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Abstract

Variation in key geometrical characteristics in assembled products is a usual
problem in automotive and other industries. Geometrical variation and
its causes and effects are described and different methods to reduce this
variation are considered.

In order to control the variation, a control chart is traditionally used
to detect if the process is out of control and therefore should be adjusted.
However, some of the variation is very difficult to eliminate at a reasonable
cost. Therefore, a quality system that allows for trends in the processes as
long as the produced items are within specifications is introduced. This is
done by using traditional charts to improve low capability processes, while
high capability processes are controlled by acceptance control charts, in
order to see that the produced items still are will within specifications.

If a variation is detected it is essential to find the root cause of the
problem. Different methods for root cause analysis are applied to indus-
trial data and their performances are compared. Methods for multivariate
statistical process control are also considered. The most successful method
for root cause analysis is based on a sensitivity matrix. This matrix relates
the movements of the inspection points to those of the locators.

Keywords: geometrical variation, quality control, acceptance control charts,
multivariate statistical process control, root cause, rigid body, fixture di-
agnosis
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Chapter 1

Introduction

This work is a part of a two-year long project between Saab Automobile
AB, Chalmers University of Technology and Fraunhofer Chalmers Research
Centre. It aims to develop principles, working procedures and tools for
finding fixture related root causes of geometrical variation in assembled
products. The work is contained in a research project, called “Three Di-
mensional Tolerance Management” (3DTM), going on at Chalmers. It deals
with methods for minimizing geometrical variation in assembled products.

The thesis is divided into three major parts. The first part is this in-
troduction, where general ideas and principles concerning geometrical vari-
ation in assembled products are considered. The introduction gives the
motivation of the methods described in later chapters, and it also gives a
basis for concepts and ideas used in those chapters.

In the remaining two parts of the thesis, topics related to geometrical
variation are discussed; namely how to detect variations and deviations
using statistical process control and how to identify root causes of the vari-
ation. In Chapter 2 a suggestion of how to use process control in order
to get a process able to meet specifications is given. This means that an
acceptance chart can be used to control a stable process with high capabil-
ity, while a traditional control chart is used to improve a process with low
capability.

The last part of the thesis, Chapter 3, contains a study of methods used
for multivariate statistical control and methods for root cause analysis of
geometrical variation in assembled products. The methods are applied on
case studies and their performances are compared.



Chapter 1. Introduction

The methods described are tested on data from automotive industry.
However, most of the methods should be applicable to any kind of rigid
assembled product, provided that key geometrical characteristics of the
product are measured.

1.1 Goal of the project

The goal of the project is to develop and adopt methods for process control
and diagnosis that support a tool based on geometrical inspection data,
which may be used in everyday work with the assembly processes. The
tool shall

e Be easy to use and enable quick identification of root causes in com-
plex assemblies.

e Translate variations and deviation in geometric data to adjustable
process parameters.

e Make it possible to simulate and verify the effects of actions taken in
the process.

e Be a support in evaluation of different inspection point layouts.

1.2 The assembly process

In order to discuss geometrical variation, considered in Section 1.5, it is
crucial to have a knowledge of the assembly process, which is described in
this section.

The position of inspection and positioning points are described using
a coordinate system of the car. A point on the car body is completely
determined by its coordinates. The coordinate system comprises three
mutually perpendicular planes, where:

e The X axis runs in the longitudinal direction of the car, with its origin
in front of the car.

e The Y axis runs in the transverse direction of the car, with its origin
in the centre line of the car.

e The Z axis describes the height in the car.
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Figure 1.1: The coordinate system of a car, Saab standard (28)

The coordinate system is illustrated in Figure 1.1.

To position a part or subassembly during assembly and inspection a
positioning frame (P-frame) is used. In automotive industry a 3-2-1 locat-
ing scheme is a usual choice to lock the six degrees of freedom of a part.
Three master locating points, usually called A1, A2 and A3, are used to
form a plane locking one translation and two rotations, two points, B1 and
B2, lock one translation and one rotation and the last point, C'1, lock the
remaining translation. The part is assumed to never loose contact with the
locators. This is illustrated in Figure 1.2. The part is positioned in its
fixture or joined to another part by bringing its P-frame in contact with a
mating P-frame on the target, see Figure 1.3. In addition to the master lo-
cation points, supplementary points can be required to provide a complete
guidance of a part, due to slenderness or spring back factors. Planes, holes
and slots are used to represent the locator points in practise.

The selection of master location points is in high extent based on expe-
rience, but there are some guidelines in Saab standard (27);

e The manufacturing variations within restricted master location sur-
faces shall be possible to regard as negligible.
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Figure 1.2: A 3-2-1 locating scheme, Soderberg and Lindkvist (30)

Figure 1.3: Positioning of a part using 3-2-1 locating scheme, Séderberg
and Lindkvist (30)
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e The master location points on mating parts shall, if possible, be po-
sitioned directly opposite each other.

e The master location points shall be selected so that the locating fea-
tures permit accessibility of welding equipment and assembly equip-
ment.

e The range of the master location points on a coordinate shall be as
wide as possible.

A complete car is made up of many subassemblies. In every assembly
step, it is crucial that the parts are joined with as good precision as possi-
ble. This is supported by a robust locating scheme, i.e. a positioning that
suppresses variation in the resulting assembly. However, there is always
variation between the local P-frame and the target P-frame, and this vari-
ation propagates through the assembly. When the assembly is measured,
this variation will be detected. At this stage, it may though be a difficult
task to identify the root cause of the variation. This is illustrated in the
following example. Consider the assembly in Figure 1.4. It consists of two
parts, and both parts are positioned using a hole and a slot. The parts
are joined and finally measured. The inspection points are represented by
arrows in Figure 1.4. The arrows indicate the evaluation direction. Hence,
only the deviations in the indicated directions are determined. During the
inspection process the assembly is positioned using hole P1 from Part 1 and
slot P4 from Part 2. If there is variation in P4 during assembly this per-
turbation will result in a departure from nominal in the inspection points
as shown in the figure. Considering inspection data only, it is not obvious
what caused the deviation.

It is important to realize that if there is variation in P4, the only way
to achieve a correct assembly is to reduce this variation. If there is a
deviation in P4, there are two possible corrections opportunities. The first
is to correct the position of P4. The second one is to compensate the
deviation in P4 by moving the positions of the locators P1, P2 and P3.

1.3 The inspection process

To detect deviations and variations in parts and subassemblies it is neces-
sary with a continuous control of the processes. The inspection data, used
for this purpose, belong to one of two categories; ungrouped or grouped
data. The ungrouped data, also called “one at a time”-data, come from
inline measurements. An example of inline data can be seen in Figure 1.5.
The measurements come from parts produced after each other. Every item
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Figure 1.4: An assembly consisting of two parts. In a) the parts are posi-
tioned correctly, in b) there is a perturbation in locator PJ.

produced in a line containing an inline measurement machine is measured
as a stage in the production line.

The grouped data consist of samples of n items each. At Saab, a sample
size of n = 3 is used. These samples are usually taken once or twice a week
and the items are measured in coordinate measurement machines (CMMs).
A CMM can be seen in Figure 1.6.

In Figure 1.7 an example of CMM data is given. Compared to the inline
data in Figure 1.5, those data are sampled during a much longer period of
time. There are often trends and long-term variation in a typical process.
Much of this long-term variation is not included in the inline data, which
are measured during a day or two, but can be seen in the plot of the CMM-
data, that are collected during several months. In this example, a sample
size of three observations is used. A larger sample size would of course give
more accurate information about the process but this must be weighted
against an increased cost.
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Figure 1.5: In the top of the figure the inspection point in question is encir-
cled. Below, an example of inline data for this inspection point is plotted.
There are 200 items measured.

The sampling frequency is a question related to the sample size. The
frequency should depend on how quick the process may be expected to
change, Montgomery (25). If the process may be assumed to vary quickly
the sampling should be more frequent then if the process varies slowly. A
process that is essential to the final product should be sampled more fre-
quent then a process that only give a minor contribution to the final result.
However, just as with the sample size, this issue is a question of balance
between costs for inspection and costs for undetected changes in a process.

An inline measurement machine uses laser beams to measure possible
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Figure 1.6: A front fender is measured in a CMM.

deviation from the nominal coordinates of a point. The measurements have
a good precision, i.e. there is a high degree of conformity between inde-
pendent measurements under the same conditions. The agreement between
real value and the value given by the measurement machine, i.e. the accu-
racy, is lower than for a CMM. Inline measurements are though valuable
since they give continuous information about the process. However, while
every produced item is measured, it is too time consuming to measure as
many points as in the CMM’s. There is also some lack of accordance be-
tween the CMM and the inline measurements. The CMM is considered as
the more reliable measurement device. It is important to be aware of the
possible drift in the inline measurement machine and first and foremost use
it as a tool for detecting increased short-term variation.

The inspection data is monitored using Statistical Process Control (SPC).
SPC is a tool aimed at controlling and, hopefully, improving a process
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Figure 1.7: In the top of the figure the inspection point in question is encir-
cled. Below, CMM data for this point. There are 217 samples, where each
sample consists of three objects.

through statistical analysis of inspection data. More about SPC can be
read in Chapter 2.
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1.4 Finding root causes

Sampling, measuring machines and SPC-methods are tools for detecting
deviations and variations in a process. When a variation is detected, it
is essential to identify the cause of the problem. Sometimes the cause is
obvious. Sometimes finding the variation source is a very demanding and
time-consuming work, since variation propagates in a complex way during
assembly. Today, much of this work is based on experience and a good
process-knowledge. However, some problems may still be difficult to solve;
an illustration of this was given in Figure 1.4. Further, merely depending
on a small number of experienced problem-solvers makes the organization
vulnerable. The methods for root cause analysis (RCA) presented in the
following chapters are a set of tools for identifying fixture related causes of
variations. Very concisely, the first step in RCA is to find a relation between
variations in the P-frames of the parts and the resulting variations in the
inspection points of the final subassembly. Using this relation, variation in
inspection data can be translated to variation in one or more of the locators.

In Figure 1.8 a future RCA working procedure at Saab is outlined. If the
SPC chart indicates increased variation and the reason of this phenomenon
is unknown, then the user orders a root cause analysis. The sensitivity ma-
trix A, containing product and process knowledge, is a part of the analysis
and is calculated from a virtual model of the assembly. The RCA can be
based on inline data or CMM data. The inline data is quickly available and
is usually the first choice. However, since only a reduced number of points
are measured here, that may not give enough information for a RCA. In
that case, a RCA based on CMM data is performed. This gives usually a
satisfactory result that is the base of an action to reduce the variation in
the process. In some cases the method for RCA requires a modification to
suit the current case, like excluding inspection points that not reflect the
fixture related errors. RCA will be described more thoroughly in Chapter
3.

1.5 Geometrical variation
Geometrical variation in assembled products is a general problem in au-
tomotive industry. In this section, the causes and effects of geometrical

variation, as well as different possibilities to reduce and handle the effects
in different stages of the process development cycle, will be discussed.

10
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Figure 1.8: An outline of a possible working procedure at Saab for RCA.

1.5.1 Causes and effects of geometrical variation

Geometrical variation in parts and assembly process results in variation
in size, shape and position of subassemblies or final products. This may

11



Chapter 1. Introduction

lead to difficulties in assembling parts or products not fulfilling functional
and esthetical requirements. In Figure 1.9 examples of areas that can be af-

Ty

Figure 1.9: Geometrical variation can cause problems with cumber/caster-
angles and poor fit.

fected by geometrical variation are shown. To the left, variation in camber-
and caster angles can affect the driving characteristics of the car. To the
right, variation during assembly can give rise to non-nominal flush between
for example lamp and applica. Problems caused by geometrical variation
are often discovered quite late in the product development cycle, maybe
during pre-production or even when the product and the process are pre-
pared for full-scale production. A correction of the problem at this phase
is often very costly and time-consuming.

There are usually a number of different sources of geometrical variation
in key characteristics of the assembled product; variation in parts and as-
sembly process is thought two major contributors, see Figure 1.10.

Geometrical variation is controlled by locating schemes and by toler-
ances. The locating schemes describe how parts are positioned during as-
sembly and was described in the Section 1.2. The tolerances are allocated
with respect to assembly sensitivity, process variation and cost.

1.5.2 How to minimize the effects of geometrical vari-
ation

The principles of this section are based on the results within the 3DTM
project.

12
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Figure 1.10: Magor sources of variation in a Product Key Characteristic
(PKC) of an assembled product, Carlson et al. (7)

Variation

Figure 1.11: Geometrical variation and tolerance management in a devel-
opment cycle of products, Carlson et al.(7).

13
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The development cycle can be divided into three main parts; the design
phase, the verification phase and finally the full production phase, see Fig-
ure 1.11.

Ayiax=1 AyIAX<1

Xy
Ax x Ax x
sensitive robust

!
;

Figure 1.12: A robust design is characterized by the fact that its important
output characteristics are insensitive to disturbance, i.e. variation in input
parameters, Séderberg and Lindkvist (31)

During the first phase, the design phase, it is important to find a ro-
bust design concept. A robust design suppresses incoming variation, i.e.
the design makes the variation in the output less than the variation in
the incoming parts, see Figure 1.12 for an illustration. In order to find a
satisfying design concept, it is usually necessary to test different concepts
and evaluate their robustness and characteristics. One way of doing this
is using prototypes and full-scale models. However, this is expensive and
time-consuming. Further, it is not possible to try as many concepts as may
be desirable. Using a virtual model is a much more effective way of testing
different concepts. However, there are high demands on the software. It
must of course be user friendly and offer suitable analysis tools. Further, it
is interesting to examine the difference in perception of virtual and physi-
cal models. Wickman and Séderberg (37) showed that usually the physical
model is experienced as better than an equivalent virtual model, analysing
physical requirements.

Within the 3DTM research project, a software called Robust Design and

Tolerancing (RD&T) is developed. This software offers different types of
analysis of an assembly, like

14



Chapter 1. Introduction

e Stability analysis: Evaluates geometrical robustness and degree of
coupling.

e Variation analysis: Statistical analysis of variation in critical dimen-
sions.

e Contribution analysis: Ranking of variation contributors.

The analyses show how chosen key characteristics are affected by different
tolerances and perturbations in the locating scheme. These facilitate the
design of a robust concept and the allocation of tolerances with respect
to assembly sensitivity, process variation and cost. Using the contribution
analysis it is also possible to get a ranking list of the tolerances contribu-
tion to the variation in a chosen point. This ranking list is helpful if the
variation in a specific point must be reduced. These analyses are illustrated
on the assembly shown in Figure 1.13. It is a rear wheelhouse that is as-

Figure 1.13: The rear wheelhouse consists of five parts. The parts are
assembled in two stages.

sembled in two stages. In the first station three reinforcements (labelled
1,2 and 4) are put together with the wheelhouse panel (labelled 3). In the
next step, this subassembly is moved to another station. In this station the
subassembly is positioned using the same locators that were used to hold
the panel in the first station. The support for the parcel shelf (labelled 1
in the right part of the figure) is put together with the subassembly, and
finally the complete assembly is measured in an inspection station. Dur-
ing inspection the assembly is again positioned using the locators of the

15
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Figure 1.14: The position of the inspection point labelled “Meal}” is illus-
trated by an arrow.

wheelhouse panel. This assembly is analysed using the different kinds of
analysis available in RD&T. For the variation and contribution analyses
an inspection point called “Meal4”, located on the upper part of the parcel
shelf support, is utilized. The exact position of “Meal4” is illustrated in
Figure 1.14.

The stability analysis for the wheelhouse is shown in Figure 1.15. The
stability matrixes reflect the robustness and the degree of geometrical cou-
pling in the assembly. The matrix elements relate the input columns, the
P-frames, to the output parameters, the parts. A high value of a matrix
element indicates that the input P-frame has a high influence on the part
position. The value shown in the matrix is the root sum square (RSS)
value of the six individual points of the P-Frame. For stability analysis,
the only information needed is the nominal position of locators for parts
and fixtures. Therefore, this analysis is a usable tool in the early design
phase.

On the last row of the stability matrix shown in Figure 1.15, the degree
of robustness for the parcel shelf support is shown. The measured position
of this part is depending on the positioning of the wheelhouse in the in-
spection station, on the positioning of the subassembly from station one in

16
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Figure 1.15: Stability analysis, rear wheelhouse.

stage two when the parcel shelf support is assembled, and of course, on the
positioning frame for the part itself.

A variation analysis of the wheelhouse assembly is shown in Figure 1.16.
The variation analysis uses Monte Carlo simulation technique to analyse
variation in specified points. Tolerances for contacts between parts and
fixtures are chosen by the user. Figure 1.16 shows the simulation results
for the inspection point “Meald”, which position was illustrated in Figure
1.14. The specification limits for this inspection point are set to 0 = 1.25
mm. The variation analysis shows the mean value, standard deviation, ca-
pability index et cetera for the simulations. These results give an indication
on how well tolerance demands can be satisfied. In this case there are high
capability indices; C, = Cp, = 2.89, and these tolerances will most likely
not cause problems in production.

The result of the contribution analysis of the wheelhouse is shown in
Figure 1.17. The same inspection point as in the variation analysis is con-
sidered. The contribution analysis presents a ranked list of all points and
tolerances contributing to measure variation. This analysis may be used in
the work of optimising the selection of tolerances, and for trouble shouting
during production. In this case, the locator A2 on the panel is the major

17
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Figure 1.16: Variation analysis, rear wheelhouse.

contributor, since this locator give rise to 20.5% of the variation in this
inspection point.

RD&T and the different analyses available in the program are further
described by Lindkvist and Séderberg (24) and Soderberg and Lindkvist
(30).

When a satisfactory design concept is chosen, the verification phase
starts, see Figure 1.11 on page 13. During this stage, the design concept
will be confirmed through tests and different pre-production series. It is
important to keep this phase as short as possible. Today new car models
are launched frequently and a requirement for doing this is short verifica-
tion phases. Important activities at this stage are inspection planning and

18
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Support & parc..  B1 Local yta ain 0.0%
4 | i

Figure 1.17: Contribution analysis, rear wheelhouse.

measurement machine programming.

In the last phase in Figure 1.11 the production starts and during this
phase it is important to monitor and control the process in order to detect
offsets and variations, which may result in non-conforming products and
big costs. A suggestion of a system for detecting such problems is given in
Chapter 2. Of course, it is also necessary to identify the root cause of a
detected problem. Methods for finding root causes of geometrical variation
will be considered in Chapter 3.
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Chapter 2

A System for Acceptance
Quality Control

2.1 Introduction

Companies with complex production systems and products have often prob-
lems with process variation affecting the products key characteristics. Tra-
ditionally, a control chart is used to detect if the process is in statistical
control and therefore should be left alone, or if there are reasons for process
adjustments. However, some of this variation is very difficult to eliminate
at a reasonable cost. In this chapter we propose a quality system that
allows for trends in the processes as long as the produced items are within
specifications. Industrial data are used to illustrate the different charting
methods.

2.1.1 Outline

The outline of the chapter is as follows. A background to the topics dis-
cussed is given in Section 2.1.2. In Section 2.2 problems related to a system
for quality control are concidered. Methods proposed to solve those prob-
lems for different types of data are described in Section 2.3. This is followed
by a discussion about when to use an acceptance control chart instead of
a traditional chart in Section 2.4. Finally, the conclusions can be found in
Section 2.5. In the Appendix an overview of some frequently used control
charts and capability indices are given.
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2.1.2 Background

During the car manufacturing process, many parts are joined together.
The geometries of the resulting subassemblies are controlled by measur-
ing deviations from nominal values in a set of inspection points. Often,
many inspection points on each subassembly are utilized to give a good
understanding of the assembly process. The inspection data is grouped or
ungrouped.

The demands on the quality system are that the charts will be easy to
interpret and the same kind of chart will be used for all inspection points
belonging to the same category (grouped or ungrouped data). Further, the
estimates required will be calculated in the same way for all data belonging
to the same category. This is necessary since there is a great number of
inspection points to which the charts will be applied and it is far too time
consuming to find special solutions for every point. There are also many
different, users of the charts, and not all users are aware of the characteris-
tics of different estimates and charting methods.

In a typical process, there are trends and cycles that result in variation
in the mean value. Some of this variation is very difficult to eliminate at
a reasonable cost. This variation may correspond to seasonal variations in
temperature, different workers, different batches of raw material and also
some unknown factors. For each inspection point there is an upper spec-
ification limit (USL) and a lower specification limit (LSL). The tolerance
limits are product rejection/adjustment limits, so it is vital that the pro-
duced items are within the specified limits. As long as that is fulfilled, the
group means may be allowed to vary over time. Of course, it is always
good to keep the process in control and to improve the process. This is
illustrated by Taguchi’s loss function, see Figure 2.1. Taguchi (33) claims
that every deviation from the target represents a loss, and the size of the
loss is increasing with the size of the deviation. However, if the resources
are limited, the first priority is to produce items within the specification
limits. That means that under these circumstances, an acceptance chart
may be preferable over a usual control chart.

So, the traditional control charts might not always be the best choice
when the resources are limited. This issue, with the belonging questions
about what acceptance charts to use, is partially discussed by Woodall (38).
One of the methods discussed is pre-control. Pre-control is based on the
tolerance limits and means that the range of the tolerance limits is divided
into four parts of equal length. The middle two parts constitute the green
zone, the outer two parts are the yellow zone and the area outside the tol-
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Loss function
T
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Figure 2.1: Above: A usual way of thinking. All items within specification
are considered equal. Below: Taguchi’s loss function.

erance limits is called the red zone. The process is allowed to operate as
long as the inspection data do not fall into the red zone or into the yellow
zone too often. There is a range of sampling and decision rules to ensure
this. Woodall (38) among others, points out that the pre-control believers
promote the idea with a lot of exaggeration. However, a pre-control chart
gives no information about the statistical control of a process.

There are other methods beside pre-control that are based on the tol-
erance limits and can be used for controlling the mean value of a process.
These so called acceptance control charts may be used when the process
has a high capability. Consider a normally distributed variable with ex-
pected value p and variance o2. The idea is to allow the mean value, Z, to
vary over an interval (Liower, Bupper), Such as the fraction non-conforming
produced items is at most d, see Montgomery (25). Further, it is desirable
to have a probability « of a type I error, i.e. a false alarm. This is achieved
by using an upper control limit

z

UCL =USL — (Zs — ﬁ)a,
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and a lower control limit

Z
LCL =LSL+ (Zs — —=)o.
+ (Zs \/ﬁ)a
A quantity Z,o is a value such that p = 1— ®(Z,), where ®(z) is the value
of the standard normal cumulative distribution at the point z. By using
these limits the chart gives an alarm when the mean value is so close to a
tolerance limit that the expected fraction non-conforming exceeds 4. The

Figure 2.2: Positions of control and specification limits in an acceptance
chart for controlling mean value of a process, related to pypper aNd Lower;
the largest respective smallest permissible value of p. The notation o, =

o/y/n is used.

positions of the UCL and USL are illustrated in Figure 2.2.

Chang and Gan (9) use the same method as Montgomery, but express
the fraction non-conforming as a capability value. They test the method on
data from an integrated circuit assembly and calculate the power function
for a one-sided acceptance control chart.

Considering ungrouped data, an EWMA-chart is a better alternative

for controlling the mean value than the Z-chart, since the EWMA-chart
is creating a group-structure in data, making the chart more sensitive to
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small deviations. A brief overview of the EWMA-chart is given in the
Appendix. An acceptance control chart based on the usual EWMA-chart
is considered by Holmes and Mergan (15). The principles are the same
as for the acceptance chart for z. Using the same notations as before, the
process mean value, Z, is allowed to vary between pgyer and fiypper, such as
the fraction non-conforming produced items is at most 8. If the probability
of type I error is «, the control limits are given by

UCL=USL - Zso + Zyom,

and
LCL=LSL+ Zso — Zyom,.

The quantity o,, is the standard deviation of m, the weighted exponentially
moving average, and can be expressed as

Om = 4|20
m 2_p7

where o is the standard deviation of the originally variables and p is the
amount of weight put to the current value in the EWMA-chart. Holmes
and Mergan (15) illustrate the method using simulated data.

2.2 Problem

This section describes problems related to quality control and gives mo-
tives for a new system for acceptance control, based on as well traditional
control charts as the acceptance control charts introduced in the previous
section.

The manufacturing process is often quite complex with many sources
of variations. Since many of the causes of variation depend on long-term,
but recurring, external conditions, operators and other unknown factors
the data contains trends, see Figure 2.3 for an example. Those trends must
be taken into consideration when the quality control system is designed.

The terms within-group variation and between-group variation are used
to describe different kinds of variation for grouped data. The within-group
variation is the variation in each sample, while the between-group variation
can be seen as a factor determining the locations of the group means. In
Figure 2.4 the group means are plotted together with the individual obser-
vations. The sizes of the group ranges, illustrated for the first three samples
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Figure 2.3: The sample group means for a typical process. Deviation from
nominal value are measured

in the figure, are connected to the within-group variation. The group means
differ though more than what can be expected due to within-group varia-
tion. Those are namely also affected by the between-group variation caused
by external conditions, operators et cetera. If the data are ungrouped, the
corresponding terms short-term variation and long-term variation are used.

Another problem is that the inspection data in the automotive industry
are often of two different categories; ungrouped or grouped data. The un-
grouped data originate from inline measurements. Every produced item is
measured in the inline measurement machine as a step in the production.
The grouped data consists of samples of n items each measured offline in
coordinate measurement machines (CMM’s).

The reason for using both inline- and offline-inspection is that the two
approaches complement each other. The inline-measuring machine is fast
enough to measure every produced item and it gives therefore a very good
picture of the process. It is designed for detecting variations in the process
quickly. The precision, i.e. the repeatability, in the inline measurement is
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CMM inspection data
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Figure 2.4: The groupmeans are plotted together with the individual obser-
vations.

good. There may though occur long-term variation in the measurement
machine and the measured value may not be in agreement with the true
value, i.e. the accuracy is not so good. Therefore, the inline measurement
machine is best suited for controlling the short-term variation. The CMM
on the other hand, has a very good accuracy. The precision of the CMM
is also good. Since the CMM is used offline, there is also time to measure
more inspection points on each item then during the inline-inspection.

At Saab Automobile AB, the sample size is n = 3, and the samples are
usually taken once or twice a week. Each inspection point has an upper
and a lower tolerance limit, and today these tolerances are the basis for the
process control. The alarm limits for the mean value are set to 70% of the
tolerance limits. The same method is used for the range; the range must
not exceed 70% of the tolerance width. If these requirements are not met,
there is an alarm. These alarms initiate fault localization and possibly a
correction of the process.
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There are many arguments against process control based on tolerance
limits. Since the tolerances do not always reflect the characteristics of the
process, problems may occur. In all kind of process control, there are two
types of mistakes. The first one, the Type I error, is to take action when
the process has not changed. The second one, called Type II error, is to
not take action despite a change has occurred. The tolerance limits are
set due to functional and design requirements and of course, also due to
process performance. Despite this, the tolerance limits are not related to
the mean and variance of the process in such a way that the probability of
the different types of errors can be controlled. Nevertheless, the tolerance
limits are a very important factor in a quality control system.

Consider a control chart based on the tolerance limits. If the capability
of the process is low, the probability of type I error will be high. If an
already centered process is adjusted due to these false alarms, the process
will perform even worse and even more items outside tolerance will be pro-
duced. For a low capability process, a traditional control chart is the best
chart in order to analyse and improve the process.

On the other hand, when the capability of the process controlled by
using tolerance limits is high, the probability of type I is small and the
probability of type II error is high. A type II error is though preferable
to the type I error and might not be a major concern, as long as the pro-
cess is capable and produces conforming products. Actually, it might be
desirable to avoid alarms as long as the produced items are well within the
specifications, in order to cut down the costs. One way of handle this is
to use acceptance control charts, mentioned in the introduction. Such a
chart allows trends and variation, provided the produced items are within
specifications.

To summarize these thoughts, it would be desirable to have a system
for quality control that consists of two different types of chart. Traditional
control charts should be used to improve and control low capability pro-
cesses. This kind of chart helps bringing the process in statistical control
and can also be used as a tool for reducing trends and variations in the
process. For a high capability process on the other hand, eliminations of
these trends are not always economically justifiable. In those cases, an ac-
ceptance control chart is suitable, since it allows variation provided that
the produced items are well within specifications.
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2.3 Proposed methods

As mentioned, there are two different kinds of data, grouped and ungrouped
measurements. In the grouped data the group structure is utilized for
increasing the sensitivity of the chart. For ungrouped data some kind of
artificial group structure is usually created. Therefore, different charting
methods are used for these two categories of data. Further, charts for
controlling the mean value can be of two types; a traditional Z-chart if the
process has a low capability or an acceptance control chart if the process
capability is high. In this section all those different types of charts are
described. Range-charts for controlling the variation in the process are
also discussed for the different types of data.

2.3.1 Grouped data

For control of the mean value of the process, there are two different alterna-
tives, depending on the capability of the process. If the capability is low, it
is important to improve the process and avoid Type II errors. In this case,
a traditional control chart is used. If the capability is high, some trends
may be allowed, provided the produced items are within the specification
limits. In this case, some kind of an acceptance chart may be used.

Traditional control charts

This alternative is suitable for a process with low capability and is a tool
for improving the process.

The grouped data available for estimating the parameters of the process
consist of k samples of size n. In the examples, n = 3. Let x;; be the j:th
observation in the 4:th sample for 1 = 1,2,....,k and j = 1,2, ...,n. For each
group the sample group mean,

1 n
T; = ” Z Tij
Jj=1
and the sample group variations

2

(zij — Ti)
1

n
2=t
top—1+4
]:
2

are calculated. The within-group variation o,

of the group variances:
k
32
i=1

is estimated by the mean

2
Sw

| =
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Further, the total sample mean Z and the sample variation of the group
means, s%, is determined in the following way:

1 k
= — Ti
P

k

1 -
2 _ - =2
S5 =77 E (Z; — Z)°.

k—1

Kl

The estimated variation of the group means, s%, will contain contributions
from both within-group variation, o2, and between-group variation, 0%,
since

V(%) = 0% + 02 /n.

The process is controlled by a Z-chart and a range-chart. The control limits
of the Z-chart are usually given by

— Sw
CL=zx+3—.
z T
If it would be desirable to allow between group variation the following
control limits can be used, Wetherill and Brown (36),

CL:IEisSB.

By using these control limits as well within-group variation as between-
group variation are permitted. Using this kind of control limits allow for
trends, but unlike the acceptance control charts, the specification limits
are not taken into consideration. Therefore, this chart does not necessarily
alarm, even if the trends cause the products to be out of specifications.

The estimates should be based on data representing a satisfying part
of the process. It is necessary that the data is representative for the pro-
cess and covers a period long enough to reflect the behaviour of the process.

If this procedure leads to control limits close to, or even outside, the
tolerance limits the cause of this must be examined. There are two possible
reasons; one is that the process is not centred in the tolerance band and
the other is that the variation is too big compared to the tolerance width.
If the problem is due to offset, the consequences of this offset must be ex-
amined. If the offset does not affect the product negatively, it will usually
be accepted, and the tolerance limits will be updated. Otherwise, it must
be corrected. If the problem is due to variation, actions to reduce this vari-
ation should be taken. Of course, this problem may have been caused by a
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temporary deviation in the process and in such case it is not appropriate
to include these data in the parameter estimation of the control chart limits.

It is also necessary to control the within-group variation for a sample.
To do that a range-chart can be used. In the range-chart the group ranges
are plotted. The upper control limit is given by

UCL = D sy
and the lower control limit, if such one is used, is given by
LCL = D3sy.

The values of the constants D; and D, depend on n, the number of ob-
servations in each group, and can be found in for example Wetherill and
Brown (36). When n = 3, D; = 0.06 and Dy = 5.06. There is no relation
between specification limits and the range of a group. Further, the ranges
are not affected by trends or between-group variation.

Acceptance control chart for mean value

Another alternative for controlling the mean value is to use some kind of
acceptance control chart, if the process has a high capability. The benefit is
that alarms are avoided when the items produced are far enough from the
specification limits. The alarm limits for an acceptance chart, described in
the introduction, are based on the maximal fraction non-conforming units,
d, that can be tolerated. The fraction non-conforming corresponds to the
process capability. In the automotive industry C, > 1.33 is often used as a
target. This corresponds, as the following calculations show, to a fraction

non-conforming § < 6.61 * 107> if the process is centred, i.e. C, = Cp,
since USL LSL
R BT O 34133
o o
and
P{non — conforming} = 1—-P{LSL<X <USL}=
USL —pu LSL —p
R e B o

= 1-{2¢(3%1.33) — 1} = 6.61 % 107°.

This fraction of non-conforming items corresponds in a one-tailed distribu-
tion to Z5 = 3.82.
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The control limits for an acceptance chart for the mean value, described
in Section 2.1, are given by

Za

and 7
LCL =LSL+ (Z; — =%)o.
c SL + (Zs \/ﬁ)a

The probability of Type I error is determined by «, and a usual choice is
a = 0.0013. This value corresponds to Z, = 3. The standard deviation o
is estimated by the within-group standard deviation, s,,. The within-group
variation is used since the mean value is allowed to vary within an interval
(Hrowers Pupper), such that when g = pypper Or f = lyower, the fraction
non-conforming is §. The position of y is examined for each group and
for the observations in a specific group the variance is given by 2. When
using this chart, it is important that the variation o2 of the process is in
control, this is examined by using a range-chart.

When an acceptance chart is used, there is no alarm if the process is
out of control, as long as Lower < f < Pupper- This is a way to reduce
costs, since when p belongs to this interval the probability of producing a
non-conforming item is less then §. However, if p = fypper O 4 = Liower
the chart is designed to detect an increase or decrease of the process mean.
Hence, an alarm is always the result of the process being out of control,
on the other hand there is not an alarm every time the process is out of
control. In other words, the probability of Type II error is big when the
process mean is in the interval (Uower, iower), Decause then it is not de-
sirable with an alarm, since the fraction nonconforming units is very small.
But when the fraction non-conforming units increase, i.e. the capability
decreases, the probability of Type II error decreases. This is illustrated us-
ing a power function, see Figure 2.5. The power is defined as 1 — 3, where
B is the probability of Type II error, i.e. the power is the probability of
detecting a change in the process.

In Section 2.4 there are examples of as well traditional Z-chart as ac-
ceptance control charts.

2.3.2 Ungrouped data

The ungrouped data origin from an inline measurement machine, i.e. all
produced items are measured. Just as with the grouped data, it is possible
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Figure 2.5: Power function for an acceptance chart. When the capability
is high, the probability of an alarm for a change in the process is small.

to use traditional charts when the capability of the process is low and ac-
ceptance charts for controlling the mean value of high capability processes.

Data consist of a number of individual observations x;. The estimates
of necessary parameters are based on n observations.

Traditional control charts

To control the short-term variation in the process a moving-range chart is
used. In the chart the range of a small number of consecutive measurements
is plotted. The upper control limit is given by

UCL = D3 * s.

The constant D3 depends on the number of observations included in the
moving range, and is tabulated by for example Wetherill and Brown (36).
In order to control the short term variation, the moving range is usually
based on two successive measurements. In that case, D3 = 4.65. The
sample standard deviation, s, is calculated from data using a moving range
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method. This is done by calculating the moving ranges, R;, for groups of
size k, determine the mean range and then divide this number by a constant
depending on the value of k&, i.e.

_ Xk
~ #ranges

/dka

where d}, is a constant depending on the size of the moving ranges and can
be found in tables in for example Wetherill and Brown (36). Often, k = 2 is
used. By using k£ = 3 slightly more variation than what could be expected
in the moving ranges in the chart is permitted. If ¥ = 2, then dj, = 1.128
and if k = 3, then d; = 1.683.

It may also be desirable to use a chart for the mean value. However,
the main potency of an inline measurement machine is to control the short-
term variation in the process. If control of the mean value is required, then
some kind of moving average chart should be used in order to enhance
the sensitivity of the chart. An EWMA-chart is often a good choice, since
compared to an ordinary moving average chart, more weights are paid to
the last observations than to the earlier ones.

In an EWMA-chart
m; =px; + (1 —p)m; 1

is plotted. The constant p is the weight given to the most recent observa-
tion. A usual choice is p = 0.4. The control limits are given by

T+ A18.

If p = 04 is used, then A; = 1.545 for ungrouped data. Values of A;
for different values of p can be found in for example Wetherill and Brown
(36). The sample standard deviation, s, is calculated by the moving range
method. For the grouped data, we noticed that it sometimes may be de-
sirable to allow between group variation. For the ungrouped data this
corresponds to allowing-long term variation and the estimate of the stan-
dard deviation should in that case be based on all data. To calculate s? in
that case, the following formula is used:

Acceptance chart using EWMA

Just as with the grouped data, it is possible to use traditional charts when
the capability of the process is low and an acceptance chart for controlling
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the mean value of a high capability process. The benefit is that alarms
are avoided when the items produced are far enough from the specification
limits. The alarm limits for an acceptance EWMA-chart, described in the
introduction, are based on the maximal fraction non-conforming units, 4,
that can be tolerated. Just as in the case with the Z-chart the maximal
fraction non-conforming products, 4, is set to 6.33+x10~°, which corresponds
to capability of 1.33. The probability of false alarm, «, is 0.0013.

The control limits are given by
UCL=USL - Zso + Zyom,

and
LCL = LSL + Zs0 — Zoom,

Om = 4| L0
m 2_p7

and o is the standard deviation of the originally variables. The standard
deviation o is estimated by the moving range method described in the pre-
vious section. In Figure 2.6 are acceptance and traditional EWMA-charts
plotted for an inspection point with high capability. The acceptance chart
gives no alarms, since the plotted values are far enough from the specifica-
tion limits. The traditional chart alarms, indicating that the process is out
of control. However, in this case, the process being out of control does not
result in an unacceptable fraction non-conforming items.

where

2.3.3 Multivariate data

To control several related inspection points at the same time it may be
convenient to use a multivariate control chart. It is easier to only have one
chart, instead of one for each point, and the multivariate chart takes the
relationship between different inspection points into consideration. Fur-
ther, by using a multivariate chart the total probability of a type I error
is controlled. The disadvantage of a multivariate chart is that since it is
used to control all the inspection points at the same time, it is sometimes
difficult to identify the point or points that cause an alarm. Different kinds
of multivariate control charts are discussed in Chapter 3.

The p-variate inspection data vector is supposed to follow a p-variate
normal distribution N (u, X).
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Figure 2.6: EWMA-charts for a high capability process. The charts are
based on measurements of deviation from nominal geometry at one inspec-
tion point.

Multivariate capability indices

There are several different suggestions of multivariate capability indices.
Three of these indices are compared by Wang et al. (35). These are a
multivariate capability vector by Shahriari et al. (29), a multivariate capa-
bility index M Cp,,, by Taam et al. (32) and finally a multivariate capability
index M C, by Chen (10).

Naturally, all of these three indices have their advantages and disad-
vantages. Here, we have chosen to use the multivariate capability index
MCpm, by Taam et al. (32). The index is defined as the ratio between the
volume of R;, the modified tolerance region, and the volume of Ry, the
scaled 99.73 percent process region,

vol.(Ry)

M = .
Com vol.(Ry)

The modified tolerance region, Ri, is the largest ellipsoid centred at the
process target and completely within the tolerance region. Since data is
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normally distributed Rs is also an ellipsoid. The capability index is esti-
mated by

Q

~

Mcpm = )

o

where

& vol. (tolerance region) _ wol. (tolerance region)

P wol. (estimated 99.73% process region)  |S|V/2(xK)?/2(T(p/2) + 1)~1’

where K is the 99.73% percent quartile of a x? distribution. The denomi-
nator D is given by

A N e \Ta-lig 1/2
D—(1+n_1(X Ho)" STHX uo)) )

The quantity 1/ D takes values between zero and one and measures the
deviation from target. The closer 1/ Dis to one, the closer is the processes
to their targets. If the mean vector equals the target vector o, 1 / D equals
1 and accordingly M Cpm = C The quantlty Cp is interpreted just like
the univariate process capability, i.e. a value Cp = 1 implies that 99.73%
of the produced items are within the specification limits.

Multivariate acceptance control chart

The idea of a multivariate acceptance chart is analogous to the univariate
acceptance chart. The starting point is to decide an allowable region for
the mean vector of the p points, given an upper limit for the fraction non-
conforming produced items. Thereafter, this process area is transferred
into an allowable region for the mean value vector, given a type I proba-
bility . The tolerance region is usually formed as a hypercube, at least
when the specification settings are independent. This region must in some
way be transformed into the same shape as the process region, which is an
ellipsoid so the regions can be compared to each other. In the multivariate
capability index by Taam et al. (32) the tolerance region is transformed
to the largest ellipsoid completely within the tolerance region and centered
at the process target. Using this procedure as a starting point, it should
probably be possible to construct a multivariate acceptance control chart.
This area is though subject to future research.
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2.4 When to use an acceptance control chart?

A usual Z-chart gives with a high probability an alarm when the process
mean changes. If there is no alarm, the mean value is stable and the process
is in statistical control. An acceptance chart gives with high probability
an alarm if the process is out of control and the mean value is to close to
the tolerance limits. Another way of saying this would be to define a group
capability index, C?, = min{USL— AR LSL} i = 1...k, for every group.
Then the acceptance chart gives a.larm when the group capablhty index is
too low. It is important to note that the group capability index says noth-
ing about the future process performance, since the mean is allowed to vary.

Traditional control chart
0.4 T T T

oo i AN~ !
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0.05 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Group means

Acceptance control chart
0.5 T T T
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-05 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
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Figure 2.7: Above: A traditional control chart for the mean value. Below:
An acceptance control chart for the same data. The specification limits are
£ 0.5 mm.

In Figure 2.7 an example of control charts for mean value of a high capa-
bility process is shown. The upper plot is based on the traditional methods,
while the lower one is an acceptance control chart. The acceptance chart
gives no alarms since the process is far from the specification limits. The
upper chart indicates that the process is out of control. In this case, the
process being out of control is not regarded as important, since the process
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still produces items well within specifications, and the acceptance control
chart is the preferable chart here.

In Figure 2.8 the circumstances are reversed. In this case the process
has a low capability, and therefore the traditional chart is preferable. In the
upper plot, the traditional chart indicates that the process is out of control.
The reasons of this should be examined. Since the capability is low, the
acceptance control chart in the lower part of the figure is not suitable.

Traditional control chart
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Figure 2.8: Top: Traditional control chart for an inspection points with
Cp = 2.76 and Cp, = 0.20 The specification limits for this point are + 0.9
mm. Below an acceptance control chart for the same data.

The question is when to use traditional charts and when to use accep-
tance charts. At some point the control limit for a usual control chart and
the control limit for an acceptance control chart coincide. This point can
be expressed as a certain value of the capability of the process. The value
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is determined assuming min(USL — u,u — LSL) = USL — ;

UCLgcceptance = UCLg
USL—(Z(;—%)U _ u+3%
LS{;_M = %—}-Za—%
Ce = %+%_f/‘%.

Using n = 3, Zs = 3.82 and Z, = 3 this gives Cpp = 1.27. If the value of
the adjusted capability index is below this value a usual Z-chart should be
used. Otherwise, an acceptance chart is preferable.

It would also be possible to combine these two kinds of charts if the
capability index C, > 1.27 and the adjusted capability index Cp, < 1.27,
by using a modified lower control limit and a usual upper control limit if
min(USL — p,u— LSL) = USL — p and vice versa.

2.5 Conclusions

In a typical process in automotive industry, there are trends and cycles
causing variation in the mean values. Some of this variation is very diffi-
cult to eliminate to a reasonable cost. For each inspection point there are
an upper specification limit (USL) and a lower specification limit (LSL),
and sometimes it may be desirable to allow the variation in mean value as
long as those specifications are fulfilled. The specifications can be fulfilled,
despite the variation, if the process has a high capability. A low capability
process on the other hand, must be improved, to avoid products out of
specifications.

An overview of the different charting methods is given in Figure 2.9.
Here the relation between what kind of data, process capability and what
charts to use for controlling mean and variance of process are illustrated.
The different methods were described and the question about when to use
an acceptance chart instead of a traditional chart was also discussed.

If resources are unlimited, the ideal is perhaps to use some kind of tra-
ditional chart in order to analyse and improve the process. Unfortunately,
this is not often the case, and therefore the system for quality control de-
scribed in this chapter may be a way to improve processes to a level where
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Grouped Data Ungrouped Data

High Capabhility Low Capability High Capahility Low Capability
| 1 L] 1

Acceptance chart Traditional chart Acceptance chart Traditional
for mean Formean for EWMA EWMA-chart
& & & &
Range-chart Range-chart Moving range-chart Moving range-chart

Figure 2.9: An illustration of the different charting-alternatives.

the items produced are within specifications, and to control that this level
then is remained.
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2.6 Appendix - Frequently used control charts
and process capability

A control chart consists of a statistic, which is plotted in the diagram for
each measurement. If the statistic plots outside the calculated values called
control limits, there are assignable causes and the process is considered to
be out of control. This means that the process is believed to have changed.
The probability that the statistic plots outside the limits, despite the pro-
cess remains in control, and causes a false alarm is denoted . A common
choice is @« = 1% or a = 0.1%.

To control the mean value of a process an Z-chart can be used, Wetherill
and Brown (36). This chart is of Shewhart-type and is probably one of the
most frequently used control charts today. This method assumes that the
distribution of the plotted data is approximately Normal and uses the fact
that most of the dispersion is included within +30 from the mean. The
upper control limit (UCL) and the lower control limit (LCL) of the chart
are given by

UCL = p+ 30, and LCL = p — 30,

where o, is the standard deviation of the group mean, i.e. if the standard
deviation within a group of size n is o, then g, = 74, /4/n. The expected
value, u, can be estimated by the mean Z.

Other methods used to control the mean value of a process are cumula-
tive sum procedures (CUSUM) and exponentially weighted moving average
(EWMA) charts. These procedures are especially useful to detect small
shifts. In a CUSUM chart the cumulative sum, S,, of the observations
T1,Zs3, ... is plotted, i.e.

Sp =81+ (mn - T),

where So = 0 and T is a target value, often the mean is used as target.
In the CUSUM chart a so-called truncated V-mask is generally used. An
out of control signal is given when the arms of the mask cross the previous
trace of CUSUM values.

The EWMA chart is basically formed by determination of a new moving-
average at each sampling point by calculating a weighted average of the
new value and the previous moving-average. The moving-average, m;, is
calculated using the formula

m; = px; + (1 — p)m;_1
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where p is the amount of weight put on the current value. In an EWMA
chart only action limits are used, and they are placed at yu + A16., where
A, is a tabulated value, depending on the group size.

The dispersion of a process can be controlled by using a s- or r-chart.
The procedure is similar to the construction of a Z-chart. The standard de-
viation (or range) of each group is plotted and the control limits in this case
are given by o, times a constant, see for example Wetherill and Brown (36).

The capability index of a process is reflecting the process’s ability to
produce items within the specification limits. The capability index, C), is
a comparison between the specification width and the width of the distri-
bution. For a normal distribution 99.7% of the distribution is covered by
60 and the process capability index is defined by

_ USL-LSL

C 60

Usually, C, > 1.33 is recommended. A high capability process may still
produce many non-conforming items if the mean is not appropriately cen-
tred. Therefore, another capability index sometimes called the adjusted
capability index, Cpy, is defined,

min{USL — p,n — LSL}
30

Cor, =

The definitions of the indices above are both based on a normal distribution
assumption. Further, the process must be in control. Otherwise, the indices
cannot be used as a prediction of the process performance. The indices can
be calculated no matter what distribution the data have. However, if the
indices will be used to predict the process performance it is crucial that
the process is in control, otherwise the only information given is what the
process performs at the moment when the data is collected.
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Chapter 3

Multivariate Quality
Control and Diagnosis

3.1 Introduction

In the auto body assembly process, fixtures are used to position parts dur-
ing assembly and inspection. Geometrical variation in parts and in the
assembly process results in variation in size, shape and position of the final
product. This may lead to difficulties in assembling parts or products not
fulfilling functional and esthetical requirements. Geometrical variation is
controlled by locating schemes and tolerances. The locating schemes de-
scribe how parts are positioned during assembly. The tolerances are ideally
allocated with respect to assembly sensitivity, process variation and cost.

Parts and subassemblies are measured many times during the manufac-
turing process in order to detect offsets and variations as soon as possible.
In order to use data in an optimal way, statistical process control (SPC)
may be used. It is a statistical analysis of inspection data aiming at con-
trolling and, hopefully, improving the process. There is also a multivariate
equivalence of SPC, the namely the MSPC suited for simultaneous analyse
of data from several inspection points.

If an offset or variation is detected, it is of course desirable to find its
root cause. For example bad raw materials, worn out machines or fixture
faults can cause variation. But a major part of all root causes are due
to fixture faults, according to an investigation performed by Ceglarek and
Shi (8). In this chapter, methods for MSPC and methods for diagnosing
variation in fixtures by using process knowledge and inspection data are
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considered.

There are many different methods used in multivariate quality control.
The purpose of this chapter is to illustrate and compare some of these
methods by applying them to given data sets, collected from industrial
case studies. The procedures for quality control are then put together
with methods for fixture fault diagnosis. Different methods to diagnose the
fixture or fixtures causing the error are illustrated using the same data sets.

3.1.1 Outline

This chapter is outlined as follows. In Section 3.2 the two case studies are
presented. The methods described in subsequent sections will be applied
to the data from these case studies.

In Section 3.3 different kinds of multivariate control charts are consid-
ered. Two special methods, aimed for detecting fixture related faults are
also illustrated. For each type of chart the theory of the chart is described
and thereafter the chart is tested on data from the case studies.

When a process is found to be out of control, it is obviously of main
importance to find the root cause of the erroneously state. This topic is
discussed in Section 3.4. The methods are demonstrated in the same way
as in Section 3.3; the description of each method is followed by a test on
data from the case studies.

Among the methods discussed in Section 3.4 one of the techniques are
tested further on an additional case study. The assembly in the case study
is adjusted in accordance with the results of the RCA. The assembly, the
analyses and the results of the adjustment are described in Section 3.5.

Finally, in Section 3.6 the different methods and techniques for quality
control and root cause analysis are discussed and compared.

3.2 Data and models

The methods outlined in the following sections will be applied on two case
studies. The assemblies and the corresponding measurement data are pre-
sented in this section.
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3.2.1 Case study 1

The first case is an assembly consisting of two parts called outer side panel
and doorframe. The parts can be seen in the top of Figure 3.1. This assem-
bly is only analysed in z— and z-direction, since the assembly is not rigid
in the y-direction, which is a necessary condition for some of the diagnosis
methods considered in Section 3.4. A fixture is used to position both parts.
In Figure 3.1 the locators in zz-direction are marked with black triangles.
Both parts are fixed in z-direction using a pin/hole contact (labelled B1/C)
and a pin/slot contact (labelled B2). The pin/hole contacts are also used
for positioning the parts in z-direction. A pin/slot is a pin placed in a slot,
i.e. an oval hole. Therefore the part is only restricted in one direction using
this kind of locator. A pin/hole locator restricts the part in two directions.

After the positioning, the parts are welded together. When the assem-
bly is measured, it is fixed in zz-direction using the pin/hole contact on the
doorframe (B1) and the slot/pin contact on the side panel (B2), as shown
in the middle part of Figure 3.1.

Four inspection points are used, marked by arrows in Figure 3.1, and
three of these points are measured in z-direction as well as the z-direction.
The fourth inspection point is only measured in z-direction.

The inspection data consist of 217 groups, where each group contains
measurements from three consecutive cars. The data contain trends, see
Figure 3.2. These trends may partially be caused by fixture faults, but
if there are fixture faults causing variation, these faults will cause within
group variation as well. Therefore, it is possible to estimate the variation
caused by the fixtures by concentrating on the short-term variation only.
The trends are therefore eliminated and the estimate of the covariance ma-
trix is based on the within group variation.

The measurements are denoted x;;, i = 1,2,...,m and j = 1,2,...,n,
where x;; is a vector consisting of inspection data for p inspection points
on the jth item in the ith group. Here, m = 217 and n = 3. The n
observations in each group are put together in the group mean,

n
_ 1
r; = — E Lij.
n < ’
Jj=1

The inspection data can be decomposed into an overall mean, p, a group
effect, T;, and a error component, €;;, i.e.

Tij = B+ Tit €,
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I

Inspection station

Figure 3.1: Top: The side panel assembly consists of the door panel and the
outer side panel. Middle: The assembly is positioned in xz-direction using
the locators labelled B1 and B2. Bottom: The assembly is measured in four
inspection points.

and the covariance matrix of the data can consequently be expressed as the
sum of the between group variation, Y., and the within group variation,
Y, i.e.

Y=3,+%.
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Figure 3.2: Top: The original data from inspection point 2 in x-direction,
side panel assembly. Bottom: The same data but with the trends eliminated.

As mentioned before, the variation caused by the fixtures can be estimated
by the within group variation, .. To eliminate the trends, the group mean
is subtracted from each observation in every group,

Zp =x;j — &, wherer =1,2,...,mn,

This procedure gives m x n measurements without trends and the p-variate
vector Z = 0, so the within group variation can be estimated as

. 1 mn
3 = ) D (zn) (2" (3.1)

r=1

3.2.2 Case study 2

The second case study deals with an assembly where a rear bumper is
joined with a vehicle floor, see Figure 3.3. The bumper is in yz-direction
positioned by a fixture, using the locators labelled B1, B2 and C, and in
z-direction by the contact (the contact points are labelled A1, A2 and A3)
with the floor.

To monitor the assembly process 14 inspection points on the bumper
are measured after the two parts are joined. During inspection the locators
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Figure 3.3: The bumper and floor are assembled. Finally 14 points on the
bumper are measured.

of the floor are used to position the assembly. Hence, inspection points on
the floor, if any, will not show any assembly variation even if the floor was
incorrectly positioned during assembly. This variation will on the other
hand be observed in the inspection point on the bumper. Therefore, the
assembly process can only be monitored using inspection points on the
bumper. The inspection data are, unlike case study 1, not arranged into
subgroups. The data consist of 36 measurements of each inspection point,
see Figure 3.4. It can be seen from the figure that there are considerable
changes in the process after 16 measurements. There is much more variation
in measurement 17 to 36, than in measurement one to 16. It is known that
this variation is due to a variation in the contact between the bumper and
the locator controlling translations in y-direction. That knowledge make
the case study very suitable for testing different methods for RCA, since
the results can be compared to this information. The case study is also
well suited for testing and evaluation of MSPC-methods.
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Figure 3.4: Inspection data for 36 assemblies in 14 inspection points.

3.3 Multivariate Statistical Process Control

In order to improve and maintain the quality of a product it is important
to detect any changes in the process as soon as possible. There can be
various causes of extra variation in a process. One of these possible reasons
is fixture failure and in this section, an overview of methods to detect this
type of variation is given. In Section 3.3.1-3.3.4 general methods to detect
variation and offsets in the process are given, in Section 3.3.5 and Section
3.3.6 special methods designed to detect variation caused by fixture faults
are considered.

The methods for statistical process control can be divided into univari-
ate and multivariate procedures. The univariate methods are aimed at
controlling measurements of one quality variable or inspection point. To
control several related points at the same time it is convenient to use a
multivariate control chart, and it is this kind of charts that is considered
in this chapter.

A control chart consists of a statistic, which is plotted in the diagram
for each observation, and corresponding control limits. If the statistic plots
outside the control limits, the process is assumed to be out of control, and
this implies that the process has changed. The probability of false alarm,
a, i.e. the probability that the statistic plots outside the limits despite
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the process remains in control, is depending on the significance level of the
control limits. A usual choice is @ = 1% or a = 0.1%.

Since a multivariate control chart is used to control all the inspection
points at the same time, it is sometimes complicated to identify the point or
points that cause an alarm. In the regression adjustment method and the
self-organizing map method, considered later in this chapter, this problem
is partly solved. There are also many other methods that deal with this
question, see for example Runger et al. (26), Jackson (19) and Hayter and
Tsui (14).

3.3.1 T?-chart

One of the most frequently used multivariate control charts is the T?-chart.
It is used to control the mean value of p inspection points. It is also sensi-
tive to increased process variation.

The statistic
Xt = (& — o) Bg (& — o),
where p is a p x 1 vector of in-control means and Xy is a p X p in-control
covariance matrix, follows a x2-distribution with p degrees of freedom, see
e.g. Montgomery (25). When the true population parameters are not
known, the following statistic is used to form a Hotelling’s T'? control chart:

T? = n(z; — 3)7 S~ (& — &).

This statistic was developed by Hotelling (16). Alt (2) showed that T2
(times a constant) follows an exact F-distribution, and the upper control
limit (UCL) is therefore given by

pim+1)(n—-1)

L =
ve nimn—m—p+1)

a,p,mn—m—p+1,

where n is the number of observation in each sample, m is the number
of samples taken and F, p mn—m—p+1 is the inverse of the F' distribution
function with p and mn —m — p+ 1 degrees of freedom, at the value of a.
If the sample mean X and the sample covariance matrix S are estimated
from a relatively large number of samples (at least 20 or 25) it is customary
to use xi’p as an upper control limit on the Hotelling T2 chart.

Test on data

When using the data from the side panel assembly, with p = 7 inspection
points, we concentrate on controlling the within group variation, so ¥, from
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Equation (3.1) on page 49 is used instead of S. In Figure 3.5

T = (2757 (21)
is plotted for i = 1,...,651. Here, X3 o; 7 is used as an upper control limit.
There are several observations above the control limit, so the process is said
to be out of control. Since «, the probability of type I error is chosen to be
0.001 the expected number of false alarms is 0.001 * 651 = 0.651 when the
process is in control.

T2~chart
70 T

60+ . : : 4

50k . : : 4

a0t 4

20 A

‘ 13 ‘ o [ 4
100 200 300 400 500 600
Measurement No

Figure 3.5: Multivariate T?-control chart based on within group variation
for side panel assembly.

The method is also applied on the bumper assembly data. Since the
process is in an unacceptable stage during measurements 17 to 36, these
data are not included in the estimates of the parameters. The multivari-
ate T2-chart, see Figure 3.6, shows a considerable change in measurement
17. However, the covariance matrix for the 14 inspection points is nearly
singular. This fact makes the T2-values after the 16th measurement very
big. Often, a principal component analysis is recommended for this kind
of data. That method is considered in the next section.

This example shows that the T?-chart is an effective tool when it comes

to detect changes in a process, especially when the changes affects several
inspection points.
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T?—chart for bumper assembly
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Figure 3.6: Multivariate T?-control chart, bumper assembly

3.3.2 Principal Components and SPE

Principal Component Analysis (PCA) can be used to control a process as
well as for diagnosing sources of variation, which is considered in Section
3.4.2.

The idea of PCA is to form a set of new variables, which are linear com-
binations of the old ones. The new variables, the principal components, are
independent of each other. These principal components display different
amounts of variance and usually, the variance of some of the components
will be so small that they can be considered negligible. Therefore, the vari-
ation in the original variables can be described by a smaller number of new
variables. The general objectives of PCA are reduction and interpretation
of data.

In short, the PCA is performed by computing eigenvalues and eigenvec-
tors of the covariance matrix, X, of the original variables. An eigenvalue,
A;, is a root of the characteristic equation

[ -NI=0
and a the corresponding eigenvector is a non-zero vector v;, satisfying

2’0,’ = )\,”Ui.
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The eigenvalues and their corresponding eigenvectors are sorted in order of
size. The principal components, Y, are formed in the following way

Vi=vlX,i=1,2,..,p
where ¥, the covariance matrix of X, has eigenvalues
AL 2> A2 2> 2 Ay,

with corresponding eigenvectors v;) with unit length. Often, a few of the
principal components contain the main part of the total variance in the
population. The ¢th principal component, Y ;, contains

i

100
5 VD VTR

percent of the total variation. If the major part of the variance is contained
in the first k principal components, then these components may replace the
p original variables, without loosing too much of the information. To de-
termine k, it is possible to perform a y2-test, see Jackson (18).

A more elaborate discussion of principal component analysis will be
found in Johnson and Wichern (21).

To control the process using PCA the statistic
T2 (i) = (X; - X)"PPTs'PPT(X; — X)

pca
is used, see Jackson (20). Here, P = [vi|va]...|vg] is the matrix of the
first k eigenvectors. The statistic is x2-distributed and the upper control
limit is given by Xi(a). The k principal components used span a subspace
containing the variation described of these principal components, and the
T2, ,-statistic is used to control the quantity of this variation. If the nature
of the variation changes, for example there is increased variation outside
the subspace spanned by the principal components, the control diagram
does not detect that. This means that there is need for a chart controlling
the size of the residual, i.e. the distance between an observation and the
subspace, see Figure 3.7 for an illustration of the residual. Since PPTx
is a projection of an observation @ on the subspace, the following statistic
can be used:
SPEy., = (x — PPTz)" (x — PPTx)

According to Jackson (20), the SPE statistic is )-distributed and the con-
trol limit is given by

Qo = d1(ca Y ifzh% ; ¢2h°(g; “D yd
1 1

’
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Figure 3.7: An observation (*) plot outside the principal component sub-
space. The SPE,.,-statistic measure the distance between the observation
and the principal component subspace.

where ¢, is the inverse of the standard normal cumulative distribution
function,

P 14 P
1= N, b= D> A, gs= Y N
i=h+1 i=h+1 i=ht1

and

_ 2¢1¢3
ho=1 3¢% .

Test on data

In Figure 3.8, the T}, and SPE,,-statistics for the side panel assembly
are plotted. No between group variations are included, i.e. the PCA is
based on Y. The matrix P consists of the three first principal component
vectors, P = [v;|va|vs], and these three together contain 86% of the total
variation. The UCL is given by x2(0.001).

This chart gave some fewer alarms compared to the usual T2-chart, used
in Section 3.3.1. The reason for this is that only 86% of the total variation
is included in the principal components. Despite this, there are indications
that the process is out of control. The usual T2-chart alarmed five times,

while the T2, -chart alarmed three times.
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Figure 3.8: On top a Tgca—chart and below a SPEpc a-chart for the side
panel assembly.

The method is also tested on the bumper assembly, and the result can be
seen in Figure 3.9. The mean value and the covariance matrix are estimated
from the first 16 measurements. The chart gives an alarm in measurement
19. The SPE-chart gives an alarm as well, which indicates that the variation
no longer is contained in the subspace spanned by measurement one to 16.
In this case, the fixture related fault caused an increased variation after the
16:th measurement. But the fault also implied a different kind of variation
compared to the one spanned by the first 16 measured objects, and that
causes an alarm in the SPFEp¢ 4-chart. When comparing this chart to the
usual T2 chart a major difference is that the increase after observation 16
is much more moderate when PCA is used. That is because the problem
with the almost singular covariance matrix is avoided using PCA.

3.3.3 Regression adjustment

Regressing one variable on all the others and then control the regression
residuals is an approach for MSPC, considered by Hawkins (12). In regres-
sion adjustment separate charts for controlling mean value and variation
can be used, which may be advantageous. The method is especially well
suited when only a shift in some of the variables is expected. This is usually
not the case if the error is fixture related, since a movement in one locator
often affects many inspection points, but the method is nevertheless tested
on the case studies. An overview of the method is also given by Mont-
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Figure 3.9:  On top a Tho 4-chart and below a SPEpca-chart for the
bumper assembly.

gomery (25).

The residuals, r; = X — X;,i = 1,...,p, are calculated for each in-
spection point ¢ using a usual multiple linear regression for each inspection
point, i, ¢ =1,...,p, i.e.

i

The standardized residual of the regression of one variable on the other
variables will follow a N(0,1)-distribution when the process is in control.
Therefore, the control charts are similar to univariate control chart. But
since the regression residuals are plotted the correlation between different
variables is taken into account.

Test on data

The regression analysis for the side panel assembly is based on the mea-
surements with removed trends, i.e. z;, 4 = 1,...651, is considered. The
residuals are controlled by an EWMA-chart, see Figure 3.10, and a moving
range chart, see Figure 3.11. The EWMA-charts give only a few alarms,
while the moving range-charts signals more often. This indicates that the
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Figure 3.10: Regression adjustment case study 1, EWMA chart for control-
ling the regression residuals.

major problem in the side panel assembly is too much variation, not shifts
in the mean value.

The regression adjustment is also applied to nine of the inspection points
on the bumper assembly. In this case it is known that the major problem
is caused by increased variation after measurement 16. The residuals are
therefore controlled with a moving range chart, see Figure 3.12. The num-
bers of alarms are not increasing distinctly after the 16:th measurement. A
reason of that may be that the root cause affects several variables, not only
one or two. These kinds of charts perform best when only one variable is
likely to be affected by the variation.
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Figure 3.11: Regression adjustment case study 1, mowving range chart for
controlling the regression residuals.
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Figure 3.12: A moving range chart of the regression residuals, bumper as-
sembly.
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3.3.4 Self Organizing Maps

A Self Organizing Map (SOM) is a special type of artificial neural network
(ANN) that can be used for multivariate process control and in some cases
also for fault identification. A neural network is an adaptive model for
non-linear multivariate data. It can learn from the data and generalize
the things learned. An ANN consists of a number of neurons in different
layers. Each neuron has an individual weight vector and all neurons have
connections to other nodes. There are two different kinds of ANN; the
supervised ANN and the unsupervised ANN. In supervised learning the
system directly compares the network output with a known correct or de-
sired answer, whereas in unsupervised learning the desirable output is not
known. ANN is studied by for example Haykin (13).

The SOM was developed by Kohonen (23), and is one of the most pop-
ular network models. It is based on unsupervised, competitive learning. It
provides a topology preserving mapping from high dimensional input vec-
tors to a low dimensional (usually two dimensional) grid of neurons. Each
neuron is represented by a weight vector of the same size as the input vector.

The SOM is trained iteratively, Ahola et al. (1). In each step the
Best Matching Unit (BMU) for the input vector is found by comparing the
input vector, x, with the weight vector, m, of every neuron in the net. The
neuron closest to the input vector wins, i.e. if the BMU is labelled m.,

llz —mc|| = min{[|lz —m;][}.

Usually, the Euclidian norm is used. The weights of the BMU as well as
the weights of the neighbours of the BMU are updated to be more similar
to the input vector,

m; = m; + at)hei(t) (@ — m),

where «(t) is the learning rate and h; is a neighbourhood function around
the winner unit ¢. Both the learning rate and the neighbourhood function
are decreasing function of time. By this procedure the net is formed to
estimate the distribution of the input data.

Ultsch and Siemon (34) use a unified distance matrix (u-matrix) to visu-
alize the structure of a SOM. The mean difference between a neuron and its
neighbours is calculated. The result of these calculations is presented using
a two-dimensional grey-scale picture. A dark area can for example mean
that there are small differences between the neurons in the region, while
a bright area means that the neurons in that region are not very similar
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to each other. By this procedure the dark areas can be identified as clusters.

If the SOM is trained on data from the normal operation state as well as
on data from different erroneous states the clusters corresponding to these
faulty states can be labelled with the fault type or even better, the root
cause of the fault.

After the SOM is trained then the net can be used for process control.
The inspection data vectors are fed in to the net and the BMU is identified.
When the BMU is a node labelled "undesired state" the process is out of
control. Plotting the trajectory of the BMU for each measurement vector
can be a way of monitoring the process. Since the undesired states are
labelled with root causes this procedure may help in fault detection.

If the SOM is trained using measurement vectors describing the normal
state of the process only, then the net is forming a mapping of the "normal
operation" input space. In order to detect a faulty situation the quantiza-
tion error can be studied, Ahola et al. (1). The quantization error for unit
i, ¢; = \/ > k1 (@k —m4)?, is the distance between the input vector and
the BMU. A large quantization error implies that the process no longer is
in the "normal operation" space. This method gives no information of the
root cause of the fault.

Test on data

When it comes to applying SOM to data in order to perform process control
the results seem to be highly dependent on the number of nodes chosen,
what subset of the data that are used for training and so on. Perhaps,
SOM is best suited for use by an expert in the area, who can analyse those
questions and find the appropriate settings.

Having this in mind, the method is tested only on the bumper assembly.
The net is trained using measurement one to 16, i.e. data representing the
normal state of the process are used. These data are also used to estimate
the mean and standard deviation of the process in order to standardize
data. The measurements used for calculating the quantifization error are
not included during the training phase. Usually a SOM is supposed to be
trained on a much larger data set then the one used here, but still, it gives
an idea of how the SOM works.

In Figure 3.13 is the quantization error plotted. The first four bars is the
quantifization error for data before measurement 16, while the remaining
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ones are the quantifization errors for data after the 16:th measurement. The
quantifization errors obviously increase after measurement 16, indicating
that the process is no longer in the normal operation state.

Quantification error

1 2 3 4 5 6 7 8 9
Observation No

Figure 3.13: Quantization error for a SOM for bumper assembly. The first
four bars correspond to observations before the fixture failure occurred, while
the remaining five bars correspond to observations after that fault.

3.3.5 Fixture failure index

In this section, as well as in the following one, special methods for exam-
ining the occurrence of fixture faults are considered.

Carlson et al. (4), introduce a fixture failure index in order to deter-
mine if a fixture failure is present. To calculate this index the sensitivity
matrix, A, must be known. The sensitivity matrix describes the connection
between a displacement in the locators and the resulting displacement in
the inspection points. This means that a displacement, d, in the inspection
points can be expressed as

d = A6,

where ¢ is a small displacement in the locators. The matrix A is calculated
analytical or numerical, see Carlson and Soderberg (5).

In order to calculate the fixture failure index the observations are split
into two orthogonal subspaces, the failure subspace and the noise subspace.
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The failure subspace contains the fixture errors and the residual errors,
and the noise subspace contains no fixture errors. A measurement x can
accordingly be written as

x = U, U %+ Up_, UL x,

where U, is an orthonormal basis for the r-dimensional column space of
the sensitivity matrix A and Up,—, is an orthonormal basis for the (p — r)-
dimensional null space of AT.

This decomposition makes it possible to calculate the fixture failure
variation index, ¥, by comparing the amount of variation in the failure
subspace with the total variation;

- Trace(U, ULS, U, UY)
B Trace(X,)

A value of ¥ close to one indicates a fixture fault. When there is no
fixture fault variation, the expected value of ¥ is r/p.

Since an estimate of the covariance matrix must be used, an uncertainty
in the calculations arise. This uncertainty is taken care of by introducing
an approximate confidence interval, derived by Carlson et al (4). The
confidence interval for the fixture failure variation index is, when a = 0.05,
given by

& +1.96V72 where

(1 — ¥)2Trace(UT S, U,)* + @QTYace(Ug_rSzUp,T)2
(n — 1)(Trace(S;))? '

72 =2

Test on data

In Figure 3.14 the variation index, ¥, is plotted for the side panel assem-
bly. The index is calculated for each group of observations using a moving
estimate of the within variance-covariance matrix over seven groups.

If there is no fixture fault the expected value of the index is r/p, where
r is the rank of the sensitivity matrix A and p is the number of inspection
points. This value corresponds to the horizontal limit in Figure 3.14. In
Figure 3.14 the fixture failure index and the 95% confidence interval are
plotted. The index is based on the within group variation, i.e. S, = X..
The index indicates that a fixture failure may be present.
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Figure 3.14: Fizture failure variation index, side panel assembly.

This method is also applied on the bumper assembly. Since the data is
ungrouped the covariance matrix is calculated by a moving estimate. The
index is above the limit for all groups, see Figure 3.15. The index is even
closer to one after the 16:th measurement. The increased variation after
measurement 16 is consequently probably due to fixture faults. This con-
clusion is in accordance with the information known; there is a noticeable
fixture fault in measurement 16 to 36.

3.3.6 Fixture failure subspace chart

To control the variation that originates from the fixtures, the amount of
variation in the fixture failure subspace can be studied. The fixture failure
subspace is spanned by U,., the orthonormal basis for the r-dimensional
column space of the sensitivity matrix A. The vectors that span A can be
collected into the matrix P, and the same method as in Section 3.3.2 can
be used by considering the statistics

T]giwture =(z— i:)TP-PT271PPT(33 - ),
and

SPEfz'zture = (ZB - PPTw)T(-'E — PPTm)
The control limit for the T2

fizture
control limit is not yet developed.

-chart is x2(a). For the SPE-chart a
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Figure 3.15: Fizture failure variation indezx, bumper assembly.

Test on data

In Figure 3.16 the T#%;,,,,,.-statistic for the outer panel assembly is plotted.

As a control limit x2(0.001) is used. The SPEj;ztyr.-statistic measure the
amount of variation that are not contained in the fixture failure subspace.

The chart in Figure 3.16 is based on measurements with the trends
eliminated, i.e. z;,¢% = 1,...,6501. The chart indicates that there is too
much variation in the fixture failure subspace.

In Figure 3.17 the Tfmwe is plotted for the bumper assembly. The
chart alarms before measurement 16 (i.e. before the known fixture related
error) and indicates, just like the fixture index, that there are some fixture
related errors in measurement one to 16 as well. After measurement 16
there is a considerable change in Tfmwe and it is obvious that there is
increased variation in the fixture failure subspace.
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Figure 3.16: T]%imtm,e— and SPEf;ziure-chart to control the variation in the
fixture failure subspace, side panel assembly.
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Figure 3.17: T]%imtm,e— and SPEf;ziure-chart to control the variation in the
fixture failure subspace, bumper assembly.

67



Chapter 3. Multivariate Quality Control and Diagnosis

3.4 Fixture diagnosis

The methods described in Section 3.3 are used to control the process. Usu-
ally, the root cause of a problem detected by statistical process control
methods is not known. The fault can depend on material, external circum-
stances, fixture faults and so on. In the previous section some methods for
discovering fixture related faults were given. If a process is out of control
and the fixture fault index is below the corresponding limit the fixtures
can be excluded from the list off possible root causes. If the index is above
the limit the root cause is probably fixture related and then it is of course
desirable to find out what fixture and what locator that caused the prob-
lem. In this section some suggestions of how to identify the cause of fixture
related faults are given.

The methods of fixture diagnosis can be divided into two separate
groups of approaches; the methods that require knowledge of the assem-
bly process, coordinates of inspection points et cetera and the data based
methods that only utilize inspection data for diagnosis.

3.4.1 Root Cause Analysis

One way to find the reason of the unwanted variation in the inspection
points would be to estimate the variation in each locator of the fixtures
involved. The locator or locators affected by most variation is said to be
the root cause of the variation. This approach is considered by Carlson and
Séderberg (6), and requires knowledge of the assembly process.

The inspection data are supposed to have covariance matrix X,. When
the fixture failure index is large, we will assume that X, can be written as

Y, = ANAT + 671, (3.2)

where A is the sensitivity matrix and As is a diagonal locator covariance
matrix. The model
Y, = A AT + 071,

can also be used. Here, the locator covariance matrix ¥4 is a full matrix.
However, the condition that the locators will be independent, and conse-
quently that the covariance matrix will be diagonal, is usually no limitation,
since variation in one locators seldom affects other locators. Therefore, the
model described in Equation (3.2) will be used.

The measurements are supposed to follow a multivariate normal distri-
bution. If it is possible to estimate the elements in Aj, the diagnosis can be
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accomplished. A maximum likelihood estimate of As and ¢ can be found

by maximizing the likelihood function
n

(o552 = ~Distar.) - o515

n 1o _
— DTrace(s, (@ — p)(z — w)7).
The maximization may be done numerically by Fishers scoring method;

more about this method can be read in J6reskog (22). Large sample confi-
dence regions for the estimates may be constructed.

Unfortunately, it is not always possible to separate variation from dif-
ferent locators. The reason for this is that two locators can cause the same
dimensional deviation in the inspection points. If this is the case, the as-
sembly is said to be incomplete diagnosable. The conditions for complete
diagnosability implies the following relation

AAlAT + O'%Ip = AAQAT + O'g_[p < A = Ay and 01 = 0s.

This condition can be rewritten as T'= A ® A have full rank, Carlson and
Soderberg (6). Further, the number of inspection points must exceed the
number of locators analysed. If a full locator covariance matrix is used, the
condition on A for complete diagnosability is strengthened to A having full
rank. If the assembly is not completely diagnosable, it is still possible to
perform a diagnosis. By solving the linear programming problems

maxy \g
LX=LX*,2>0

and
miny Ag

IA=LA*, A>0

for each k, the minimal and maximal possible locator variance can be found.
Here, L is an orthonormal basis matrix, V,., for the r-dimensional column
space of TT and \* is a particular solution of the problem.

The estimation of locator variances is also considered by Ding et al.
(11). They rewrite Equation (3.2) as

vec(Zy) = T vec(As) + vec(I)o>.
Using the notation B = [T vec(I,)] and d = vec(X,) this can be written as
B)\ = d,

and the the equation is solved by multiplication with the inverse of B.
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Test on data

The outer side panel assembly considered in Section 3.2 is incompletely di-
agnosable, and the minimal and maximal variation for each locator can be
seen in Figure 3.18. The method by Carlson and Séderberg (6) is used for
this case. The variation is calculated from measurement 53 to measurement
60, which is a period with a high fixture failure index. The horizontal limit
in the figure correspond to 60 = 0.5 mm, which seems to be reasonable to
use as a an upper limit for the allowable variation in a locator. As seen in
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o
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2
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Figure 3.18: Minimal and mazimal variation in the locators due to incom-
plete diagnosability, side panel assembly. The extension of the dark area is
from the minimum variance to the maximum variance.

Figure 3.18, the interval from minimal to maximal variation for locator 1
is the only one which is above the limit. Therefore, this locator is pointed
out as the main root cause. Locator 1 is a hole in the front part of the
assembly, controlling the assembly in z-direction.

The methods are applied on the bumper assembly as well. The assem-
bly is completely diagnosable. Here, both the estimates by Carlson and
Soderberg (6) and by Ding et al. (11) are tested. The estimates can be
seen in Figure 3.19. The first bar in each pair corresponds to the estimate
developed by Carlson and S6derberg and the second one to the estimate
by Ding et al.. Locator number six is the one containing most variation ac-
cording to both estimates. There is also much variation in the first locator
according to the second method. The sixth locator is a pin/hole contact
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controlling translation in y-direction. In this case study there is a key; the

Estimate of 60 for each locator, two different methods
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Figure 3.19: FEstimate of 60 for the bumper assembly, measurement 17 to
36. The first bar in each pair corresponds to the estimate by Carlson and
Sdderberg, while the second one corresponds to the estimate by Ding et al.

adjustment made was a correction of the pin/hole contact, i.e. the sixth
locator in Figure 3.19. This adjustment reduced the variation in the mea-
surements. This locator was pinpointed as the locator with most variation
by both methods. However, the method by ding et al. indicated almost as
much variation in the first locator.

There is also considerably variation in locator one, three and four. The
fixture index indicated that there were fixture related variations in the
process in measurement one to 16, i.e. before the variation in locator six
occurred. Possibly the variation in these measurements could have been
reduced by an adjustment of locator one.

3.4.2 Principal Component Analysis

In Section 3.3.2 PCA was described and utilized as a tool for process control.
However, it is also possible to identify the sources of variation using PCA.
Hu and Wu (17), propose that the result of a PCA can be interpreted by
plotting the elements of each eigenvector at the respective inspection point
location. If the normal directions of the inspection points are of opposite
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signs, it is important to include this information in the analysis. It is con-
venient to plot the eigenvector times the sign of the normal direction of the
respective inspection point. This approach is data based, so when using
this method there is no need to calculate the sensitivity matrix used in
Section 3.4.1.

The PCA is conducted on the estimated joint covariance matrix, S, for
the inspection points evaluated in all directions. This seems to be a more
attractive approach than the method conducted by Hu and Wu (17). Their

Figure 3.20: Top: A box with four inspection points. To the right the box
is rotated. Bottom: Principal components. To the left, based on the joint
covariance matriz and to the right, based on separate covariance matrices.
Observe that the Tight angle between the sides of the rotated box (illustrated
by the dotted line) is preserved in the left picture, but not in the right one.

method is based on separate PCAs on the covariance matrix for the inspec-
tion points in each direction. The difference is illustrated in the following
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example. Consider a box with four inspection points, see the upper part
of Figure 3.20. Two of the points are evaluated in the y-direction, and
two are evaluated in z-direction. The box is rotated around the z-axis as
shown in the right-hand upper part of Figure 3.20. In the bottom part of
Figure 3.20 the principal components for this rotation are outlined. If the
principal components are based on the joint covariance matrix for the four
inspection points the geometry of the box is preserved. If the PCA is based
on the two separate covariance matrices, the relation between the y-plain
and the z-plain of the box is lost, and less information of the deviation can
be extracted.

If the separate matrices are considered it is difficult to compare the
amount of variation explained by the principal components in the different
directions. Therefore, when comparing the length of the eigenvectors of
the different covariance matrices, the geometric proportions between the
movements in z- and z-directions are not preserved.

Test on data

The analysis is now applied to the case studies. As before, only the within
group variation, X, is considered in the side panel assembly, and the prin-
cipal component analysis is conducted on this matrix. This results in two
principal components that together contain 78% of the total variation. In
Figure 3.21 and Figure 3.22 the elements of the eigenvectors are plotted
at the respective inspection point location. The first eigenvector, repre-
senting 58% of the total variation, corresponds mainly to a translation in
z-direction, see Figure 3.21. The second eigenvector corresponds mainly to
a translation in z-direction, see Figure 3.22. These translations are though
combined with rotations, since the arrows, representing movements in dif-
ferent inspection points, are of unequal length.

The first principal component, explaining much of the variation in the
assembly, corresponds mainly to a translation in z-direction. The conclu-
sion must be that the root cause is one of the locators that position the
assembly in z-direction. In the previous section was locator number one
pointed out as the root cause. This locator was positioning the side panel
in z-direction. However, the interpretation of the analysis is not completely
obvious, since the translation is combined with a rotation.

The method is also applied to the bumper assembly. Here is the in-
terpretation of the result more clear. In Figure 3.23 is the first principal
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Figure 3.21: The first eigenvector, representing 58% of the variation, side
panel assembly.

Figure 3.22: The second eigenvector, representing 20% of the variation,
side panel assembly.

component drawn. This component explains 90% of the variation in data
and indicates that there has been a translation in y-direction. This is in
agreement with the conclusion drawn in Section 3.4.1.

This method is illustrative and no sensitivity matrix is needed. How-
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Figure 3.23: The first principal component. Contains 90% of the variation,
bumper assembly.

ever, the method does not give a result as exact as the methods described
in Section 3.4.1. This visual RCA is best suited for detecting single locator
fault for small assemblies in one station (to avoid reorientation).

3.4.3 Designated Component Analysis

Designated Component Analysis (DCA) is an approach to fixture fault
analysis developed by Camelio and Hu (3). DCA requires knowledge of
the sensitivity matrix A. It is aiming to identify multivariate patterns,
just like the PCA. This is achieved by defining a set of mutually orthogo-
nal variation patterns with known physical interpretations. In sheet metal
assembly processes, the physical interpretations are usually rigid body mo-
tion. Hence, the assembly variation can be decomposed in terms of all rigid
body motions.

The designated patterns, denoted d;, i = 1,..., p, span the subspace of
the sensitivity matrix A. Their corresponding designated components, w;,
can be calculated from inspection data X in the following way:

w; = dzT*X, 1=1,...,p
The inspection data can then be expressed as the sum of rank one matrices:

X=P+P,+..+P,
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where
Pi=d;xw;,i=1,...,p.

Using this decomposition, the multivariate variation contained in X can be
separated into p terms, each corresponding to a designated pattern.

When the designated components are calculated they can be analysed
and removed from the original data. The remaining variation, contained
in the residuals, R = X — ), P;, can be analysed by applying the prin-
cipal component analysis described in the previous section to the residual
covariance matrix Sg.

Test on data

When applying DCA to the side panel assembly described in Section 3.2
the three first designated patterns, corresponding to rigid body motions,
are obtained. These span the subspace of the sensitivity matrix A. The
first designated variation pattern contains 42% of the variation; the sec-
ond 37% and the third one contains 21%. The first designated pattern,
see Figure 3.24, seems to correspond to a translation in z-direction, but
only in three out of four points. Therefore, this designated pattern can-
not be interpreted. The second DC, see Figure 3.25, is also difficult to
interpret. The third designated pattern, in Figure 3.26, corresponds to a
translation in z-direction in two of the three points evaluated in z-direction.

Figure 3.24: First DC side panel, explains 42% of the variation.
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Figure 3.25: Second DC, side panel assembly, explains 37% of the variation

Figure 3.26: Third DC, side panel assembly, explains 21% of the variation.

After removing the designated components from data, a principal com-
ponent analysis of the residuals is carried out. This gives the fourth, fifth
and sixth designated components. The fourth DC, see Figure 3.27, cor-
responds to 75% of the variation in the residuals, and is also difficult to
interpret.

In the second case study, the bumper assembly, three designated com-
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Figure 3.27: Fourth DC, side panel assembly, explains 75% of the variation
in the residuals.

ponents corresponding to rigid body movements caught by the model were
included.

Figure 3.28: The first designated component, bumper assembly. Contains
38% of the variation.
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Figure 3.29: The second designated component, bumper assembly. Contains
37% of the variation.

The first component shown in Figure 3.28, explains 38% of the variation
caught by the model and corresponds mainly to a translation in y-direction.
The second component, see Figure 3.29, corresponds to a rotation around
the z-axis, just like the third one, Figure 3.30. The second designated com-
ponent contains 37% of the variation caught by the model and the third
one contains 13%.

In the bumper assembly the DCA method points out translation in y-
direction as a major root cause, just like the other methods tested. Some
kind of rotation around the z-axis is incorrectly pointed out by DCA. When
it comes to the side panel assembly there is no obvious interpretation of
the results. The first DC seems to mainly correspond to a translation in
z-direction, but only in three out of four inspection points. The second DC
gives contradictory results, just like the third.
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Figure 3.30: The third designated component, bumper assembly. Contains
13% of the variation.
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3.5 RCA on another case study

Among the methods for diagnosis that was tested, the RCA described by
Carlson and Soderberg (6) gives the most easily interpreted result. This
method gave also the best agreement with the corrections known to be
done in the bumper assembly. On the other hand, there is need of much
information about the assembly considered. In this section this method
will be further tested on industrial data in order to evaluate its usefulness.

3.5.1 The assembly

The assembly considered is a rear wheelhouse. The wheelhouse consists of
five parts and is assembled in two stations. In the first station the wheel-
house panel is positioned and three different reinforcements are assembled
to the panel, see left part of Figure 3.31. As shown in the right part of Fig-
ure 3.31 this subassembly is then put together with the last part of the rear
wheelhouse, namely the support for the parcel shelf. Finally, the complete

Station 1

Station 2

-

Figure 3.31: In station one three reinforcements are assembled to the wheel-
house panel. In station two the subassembly from station one is put together
with the support for the parcel shelf.

wheelhouse is measured in an inspection station. It is important to note
that the subassembly from station one is positioned in station two using
the locators of the wheelhouse panel. This is also the case when the wheel-
house is measured; the locators used can be seen in Figure 3.32. Using
those locators results in that a variation in the contact between locator
and wheelhouse panel in station one will never be seen as a variation in the
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Figure 3.32: To the left: The locators used to position the subassembly
during inspection. To the right: The inspection points are illustrated by
arrows.

inspection points at the wheelhouse panel. Instead, this variation appears
in the inspection points situated on the reinforcements that are joined to
the panel in the first station. If there is variation in the contacts between
the locators and the panel in the second station, this will result in variation
in the inspection points on the parcel shelf support. In the right part of
Figure 3.32 the 38 inspection points utilized for analysis are illustrated.

RCA is a method that demands knowledge about the sensitivity ma-
trix A, describing the relation between movements in inspection points and
movements in the contact between locators and parts. In this case the
sensitivity matrix is determined by using simulations in a program called
“Robust Design and Tolerancing” (RD&T). It is necessary to describe how
every included part is positioned and if the position is completely deter-
mined by the fixture or if the mating part positions the part in some direc-
tion. The coordinates of the inspection points are also required.
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3.5.2 Inspection data

The complete wheelhouse assembly is measured using a coordinate mea-
surement machine. Totally, 38 inspection points are used in the analysis.
There are 14 samples of wheelhouses, where each sample consists of three
consecutive parts. The inspection data can be seen in Figure 3.33.

Measurement wheelhouse

25 T T T T

[mm]

1 1
5 10 15 20 25 30 35 40
Observation No.

Figure 3.33: Measurements of 42 wheelhouses in 38 inspection points. De-
viations from nominal value are measured.

The inspection data can be influenced by a lot of different sources of
variation. Some of the variations are long-term variations, which slowly
change the process over time, for example variations due to changes in
raw material or wear in tools. To avoid mixing up these sources of vari-
ation with variation caused by the fixtures, only within samples variation
is considered. This is logical since if there is fixture related variation, this
variation will affect every produced item, and consequently also contribute
to the variation within every sample.

In order to decide if the variation in data can be a consequence of vari-
ation in the contacts between parts and locators, the fixture fault variation
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index is determined. The index is calculated for each sample, see Figure
3.34. Since the index is above the line corresponding to the value of ¥ when

Fixture Variation Index

Nt m mmEmEmETmm L ae s emmm==
- ~ -

12F ~- i

Sample No.

Figure 3.34: Fizture fault variation index for 1/ samples.

there is no fixture fault, it seems reasonable to continue with the root cause
analysis.

3.5.3 Root Cause Analysis

To conclude what fixture or fixtures that caused the variation, the variation
in the contact between parts and locators are estimated using inspection
data. This is done for most of the locators. Some locators are though
excluded. The reason is that it otherwise would be necessary to use more
inspection points in order to carry out a complete analysis.

In Figure 3.35 are the estimated variances shown. As seen, the major
source of variation is the contact between the locator called B2 and the
wheelhouse panel in the first station. The locator B2 consists of a pin in a
slot and position the wheelhouse panel in z-direction, see Figure 3.36.
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Estimated variation in contacts
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Figure 3.35: Estimated variance in the contacts between parts and locators.

3.5.4 Adjustment of the fixture

RCA is a tool for identifying the fixture related sources of variation in a
process. When this identifying is done, the result should be translated into
an adjustment of the fixtures. It is though important to note that RCA
gives no outline for this adjustment. The work of doing the adjustment
should be done by someone with good knowledge of the process and a good
understanding about how different kinds of locators affect the positioning
of parts.

Since the contact between the wheelhouse panel and the locator B2 was
pinpointed as a major source of variation this locator is adjusted. The
adjustment consists of changing the pin in B2 to an egg-shaped pin cor-
responding to the shape of the slot. After this modification 24 complete
wheelhouses are measured. Unfortunately, this adjustment did not reduce
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Figure 3.36: The contact B2 in station 1 is a major source of variation.

the variation. The variation in the inspection points situated on the rein-
forcements assembled in station one increased, see Figure 3.37. As men-
tioned before, variation in the positioning of the wheelhouse panel in station
one, will give rise to variation in the inspection points on the reinforcements
assembled to the panel in station one. The reason is that the wheelhouse
assembly is positioned using the locators of the panel in the inspection sta-
tion.

The adjustment lead to increased variation in the inspection points,
but it is still of interest to analyse the inspection data after the adjust-
ment to estimate the corresponding variation in contacts between parts
and locators. In Figure 3.38 is the estimated variation before and after the
adjustment shown. Here, the locators in station two are excluded, since
they are not involved in the adjustment.

From Figure 3.38 it can be seen that the variation in the contact between
the part and the adjusted locator B2 undoubtedly has increased. The
variation has also increased in the contact between the panel and the locator
A2. This locator is situated just beside B2, and position the panel in y-
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Inspection data after adjustment
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Figure 3.37: Inspection data after the adjustment.

direction.

3.5.5 Conclusions of the case study

Since the adjustment of the fixtures is well known it is a very good case for
testing the method. In this case the variation increased, but the important
thing is that the locator corresponding to these increased variation could
be pinpointed by using RCA.

If the case would have been the reversed, i.e. there would have been
much variation because of an unsuitable positioning element (like B2 after
the adjustment), the method could have been used to pinpoint the source
of the variation and is thereby a tool for reducing the variation.
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Estimated variation in contacts before and after adjustment

B2
A2
. T N ,
\ A" w5\ F
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Figure 3.38: For each locator the left bar corresponds to estimated variation
in the contact between part and locator before adjustment, and the right bar
corresponds to estimated variation after the adjustment.
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3.6 Discussion and conclusions

Different methods for as well multivariate quality control as diagnosis have
been tested on the case studies. Both case studies turned out to be out
of statistical control. The second case study, the bumper assembly, was
in advance known to be out of control due to a fixture failure occurring
after 16 measurements. This fixture failure occurred as a result of a defect
locator in y-direction. No prior information of fault or fault types were
available when it comes to the side panel assembly, but the result from
different methods can still be compared.

3.6.1 Process control

The T2-chart is one of the most popular multivariate charts and it works
satisfyingly on the case studies. It detects quickly the change in the process
of the bumper assembly. The covariance matrix for the inspection data is
though nearly singular. This affects the T2-statistic and may in some cases
lead to misinterpretations. When it comes to the side panel assembly there
are several alarms even though trends in data are eliminated. The T2-
chart requires no advanced calculations and is easy to use. A disadvantage
is that the chart gives no indication of which inspection points that caused
an alarm. The chart is also based on the assumption that data is normally
distributed.

The PCA- and SPE-chart is similar to the T2-chart but operates in the
subspace spanned by the principal components. This means that the dimen-
sion of data is reduced, but in the same time some information is lost. In
addition there is need of two charts, both the T2,, and the SPE-chart. The
PCA/SPE chart alarms after the change in the bumper assembly process,
nevertheless there is a delay compared to the T2-chart. The PCA-chart
are, unlike the usual T2-chart, not affected by singularity in the covariance
matrix.

Regression adjustment differs from the other charts. This method can
be used for controlling mean and variance separately, which is an advantage.
However, this is also possible to achieve by using a T?-chart complemented
by a multivariate chart for controlling within group variation. However,
such a chart can be complicated to use when the data are ungrouped. The
regression adjustment chart is suitable when only a few of the variables are
expected to change. However, this is usually not the case if the fault is
caused by fixture fault. This property makes this chart unsuitable for con-
trolling the process from the case studies. Using this chart it is necessary
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to generate one chart for each variable, but on the other hand this chart
indicates what variable causing an alarm.

To train a SOM there is need of much data, but there is no need of
assumptions on distribution of the data. In some cases the SOM helps
finding the root cause of an erroneously state.

The fixture fault index and the fixture fault chart are both aimed to
detect fixture related faults. For both methods there is need to know the so
called A-matrix, the sensitivity matrix relating a movement in the locators
to a corresponding movement in the inspection points. The methods are
also intended for normally distributed data. The fixture fault index is use-
ful when it comes to find the root cause of a variation. If the index is high a
fixture probably caused the fault and the main efforts can be concentrated
to examining the fixtures. The methods work well on the case studies.

Method Panel ass. Bumper ass. | Remarks
T2_Ch art 5 alarms Alarm after mea | Sensitive to S
16 almost singular
T2 /SPE |3 alarms Alarm after mea | Not sensitive to S
ECA 16 almost singular
Reg_ ad_] Many alarms Alarms, but no | Most suitable
obvious change | when few
after mea 16 variables change
ot teste vious change 0 assumptions
SOM Not tested Obvi hang N pti
after mea 16 about
distribution
3 any alarms arms, obvious ecialized for
Fixture Many al: Al bvi Specialized f
: change after mea | controlling
index 16 fixture Faulis
any alarms arms, obvious ecialized for
T2f /SPE. | Many al Al bvi Specialized fi
Ixture change after mea | controlling
16 fixture faults

Figure 3.39: A comparison of the different methods used for multivariate

quality control.

In Figure 3.39 the performances of the different charts are tabulated.
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3.6.2 Fixture fault diagnosis

When it comes to finding the cause of the fixture fault there are two main
methods, namely the RCA and the both visual methods PCA and DCA.
The RCA is more complex then the PCA and DCA methods. On the other
hand the result is clear and easy to interpret. In the PCA-method there
is no need of the sensitivity matrix A, which is demanded in the RCA and
DCA methods. For both PCA and DCA the calculation is simple, but
the interpretation of the result is not always trivial. The DCA is similar
to the PCA, but is specialized to find fixture faults. A drawback of DCA
compared to PCA is that the sensitivity matrix is needed.

When applying the methods to the case studies the RCA identified the
failing locator in the bumper assembly. This is a locator in y-direction and
also the PCA and the DCA show translation in y-direction as a main prob-
lem. In this case there is only one locator in y-direction and this locator
is consequently pointed out as the main cause of the variation. If there
would have been several locators in y-direction, it might have been hard to
separate them using the visual methods. The DCA does also incorrectly
point out rotation around the z-axis as a root cause.

In the side panel assembly a pin/hole contact in z-direction located in
the front of the doorframe is pointed out as the root cause by the RCA.
This is confirmed by the PCA, where the first eigenvector corresponds to
a translation in z-direction. This translation is though combined with a
rotation. The designated components are very difficult to interpret and
seem to give contradictory results. The multi-fixture side panel assembly
is not completely diagnosable and both the visual methods PCA and DCA
are very hard to interpret.

To sum up, PCA and DCA is easy to calculate and when using the
PCA there is no need to know the sensitivity matrix A. However, the
methods seem to be best suited for identifying single locator fault in small
completely diagnosable assemblies. The RCA is a more versatile method
that gives more exact results. However, to use this method the sensitivity
matrix must be known.
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