)Y (1)

(
3Y (1)Y (2) + Y (0)Y (3)

) − U (0)
)

.

A given input-output behaviour thus corresponds to a unique state of the
system. In general, we are not going to demand a globally unique state. It
is enough that the equations have a finite number of solutions each defining
a locally unique state. The observability problem concerns the existence of
such relations and not the explicit calculation of the state variables from the
equations. Depending on the theoretical approach, different definitions of
observability can be given, as shown in this report.

1.3 Organisation of the report

In this work, a method for investigating the observability of certain classes
of nonlinear control systems is described by using different theoretical points
of view, each of which adds to our understanding of the problem.

Chapters 2 and 3 present a survey of the theory on nonlinear observability
available in literature. Observability has been dealt with in both a differential
geometrical interpretation, and an algebraical one. The two approaches are
introduced and the results in terms of obtaining an observability test are
described.

Chapter 4 attempts to answer certain questions that arise during the
literature surveys. If the derived observability test is to be applied in practice,
a bound must be introduced for the number of time-derivatives of the output
that have to be considered in obtaining equations for the variables. Such an
upper bound is given for rational systems in Chapter 3. In Chapter 4 this
bound is shown to apply for analytic systems.

Chapter 5 describes the identifiability problem as a special case of ob-
servability.

In Chapter 6 we apply the theory discussed in the preceding chapters
to a case study of a kinetic model for the metabolism of Saccharomyces
cerevisiae, also known as bakers yeast. We use an algorithm by Alexandre
Sedoglavic [20] and its implementation in Maple which performs an observ-
ability/identifiability test of rational models. We obtain results for the iden-
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tifiability of the kinetic model and find the non-identifiable parameters. The
results are interpreted in terms of the biological structure of the model.
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Chapter 2

Literature survey
Part 1: The differential
geometric approach to
nonlinear observability

In this chapter we present the basics of the theory of nonlinear observability
in a differential-geometric approach that we have gathered from the works of
Hermann and Krener [7], Krener [11], Isidori [8], Sontag [24] and Sussmann
[26].

2.1 Definitions

Throughout this chapter we will consider control systems affine in the input
variables which is a valid description of many real-world systems. They have
the form:

Σ

{
ẋ = f(x, u) = h0(x) + h(x)u
y = g(x)

, (2.1)

where u denotes the input, x the state variables and y the outputs (measure-
ments). We assume that x ∈ M where M is an open subset of R

n, u ∈ R
k,

y ∈ R
m and h0 and the k columns of h (denoted by hi for i = 1, . . . , k) are

analytic vector fields defined on M . We also have to assume that the sys-
tem is complete, that is, for every bounded measurable input u(t) and every
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x0 ∈ M there exists a solution to ẋ = f(x(t), u(t)) such that x(0) = x0 and
x(t) ∈M for all t ∈ R.

Here follow several definitions. Let U denote an open subset of M .

Definition 2.1 A pair of points x0 and x1 in M are called U-distinguishable
if there exists a measurable bounded input u(t) defined on the interval [0,T]
that generates solutions x0(t) and x1(t) of ẋ = f(x, u) satisfying xi(0) = xi

such that xi(t) ∈ U for all t ∈ [0, T ] and g(x0(t)) 6= g(x1(t)) for some
t ∈ [0, T ]. We denote by I(x0, U) all points x1 ∈ U that are not U-
distinguishable from x0.

Definition 2.2 The system Σ is observable at x0 ∈M if I(x0,M) = x0.

If a system is observable according to the above definition, it is still possible
that there is an arbitrarily large interval of time in which two points of
M cannot be distinguished form each other. Therefore a local concept is
introduced which guarantees that to distinguish between the points of an
open subset U of M , we do not have to go outside of it, which necessarily
sets a limit to the time interval as well.

Definition 2.3 The system Σ is locally observable at x0 ∈M if for every
open neighborhood U of x0, I(x0, U) = x0.

Clearly, local observability implies observability as we can set U in Defini-
tion 2.3 equal to M . On the other hand, since U can be chosen arbitrarily
small, local observability implies that we can distinguish between neighbor-
ing points instantaneously (since the trajectory is bound to be within U ,
setting a limit to the time interval).

Both the definitions above ensure that a point x0 ∈ M can be distin-
guished from every other point in M . For practical purposes though, it is
often enough to be able to distinguish between neighbours in M , which leads
us to the following two concepts:

Definition 2.4 The system Σ has the distinguishability property at
x0 ∈M if x0 has an open neighborhood V such that I(x0,M) ∩ V = x0.

In a system having this property, any point x0 can be distinguished from
neighbouring points but there could be arbitrarily large intervals of time
[0, T ] in which the points cannot be distinguished. In order to set a limit on
the time interval, a stronger concept is introduced:

8



Definition 2.5 The system Σ has the local distinguishability property
at x0 ∈ M if x0 has an open neighbourhood V such that for every open
neighbourhood U of x0, I(x0, U) ∩ V = x0.

Clearly, local observability implies local distinguishability as we can set V
equal to M . Thus, if a system does not have the local distinguishability
property at some x0, it is not locally observable at that point either.

It is the final property of local distinguishability that lends itself to a test.

2.2 The observability rank condition

This section describes how to determine if a system possesses the local dis-
tinguishability property by the so-called ”observability rank condition” as
introduced by Hermann and Krener [7].

Throughout this section, we will use the following simple example of a
control system: 


ẋ1 = 0
ẋ2 = u− x1x2

y = x1x2

.

For this system, h0(x1, x2) =

(
0

−x1x2

)
, h(x1, x2) =

(
0
1

)
and

g(x1, x2) = x1x2 (according to the notation introduced in the previous sec-
tion) with m = 1, k = 1, and n = 2.

Define the following Lie differentiation of a C∞ function φ on M by a
vector field v on M :

Lv(φ)(x) :=< dφ, v > .

Here <> denotes scalar product and dφ the gradient of φ.
Applying to our example system, note that h0(x1, x2) and h(x1, x2) are

vector fields on M and we can calculate the Lie derivative of g(x1, x2) along
them:

Lh0(g)(x1, x2) =< dg, h0 >= (x2 x1)

(
0

−x1x2

)
= −x2

1x2

and

Lh(g)(x1, x2) =< dg, h >= (x2 x1)

(
0
1

)
= x1 .
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The flow Φ(t, x) of a vector field v on M is by definition the solution of:{
∂
∂t

Φ(t, x) = v(Φ(t, x))
Φ(0, x) = x

.

Observe that we have the following equality:

Lv(φ)(x) =
d

dt

∣∣∣∣
t=0

(φ(Φ(t, x)) .

The Taylor series of φ(Φ(t, x)) with respect to t are called Lie series:

φ(Φ(t, x)) =
∞∑
l=0

tl

l!
Ll

v(φ)(x) .

Let us now link the local distinguishability property to these new concepts.
First of all, as observed in [26], if two points x0 and x1 in M are distinguish-
able by a bounded measurable input, then they must be distinguishable by
a piecewise constant input due to uniform convergence since the outputs de-
pend continuously on the inputs. For a constant input u, f(x, u) defines
a vector field on M and we can define the flow Φ(t, x) and the Lie series
expansion of gi(Φ(t, x)) for i = 1, . . . ,m. To see how this generalises to
piecewise-constant inputs, we follow [8] and consider the input such that for
i = 1, ..., k, {

ui(t) = u1
i , t ∈ [0, t1)

ui(t) = ul
i, t ∈ [tl − 1, tl), l ≥ 2

,

where ul
i ∈ R. Define the vector fields

θl = h0 + hul

and denote their corresponding flows by Φl
t. Under this input, the state

reached at time tl starting from x0 at t = 0 can be expressed as

x(tl) = Φl
tl
◦ . . . ◦ Φ1

t1
(x0) .

The corresponding output becomes

yi(tl) = gi

(
Φl

tl
◦ . . . ◦ Φ1

t1
(x0)

)
.

The time-derivative at zero of the output gi can then be calculated and we
can define

Lfgi = Lθ1 . . . Lθl
gi .

10



We are now able to define the Lie series expansion of gi(Φ(t, x)) for piecewise-
constant inputs. For each such u, the Lie series coefficients define gi(Φ(t, x))
uniquely due to the system being analytic. Thus, if two neighboring points
x0 and x1 are U −distinguishable instantaneously (which is the requirement
for local distinguishability), then there exists a piecewise-constant input u
such that the sets of Lie series coefficients of gi(Φ(t, x0)) and gi(Φ(t, x1))
differ for some i. Consider now the linear map from M to the space spanned
by the functions Lk

f (gi) at x0 for k ≥ 0, i = 1 : m, for all vector fields f(x, u)
defined by piecewise-constant inputs u. Intuitively, the system Σ has the
local distinguishability property if for every x0 ∈ M there exists an open
neighborhood V of x0 such that this map is 1 : 1. Let us formally describe
the ”observation” space spanned by the Lk

fgi which will be denoted by G. It
can be shown ([8], [24]) that

G = spanR{Lhi1Lhi2 ...Lhir (gi) : r ≥ 0, ij = 0, . . . , k, i = 1, ...,m} .

Since we are interested in the Jacobian of the 1 : 1 map mentioned above,
the space spanned by the gradients of the elements of G is introduced and
denoted by dG:

dG = spanRx{dφ : φ ∈ G} ,

where Rx denotes the field of meromorphic functions on M .
It is the dimension of dG which determines the local distinguishability

property. For each x ∈M , let dG(x) be the subspace of the cotangent space
at x obtained by evaluating the elements of dG at x. The rank of dG(x) is
constant in M except at certain singular points, where the rank is smaller
(this property is due to the system being analytic, see for example [11] or
Chapter 3 in [8]). Then dimRxdG is the generic or maximal rank of dG(x),
that is, dimRxdG = maxx∈M(dimRdG(x)).

We can now formulate the so-called ”observability rank condition” intro-
duced by Hermann and Krener [7]:

Theorem 2.1 The system Σ has the local distinguishability property
for all x in an open dense set of M if and only if dimRxdG = n.

Let us apply this test to the example system. We observe by inspection
that the space G for this system is spanned by functions of the forms xk

1 and
xk

1x2 (the first two Lie derivatives were calculated above). Thus, the space
dG is spanned by one-forms of the type (kxk−1

1 0) and (kxk−1
1 x2 xk

1).

11



Therefore we conclude that this example system has the local distinguisha-
bility property almost everywhere except on the line x1 = 0.

Consider another example:




ẋ1 = u− x1

ẋ2 = u− x2

y = x1 + x2

.

For this system, h0(x1, x2) =

( −x1

−x2

)
, h(x1, x2) =

(
1
1

)
and

g(x1, x2) = x1 + x2 (according to the previously used notation). The first
two Lie derivatives are

Lh0(g)(x1, x2) =< dg, h0 >= (1 1)

( −x1

−x2

)
= −x1 − x2

and

Lh(g)(x1, x2) =< dg, h >= (1 1)

(
1
1

)
= 2 .

As can be deduced by inspection, the space G is now spanned by constant
functions and the function x1 + x2. Thus, the space dG is spanned by one-
forms of the type (1 1) and (0 0). Clearly, this space is of dimension
1, which means that the system does not have the local distinguishability
property anywhere.

2.3 From piecewise-constant to differentiable

inputs - a different definition of observa-

tion space

2.3.1. In the previous section, the observation space was defined in terms
of piecewise-constant inputs to be:

G = spanR{Lhi1Lhi2 ...Lhir (gi) : r ≥ 0, ij = 0, . . . , k, i = 1, ...,m} .

In this section it is shown that the observation space can be defined
equally well in terms of analytic inputs. We follow the works of Sontag [24]
and Krener [11].

12



A time-dependent vector field v(t, x) defines a time-dependent flow in a
similar way as in the previous section:

{
∂
∂t

Φ(t, x) = v(t,Φ(t, x))
Φ(0, x) = x

.

Let Φu(t, x) denote the time-dependent flow corresponding to the time-dependent
vector field f(x, u(t)), where we now assume that we have a single input u
which is an analytic function of time (the results in this section can be gen-
eralised to apply for vector-valued inputs). Let the initial values of u and its
derivatives be u(r)(0) = U (r) for r ≥ 0 with U (r) ∈ R. For any non-negative
integer l and any U = (U (0), ..., U (l−1)) ∈ R

l, define the functions

ψrm+i(x, U) =
dr

dtr

∣∣∣∣
t=0

gi(Φu(t, x))

for 1 ≤ i ≤ m, 0 ≤ r ≤ l − 1. (Observe that the result of this formula
is actually the Lie derivation defined earlier, where extra terms appear due
to the time dependence of the input. In fact, ψrm+i(x, U) = Lr

fgi where we

define Lf =
∑n

j=1 fj
∂

∂xj
+

∑
l U

(l+1) ∂
∂u

.) Applying repeatedly the chain rule,

we see that the functions ψi can be expressed as polynomials in U (0), ..., U (l−1)

with coefficients that are functions of x (Sontag [24]).
As in Section 2.2, we can again define the Taylor series of g(Φu(t, x)) with

respect to t:

gi(Φu(t, x)) =
∞∑

r=0

ψrm+i(x, U)
tr

r!
.

Similarly to Section 2.2 where we considered the space spanned by the
coefficients of the Lie series for gi(Φu(t, x)), we now construct the space
spanned by the ψj:

Ĝ = spanR{ψlm+i(x, U) : U ∈ R
l, l ≥ 0, i = 1, . . . ,m} .

Wang and Sontag [30] proved that G = Ĝ. We can demonstrate this on the
observable example from Section 2.2:




ẋ1 = 0
ẋ2 = u− x1x2

y = x1x2

.
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The time-dependent flow for the time-dependent vector field

f(x, u) =

(
0

u− x1x2

)
becomes Φu(t, x) =

(
Φ1(t, x)
Φ2(t, x)

)
, where




∂
∂t

Φ1(t, x) = 0
∂
∂t

Φ2(t, x) = u− Φ1(t, x)Φ2(t, x)
Φ1,u(0, x) = x1

Φ2,u(0, x) = x2

.

The first few ψi:s can be calculated as follows:

ψ1(x, U) = g(Φu(t, x))|t=0 =
(
Φ1(t, x)Φ2(t, x)

)
|t=0

=

= Φ1(0, x)Φ2(0, x) = x1x2

ψ2(x, U) =
dg(Φu(t, x))

dt

∣∣∣∣
t=0

=
d
(
Φ1(t, x)Φ2(t, x)

)
dt

∣∣∣∣
t=0

=

=
(
Φ2(t, x)

dΦ1(t, x)

dt
+ Φ1(t, x)

dΦ2(t, x)

dt

)
|t=0

=

=
(
Φ2(t, x) · 0 + Φ1(t, x)(u− Φ1(t, x)Φ2(t, x))

)
|t=0

=

= Φ1(0, x)(U
(0) − Φ1(0, x)Φ2(0, x)) = x1(U

(0) − x1x2)

ψ3(x, U) =
d2g(Φu(t, x))

dt2

∣∣∣∣
t=0

=
d2

(
Φ1(t, x)Φ2(t, x)

)
dt2

∣∣∣∣
t=0

=

= x1(U
(1) − x1(U

(0) − x1x2)) .

We see now that if the U (i):s are free to vary over R, then the space Ĝ for
this example is spanned by the functions xk

1 and xk
1x2 for k ≥ 1, exactly as

the space G that we calculated in Section 2.2.

2.3.2. Consider now the ψj:s as formal polynomials in U0, U1, . . . with co-
efficients that are functions of x. Denote by K = R(U (0), U (1), ...) the field
obtained by adjoining the indeterminates U (0), U (1), ... to R. Recall that Rx

is the field of meromorphic functions on M . Define Kx = Rx(U
(0), U (1), ...) as

the field obtained by adjoining the indeterminates U (0), U (1), ... to Rx. Then
Kx is a vector space over K. Let FK be the subspace of Kx spanned by the
functions ψj over K, that is,

FK = spanK{ψj : j ≥ 1} .
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This is now a different definition of the ”observation space”. As before, we
are also interested in the space spanned by the differentials of the elements
of FK. The latter can be seen as polynomial functions of U (0), U (1), ... with
coefficients that are covector fields on M . For the example in 2.3.1, the
differentials of the ψj:s can be written:

dψ1 = (x2 x1)

dψ2 = (U (0) − 2x1x2 − x2
1) = (1 0)U (0) + (−2x1x2 − x2

1)

dψ3 = (U (1) − 2U (0)x1 + 3x2
1x2 x3

1) =

= (1 0)U (1) + (−2x1 0)U (0) + (3x2
1x2 x3

1) .

Recall from the previous section that the space dG for this example is spanned
by one-forms of the type (kxk−1

1 0) and (kxk−1
1 x2 xk

1). The covector
fields calculated above are clearly of the same form.

Now let
OK = spanKx{dψi : ψi ∈ FK} .

Sontag [24] proved the following result:

Theorem 2.2 For the analytic system (2.1)

dimRxdG = dimKxOK .

Thus, the property of local distinguishability can be determined from the
dimension of the space OK. The significance of this result is that u can now
be treated symbolically in calculating the rank. This observation is used in
Chapter 4 to derive an upper bound for the number of dψj that have to be
considered in the rank test.
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Chapter 3

Literature survey
Part 2: The algebraic point of
view: observability of rational
models

This chapter introduces the algebraic point of view in the treatment of the
observability problem according to the works of Diop and Fliess ([3],[4],[5]),
and Sedoglavic ([20]).

3.1 Example

Before we describe the algebraic setting for our general control problem,
consider the following simple example:


ẋ1 = x1x

2
2 + u

ẋ2 = x1

y = x1

.

We obtain two equations for the state-variables x1 and x2 from the output
function and its first Lie derivative where we use the notations u(r)(0) = U (r)

and y(r)(0) = Y (r), r ≥ 0 for the time derivatives at zero of the input and
output, respectively:

Y (0) = x1

Y (1) = Lfx1 = x1x
2
2 + U (0) ,

17



By simple algebraic manipulation of these equations, we can obtain the fol-
lowing polynomial equations for each of the variables with coefficients in
U = (U (0), U (1), . . .) and Y = (Y (0), Y (1), . . .):

x1 = Y (0)

Y (0)x2
2 + U (0) − Y (1) = 0

.

There are finitely many (two) solutions of these equations for a given set
of inputs and outputs (except on the lines x1 = 0 and x2 = 0). Each
one is locally unique and determines the state of the system completely by
information on the input and output values without the need for knowing
the initial conditions of x. (In the terminology of Chapter 2, this example
system has the local distinguishability property for all x except for those on
the lines x1 = 0 and x2 = 0).

This was a very simple example where we could derive (and solve) these
polynomial equations for the variables explicitly. In general, however, the
observability problem concerns the existence of such equations rather than
their explicit calculation. For control systems consisting of polynomial or
rational expressions, this problem can be formulated algebraically.

3.2 Algebraic setting

3.2.1. Consider now ”polynomial” control systems of the form:

Σ

{
ẋ = f(x, u)
y = g(x, u)

,

where u stands for the k input variables, f and g are for now vectors of n and
m polynomial functions, respectively (we will make the transition to rational
functions later).

The equations obtained by differentiating the output functions will now
contain polynomial expressions only. This allows us to make a new defini-
tion of observability based on the following rather intuitive idea - the state-
variable xi, i = 1, .., n is observable if there exists an algebraic relation that
binds xi to the inputs, outputs and a finite number of their time-derivatives.
If each xi is the solution of a polynomial equation in U and Y , then we know
that a given input-output map corresponds to a locally unique state of the
system. We will now prepare for a formal definition of algebraic observability.

18



Let R〈U, Y 〉 denote the field obtained by adjoining the indeterminates

U
(0)
i , U

(1)
i , ..., for i = 1, ..., k and Y

(0)
j , Y

(1)
j , ..., for j = 1, ...m to R (or any

other field of characteristic zero). Then we can make the following definition
of algebraic observability:

Definition 3.1 xi, i ∈ {1, ..., n} is algebraically observable if xi is algebraic
over the field R〈U, Y 〉. The system Σ is algebraically observable if the field
extension R〈U, Y 〉 ↪→ R〈U, Y 〉(x) is purely algebraic.

3.2.2. The transcendence degree of the field extension R〈U, Y 〉 ↪→ R〈U, Y 〉(x)
is now equal to the number of non-observable state-variables which should
be assumed known (i.e. should have known initial conditions) in order to
obtain an observable system. Our purpose is now to find a way to calculate
this transcendence degree. For this we will use the theory of derivations over
subfields as described in Jacobson ([9]) and Lang([12]).

Definition 3.2 A derivation D of a ring R is a linear map d : R → R such
that

D(a+ b) = D(a) +D(b)
D(ab) = aD(b) +D(a)b

for a, b ∈ R.

For example, the partial derivative ∂
∂Xi

, i = 1, ..., n, is a derivation of the
polynomial ring k[X1, ..., Xn] over a field k.

Consider now a field F of characteristic 0 and a finitely-generated field
extension E = F (x) = F (x1, ..., xk). Can D be extended to a derivation D∗

on E which coincides with D on F? Consider the ideal determined by (x)
in F [X] and denoted by I, that is, the set of polynomials in F [X] vanishing
on (x). If such a derivation D∗ exists and p(X) ∈ I, then the following must
hold:

0 = D(0) = D∗0 = D∗p(x) = pD(x) +
n∑

i=1

∂p

∂xi

D∗xi ,

where pD denotes the polynomial obtained by applying D to all the coeffi-
cients of p (which are elements of F ) and ∂p

∂xi
denotes the polynomial ∂p

∂Xi

evaluated at (x). If the above is true for a set of generators of the ideal I,
then it is satisfied by all polynomials in I. This is now a necessary condition
for extending the derivation D to E = F (x). It is also a sufficient condition
as shown in [9] and [12]:
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Theorem 3.1 Let D be a derivation of a field F . Let (x) = (x1, ..., xn)
be a finite family of elements in an extension of F . Let pα(X) be a set of
generators for the ideal determined by (x) in F [X]. Then, if (w) is any set
of elements of F (x) satisfying the equations

0 = pD(x) +
n∑

i=1

∂pα

∂xi

wi ,

there is one and only one derivation D∗ of F (x) coinciding with D on F and
such that D∗xi = wi.

Suppose now that the derivation D on F is the trivial derivation, that is,
Dx = 0 for all x ∈ F . Then, pD(x) = 0 in the equation above and thus,
0 =

∑n
i=1

∂pα

∂xi
wi. The wi:s are thus solutions of a homogeneous linear equation

system and there exists a non-trivial derivation D∗ of E = F (x) only if the
matrix formed by the ∂pα

∂xi
:s is not full-ranked.

Let DerFE denote the set of derivations of E = F (x) that are trivial on
F . DerFE forms a vector space over E if we define (bD)(x) = b(D(x)) for
b ∈ E. The dimension of this vector space can be calculated as follows (see
[9]):

Theorem 3.2 Let E = F (x1, ..., xn) and let X = {p1, ..., pm} be a finite
set of generators for the ideal of polynomials p in F [X1, ..., Xn] such that
p(x1, ..., xn) = 0 (this set exists due to Hilberts’s basis theorem). Then:

[DerFE : E] = n− rank(J(p1, ..., pm))

where J(p1, ..., pm) is the Jacobian matrix


∂p1

∂x1
... ∂p1

∂xn

... ... ...
∂pm

∂x1
... ∂pm

∂xn


 .

To see how the space DerFE is related to the transcendence degree of the
field extension F ↪→ E suppose that E = F (x) and x is algebraic over F
with minimal polynomial p. If D is a derivation of E which is trivial on F ,
then 0 = p′(x)Dx and thus Dx = 0 since p′(x) cannot be zero (the field F
has characteristic zero). Therefore D is trivial on E. We have the following
general result ([9]):

Theorem 3.3 If E = F (x1, ..., xn), then DerFE = 0 if and only if E is
algebraic over F . Moreover, [DerFE : E] is equal to the transcendence degree
of E over F .
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3.2.3. We now have a way of calculating the transcendence degree of
E = F (x) over F by a rank calculation. Suppose that the transcendence
degree is equal to r > 0 and thus some of the xi:s are not algebraic over
F . We wish to know if element xj is algebraic over F . Consider the field
extensions F ↪→ F (xj) ↪→ E. We can calculate the transcendence degree
of the field extension F (xj) ↪→ E by the method described above. Since
E = F (xj)(x1, ..., xj−1, xj+1, ..., xn), this will involve a calculation of the rank
of the following matrix:


∂p1

∂p1
... ∂p1

∂xj−1

∂p1

∂xj+1
... ∂p1

∂xn

... ... ...
∂pm

∂x1
... ∂pm

∂xj−1

∂pm

∂xj+1
... ∂pm

∂xn


 .

If the transcendence degree of the field extension F (xj) ↪→ E is equal to r (i.e.
the above matrix has rank (n− 1)− r), then the variable xj is algebraic over
F . This is due to the fact that if we have the field extensions F ↪→ F ′ ↪→ E,
then ([12]):

tr.deg.(E/F ) = tr.deg.(E/F ′) + tr.deg.(F ′/F ) .

We thus have a way of classifying all xi as either algebraic over F or not
by eliminating the i:th column in the Jacobian and observing if there is a
change of its rank.

3.3 The observability rank condition for ra-

tional systems

3.3.1. Setting F = R〈U, Y 〉 and E = F (x1, ..., xn), we can apply this the-
ory to our control problem. We have obtained a method for testing the
observability of polynomial control systems by calculating the transcendence
degree of the field extension R〈U, Y 〉 ↪→ R〈U, Y 〉(x). In order to perform the
calculations described above, we need to describe the ideal I of polynomials
p in k〈U, Y 〉[X] such that p(x1, ..., xn) = 0. Clearly, Y

(0)
j − gj ∈ I for all

j = 1, ...,m. Differentiating the j:th output variable with respect to time at
zero we obtain (by Lie-derivation where the time-dependence of the inputs
is taken into account, as in Section 2.3 of the previous chapter):

Y
(1)
j = Lfgj =

∑n
i=1 fi

∂gj

∂xi
+

∑
k=1

∑l
i=1

∂gj

∂ui
U (k+1)

Y
(2)
j = L2

fgj =
∑n

i=1 fi
∂(Lf gj)

∂xi
+

∑
k=1

∑l
i=1

∂(Lf gj)

∂ui
U (k+1)
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etc. Clearly Y
(1)
j − Lfgj and Y

(2)
j − L2

fgj are elements of R〈U, Y 〉(x) and
polynomials in I. In fact, all such polynomials obtained by Lie-derivation
belong to I. It can be shown that I is generated by the polynomials Y

(i)
j −Li

fgj

for j = 1, ...,m, i = 0, ..., n − 1 by the following argument of Sedoglavic’s
[20].

We have
R〈U〉 ⊂ R〈U, Y 〉 ⊂ R〈U〉(x) ,

since each Y
(i)
j is a polynomial function of x with coefficients in R〈U〉. Thus,

as in 3.2.3,

tr.deg.(R〈U〉(x)/R〈U〉) = tr.deg.(R〈U〉(x)/R〈U, Y 〉)+tr.deg.(R〈U, Y 〉/R〈U〉) ,

and the transcendence degree of the field extension R〈U〉 ↪→ R〈U, Y 〉 is
therefore at most n. Thus, for every j = 1, ...,m, there exist an algebraic
relation qj(Y

(0)
j , ..., Y

(n)
j ) = 0 with coefficients in R〈U〉. Thus the polynomial

Y
(n)
j − Ln

fgj belongs to the ideal generated by the polynomials Y
(i)
j − Li

fgj

for i = 1, ...n − 1. We therefore conclude that we need only consider the
equations obtained by the first n− 1 Lie-derivatives of the output functions.

Thus, in order to calculate the transcendence degree of the field extension
R〈U, Y 〉 ↪→ R〈U, Y 〉(x) we have to find the rank of the following matrix:



∂Lf g1

∂x1
...

∂Lf g1

∂xn

. . .
∂Lf gm

∂x1
...

∂Lf gm

∂xn

. . .
∂Ln−1

f g1

∂x1
...

∂Ln−1
f g1

∂xn

. . .
∂Ln−1

f gm

∂x1
...

∂Ln−1
f gm

∂xn




.

If this Jacobian matrix is full-ranked, then the transcendence degree is zero
by theorems 3.2 and 3.3 and we have an algebraically observable system.
We have arrived at the observability rank condition that was derived for
differentiable inputs in the differential geometric approach in part 2.3.2 of
Section 2.3, but this time we have a finite number of Lie derivatives to con-
sider.

If the system is not algebraically observable, we can find the non-observable
variables by removing columns in this matrix and calculating the rank of the
reduced matrices, as described in 3.2.3.
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3.3.2. We will now generalise this theory to apply for rational systems of
type:

Σ

{
ẋ = f(x, u)
y = g(x, u)

,

where now fi = pi(u, x)/qi(x) for i = 1, ..., n and gj = rj(x, u)/sj(x) for
j = 1, ...,m with pi, qi, rj and sj polynomial functions and qj and sj have no
zeros.

We observe that just as before, Y
(i)
j − Li

fgj ∈ R〈U, Y 〉(x) for all i =
0, ..., n − 1, j = 1, ...,m, but they are no longer polynomials. However, as
shown by Diop ([5]) and Sedoglavic([20]), these rational expressions can be
used in the rank test instead of the polynomials that generate the ideal I,
allowing us to use the same Jacobian matrix as the one above for polynomial
systems.

Remark: Observe that the algebraic interpretation has lead us to the
observability rank condition derived for analytic inputs in Section 2.3 of the
previous chapter, showing the equivalence of algebraic observability and local
distinguishability (see [5]). In fact, the ideal I of polynomials p in R〈U, Y 〉[X]
such that p(x1, ..., xn) = 0 is generated by the same functions that span the
space FK defined in Chapter 2. The rank of the Jacobian




∂Lf g1

∂x1
...

∂Lf g1

∂xn

. . .
∂Lf gm

∂x1
...

∂Lf gm

∂xn

. . .
∂Ln−1

f g1

∂x1
...

∂Ln−1
f g1

∂xn

. . .
∂Ln−1

f gm

∂x1
...

∂Ln−1
f gm

∂xn




is exactly the dimension of the space OK which, as we recall, determines the
local distingushability property according to Theorem 2.2. The result of the
algebraic approach of this chapter is that we have been able to show that for
rational systems the space OK is generated by a finite number of functions.
In Chapter 4, we take a different approach to show that this is in fact true
for all analytical systems of the form (2.1).
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3.4 Symmetry

Suppose now that by applying the rank test above, we find that our control
system is not algebraically observable and that the transcendence degree is
r. This means that DerR〈U,Y 〉R〈U, Y 〉(x) is not empty and has dimension r.
The differential-geometric concept that corresponds to derivations is that of
tangent vectors. We can therefore interpret the existence of derivations on
R〈U, Y 〉(x) that are trivial on R〈U, Y 〉 as the existence of tangent vectors
to the space of solutions to our control system, such that if we move in
their direction, the output remains the same and we cannot observe that
the system is in a different state. In other words, there are infinitely many
trajectories for the control system that cannot be distinguished from each
other by observing the input-output map.

A derivation therefore generates a family of symmetries for the control
system - symmetries in the variables leaving the inputs and outputs invari-
able. In this section we will show how these can be calculated.

First of all, observe that the partial derivatives ∂
∂xi

form a basis for the
derivations on R〈U〉(x) that are trivial on R〈U〉 (see Appendix 8.2 for expla-
nation). Of these, we wish to find the ones that are trivial also on R〈U, Y 〉.
If v is one of them, recall from Theorems 3.1 and 3.2 that we must have:




∂Lf g1

∂x1
...

∂Lf g1

∂xn

. . .
∂Lf gm

∂x1
...

∂Lf gm

∂xn

. . .
∂Ln−1

f g1

∂x1
...

∂Ln−1
f g1

∂xn

. . .
∂Ln−1

f gm

∂x1
...

∂Ln−1
f gm

∂xn



· v = 0 .

Thus, v belongs to the kernel of the above Jacobian matrix. Suppose that
v = (v1, ..., vn), where vi ∈ R〈U, Y 〉(x). Then v is the Lie-derivation
v =

∑n
i=1 vi

∂
∂xi

which corresponds to a vector field v and a flow Φ(t, x) of v
given by (see Chapter 2):

{
∂
∂t

Φ(t, x) = v(Φ(t, x))
Φ(0, x) = x

.

The solution of this system of differential equations evaluated at any t > 0
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corresponds to a new initial state of the system which cannot be distinguished
from the original one, (x1, ..., xn), by observing the input-output it produces.

We now have a strategy for finding the families of symmetries for our
control system. First, we have to define a basis for the kernel of the Jacobian
matrix. For each of its elements we have to solve the system of differential
equations that arises, in order to obtain the family of symmetries associated.
To make the calculations simpler, we can use the observations from 3.2.3
to find the non-observable variables. Instead of calculating the kernel of
the Jacobian matrix, we can calculate the kernel of its maximal singular
minor which is obtained when the columns and rows corresponding to the
observable variables are removed. Then, the system of differential equations
to be solved will only involve the non-observable variables.

We will now apply this to a non-observable example:




ẋ1 = x2x4 + u
ẋ2 = x2x3

ẋ3 = 0
ẋ4 = 0
y = x1

.

We need to calculate the first three Lie-derivatives of the output function:

Y (1) = Lfx1 = x2x4 + U (0)

Y (2) = L2
fx1 = Lf (x2x4 + u) = x4x2x3 + U (1)

Y (3) = L3
fx1 = Lf (x4x2x3 + u̇) = x4x3x2x3 + U (2) .

Thus the Jacobian matrix becomes:


1 0 0 0
0 x4 0 x2

0 x3x4 x2x4 x2x3

0 x2
3x4 2x2x3x4 x2x

2
3


 ∼




1 0 0 0
0 x4 0 x2

0 0 x2x4 0
0 0 0 0


 .

Clearly, this matrix has rank 3 and the non-observable variables are x2 and
x4 - removing the second or fourth column does not change the rank of the
matrix. We can now eliminate the first and third rows and columns and
consider the kernel of the remaining minor, which is the matrix

[
x4 x2

x2
3x4 x2x

2
3

]
.
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This kernel is generated by the vector (x2,−x4). The derivation x2
∂

∂x2
−x4

∂
∂x4

thus corresponds to the system of differential equations:


Φ̇2(t, x) = x2

Φ̇4(t, x) = −x4

Φ2(0, x) = x2

Φ4(0, x) = x4

.

The solution is: {
Φ2(t, x) = x2e

t

Φ4(t, x) = x4e
−t .

If we set et = λ, we find that multiplying x2 by λ and dividing x4 by it
defines a new state x̄ that is indistinguishable from the original one for any
λ. Indeed, we see that performing this procedure does not change the output
and its Lie-derivatives:



˙̄x1 = x̄2x̄4 + u = λx2x4/λ+ u = x2x4 + u
˙̄x2 = x̄2x̄3 = x̄2x̄3 = λx2x3

˙̄x3 = 0
˙̄x4 = 0
¯Y (0) = x̄1 = x1 = Y (0)

Ȳ (1) = Lf̄ x̄1 = x̄2x̄4 + U (0) = x2x4 + U (0) = Y (1)

Ȳ (2) = L2
f̄
x̄1 = Lf̄ (x̄2x̄4 + u) = x̄4 ˙̄x2 + U (1) = x̄4x̄2x̄3 + U (1) =

= 1
λ
x4λx2x3 + U (1) = Y (2)

Ȳ (3) = L3
f̄
x̄1 = Lf̄ (x̄4x̄2x̄3 + u̇) = x̄3x̄4 ˙̄x2 + U (2) =

= x3
1
λ
x4λx2x3 + U (2) = Y (3)

.

We know from 3.3.1 that we need not consider any further Lie derivatives
since they depend on the previous ones.

We have now defined a family of symmetries

σλ : {x1, x2, x3, x4} → {x1, λx2, x3, x4/λ}
of the control system which leaves the input and output invariant.

3.5 Sedoglavic’s algorithm

There is a published algorithm with Maple implementation by Alexandre
Sedoglavic ([20]) which performs an observability test of rational systems
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and for non-identifiable systems, predicts the non-identifiable variables with
high probability. This is done in polynomial time with respect to system
complexity.

The algorithm is mainly based on generic rank computation, for details,
see [20]. The symbolic computation of the Jacobian matrix defined in Sec-
tion 3.3 can be cumbersome for systems with many variables and parameters
and it cannot be done in polynomial time. Instead, the parameters are spe-
cialised on some random integer values, and the inputs are specialised on
a power series of t with integer coefficients. To limit the growth of these
integers in the process of rank computation, the calculations are done on a
finite field Fp, see [20]. The probabilistic aspects of the algorithm concern
the choice of specialisation of parameters and inputs and also the fact that
cancellation of the determinant of the Jacobian modulo p has to be avoided.
The calculation of the rank is deterministic for observable systems, that is,
when the process states that the system is observable, the answer is correct.
For non-observable systems, the probability of a correct answer depends on
the complexity of the system and on the prime number p. The predicted non-
observable variables can be further analysed to find a family of symmetries
which then can confirm the test result.

The Maple implementation takes as an input a rational system of differen-
tial equations where parameters, state-variables and inputs have to be stated
as such, and also a set of outputs has to be defined. The transcendence degree
of the field extension associated to the system (see Section 3.1) is calculated
and the non-observable parameters and state-variables are predicted.

We have used this implementation for our case study in Chapter 6.
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Chapter 4

The first n− 1 derivatives of the
output function determine the
observability of analytic
systems with n state variables

This chapter deals with several questions that arise from the literature sur-
veys. The differential geometric approach from Chapter 2 results in the
observability rank test for observability of analytic systems. In this test, the
rank of the linear space containing the gradients of all Lie derivatives of the
output functions must be calculated. Since no bound is given for the number
of Lie derivatives necessary for the calculation, the practical application of
the test to other than the simplest examples is difficult. Such an upper bound
is derived for the case of rational systems in Chapter 3 using the algebraical
approach. The following questions now arise. Can an upper bound be given
only for rational systems? How do such requirements for the class of the
system arise? In this chapter, we attempt to extend the upper bound for
the number of time-derivatives of the output function to apply for the class
of analytical systems affine in the input variable that are addressed by the
differential-geometric approach in Chapter 2. We are going to use the results
by Sontag ([24]) described in Chapter 2, Section 2.3 where the observability
rank condition was defined in terms of differentiable inputs.
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Consider once again the example from the introduction, taken from [20]:




ẋ1 = x2

x1

ẋ2 = x3

x2

ẋ3 = x1θ − u
y = x1

. (4.1)

Recall that we obtained the following equations for the state-variables and
the parameter from calculating the first three time-derivatives at zero of the
output (see Chapter 1, Section 1.2):

r1(x1, Y
(0)) = Y (0) − x1 = 0

r2(x1, x2, Y
(1)) = Y (1) − x2

x1
= 0

r3(x1, x2, x3, Y
(2)) = Y (2) − ( x3

x1x2
− x2

2

x3
1
) = 0

r4(x1, x2, x3, θ, Y
(3)) = Y (3) − ( θ

x2
− U(0)

x1x2
− 3x3

x3
1
− x2

3

x1x3
2

+
3x3

2

x5
1
) = 0 .

The problem now is to determine whether these equations are enough to
ensure that a given input-output behaviour corresponds to a locally unique
state of the system. From the Implicit Function theorem it follows that
the variables x1, x2, x3 and the parameter θ can be expressed locally (in the
neighbourhood of a given point in the space of solutions of the differential
equations) as functions of U (0) and Y (0), Y (1), Y (2), Y (3) if the rank of the
following Jacobian matrix evaluated at that point is equal to four:




∂(r1)
∂x1

∂(r1)
∂x2

∂(r1)
∂x3

∂(r1)
∂θ

∂(r2)
∂x1

∂(r2)
∂x2

∂(r2)
∂x3

∂(r2)
∂θ

∂(r3)
∂x1

∂(r3)
∂x2

∂(r3)
∂x3

∂(r3)
∂θ

∂(r4)
∂x1

∂(r4)
∂x2

∂(r4)
∂x3

∂(r4)
∂θ


 =

−




1 0 0 0
−x2

x2
1

1
x1

0 0

− x3

x2
1x2

+
3x2

2

x4
1

− x3

x1x2
2

+ 2x2

x3
1

1
x2
1x2

0

u
x2x2

1
+ 9x3

x4
1

+
x2
3

x3
2x2

1
− 15x3

2

x6
1

− θ
x2
2

+ u
x1x2

2
+

3x2
3

x1x4
2

+
9x2

2

x5
1

− 3
x3
1
− 2x3

x1x3
2

1
x2


 .

Clearly, this matrix has full rank for all values of x1, x2, x3 and θ and thus
the system has a locally unique state for a given input-output behaviour.

Now the following question arises - if the rank of the above matrix is not
full, can we then conclude that the system is not locally observable without
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considering further derivatives of the output function which would produce
new equations? In other words, is the rank of the Jacobian determined by
the first n equations, where n is the total number of state-variables and
parameters? We will now show that this is true for the analytic systems
affine in the input variable that were discussed in Chapter 2.

Consider again the analytic control system of the form (equation (2.1)):

Σ

{
ẋ = f(x, u) = h0(x) + h(x)u
y = g(x)

.

As previously (see Chapter 2), the elements of the n-dimensional vectors h0

and h are analytic functions and we assume for the moment that we have a
single analytic output g(x) and also a single analytic input u. The n state-
variables x are assumed to occupy an open subset M of R

n.

The first two equations obtained by differentiating the output function
with respect to time at zero are:

Y (1) = Lfg(x) = dg · f|t=0 = dg · (h0 + hU (0)) = dg · h0 + U (0)(dg · h)
Y (2) = L2

fg(x) = Lf (dg · f) = (d(dg · f) · f)|t=0 +
∂(dg · f)

∂u
U (1) =

= d
(
dg · h0 + U (0)(dg · h)) · (h0 + hU (0)

)
+
∂
(
dg · h0 + u(dg · h))

∂u
U (1) =

= d
(
dg · h0 + U (0)(dg · h)) · h0 + U (0)d

(
dg · h0 + U (0)(dg · h)) · h+

+U (1)(dg · h) =

= d(dg · h0) · h0 + U (0)
(
d(dg · h) · h0 + d(dg · h0) · h) +

+(U (0))2
(
d(dg · h)) · h) + U (1)(dg · h) .

These calculations demonstrate the result by Sontag ([24]) (used in Chap-
ter 2, Section 2.3) that the first n− 1 Lie derivatives of the output function
g(x) for the system (2.1) are polynomial functions of U (0), U (1), ..., U (n−2) with
coefficients that are analytic functions on M .

Thus we have that L
(i)
f g ∈ Kx for i = 0, ..., n− 1 (recall from Chapter 2,

Section 2.3 that Kx = Rx(U
(0), U (1), ...) is the field of meromorphic functions

on M to which we add the indeterminates U (0), U (1), . . . and obtain rational
functions of U (0), U (1), . . . with coefficients that are meromorphic functions
on M , see also [24]).
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Following the notation from example (4.1) above, the first n equations
for the state-variables can now be formulated:

r1(x, Y
(0)) = Y (0) − g = 0

r2(x, u, Y
(1)) = Y (1) − Lfg = 0

. . . . . . . . .
rn(x, u, ..., u(n−2), Y (n−1)) = Y (n−1) − Ln−1

f g = 0

.

Therefore, the Jacobian that we are interested in is:

−




∂g
∂x1

. . . ∂g
∂xn

. . . . . . . . .
∂Ln−1

f g

∂x1
. . .

∂Ln−1
f g

∂xn


 .

Since L
(i)
f g ∈ Kx for i = 0, ..., n − 1, the elements of this Jacobian also

belong to Kx. We will now show that if this Jacobian is not full-ranked,
that is, the first n gradients of the output function and its Lie derivatives
are linearly dependent over the field Kx, then any further Lie derivative
produces a gradient which is linearly dependent of the first n and we can thus
conclude that the system is not locally observable. Furthermore, if the first
m gradients, where m ≤ n, are linearly-dependent, then no further gradients
are necessary for the calculation of the rank, which becomes ≤ m − 1. In
fact, we can stop Lie differentiating the output function at the first instance
of linear dependence.

Remark: To be able to discuss linear dependence, we have to know that
the gradients of the Lie derivatives produce a linear space over a field (or
a free module over a commutative ring). This was the case for the rational
systems in Chapter 3 and this is also the case here for analytic systems of
the above type, as the elements of the Jacobian belong to the field Kx.

Theorem 4.1 Let Σ be the system:

{
ẋ = f(x, u) = h0(x) + h(x)u
y = g(x)

,

where x is a vector of n state-variables occupying an open subset M of R
n,

h0 and h are n-dimensional vectors of analytic functions on M , the output
g(x) is an analytic function on M and the control variable u is an analytic
function of time.
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If m is an integer such that dL
(i)
f g, i = 0, ..,m are linearly dependent over

the field Kx, then the dimension of the space OK = spanKx{dL(i)
f g, i ≥ 0}

(see Chapter 2, Section 2.3) is less than or equal to m − 1. If m < n, the
system Σ is not locally observable.

Proof: Suppose that the first m gradients are linearly dependent and m
is the least such number (it certainly exits as the rank is ≤ n and a single non-
zero vector is linearly independent of itself). Then, there exist coefficients
ki ∈ Kx, i = 0, ...,m− 1, not all of them zero, such that

m−1∑
i=0

kidL
i
fg = 0 .

We can take the Lie derivative of both sides (which are co-vector fields) to
obtain:

0 = Lf (
m−1∑
i=0

kidL
i
fg) =

m−1∑
i=0

Lf (kidL
i
fg) =

m−1∑
i=0

((Lfki)dL
i
fg + kiLf (dL

i
fg)) .

We now observe the following fact (which is simply saying that the d and
Lf operators commute even when f depends on a control variable u(t), see
Appendix 8.1 for derivation):

Lf (dL
i
fg) = dLi+1

f g ,

for i ≥ 0.
We thus obtain:

0 =
m−1∑
i=0

((Lfki)dL
i
fg + kidL

i+1
f g) .

Recalling the structure of the field Kx, we know that Lfki ∈ Kx since:

Lfki = dki · f +
∂ki

∂u
U (1) = dki · (h0 + hU (0)) +

∂ki

∂u
U (1) ,

which is clearly a rational function of U (0), U (1), . . . with coefficients that
are meromorphic functions of x. Since we know that km−1 is not zero (we
assumed that m was the least number such that the first m gradients are
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linearly dependent), we conclude that dLm
f g is linearly dependent on the

preceding gradients.
Using the same calculations we can prove by induction that any further

gradient is linearly dependent on the previous ones which then means that
dL0

fg, ..., dL
m−1
f g form a basis for the space OK which determines local dis-

tinguishability (by Theorems 2.1 and 2.2) and thus local observability. If
m < n, this space has rank less than n and thus the system is not locally
observable. �

Thus it is enough to consider the first n− 1 Lie derivatives of the output
function in the rank test and also, we can stop calculating further derivatives
of the output function at the first instance of linear dependence among their
gradients.

Remark: We note that in the case of multiple output functions one needs
to calculate n time-derivatives of each.
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Chapter 5

Parameter identifiability

In this relatively short chapter we will present the problem of the parameter
identifiability of nonlinear control systems as a special case of the observabil-
ity problem.

Identifiability is the possibility to identify the parameters of a control
system from its input-output behaviour. By considering parameters as state-
variables with time derivative zero, one can use the observability rank test
to determine identifiability. The property of local observability is then in-
terpreted as the existence of only finitely many parameter sets that fit the
observed data, each of them locally unique. The use of the rank test for
determining the identifiability of nonlinear systems dates back to at least
1978 when Pohjanpalo [17] used the coefficients of the Taylor series expan-
sion of the output to determine the parameter identifiability of a class of
nonlinear systems applied in the analysis of saturation phenomena in phar-
macokinetic studies. A more recent example is the work by Xia and Moog
([31]) where different concepts of nonlinear identifiability are studied in an al-
gebraic framework and the theory is applied to a four dimensional HIV/AIDS
model showing that the theorems developed by the authors lend themselves
to characterisations of whether all the parameters in the model are deter-
minable from the measurement of CD4+ T cells and virus load, and if not,
what else has to be measured. The minimal number of measurements of
the variables for the complete determination of all parameters and the best
period of time to make such measurements are calculated. Another exam-
ple with biological application is the work by Margaria et al ([15]) where
the identifiability of some highly structured biological models of infectious
disease dynamics is analysed both using the rank method and Sedoglavic’s
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algorthm ([20]) and also by the constructive method of characteristic set
computation described by Ollivier ([16]), Ljung and Glad ([14]) and others.
The latter method can only be applied to relatively small control systems as
its complexity is exponential in the number of parameters.

We will now describe how the observability rank test can be used to
determine parameter identifiability. Consider a physical/chemical/biological
model:

Σ

{
ẋ = f(x, p, u)
y = g(x, p)

,

where as before, x denote the n state-variables, u the l inputs and y the m
observed quantities. The k model parameters are denoted by p and f(x, p, u)
and g(x, p) are vectors of analytical functions. We may or may not be given
a set of initial conditions for the state-variables:

x(0) = x0 .

In order to be able to use the theory from the previous chapters, we observe
that the above model can be represented by the following control system:

Σ




ṗ = 0
ẋ = f(x, p, u)
y = g(x, p)

,

where x and p can now be considered as the same type of variables. We can
apply the rank test to this system in exactly the same way as discussed in
the previous chapters.

Without initial conditions for x, the non-observable variables can be both
in x and in p. Suppose now that we are given a full set of initial conditions
on x:

x(0) = x0 .

The problem of the observability of the x variables now disappears as the
initial state is aready uniquely defined. What is left, is exactly the problem
of identifiability for the parameters - is the set of parameters that realises a
given input-output map unique, at least locally?

This can be determined by the rank test described in the previous chap-
ters. For analytical systems (see Chapter 4) the rank test amounts to calcu-
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lating the rank of the following Jacobian matrix:




∂Lf g1

∂p1
...

∂Lf g1

∂pk

. . .
∂Lf gm

∂p1
...

∂Lf gm

∂pk

. . .
∂Ln−1

f g1

∂p1
...

∂Ln−1
f g1

∂pk

. . .
∂Ln−1

f gm

∂p1
...

∂Ln−1
f gm

∂pk




.

If the rank of this matrix is k, then the model is identifiable. If not, the
non-identifiable parameters can be found using the same procedure we used
earlier for finding non-observable variables, see Chapter 3, Section 3.2., part
3.2.3.
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Chapter 6

Case study:
Identifiability analysis of a
kinetic model for S. Cerevisiae

In this case study, we have investigated the identifiability of a published
model of the metabolic dynamics in S. Cerevisiae by Rizzi et al [18]. We
begin by a short description of the biochemistry of the central metabolic
pathways.

6.1 The central metabolic pathways

Metabolism is the overall network of enzyme-catalysed reactions in a cell.
Its degradative, or energy-releasing phase is called catabolism. The central
catabolic pathways which are more or less universal among organisms consist
of glycolysis, the pentose phosphate pathway and the citric acid cycle. In
glycolysis sugars are degraded to a three-carbon compound called pyruvate.
In the absence of oxygen pyruvate is then reduced to lactate, ethanol or other
fermentation products. In aerobic conditions, it is instead oxidised via the
citric acid cycle in the process of cellular respiration. A simplified scheme of
some of the most important reactions in the central metabolic pathways is
shown in the figure on the next page.

The different species in the boxes are called metabolites. The reactions
marked by arrows are catalysed by enzymes which determine their “reaction
rate” or “flux”, that is, the speed with which the reaction occurs.
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Reaction rates are often modelled by using the so-called Michaelis-Menten
or Hill kinetics where an equation is derived for the reaction rate based on
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a biochemical description of the general way in which enzymatic reactions
occur. For example, a reaction in which a single substrate (reactant) A is
transformed to a single product B under the catalysis of a single enzyme E
has the following rate equation [13]:

r =
rmaxA

Km + A
,

where the constants rmax and Km are specific for this reaction. rmax is the
maximal rate of the reaction and Km is the substrate concentration at which
the reaction rate is half rmax.

An enzyme can have several binding sites for the substrate in which case
a so-called Hill equation is used. For the above reaction where we allow n
binding sites for the enzyme, the equation becomes (see for example Chapter
5 in [25]):

r =
rmaxAn

Km + An
.

These equations can take much more complicated forms depending on the
number of substrates and products and other factors such as reversibility of
the reaction, inhibition and cooperation effects on the enzymes, etc (see [13],
[21] and [18] for details).

6.2 The model of metabolic dynamics by Rizzi

et al

We will now proceed to describe a mathematical model of the dynamics of
the chemical reactions in the central metabolic pathways formulated by Rizzi
et al [18].

The authors proposed a kinetic model for the reactions of glycolysis, the
citric acid cycle, the glyoxylate cycle and the respiratory chain in growing
cells of S. cerevisiae. The model aims to predict the short-term changes in
the metabolic states of the cells under in vivo conditions after a change in
the glucose feed rate. A schematic picture adapted from [18] describing the
metabolites and fluxes included in the model (for details, see [18]) is shown
on the next page.

For each metabolite in the scheme, a mass balance is written where the
change of its concentration in time is expressed accounting for the incoming
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and outcoming fluxes as well as the effect of dilution. The following system
of differential equations is obtained for the concentrations of the different
species (see Appendix 8.3 for nomenclature and parameter description):
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dCe
GLC

dt
= D(C0

GLC − Ce
GLC) − CX

ρ
rC
PERM (6.1)

dCe
GLY C

dt
=

CX

ρ
rC
RES,1 − DCe

GLY C (6.2)

dCe
AC

dt
=

CX

ρ
rC
ALDH − DCe

AC (6.3)

dCe
ETOH

dt
=

CX

ρ
rC
ADH − DCe

ETOH (6.4)

dCe
CO2

dt
=

CX

ρ
(
VM

VC
rM
CO2

+ rC
PDC + aCO2,1rC

SY NT,1 + aCO2,2rC
SY NT,2) + SCO2 (6.5)

dCe
O2

dt
= −VM

VC

CX

ρ
rM
O2

+ SO2 (6.6)

dCC
GLC

dt
= rC

PERM − rC
HK − µCC

GLC (6.7)

dCC
G6P

dt
= rC

HK − rC
PGI − rC

SY NT,1 − µCC
G6P (6.8)

dCC
F6P

dt
= rC

PGI − rC
PFK − µCC

F6P (6.9)

dCC
FBP

dt
= rC

PFK − rC
ALDO − µCC

FBP (6.10)

dCC
DHAP

dt
= rC

ALDO − rC
TIS − rC

RES,1 − µCC
DHAP (6.11)

dCC
GAP

dt
= rC

ALDO + rC
TIS − rC

RES,2 − µCC
GAP (6.12)

dCC
PEP

dt
= rC

RES,2 − rC
PK − µCC

PEP (6.13)

dCC
PY R

dt
= rC

PK − VM

VC
rM
PDH − rC

PDC − rC
SY NT,2 − µCC

PY R (6.14)

dCC
ALDE

dt
= rC

PDC − rC
ADH − rC

ALDH − VM

VC
rM
ACETY L − µCC

ALDE (6.15)

dCC
ADP

dt
= rC

HK + rC
PFK + aATP,1rC

SY NT,1 + aATP,2rC
SY NT,2 + mATP −

− 2rC
ADK − rC

RES,2 − rC
PK − rC

TR,ADP − µCC
ADP (6.16)

dCC
ATP

dt
= rC

RES,2 + rC
PK +

VM

VC
rM
TR,ATP + rC

ADK − rC
HK − rC

PFK −

− aATP,1rC
SY NT,1 − mATP − aATP,2rC

SY NT,2 − µCC
ATP (6.17)

dCC
AMP

dt
= rC

ADK − µCC
AMP (6.18)

dCC
NADH

dt
= rC

RES,2 + aNADH,2rC
SY NT,2 − rC

RES,1 − rC
ADH − rC

ALDH −

− rC
NADHDH − µCC

NADH (6.19)

dCM
ATP

dt
= rM

ATP,R + rM
ATP,T − rM

TR,ATP − µCM
ATP (6.20)

dCM
NADH

dt
= rM

NADH,T − rM
NADHQR − µCM

NADH . (6.21)
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Remark: After comparison with the original version of the model (see [1]),
some minor modifications have been made to the model description in Rizzi,
et al. ([18]) due to what appears to be typing errors in the latter, see [2].

The fluxes r have rate equations based on Michaelis-Menten, Hill or other
types of enzyme kinetics gathered from the literature or proposed by the
authors. For example:

rC
TIS = rmax

TIS

CC
DHAP − CC

GAP

Keq,6

KDHAP,6(1 +
CC

GAP

KGAP,6
) + CC

DHAP

.

Most of the fluxes in the model are rational expressions with the exception of
those fluxes where the Hill coefficients are not integers. This fact is important
for the identifiability analysis and will be discussed later.

The above model was evaluated in [18] on the basis of experimental obser-
vations previously described in [27]. The model predictions were compared to
the experimental results and the parameters were estimated from the data
[18]. We will now attempt to use the theory of identifiability to find out
whether the kinetic parameters of this model can be uniquely determined
from the perfect set of experimental data. We must first formulate a control
system for the model. For this the appropriate set of inputs and outputs
must be chosen from the description of the experimental setting in [27]. In
the latter, a methodology was developed where the changes in metabolite
concentrations after a glucose feed pulse (a fast injection of a certain volume
of glucose in the medium [27]) were measured over time. The initial condi-
tions were the priorly-known values of the metabolite concentrations under
so-called ”steady-state growth” - a condition when biomass concentration
(and other factors) has stabilised to a constant value for the culture, see [27]
for details.

In order to translate the information in the above paragraph into math-
ematical language, we include a perfect measurement of all metabolite con-
centrations c (thus including the given initial conditions) in the outputs of
the control system: 



ṗ = 0
ċ = f(c, p, u)
y = c
(c(0) = c0)

,

where c is the vector of metabolite concentrations, f is the right-hand side of
the equation arrays (6.1)-(6.21) and we denote all the model parameters by
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p. The initial conditions are in parenthesis as the information they provide
is included in the output set. The input u is assumed to be the glucose feed.

6.3 Identifiability analysis

We performed an identifiability analysis of the above control system. For
this, Sedoglavic’s implementation (see the last section of Chapter 3) was used
as the model has around a hundred parameters which makes calculations by
hand very difficult. As the algorithm works only for rational control systems,
we approximated any non-integer values of the Hill coefficients by integers.
Of course, in general, such approximations can have an important effect on
the identifiability of the system. This turns out not to be the case for Rizzi’s
model, as shown in the next section.

Sedoglavic’s algorithm produced the following results - the control system
was not identifiable with transcendence degree 2 and the non-identifiable
parameters were the kinetic parameters of two of the rate equations - the
equation for the flux rC

RES,2 and the one for rM
PDH which have the following

form:

rC
RES,2=rmax

RES,2

CC
NAD

KNAD,7
A

n1,7−1
+L0,7

CC
NAD

K′
NAD,7

B
n1,7−1

A
n1,7−1

+L0,7B
n1,7−1

CC
GAP

n2,7

KGAP,7+CC
GAP

n2,7 ,

where
A = 1+

CC
NAD

KNAD,7
+

CC
NADH

KNADH,7

B = 1+
CC

NAD
K′

NAD,7
+

CC
NADH

K′
NADH,7

and

rM
PDH = rmax

PDHCC
PY RCM

NAD/(KNAD,13CC
PY R+KPY R,13CM

NAD+

+
KI−PY R,13KNAD,13

KI−NADH,13
CM

NADH+CC
PY RCM

NAD+
KNAD,13KIN ADH,13

KI−NADH,13
CC

PY RCM
NADH) .

Observe that the concentrations CC
NAD and CM

NAD are used in the rate equa-
tions although no differential equations are formulated for them in Rizzi’s
model. Instead, these are defined in [18] as:

CC
NAD = k1 − CC

NADH (6.22)

CM
NAD = k1 − CM

NADH , (6.23)

where k1 and k2 are known constants.
More results from the identifiability analysis are shown in Appendix 8.4.
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6.4 Symmetry

The results obtained from the Sedoglavic implementation are probabilistic
(see [20])- their validity must be ascertained by the actual finding of symme-
tries in the model. From the theory described in Chapter 3 we know that we
have to find two derivations that each of them give rise to a symmetry in the
model. The fact that the non-identifiable parameters can be separated into
two groups, each belonging to a rate equation, suggests the possibility that
the symmetries may be found within each rate expression (since the kinetic
parameters of the fluxes rc

RES,2 and rm
PDH are not used anywhere else in the

model). If this is true, the calculation of the symmetries may be greatly
simplified - following the formal procedure from Section 3.4. for the 11 non-
identifiable parameters can be rather cumbersome. In order to verify this
hypothesis, we first used Sedoglavic’s algorithm on our control system where
we added measurements of the fluxes rC

RES,2 and rM
PDH to the set of outputs:




ṗ = 0
ċ = f(c, p, u)

y =


 c

rC
RES,2

rM
PDH


 .

The idea behind this test is that if this system turns out to result in a
transcendence degree of 2 and the same non-identifiable parameters as before,
then there exist two families of symmetries in these parameters that leave
both c and rC

RES,2 and rM
PDH invariant (see Section 3.4). This means that

the expressions rC
RES,2 and rM

PDH themselves have symmetries in their kinetic
parameters.

We tested the above system in the Sedoglavic implementation and found
our hypothesis to be true. The rate expressions rC

RES,2 and rM
PDH were then

analysed further to find the symmetries in the parameters by inspection.
The strategy was to look for a transformation of the parameters that would
multiply the numerator and the denominator of each expression by the same
number which would then cancel out. We found the following families of
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symmetries (see Chapter 3, Section 3.4.) for rC
RES,2:

σλ :




rmax
RES,2

KNAD,7

K ′
NAD,7

KNADH,7

K ′
NADH,7

L0,7




→




rmax
RES,2k1

KNAD,7(1−λ−1/n1,7 )+k1

KNAD,7λ−1/n1,7k1

KNAD,7(1−λ−1/n1,7 )+k1

(K′
NAD,7−KNAD,7(1−λ−1/n1,7 ))k1

KNAD,7(1−λ−1/n1,7 )+k1

KNADH,7λ−1/n1,7k1

KNADH,7(1−λ−1/n1,7 )+k1

(K′
NAD,7−KNAD,7(1−λ−1/n1,7 ))k1

KNAD,7(1−λ−1/n1,7 )+
K′

NAD,7

K′
NADH,7

k1

λL0,7(K′
NAD,7−KNAD,7(1−λ−1/n1,7 ))n1,7

K
n1,7
NAD,7




and for rM
PDH :

σλ :




rmax
PDH

KNAD,13

KPY R,13

KI−PY R,13

KI−NADH,13




→




λrmax
PDH

λKNAD,13 + k2(λ− 1)
λKPY R,13

λKNAD,13KI−PY R,13

(1−λ)KI−NADH,13+λKNAD,13
KI−NADH,13(λKNAD,13+k2(λ−1))

(1−λ)KI−NADH,13+λKNAD,13




.

We see that the constants k1 and k2 appear in the symmetries. In fact, it
is exactly the definitions 6.17 and 6.18 that cause the system to be non-
identifiable.

We can now certify that the kinetic parameters rmax
RES,2, KNAD,7, K

′
NAD,7,

KNADH,7, K
′
NADH,7, L0,7, r

max
PDH , KNAD,13, KPY R,13, KI−PY R,13, KI−NADH,13 can-

not be identified from any experimental data. If parameter estimation is to be
performed on Rizzi’s model, for example by a numerical procedure where the
error between model predictions and experimental results is minimised, then
one of the parameters in each of the groups rmax

RES,2, KNAD,7, K
′
NAD,7, KNADH,7,

K ′
NADH,7, L0,7 and rmax

PDH , KNAD,13, KPY R,13, KI−PY R,13, KI−NADH,13 must be
fixed to a value, while varying the rest of the parameters.

Remark: Using Sedoglavic’s algorithm, we investigated the identifiabil-
ity of this model with other sets of outputs than the ones discussed above
(some of the results are shown in Appendix 8.4). As well as including all pos-
sible outputs - all concentrations cj and all fluxes rj, we also tried to limit the
number of measurements by finding a single output which produced the same
transcendence degree for the system. One such example is the rate rC

RES,1.

47



Measuring this flux should in theory (with perfect error-free measurements)
produce the same information on the parameter values as measuring all con-
centrations and all fluxes. Sedoglavic’s algorithm can thus be used in the
practical planning of an experiment to validate a given model.

6.5 General features of kinetic models and

identifiability

The control systems associated to kinetic models of metabolism can often be
described by the following structure, as shown in Chapter 8 of the book on
metabolic engineering by Stephanopoulos et al, [25]:

{
ċj = uj +

∑
i νij · ri(c, pi) − µcj ∀j

y = c
, (6.24)

for each metabolite j. The coefficients νij are the stoichiometric coefficients
associated to each reaction.

In Rizzi’s model, the non-identifiable parameters could be separated into
two groups each associated to one rate equation. The question is whether
this is true for all non-identifiable kinetic models of the above form.

The first step in the construction of a kinetic model for cellular metabolism
is usually formulating a network of fluxes which, at steady-state, obey Kirch-
hoff’s law at every node. This underlying steady-state model must be such
that the stationary values of all fluxes ri can be calculated uniquely from the
set of linear equations for r obtained at steady-state. Mathematically, this
means that the stoichiometric matrix [νij] is of full rank.

If we rewrite the first equation in (6.24), we have:

ċj − uj + µcj =
∑

i νij · ri(c, pi) .

Since y = c, all the quantities on the left-hand side are known, if we assume
that we know the value of the specific growth rate µ. The matrix [νij] is
assumed to be of full rank and we thus have unique values of ri(c, pi) com-
pletely determined by a given set of inputs and outputs. This means that if
the system is not identifiable and there exist non-identifiable parameters such
that there is a symmetry in them leaving the inputs and outputs invariant,
then this symmetry will also leave the ri:s invariant. Since each flux ri only
involves the parameters in the subset pi of p, then any symmetry in p leaving
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ri invariant must involve only the parameters in pi. In result, a kinetic model
of metabolism of the form (6.24) is not identifiable only if some of the rate
expressions are symmetric in their respective kinetic parameters.
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Chapter 7

Discussion

The subject of this report was the problem of investigating the observability
of nonlinear control systems, a special case of which is the identifiability
problem. We presented a review of two rather different theoretical approaches
to the problem used in literature - the differential-geometric approach and the
algebraic one. Each of the two approaches lead to a test for the observability
of a class of control systems. The differential-geometric approach covered
analytical control systems of the form

Σ

{
ẋ = f(x, u) = h0(x) + h(x)u
y = g(x)

, (7.1)

while the algebraic one treated rational systems:

Σ

{
ẋ = f(x, u)
y = g(x, u)

.

Both approaches lead to the so-called observability rank test where the rank
of the space spanned by gradients of the Lie-derivatives of the output func-
tions is calculated. In the algebraic approach there is an upper bound derived
for the number of Lie-derivatives that have to be considered in the test for
rational systems. We were not able to find an equivalent in the literature for
the class of analytical control systems treated in the differential-geometric
approach, meaning that the rank test could be applied in practice to only
the simplest examples where one could see by inspection what form the in-
finitely many Lie-derivatives of the output functions would take and could
thus conclude on the rank of the space spanned by their gradients.

51



We addressed this problem in Chapter 4 where we derived the same upper
bound for the number of Lie-derivatives of the output functions for the class
of analytical systems affine in the input variables that were considered in the
differential-geometric approach. It remains as future work to investigate the
validity of such an upper bound for other classes of control systems.

The identifiability problem is a special case of observability and we could
thus use the previously derived rank test in the investigation of identifiability.
This was done in a case study of a dynamic model of the metabolism of S.
cerevisiae. By finding symmetries in the model, we showed that certain model
parameters could not be identified from any set of experimental data. The
results from the treatment of this model were generalised to show how the
special structure of kinetic models of metabolism considerably simplified the
analysis of their identifiability and especially the derivation of symmetries.
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Chapter 8

Appendix

8.1 Why do d and Lf commute when f de-

pends on a control variable u?

This appendix is used in the calculations of Chapter 4.
Consider a control system of the form:

Σ

{
ẋ = f(x, u) = h0(x) + h(x)u
y = g(x)

, (8.1)

where the elements of the n-dimensional vectors h0 and h are analytic func-
tions of x and u, where u is the single control variable. Denote, as in Chap-
ter 2, the flow corresponding to the time-dependent vector field f(x, u) by
Φu(t, x) which is then an n dimensional vector. Let ψ(x, u) be an analytic
function of x,u and u’s time derivatives. We will show that:

Lfdψ = dLfψ .

Take the i-th element of dLfψ. It is:

∂

∂xi
Lfψ =

∂

∂xi

( n∑
j=1

fj
∂ψ

∂xj
+

∑
l=0

∂ψ

∂u(l)
U (l+1)

)
=

n∑
j=1

∂

∂xi
(fj

∂ψ

∂xj
) +

∑
l=0

∂

∂xi
(
∂ψ

∂u(l)
U (l+1)) =

=
n∑

j=1

∂fj

∂xi

∂ψ

∂xj
+

n∑
j=1

∂2ψ

∂xi∂xj
fj +

∑
l=0

∂

∂xi
(
∂ψ

∂u(l)
)U (l+1) .

Now consider the i-th element of the covector Lfdψ. Following the definition
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again,

d

dt

(∂ψ(
Φu(t, x), u(t))

)
∂xi

)∣∣∣∣
t=0

=
d

dt

( n∑
j=1

∂ψ

∂Φu,j

∂Φu,j

∂xi

)∣∣∣∣
t=0

=
n∑

j=1

d

dt

( ∂ψ

∂Φu,j

∂Φu,j

∂xi

)∣∣∣∣
t=0

=

=
n∑

j=1

(
d

dt

( ∂ψ

∂Φu,j

)∣∣∣∣
t=0

∂Φu,j

∂xi

∣∣∣∣
t=0

+
d

dt

(∂Φu,j

∂xi

)∣∣∣∣
t=0

∂ψ

∂Φu,j

∣∣∣∣
t=0

)
=

=
n∑

j=1

(( n∑
k=1

∂

∂Φu,k
(
∂ψ

∂Φu,j
)
∣∣∣∣
t=0

dΦu,k

dt

∣∣∣∣
t=0

+
∑
l=0

∂

∂u(l)
(
∂ψ

∂Φu,j
)
∣∣∣∣
t=0

U (l+1))
)
δij +

∂ψ

∂xj

∂fj

xi

)
=

=
n∑

j=1

(( n∑
k=1

∂2ψ

∂xk∂xj
fk +

∑
l=0

∂

∂u(l)
(
∂ψ

∂xj
)U (l+1)

)
δij +

∂ψ

∂xj

∂fj

xi

)
=

=
n∑

k=1

∂2ψ

∂xk∂xi
fk +

∑
l=0

∂

∂u(l)
(
∂ψ

∂xi
)U (l+1) +

n∑
j=1

∂ψ

∂xj

∂fj

xi
.

One can now see that the i-th elements of the covectors Lfdψ and dLfψ are
the same, which shows the above equality.

8.2 A basis for derivations on R〈U〉(x) that

are trivial on R〈U〉
This appendix refers to Section 3.4 and is based on p.371-372 in [12].

First of all, observe that the xi form a transcendence basis for R〈U〉(x)
over R〈U〉. The transcendence degree of the field extension is thus n which
is also the dimension of DerR〈U〉R〈U〉(x). Consider the n derivations Di =
∂

∂xi
. Clearly, Dixj = δij. Let D be a derivation in DerR〈U〉R〈U〉(x) and let

Dxi = wi (a derivation is defined by its action on a set of generators of the
transcendence basis). Then D =

∑
iwiDi and thus the Di:s form a basis for

DerR〈U〉R〈U〉(x). Therefore the partial derivatives ∂
∂xi

form a basis for the
derivations on R〈U〉(x) that are trivial on R〈U〉.

8.3 Nomenclature for Rizzi’s model

This appendix refers to Chapter 6.
For the details of the kinetic model by Rizzi et al we refer to [18] but

in an attempt to make this report somewhat self-sufficient we here provide
nomenclature for the abbreviations and parameters used in Chapter 6.
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8.3.1 Superscripts

e extracellular
C cytoplasmic
M mitochondrial

8.3.2 Symbols and abbreviations

aj stoichiometric coefficient
SG gas supply rate
VM volume of mitochondria
VC volume of cytoplasm
D dilution rate
ρ specific volume
µ specific growth rate

CX biomass concentration
mATP maintenance coefficient for ATP

8.3.3 Metabolites

AC acetic acid
ADP adenosine diphosphate

ALDE acetaldehyde
AMP adenosine monophosphate
ATP adenosine triphosphate

DHAP dihydroxyacetone phosphate
ETOH ethanol

FBP fructose 1,6-bisphosphate
F6P fructose 6-phosphate

GAP glyceraldehyde 3-phosphate
GLC glucose

GLYC glycerol
G6P glucose 6-phosphate

NAD+/NADH nicotinamide adenine dinucleotide
PEP phosphoenol pyruvate
PYR pyruvate
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8.3.4 Enzymes and flux indexes

ACETYL acetate synthetase
ADH alcohol dehydrogenase
ADK adenylate kinase

ALDH acetaldehyde dehydrogenase
ALDO fructose bisphosphate aldolase
ATP,R ATP formation via respiratory chain
ATP,T ATP formation via the citric acid cycle

HK hexokinase
NADHDH NADH-dehydrogenase
NADHQR NADH-Q-reductase

PDC pyruvate decarboxylase
PDH pyruvate dehydrogenase

PERM hexose transporter
PFK phosphofructo-1-kinase
PGI phosphoglucose isomerase
PK pyruvate kinase

RES,1 combination of glycerol-3-phosphate
dehydrogenase and glycerol-3-phosphatase

RES,2 combination of glyceraldehyde 3-phosphate
dehydrogenase and other enzymes

SYNT,1;SYNT,2 resulting rates for the formation of
monomeric building blocks

TIS triose phosphate isomerase
TR,ADP and TR,ATP translocases for ADP and ATP respectively.

8.4 Other results on the identifiability of Rizzi’s

model

This appendix shows some of the results obtained from the identifiability
analysis of Rizzi’s model. They can be used in choosing a set of measurements
in a hypothetical experiment.

Since the parameters CX and ρ always appear together as CX

ρ
one of them

must be known - otherwise it is clear that they will not be identifiable. We
therefore assume that the value of one of them is measured in any hypothet-
ical experiment when we perform the identifiability analysis, although we do
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not explicitly write them as outputs. The same applies for the parameters
VM and VC appearing in VM

VC
.

Outputs Transcendence degree
rC
RES,1 2

rC
RES,1, r

max
RES,2, r

max
PDH 0

Ce
ETOH 8

Ce
GLY C 8

all cj:s 2
all cj:s, r

C
RES,2, r

M
PDH 2

all cj:s, all rj:s 2

One conclusion is that measuring rC
RES,1 produces as much information

for the theoretical identification of parameter values as making all possible
measurements altogether.

V



VI



Bibliography

[1] Baltes M. 1996. Entwurf eines strukturierten Modells zur dynamischen
Simulation des Katabolismus von Saccharomyces cerevisiae. PhD thesis.
Universitt Stuttgart, Germany, VDI-Verlag Dusseldorf, Reihe, vol. 17,
Biotechnik, No.148

[2] Johansson M., Franzén C.J. Work in progress

[3] Diop S., Fliess M. 1991. Nonlinear observability, identifiability, and per-
sistent trajectories. Proceedings of the 30nd IEEE Conference on Deci-
sion and Control. 714-719. IEEE Press: Brighton England

[4] Diop S., Fliess M. 1991. On nonlinear observability. In Commault C.
and coll. Editors, Proceedings of ECC’91. 1:152-157. Herms

[5] Diop S., Wang M. 1993. Equivalence between algebraic observability and
local generic observability. In Commault C. and coll. Editors, Proceed-
ings of the 32nd IEEE Conference on Decision and Control. 2864-2865.
IEEE Press: San Antonio Texas

[6] Evans N., Chapman M., Chapell M., Godfrey K. 2002. Identifiability of
uncontrolled nonlinear rational systems. Automatica. 38:1799-1805

[7] Hermann R., Krener A.J. 1977. Nonlinear controllability and observabil-
ity. IEEE Transactions on Automatic Control. AC-22(5):728-740

[8] Isidori A. 1995. Nonlinear Control Systems (3rd Edition). London:
Springer-Verlag

[9] Jacobsson N. 1980. Basic Algebra II. Freeman and Company: San Fran-
sisco

VII



[10] Johnson J. Kähler differentials and differential algebra. Annals of Math-
ematics. 89:92-98

[11] Krener J. 1985. (adf,g), (adf,g) and locally (adf,g) invariant and control-
lability distributions. SIAM J. Control and Optimization. 23(4):523-549

[12] Lang S. 1993. Algebra. Addison-Wesley Publishing company, Inc.

[13] Nelson D., Cox M. 2000. Lehninger principles of biochemistry. Worth
Publishers

[14] Ljung L., Glad T. 1990. Parametrization of nonlinear model structures
as linear regressions. 11th IFAC word congress. 67-71

[15] Margaria G., Riccomagno E., White L.J. 2004. Structural identifiability
analysis of some highly structured families of statespace models using
differential algebra. J. Math. Biol.

[16] Ollivier F. 1990. Le problème de l’identifiabilité structurelle globale: ap-
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`�a�[ bc���������d)egfLhNi"jlknm�h oph�eNq2r s"t�uNv2jnq@w'h�eNqxBynz�{ i�jnknm�h}| zLz ~Q�#�1zN�S~Q� ~��)���������V~Q�X�8�+�S~��G�������$�V~Q�xBynz�� i�jnknm�h z$� �-����� ���� �_� ����$��� �1� �L�5� �l����� ��$� ���/��� ���� �8� ����$��� �1� � �8¡ �5� �¢���S� ����g£¢¤¦¥xBynz�§ i�jnknm�h z�¨ e©jnklm2h�egw;ª«e x­¬ e�jnknm�h�eNw-ª«e x­®xBy¦¯g{ i�jnknm�h � i § °0±³²	´�µ °0±¶}²&´#µxBy¦¯g{ i�jnknm�h}| z$� · knjl¸�h�w�¹'r�º r · knjl¸�h�w�¹�º rxBy¦¯�z i�jnknm�h}| ¯ � » � � � � ¼ � � ��½���$��¾ �©� » ���S� � » �8¡ � � ¼ � � ��½���$� £¢¿S¥¾ � � » ���S�¼
xBy¦¯�z i�jnknm�h}| z � » � � � � ¼ � � �N�lÀ0ÁÂ½ � ��$��¾ �5� » ���S� � » �8¡ � � ¼ � � �N�lÀ0ÁÂ½ � ��$� £¢¿S¥¾ � � » ���S�¼xBy¦¯N¯ i�jnknm�h z$¯ h�Ã�knrS¹ h!Ã�kÄr�¹�r

xBy¦¯N¯ i ¯g� i ¯g¨
ÅÆÆÆÆÆÆÆÆÆÆÇ

�$À Á ½�È�$�+È �n�n� ��À Á ½�È���$É������$À0ÁÂ½�Ê�$�+È �n�n� �$À0ÁÂ½�Ê���$É������$À É+Ë
ÈÁ ½ È�$� È �n�n� �$À É+Ë
ÈÁ ½ È��� É�������À É+Ë
ÈÁ ½ Ê�$�+È �n�n� �$À É+Ë
ÈÁ ½ Ê���$É

Ì¢ÍÍÍÍÍÍÍÍÍÍÎ

ÅÆÆÆÆÆÆÆÆÆÆÆÇ

�$À�ÏÁ ½�È�$��È �n�l� �$À�ÏÁ ½�È�$�$É������$À�ÏÁ ½ Ê�$��È �n�l� �$À�ÏÁ ½ Ê�$�$É�������À É+Ë
ÈÁ ½ È�$� È �n�l� �$À É+Ë
ÈÁ ½ È�$� É������$À ÉgË
ÈÁ ½ Ê�$� È �n�l� ��À É+Ë
ÈÁ ½ Ê�$� É

Ì¢ÍÍÍÍÍÍÍÍÍÍÍÎ
xBy¦¯gÐ i�jnknm�h � ÑÒÒÓ ÒÒÔ

ÕÖ-× ²	~Â�S´#µ � ´ ×ÕÖ�Ø ²	~Â�S´#µ � �;´ ØÖ × ²�{���´�µÙ� ´ ×Ö�Ø ²�{���´�µÙ� ´ Ø ÑÒÒÓ ÒÒÔ
ÕÖ-× ²&~Â��´�µ � Ö-× ²&~Â�S´#µÕÖ�Ø ²&~Â��´�µ � � Ö�Ø ²&~Â�S´#µÖ × ²	{2�S´#µÙ� ´ ×Ö�Ø ²	{2�S´#µÙ� ´ ØxBy �NÐ i�jnknm�h z eNjlfLuNw�¹�t�ª egjnfNuLw�kl¹�t2ª

xBy �
Ú
ÅÆÆÆÆÆÆÆÆÆÆÇ

�$À0ÁÂ½ È�$�+È �n�n� ��À�Á�½ È���$É������$À0ÁÂ½�Ê�$�+È �n�n� �$À0ÁÂ½�Ê���$É������$À É+Ë
ÈÁ ½ È�$� È �n�n� �$À É+Ë
ÈÁ ½ È��� É�������À É+Ë
ÈÁ ½ Ê�$� È �n�n� �$À É+Ë
ÈÁ ½ Ê��� É

Ì¢ÍÍÍÍÍÍÍÍÍÍÎ

ÅÆÆÆÆÆÆÆÆÆÆÆÇ

�$À�ÏÁ ½�È�$��È �n�l� �$À�ÏÁ ½�È�$�$É������$À�ÏÁ ½ Ê�$��È �n�l� �$À�ÏÁ ½ Ê�$�$É�������À É+Ë
ÈÁ ½ È�$� È �n�l� �$À É+Ë
ÈÁ ½ È�$� É������$À ÉgË
ÈÁ ½�Ê�$� È �n�l� ��À É+Ë
ÈÁ ½'Ê�$� É

Ì ÍÍÍÍÍÍÍÍÍÍÍÎxBy �N§ i"¹'k¢¹'jlh³jnknm�h � i"¹'h!Ã"¹pjlknm�h ¯ Û8Ü-ÝGÞ!ß�Þ�à$áÄâ�á	ãLÞ Û#Ü)ä�Þ�ß�Þ!à$áÄâÂá	ãNÞxBy ¨"Ú i�jnknm�h}| Ð å t0egm�fLh�ræknmèç JLé4R0KNê2ë rSh�h}¸0h�jlu+ìí x�x h�m0q�k¢Ã xBy î å t2egm�fLh�ræknmï¹'t�h³w'h�r�v�j¢¹�r-¹'eN¸�jlh rSh�h}¸0h�jlu+ìí x�x h�m0q�k¢Ã xBy î i�jnknm�h}| � ð�ñò8ó�ô"õ � ö³÷ø À2ù ñ � ö³÷ú ñ � ö³÷ó�û0ü�ý egm2q ö³÷ñ ü8þÿ-kl¸�jnknuNfNw�e x t�� x_y î������ i2jlknm�h z � uNt�m0rSuLm �0y � uNt2m2rSuLm �0yBz�§LÐN§2yÿ-kl¸�jnknuNfNw�e x t�� x_y î������ i2jlknm�h § ì�uLw'q��!uNm2fNw'h�r'r ì-uNw'jnq��!uLm�fNw'h�r'r
z



	æt�h³w'h�ª«egw�
«uNm x egfLh ¨"Ú w�h$eNq�r
�ç JLé=R0KLê�ë�� r�knm�f s"h�q�uLfNjÄe��"k��Nº r}egjnfNuLw�kl¹�t2ª@i_ì�h�knm��Lh�rS¹�knfLeg¹�h�q ¹�t�h«kÄq�h�mL¹'k���eg¸�knjlkl¹��u��8¹'t�kÄr�ª�u�q�h�j0ì;kl¹�t�ug¹�t2h�wærSh�¹'r�u��BuNv�¹ x v�¹�r�¹�t2eNm«¹�t�hIuNm2h�rCq�knr��!v2r'r�h�q eN¸0u��Lh ² r�uNª�h u��¹�t2h©w'h�r�v�jl¹'r}egw'h�rSt�u+ì;mèklm í x2x h�m2q�klÃ�� y ¨
µ!y í r}ì�h�jlj)eNrIknm��!jnv2q�knm�f�egjnj x uLr'rSkn¸�jnh5uLv�¹S|x v�¹�r;|æegjnj��!uLm��!h�mL¹'w'eg¹�knuNm2r�� � eNm2q�egjnj! 0v�Ã�h�r ð � i2ì-h�egjÄr�u�¹�w'klh$q@¹�u«jnklª�kl¹ ¹�t2h/m"v�ª�¸�h�wu���ª©h$eNr�v�w'h�ª�h�m
¹'r�¸"�#�2m2q�knm�f«e�r�klm2fNjnhcuLv�¹ x v�¹æì;t2k���t x w�u�q�v$�!h�q«¹�t�h³r'egª�hp¹'w'eNm2r%��h�m�|q�h�m��!h©q�h�fLw�h�h&�&uNw ¹�t�h�r���rS¹�h�ª y&' m�h�r�v���t h�Ã�eNª x jlh5knrp¹�t�h©w�e+¹�h ð�ñò8ó�ô"õ � y�( h�eNr�v�w'klm2f¹�t2knr) 0v�Ã7r�t�uNv2jnq7knmè¹'t�h�uLw%� ² ì;kl¹�t x h�w%�&h
�Â¹5h�w'w�uLwS|*�&w�h�h�ª�h�eLrSv2w�h�ª©h�m
¹'r µ x w�u�q�v���h�¹�t�hr'egª�h}klm+�&uLw�ª«eg¹�knuNm@uNm@¹�t�h x egw�egª�h!¹'h�w,�+egjnv�h�r;eLr;ª�h�eLrSv�w'knm�f©eNjlj-�!uNm$�!h�m
¹'w'eg¹�knuNm2ræegm0qegjnj. 2v�Ã"h$r y s"h$q�uNfLjne��"k/�gº r;egjnfNuNw'kl¹�t�ª0��egm@¹'t
v0rp¸�h/v2r�h�q­knm­¹�t�h x w'e1�Â¹�k/��eNj x jÄegm�m2klm�f«u��egm@h!Ã x h�w'klª�h�mL¹;¹'u2��eNjlkÄq�eg¹�h³e�fNk��Nh�mïª�u�q�h�j y
� ¹ rSt2uNv�jÄq@w�h$eNq.�ç JLé=R0KLê�ë�� r�knm�f s"h�q�uLfNjÄe��"k��Nº r}egjnfNuLw�kl¹�t2ª@i_ì�h�knm��Lh�rS¹�knfLeg¹�h�q ¹�t�h«kÄq�h�mL¹'k���eg¸�knjlkl¹��u��8¹'t�kÄr�ª�u�q�h�j0ì;kl¹�t�ug¹�t2h�wærSh�¹'r�u��BuNv�¹ x v�¹�r�¹�t2eNm«¹�t�hIuNm2h�rCq�knr��!v2r'r�h�q eN¸0u��Lh ² r�uNª�h u��¹�t2h-w'h�r�v�jl¹'r)eNw�hærSt2u+ì;m5knm í x�x h�m2q�klÃ#� y ¨"µÂy í r�ì-h�jnj�eNr�knm��!jnv2q�knm�f³egjnj x uLr'rSkn¸�jnh-uLv�¹ x v�¹'r|Begjnj3�!uLm��!h�mL¹'w'eg¹�knuNm2r4� � eNm2q©egjnj" 2v�Ã�h�r ð � iLì�hæegjÄr�u ¹'w�knh�q/¹�u}jlknª�k¢¹�¹'t�h;m"v�ª�¸�h�w�u���ª�h�e+|r�v�w�h�ª�h�m
¹'r_¸��5�2m0q�klm2fIecrSª«egjnjnh�w�r�h!¹�u���uLv�¹ x v�¹'r�ì;t�k/��t x w'u�q�v��!h$q}¹�t2h�r'egª�hG¹'w'eNm2r%��h�m�|q�h�m��!hIq�h�fLw�h�h,�&uNwC¹�t�h}r���rS¹�h�ª y6' m�hIrSv$��t«h!Ã�egª x jnh kÄrG¹'t�h}rSh�¹ ö³÷ø À2ù ñ � ö³÷ú ñ � ö³÷ó_û�ü_ýegm0q ö³÷ñ ü þ y4( h�eNr�v�w'klm2fc¹'t�h�r�h,�!uLm��!h�mL¹'w'eg¹�knuNm2r�r�t�uNv2jnq5klm©¹'t�h�uLw%� ² ì;k¢¹'t x h�w��&h7�Â¹Gh�w'w'uNw�|�&w'h�h©ª©h$eNr�v�w'h�ª�h�m
¹'r µ x w�u�q�v$�!h5¹�t�h«r'egª�h5knm+�&uLw�ª«e+¹'kluLm uLm ¹�t2h x egw�egª�h!¹'h�w)�+egjnv�h�r}eNrª�h�eLrSv�w'knm�f©eNjlj!��uNm���h�m
¹�w�e+¹'kluLm2r-egm2q@egjnj8 2v�Ã�h�r y s"h$q�uNfLjne��"k/�gº r�eNjlfLuNw'k¢¹'t�ª9��eNmï¹'t
v0r;¸0hv2r�h�q�klm@¹'t�h x w�e��Â¹'k���egj x jÄegm2m�klm2f©u���eNm�h�Ã x h�w�knª�h�m
¹æ¹�u:�+egjnknq2e+¹�h³e©fNk��Nh�m�ª�u�q�h�j y

	æt�hI¹'eN¸�jnh³klm í x2x h�m2q�klÃ x eNfNh î w�h$eNq�r
��«9��<;�9���� ,C�+�����$>N
"����
"��>L
 ��
"=2�+
"
ð�ñò8ó�ô"õ � ¯ð+ñò8ó�ô
õ � ��ð�>,? �ò8ó�ô"õ × �Sð�>,? �@ ± ý {ö³÷ó_û�ü_ý �ö ÷ø À2ù ñ �eNjlj!� � � r ¯egjnj!� � � r�i ð+ñò8ó�ô
õ × �Sð�A@ ± ý ¯egjnj!� � � r�i�eNjlj ð � � r ¯
� ¹ r�t�uNv�jÄq�w�h$eNq.� �«9��<;�9���� ,��+������>L
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��>N
è��
"=0�+


ö³÷ø À2ù ñ � ö³÷ú ñ � ö³÷ó_û�ü_ý � ö³÷ñ ü8þ ¯ö³÷ø À2ù ñ � ö³÷ú ñ � ö³÷ó_û�ü_ý � ö³÷ñ ü8þ �Sð�>,? �ò8ó�ô
õ × �Sð�>,? �@ ± ý {egjnj!� � � r ¯egjnj!� � � r�i ð+ñò8ó�ô
õ × �Sð�A@ ± ý ¯egjnj!� � � r�i2eNjlj ð � � r ¯
�B ( kljnh�m0e í m�fNv2h�jnu���e2i ¯g{L{g¨ª�kljnh�m0e�Ccª«e+¹'t y ��t0egjnª©h�w'r y rShs+��t�u"uLj8u�� ( e+¹�t2h�ª«e+¹'k���egj_s+��klh�m��!h$r�i å t0egjnª©h�w'r � m�kD�Lh�w�rSkl¹�� u��E	�h
��t�m2uNjnuNf��«eNm2q
F2Gug¹'h�¸�uNw'f � m�k��Nh�w�r�k¢¹��
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