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Abstract

The problem of rational maintenance of aircraft engines is studied with
respect to the influence of random events. The starting point is an opti-
mization model suggesting what parts in the engine that should be replaced
at each maintenance time. The input data is the state of the details in the
engine. Two models are developed that estimate life distributions of these
details. The first model is a non-stationary renewal process and the second
model is a non-homogeneous Poisson process. Real data consisting of times
between repairs is used and a measure to compare the models is defined.
With our data the non-stationary renewal process works better. Different
repair stations affect the life of the components, which the non-stationary
renewal process manages to model. This model also manages the aging
component problem in an effective way. However, in this case no aging is
present other than substantial degeneration after the first repair.

In order to get an interface with the optimization model the distri-
butions need to be discrete. Four methods to make discretizations are
discussed and adapted to suit the model. The methods are compared and
the choice concerning the number of points of support is discussed. Finally
the consequence of using a narrow scenario tree is commented upon.

Keywords: non-stationary renewal process; non-homogeneous Poisson
process; survival; optimal maintenance; discretization; points of support
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1 Introduction

Aircraft engines can be more economically maintained and resources can be
saved if the maintenance process is improved. In order to obtain a better
maintenance process, an optimization which indicates what parts in the
engine should be replaced is being developed. The criterion for optimality
is the expected cost to maintain the engine. Input data for the optimization
model contains a description of the state of the deterministic details and
the stochastic details.

Definition 1: A deterministic detail is a component that has a prede-
termined limited time in service which must not be exceeded.

Deterministic details are components that are vital for safety. If a determin-
istic component fails there is a risk that the engine will stop functioning. In
practice the upper limit on the service time means that most deterministic
parts will be replaced long before they are even close to failure.

Definition 2: A stochastic detail is a component that is not deterministic.

Stochastic components are allowed to operate in the aircraft engine until
they break. If a stochastic component breaks during a flight the engine will
still work but with reduced performance.

In the Volvo military engines RM8 and RM12 there are about 50 com-
ponents that are not expected to last the engines pre-specified life, among
these about 40 are deterministic and 10 are stochastic. More than 40% of
all cases when the engines are taken to be repaired are unplanned, triggered
by the failure of a stochastic component.

A model that describes the properties of the stochastic components
is needed. Such a model is developed with the type of data that exists
at Volvo Aero Corporation (VAC). To get the stochastic components to
interface with the optimization model, approximations need to be made.
How these things are connected is shown in Figure 1.

In the first paper, Paper A, two models are presented that predict the
time to next failure for stochastic components. The first model is a Non-
Stationary Renewal Process and the second model is a Non-Homogeneous
Poisson Process. The models are illustrated on a set of data from the engine
RMBS8. An analysis of how different repair stations affect the life span of the
components is done with the help of the Non-Stationary Renewal Process.
Finally a way of modeling aging components is suggested.

The second paper, Paper B, is about the interface between the stochastic
components and the optimization model. In order to compare different
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Figure 1: Illustration of how the models in this thesis are connected.

Deterministic details

approximations an error measure is introduced. Different methods of doing
discretizations are discussed and adapted to be used with the constraints
that the optimization model requires. Finally the consequence of using a
narrow scenario tree is commented upon.

The outline of this thesis is as follows. In Sections 2 and 3 some back-
ground information about the maintenance process at VAC is supplied.
The nature of the data that exists is given, and some parameters on the
flameholder, which is a detail at the far end of the engine, is presented.
Some suggestions of possible improvements of future data is mentioned.
Sections 4 and 5 are summaries of papers A and B. In Section 6 we discuss
future work.

2 The maintenance process

There are two philosophies at VAC when it comes to maintenance: either
maintenance is performed at certain fixed times or maintenance is guided
by (known) requirements.

If the engine is obtained at certain predetermined times the maintenance
times are known in advance but not the parts which are to be replaced.



If the maintenance process is ruled by the second philosophy, the engine
is obtained for control only if there are any signs of failure or lacking perfor-
mance. In this case neither maintenance times nor maintenance needs are
known in advance. When the aircraft lands and the engine is still near the
hangar it is examined for broken components. A component is considered
broken if it fails to comply with a set of fitness rules when it is observed. If
a component is broken the entire engine or possibly a module of the engine
is sent to a repair station. Not all components are examined after each
flight so in practice this means that the components are checked at cer-
tain intervals. These intervals are typically shorter than the predetermined
intervals used in the first philosophy.

This implies that we do not know the exact time of the failure. It can be
anytime between two observations. Some components are observed every
time the aircraft lands. Since the aircraft mission is short in comparison to
the life of the component, the time when those components are observed
and determined as broken can be considered as the time of failure.

The older RM8 military engine was mostly maintained by the first phi-
losophy but some components were checked after every flight mission. The
plan is that the newer RM12 military engine should be maintained accord-
ing to the second philosophy.

3 Existing Data

The data set available for our analysis consists of historical data on the
engines RM8 and RM12. The engines have been carefully followed up. In-
formation about every component in each engine is gathered in a database
in which each component has a unique individual number. Relevant infor-
mation that exists about failures is how, where and when the failures are
detected. There is information about what engine the failing component
was operating in and what countermeasures were implemented, repair or
replacement. There is also a description of why the component was consid-
ered broken. Components that are currently in service and hence can be
considered as censored observations are also possible to keep track of.

To facilitate further analyses, it was suitable to divide the data on RM8
into two sets RM8a and RM8b. The RM12 and RMS8D are registered in the
system RUF, RM8a is not. In the RUF system, aircraft data is sampled
during operation, with a frequency of 7.5 Hz. After the flight the informa-
tion is downloaded to a ground station, where some data reduction is done
and the information stored. Examples of the type of information sampled
during flight are turbine rotation speeds, temperatures and pressures; com-
mon parameters stored at the ground station are flight time and a measure
of equivalent low cycle fatigue (ELCF).



The older engine RM8 has been used for a long time and a great amount
of data exists. The newer RM12 engine has experienced fewer flight hours
and the dataset of failures is very small. Most stochastic components have
not experienced any failure yet.

On information of the kind of existing data, a decision was made to
create a model of the RM8 engine and then try to transfer this model to
RM12.

3.1 Flameholder

In order to test the models the flameholder component was chosen. The
flameholder is a stochastic component at the far end of the engine in the
afterburner module. In the RMS8 the flameholder consists of two rings. The
RM12 flameholder consists of only one part. The task of the flameholder is
to hold the flame and put the passing air in rotation and create recirculation
zones with low axial circulation speed, important for the ignition of the fuel.

The most common failures of the afterburner are burnouts, when parts
of the flameholder have been burnt away, and cracks. The flameholder is
checked after every flight mission.

Parameters in the RUF system that we believe have some impact on
the life on the flameholder are:

e Time with afterburner ignition (TAT).
e Time with max afterburner ignition (TMAI).

e Number of afterburner ignitions (NAI).
Other parameters that are always available are:

e Total operation time (TOT), the pilots judgment of the flight time
registered in a log.

e Engine time (ET), the time the engine is rotating with a speed greater
than 140 radians per second.

e Flight time (FT), triggered by the landing gear.

Correlations between these variables for the RM12 engine are given in the
correlation matrix

[ (TOT) (TAI) (TMAI) (NAI) (TE) (FH)
1.00 094 0.92 096 098 0.99
094  1.00 0.99 097 094 0.94

=] 092 099 1.00 096 093 0.92

0.96 097 0.96 100 095 0.96

098  0.94 0.93 095 1.00 0.98

0.99  0.94 0.92 096  0.98 1.00




As we can see the parameters (TOT), (TE) and (FH) have a very high
correlation, not surprisingly since they are all different measures of the
time the engine is operating. The other parameters (TAI), (TMAI) and
(NAT) are highly correlated, partly among themselves but also to the times
(TOT), (TE) and (FH). We will therefore limit ourselves to studying only
one parameter.

3.2 Improvements of future data

In order to make better predictions and more accurate models, improve-
ments in the data gathering and storing can be made.

When an engine for one reason or other is entering a repair station
it is disassembled. In the disassembling process more parts that do not
comply with the set of fitness rules may be discovered. Therefore there
is a connection between the parts that forced the engine to the repair
bay and other parts that are replaced. If information about this could be
gathered components with high connection could maybe be consolidated in
the optimization model.

Some components can experience different types of failures. If data on
these was stored, it would be possible to detect if different failures have
different failure distributions. Since there are fitness rules, a failure can
break one or more rules. A code describing the error type would be a good
feature. Currently the description is written in text.

Data consists of accumulated numbers of events that a detail has ex-
perienced from creation to death or censoring, no matter if the detail has
been repaired several times. Better analyses could be performed if we knew
the accumulated value of the parameter at every repair.

Storing more than the accumulated value of the parameters would fa-
cilitate the use of more advanced models, cf. e.g. Roemer and Ghiocel
(11) and Roemer and Kacprzynski (12). The advantage of the extension
to those ideas is that the information collected during flight can directly
predict the remaining life. Possible problems with such models is the high
level of noise and variation in data, cf. Krok and Ashby (8).

4 Survival analysis

The main goal of survival analysis is to determine the survival time of a
population of individuals with the help of data. The individuals can be
people, animals, components, etc. The methods for estimating survival
can be divided into parametric and non-parametric methods. Parametric
methods are methods that assume that the survival follows a certain dis-



tribution described by a number of parameters. Non-parametric methods
assume less about the distribution.

A way of finding a parametric distribution that fits the data well is
to first use a non-parametric estimate of the distribution and see what
it looks like. Then a parametric distribution that is close to the non-
parametric estimate can be chosen. Standard non-parametric estimators
are the Nelson Aalen estimator and the Product-Limit estimator, also called
Kaplan-Meier estimator. The Nelson-Aalen estimator estimates the cumu-
lative hazard rate while the Product-Limit estimator estimates the survival
function S(t) = 1— F(t) where F'(¢) is the cumulative distribution function.

The cumulative hazard rate is defined as

t
H(t) = / h(u)du,
0
where
P(t§T<t+At|T2t)
At ’
where T is the stochastic variable we wish to describe. Nelson-Aalen esti-
mator is defined as

M= i

N 0 ift<ty
H(t) = :
{Etiﬁtﬁ lftZtl

and the Product-Limit estimator is defined as

N 1 ift<t
S<t)={ Losn

i<t (1 - %) if t >,

where t; are the ordered observation times and Y (¢;) are the number of
individuals at risk at time ¢; and d; the number of failures at time ¢;.

There exist several parametric distributions that are known to be well
suited for describing survival. Some of the most common are the Weibull
distribution

Ft)=1—¢"GD"  t>0, (6>0,a>0),
and the Log-normal distribution
logt —
F(t):@(u), t>0, (0>0).
ag

The Maximum Likelihood estimator is a common parametric estimator that
can handle different kinds of truncation and interval censored observations.
In our application the Maximum Likelihood function L can be written

L) = [ fot:) [T So(cs) [T (So(t) = Sa(rs)
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where D is the set of all failure times, R is the set of right-censored obser-
vations, and I is the set of all interval-censored observations. If individual
k is interval-censored we know that individual k¥ has broken between times
ly and r;. The parameter vector 6 is estimated as

6 = argmax L(6).
0

A comparison between the parametric and non-parametric estimates can
be made by comparing their hazard rates through hypothesis testing, see
Moeschberger and Klein (7). A drawback with such a comparison is that
the parametric distribution is often rejected if the data set is large. The
true distribution of the individuals follows no common parametric distri-
bution but has its own distribution. This does not necessarily mean that
the parametric distribution is a bad model. This must be taken into ac-
count when deciding if the parametric distribution is a good enough model
for our application. A visual comparison can be made in several ways.
One way is to compare the density functions between the non-parametric
and parametric estimation. The non-parametric estimation of the density
function can be obtained by performing a kernel smoothing, see further
Moeschbereger and Klein (7).

5 Summary of Paper A

Military aircraft engines can offer greater operational availability and be
more economically maintained through the use of better models to predict
times to failure. Two models are used to analyze data gathered from Volvo
Aero Corporation in Trollhdttan. We are interested in the failure time
distribution of the flameholder in the new RM12 engine. We have limited
knowledge about it due to the limited number of RM12 engines currently
in service. We have a large data set containing repair and maintenance
times for the same type of details in the older RM8 engine. This paper will
not discuss how to transform knowledge of the RM8 engine to the RM12
engine but will instead predict repair or maintenance times for the RM8
engine.

The first model is a non-stationary renewal process (NSRP) and the
second is a non-homogeneous Poisson process (NHPP). We are interested
in estimating the survival function and the hazard rate. In the NSRP we
make a non-parametric estimation of the survival function with the help of
the Product-Limit estimator, cf. Hgyland and Rausand (5). We use kernel
smoothing, cf. Klein and Moeschberger (7), to make a visual illustration of
the density function. When the density function is estimated a parametric
model is chosen to describe the times between repairs. Different estimation



methods are discussed. In the NHPP we use the Nelson Aalen estimator
to estimate the cumulative hazard function, cf. Andersen et.al. (1). The
NHPP is using the minimal repair assumption, cf. Hgyland and Rausand
(5), while in the NSRP the time to first repair is independent of the time
to second repair.

An error measure is defined to compare how well the different models
are suited to model current data, and we conclude that the NSRP process
is the better model.

The NSRP process is developed to model different kinds of repair sta-
tions. There is one repair station at VAC and smaller repair stations closer
to the hangars. If engines were repaired at the repair station at it took
longer time for VAC turned subsequent failures to occur. Finally two tests
were made to see if the components are aging, but no aging was present
other than a substantial degeneration after the first repair.

6 Scenarios and stages in stochastic optimiza-
tion

Stochastic optimization occurs when one or more variables in the optimiza-
tion model are stochastic. Most stochastic problems can be formulated

z= grg%/f(w,u) dG(u) (1)

where U is a stochastic variable and G is the distribution of U and X
some restriction of z. Problems of form (1) are often too hard to solve and
simplifications are needed. One common approach is to create scenarios
u; which represent some outcomes of the stochastic variable U. To each
outcome belongs a probability p;. Since the scenarios can not cover all
the outcomes of a continuous stochastic variable, this is an approximating
method. However the formulation (1) is changed to

7 = mi AV
min  _ f(z, ui)pi

which is easier to solve, especially if f is a linear function. The scenarios
are structured in a scenario tree. An example of a scenario tree with a two
dimensional stochastic variable U = (Ry, R») is shown in Figure 2. The
random variables Ry and Ry can e.g. describe the lives of two stochastic
components in an aircraft engine. Here five scenarios that represent possible
outcomes for U are chosen. The outcomes chosen in the tree must be
representative of the entire spectrum of outcomes.

Modeling over time where decisions have to be made on several occasions
makes it natural to introduce stages. Assume we have to make decisions
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Figure 2: A scenario tree with three scenarios for Ry if Ri=4 and two if
Ry = 7. A total of five scenarios uy,...,us with probabilities py,...,ps.

today that influence the decisions tomorrow that affect the future. We can
then introduce a multistage model with three stages: today = 0, tomorrow
= 1 and future = 2. Let fo denote our cost function today and let fi|4,
denote the cost function tomorrow which depends on zg, the decision today.
The cost function in the future fy,,,, depends on both the decisions we
make today and tomorrow. In this case the three stage problem can be
written.

z= wgg}o fo(zo) (2)
where
fo(wo) = m&iﬁm fijzo (1) (3)
and
fiizo(z1) = min  fou 4, (22) (4)

z2€X2(z0,71)

where z1, T2, T3 are variables and X7, X, X3 are the domains. If we have
no stochastic variables or if we make a scenario tree (discretization of con-
tinuous random variable), equations (2), (3) and (4), can be rewritten as

2 = min f(x) (5)

where x = (zg, x1, z2) are the variables and X is the allowed domain for x.
Using the forms (2), (3) and (4) often makes the problem easier to model



and understand. Sometimes it is harder to solve (5) than the connected
problems (2), (3) and (4).

The optimization model used in this thesis has integer restrictions on
the z variables. A problem with integer restrictions is much harder to
solve than the problem arising if the integer restrictions are removed. For
further discussion of stochastic optimization with scenarios and stages, see
Kall and Wallace (6).

7 Summary of Paper B

Aircraft engines can be more economically maintained and resources can
be saved if the maintenance process is optimal. It can be a hard decision
to decide what components in an engine to replace when the engine is
being maintained. Several optimization models have been developed to
deal with this problem. Epstein and Wilamowsky (3) and Dickman et al.
(4) have developed models for modeling components with predetermined
deterministic lives. Andréasson (2) has developed a model for details with
deterministic lives as well as details with stochastic lives. Another approach
to the problem is to construct a maintenance policy that is not always
optimal but hopefully good. A survey of replacement and maintenance
polices can be found in Wang (14).

In this paper we will use the model presented in Andréasson (2) and
formulate it as a two-step model. In order to use stochastic components
in the optimization, the density functions need to be in a discrete form
and there are also restrictions on what points of supports that are allowed.
An error measure closely related to the model is formulated. The error
measure measures the cost of using different kinds of discretizations and the
size of the error is related to the sup-distance between the distribution and
discretization. Four discretization methods will be presented and adapted
to the constraints. The first method is the bracket mean method, cf Smith
(13), the second method minimizes the Wasserstein distance, cf. Pflug (10)
and the third method keeps the moment of the distribution, cf. Miller and
Rice (9). The last method is a method that minimizes the sup-distance.

In order to keep down calculation times we want as few points of support
as possible. Test runs with a Weibull distribution are done to compare the
different discretization methods and conclude how the choice of number
of points of support affects the accuracy. In the test the method that
minimizes the Wasserstein and Sup-distance performed best. The method
that preserved the moments performed worse. The error decreases with
the number of support points. The minimum number of points of support
that is suggested is three.

Finally the consequence of using a narrow scenario tree is discussed. A

10



component that is exponentially distributed is sometimes replaced although
the component is not aging.

8 Future work

In order to get the optimization model to work with the stochastic com-
ponents from RM12 more work needs to be done. The following are some
suggestions for future research.

An investigation of how to translate the distributional properties of the
life of the RM8 engine to the RM12 engine by e.g. a Bayesian approach.

The lives of the stochastic components may be dependent among them-
selves but also affected by the age of deterministic components and the age
of the engine itself. It is not obvious how to get this information from the
existing data. There is also dependence between parts because they were
observed when the engines were sent in for repairing other failures.

In the current approach only the first failure of a stochastic component
in the optimization model is modeled with several points of support, the
remaining times to failure is modeled as deterministic and equal to the
expected value of the time to failure. Relaxing this restriction would give
more reliable suggestions of what parts to replace but also increase the
calculation time.

The relevant details in an engine can be divided into 40 deterministic
parts and 10 stochastic parts. More work needs to be done when it comes to
formulating an optimization model and finding approximations that allow
the optimization problem to be solved fast, when we have more than one
stochastic component.
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Two statistical models used on aircraft engine
data modeling times between repairs

Johan Svensson
Chalmers University of Technology
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Abstract

Military aircraft engines can offer greater operational availability
and be more economically maintained through the use of better mod-
els that predict times to failure. In this paper, real data consisting of
times between repairs of a flame holder in an aircraft engine is used
and two models that predict the time to next failure are suggested.
The first model is a non-stationary renewal process and the second
model is a non-homogeneous Poisson process. A measure to compare
the models is defined and with our data the non-stationary renewal
process works better. Different repair stations affect the life span of
the components but the non-stationary renewal process manages to
model this. This model also manages the aging component problem
in a effective way. However, in this case no aging is present other
than substantial degeneration after the first repair.

Keywords: non-stationary renewal process; non-homogeneous Pois-
son process; survival;

1 Introduction

Military aircraft engines can offer greater operational availability and be
more economically maintained through the use of better models that predict
times to failure. Some models exist that use different strategies. Roemer
and Ghiocel (12) describe an interesting model that is based on a resistance
variable R and a stress variable S. When R — S < 0 failure occurs. Tinga
and Visser (15) suggest a model that involves a fatigue model, a gas tur-
bine simulation program, fluid dynamic model and a finite element model.
This is combined with a statistical reliability model. Roemer and Ghiocel
(13) present a set of tools for health monitoring, diagnostic and prognostic



of turbo machinery. One nice tool define two indices and use multivariate
process control methods to monitor engines. They also suggest a simple
fatigue model for individual components. All of the above models require
continuous monitoring of several parameters that are relevant for the life
span of the component. They also require that the parameters have his-
torically been stored in such a way that it is possible to make any use of
them. Krok and Ashby (10) states that it is hard to develop models based
on most of the monitored parameters due high levels of noise and large
variation in data.

In other parts of the literature, hundreds of repair and maintenance
models can be found. Basic mathematical models and methods can be
found in, for instance Hgyland and Rausand (5), Klein and Moeschberger
(9), Kalbfleisch and Prentice (6) or Andersen et al. (1). A statistical model
that involves physical laws can be found in Yang (19). Also, pure statistical
models can be found in Kaminskiy (7) or Kijima and Masaaki (8). A survey
of some maintenance and reliability models can be found in Weiss, George
H. (18).

Based on existing models, this paper will present two models in the class
of non-stationary renewal process and non-homogeneous Poisson process to
predict failures. The models use historical data for calibration and are suit-
able for modeling time to failure of stochastic components. A stochastic
component is a component that is allowed to operate in the aircraft engine
until it breaks. If the component breaks under a flight mission the engine
will still work but with reduced performance. A deterministic component
is a component that is only allowed to function in the aircraft engine a
predetermine specific time. If a deterministic component breaks under a
flight mission there is a risk that the engine will stop functioning. In prac-
tice this means that the deterministic component is replaced long before
its life span is consumed. Methods for calculating the preset times for
deterministic components are not discussed here.

There are only two states a component can be in, either functioning or
broke. Hence we have a two state system. Recently a lot of work have been
made on multistage systems, a survey of multistage system can be found
in El-Neweihi and Proschan (3). A detail is considered broken if it fails to
comply with a set of fitness rules when it is observed. The flight mission
time is short and the details studied here are observed after every flight
mission and therefore the time to failure is considered to be the time when
the component is observed and fails to comply with the set of fitness rules.
In other scenarios, mission times may not be short, or the details are just
observed on a few special occasions due to the fact that they are positioned
deep inside the engine. The method discussed can still be applied but the
derivation of the estimations of the distribution functions may be slightly



different.

The data used in this work is gathered from Volvo Aero Corporation
in Trollhdttan and we are interested in the failure distribution of the flame
holder in the new RM12 engine. We have limited knowledge about this
due to the limited number RM12 engines currently in service. We have a
large data set containing repair and maintenance times for the same type
of details in an older version of the RM8 engine. This data will be of some
help in predicting maintenance times for the RM12 engine. This paper
will not discuss how to transform knowledge of the RM8 engine to the
RM12 engine but will instead discuss two models that predict repair or
maintenance times for the RM8 engine.

In the following sections, we present the data material and define two
different models. We discuss existing methods to analyze the unknown
parameters in the models. An error measure is defined and a comparison
between the models is made, using this measure. We modify one of the
models so that it can handle different kinds of repairs. Data from the older
version of the engine is used. We believe that the models when applied to
the new engine design will help us understand the life of the newly designed
details.

2 The models

In the literature there are many models, both simple and more complex,
that can be applied to predict the time to the next repair. Here we use two
models that are in the classes of NSRP (Non-Stationary Renewal Processes)
respectively NHPP (Non-Homogeneous Poisson Processes) to analyse data.
We discuss existing methods to analyse the unknown parameters in the
models, and close the section with a discussion on measures of goodness of
fit.

2.1 The set of data

The data used in this paper originate from a detail called the flame holder
which is an essential part in the after burner system. The flame holder
consists of two parts called the inner ring and outer ring. The outer ring
exists in two versions. We call the inner ring detail 1 and the outer ring
detail 2 and 3. We observe the times between repairs. Every time a compo-
nent fails, a decision is made whether the component should be repaired or
scrapped. For every component i we observe a sequence of times between
repairs {T}, ..., T} }, i = 1,...,n, where the last observation possibly is cen-
sored, meaning that for the last observation we may have the information



that the time to next repair is longer than the time observed. For more in-
formation on censoring see Klein and Moeschberger (9). We model different
components as independent, that is {T?} and {T7} are independent vec-
tors if ¢ # j. We also assume that the censoring process is noninformative,
see i.e Kalbfleisch and Prentice (6).

We have more observations of repairs in details 2 and 3 than in detail 1.
Doing simple descriptive statistics, we get histogram plots of the number
of repairs for each component in Figure 1. The x-axis corresponds to the
number of repairs and the y-axis to the number of components that have
been repaired x times.

Detail 1 Detail 2 Detail 3
T T T

60

60

60

Figure 1:  Histogram on repaired components of each detail. The z-azis
corresponds to the number of repairs and the y-azxis number of components
that have been repaired  times.

2.2 NSRP-model

A non-stationary renewal process (NSRP) is defined in the following way
(cf. e.g. Hoyland and Rausand (5)): Let T,, be the time between the n—1’th
and the n’th repair, and let F,(t) = P(T, < t) be the corresponding
distribution function. If we assume that the 7, are independently but
not equally distributed, the sequence {7y} _, is called a non-stationary
renewal process. B

A stationary renewal process is a process that has the same distribution
between repairs, whereas the model we use might have different distribu-



tions for the successive times between repairs. At this point the question we
have to answer is what distribution is suitable to model the time between
repairs, that is, what is the distribution of T,.

We will estimate the distribution between repair times without making
any assumptions, that is we will carry out a non-parametric estimation of
F,,. The standard approach for censored data goes via the Kaplan-Meier
estimator of the survival function R, (t) = P(T, > t). This gives us an
estimator Fn of the cumulative distribution function F,, as follows

Fn(t) =1- Rn(t)

The Kaplan-Meier estimation of R,, is

Rn(t) = H (1 - Y(ti))’ (1)

:t; <t

where Y (¢;) is the number at risk just before time ¢; and d; is the number of
failures at time t;, see Hgyland and Rausand (5) or Klein and Moeschberger
(9). The estimator E, is a step function. Note that when there are no
censoring events, F), is the empirical cumulative distribution function.

In order to get an estimate of the probability density function f, of T,
we can use a kernel estimator

. 1S t—t; A
fnt)=7) K ) A Fo(ts), (2)
25 (57)

where K is a kernel function and b is the bandwidth, see Appendix A. The
kernel smoothing function used here is

K@) =g20-2%?,  zel-11] 3

but others may also work well.

A kernel estimate can be informative. If there is no prior knowledge
about the distribution, a non-parametric estimate is good as a visual con-
firmation of the choice of parametric distribution. The advantage of a
parametric model is that we automatically extrapolate and get knowledge
about the distribution outside the field where we observed data. The pa-
rameters may sometimes also have a physical meaning. It is more easy to
transfer knowledge from RM8 to RM12 if the model is parametric.

Here the Weibull distribution is used with the following parameteriza-
tion,

Fi)=1—e G t>0, (6>0,a>0), (4)

where 6 is the characteristic life and « is the shape parameter. Let n be
the number of repairs we are modeling. Then each time between repairs



is modeled as a Weibull distributed random variable with its own param-
eters {a;,0;}, so that the parameters to be estimated are {61, ...,6,} and
{ai,...,an}. In a later section we will place restrictions on these parame-
ters.

The parameters were estimated by means of the method of maximum
likelihood and the method of least sum of squares, see appendix C and D.
To see if the Weibull distribution is a reasonable assumption and get an
idea of what estimation method to prefer, density functions from all three
estimation methods are plotted in Figure 2.

x10° Detail 1, Failure time 1 x 107 Detail 1, Failure time 2

—— kernel smoothing
— - Maximumlikelihood
Least sum of squares

0 500 1000 1500 0 200 400 600

0 200 400 600

Figure 2: Mazimum likelihood, Least Square and a non-parametric estima-
tion of the density function.

In Figure 2 kernel functions can be seen as the estimates that are closer
to current data. The Maximum likelihood estimate appears closer to the
non-parametric estimate than the Least Square estimate. There exist sev-
eral other formal ways to reach a conclusion, for example the One-sample
Test, which with one particular choice of weight function yields the One-
sample log-rank test, see Klein and Moeschberger (9). Another visual way
of showing if the choice of parametric distribution function is satisfactory is
to plot the function F~1(F(t)) where F' is the empirical cumulative distri-



bution function from the Kaplan Meier estimation and F' is the parametric
cumulative distribution function. If F' is a good approximation to the data,
this should be a straight line. In Figure 3 we see the F—'(F(t)) function
for the four first repair times, with F equal to the Weibull distribution
function.

Detail 1, Failure time 1 Detail 1, Failure time 2
2000 1000 S
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1500 7 )?L;n)'l( of least square 300 -
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Detail 1, Failure time 3 Detail 1, Failure time 4
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Figure 3: The F~Y(F(t)) function. If the estimation is good the curve
should be close to the straight line y=.

According to this figure Weibull looks like a reasonable approximation
for this data set. We see that the Maximum likelihood estimation is closer
to the straight line and hence a better approximation. That the maximum
likelihood estimator is a better estimator is also indicated in Beretta and
Murakami (2). The choice of the Weibull distribution is not obvious. Other
distributions could give a similar approximation of the empirical distribu-
tion. In this case the body of the distribution is more important than the
tails so the choice of distribution is not that important. Another good thing
about the Weibull distribution is that it is well known in industry.



2.3 NHPP-model

Assume that N is a counting process that counts the number of repairs of
a component and let the intensity (or hazard) function w be a function of
time. If the process has independent and Poisson distributed increments,
N is called a Poisson Process. If w is non-constant the process is non-
homogeneous. If the number of repairs is Poisson distributed then N is
called a non-homogeneous Poisson Process (NHPP).

If this process is used, there will be dependence between repair times.
In reality, modeling with NHPP is the same as assuming minimal repair
or imperfect repair. That means that when a component is repaired it is
repaired to the condition just before the failure occurred. More complicated
assumptions can be modeled, see Pham and Wang (11) and Valdez-Flores
and Feldman (16). See Hgyland and Rausand (5) for a more theoretical
description of Poisson processes and applications.

In this model we can estimate the cumulative intensity directly from
the data set. The cumulative intensity is defined as

t
W(t) = /0 w(w)du,

and W is estimated by the Nelson-Aalen estimator

- 1
W)= v, (5)
= Y@)
where Y (¢;) is the number of components at risk just before ¢;. The times
t; are all times when failures occur. The distribution of T7, the time to the
first failure is given by

P(Ty >t)=P(N(t) =0) = e WO = ¢ Jo wlwdu,

and the distribution of the time T; to the next failure given a failure at
T;—1 = t;—1 is given by

P(T;>t|T;—1 =ti—1) = P(N(s4—1 +t) = N(s;-1) =0) =

= e Wit =W (simn) = =[5 wiwau.

where s; = Y7 _, tj, is the absolute time. The function W represents the
mean number of repairs for one component until time ¢. Estimators of these
distributions can be obtained by replacing W with W, these are related to
the Kaplan-Meier estimator but not identical.

Using a kernel smoother we can estimate the intensity function w itself,
the quantity is also known as the hazard rate, see Klein and Moeschberger
(9). In Figure 4 estimates of W(t) and w(t) are shown for detail 1, 2 and
3.
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Figure 4: The Nelson Aalen estimate of W with 90% confidence intervals
and kernel estimate of w with kernel function as in (3).

2.4 Times between failures independent?

When choosing a model it is interesting to know if the times between failures
are independent or not. Are the times between repairs related to each
other? If the time to first repair comes early is there a greater chance that
the component holds longer next time or will the component break early
again? Is there any sort of dependency between times of repairs? If the
repair times are dependent the NHPP is probably better than the NSRP.
In the NSRP the result in the first distribution is independent of the result
in the second distribution.

2.5 Which model is the best one?

To decide which model fits data best we must construct some sort of error
measurement. There are plenty of measures of fit that are reasonable, e.g.

sup | Fo(t) = F(t) |, (6)



[ 150 -Fa) | (®)
> (E[T] - t:)?, 9)
=1
Z | E[T;] —t; |, (10)

where F,,(t) is the distribution function according to the model, and F(t) is
the true distribution function, E[T;] is the expectation of the model and ¢; is
the observation. Measure (6) focuses on the greatest difference between the
model and the data, (7) and (8) are measures of the overall fit. Measure (9)
is a measure of difference in squared mean of the expected outcome and the
real outcome, measure (10) is similar to (9) but without square difference
penalty. Which measure is the best choice depends on what question we
want to answer. In this case we want to use the model to make a prediction
of the time when the component fails. As prediction we use the expected
failure time according to the model. We want the difference between our
prediction and the outcome to be as small as possible. We want a big
difference to be more than linear worse that a small difference. This makes
it natural to pick (9) as our error measure.

If T; is the stochastic variable that describes the time to failure, then
the error measure m; for a failure is the quadratic loss function

m; = (E[Ti] — t;)?, (11)

where t; is the observed failure time. Another choice that must be made
when we compare the models is when to calculate m;. One way to do
this is to calculate E[T;] directly after component 7 has failed. This is
what we are doing here. In principle it would be possible to calculate this
measure at other times as well. For example every 50 hours the component
is alive we could measure the time to expected failure according to the
model and compare it to the observed failure. Finally we take the mean of
all components to get the mean square error

1 n

10



NSRP: 1t is straightforward to calculate m; in the NSRP model since T;
is Weibull distributed and E[T;] then has a known parametric form. With
the parameterization as in (4) we have

1
E[T}] = 6;-T(— +1),

where I' is the gamma function. The expected squared error in the Weibull
distribution is

M, = Bfm] = B[(BIT]~T)") = V[T = - (C(2 +1)~T( +1)). (12)

The reason why the expected error happens to coincide with the variance
of the Weibull distribution is a consequence of the fact that we chose the
error measure as we did. Table 1 shows the observed and expected squared
error for the four first repairs of detail 1,2 and 3. Note that the total error

detail parameter failure 1 failure 2 failure 3 failure 4 Total

1 M % 10* 3.28 1.92 1.57 1.61 2.12
1 M, = 10* 3.41 2.12 1.89 2.50 2.45
2 M %104 2.02 0.06 0.06 0.06 0.34
2 M, = 10* 2.02 0.06 0.06 0.06 0.34
3 M %1072 7.20 0.22 0.29 0.28 1.05
3 M, = 10* 7.45 0.21 0.26 0.26 1.08

Table 1: Calculated error in prediction of the NSRP model for detail 1,2 and
3 for the four first and total time to failure.

here is the mean of more errors than in the four first failure times. It is the
mean of all errors to the last failure. As we can see M, is mostly bigger
than M. This may be a consequence of the fact that the true distribution
has shorter tails than the Weibull distribution. We can also see the lack of
fit in the tail area in Figure 3.

NHPP: In the NHPP the prediction at time ty of the time to the next
failure T is computed by

b= [ e
0

Because we do not have any estimation of W for large values of ¢ this is im-
possible to calculate. The standard way of doing this is to stop integration
at the largest observation. Here we present an alternative method of solv-
ing this. This method is exact if W is linear and an approximation if W is
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close to linear. An advantage of this method is that it gives the possibility
to check if the NHPP model is appropriate. If we compare the alternative
method of calculating with the standard method the total error became 7%
bigger with the alternative way for detail 1 but 4% smaller for detail 2 and
3. The idea behind the alternative approach is to transform the NHPP to
a HPP with intensity one. This transformation is given by ¢ = W (¢) where
¢ is the real time and % is the transformed time, c.f. Hgyland and Rausand
(5). In the HPP the times between errors are independently and exponen-
tially distributed with intensity one. This results in the expected time to
next failure being one in the transformed time. We calculate E[T | T > to]
by means of

1. transform ¢ to t};,
2. calculate E[T | T > ] = (:+\1),
3. transform back (5?1)

We use the alternative way and calculate M for the four first failures. Re-
sults are shown in table 2.

detail parameter failure 1 failure 2 failure 3 failure 4 Total

1 M x10* 4.71 1.89 1.65 1.43 2.39
2 M x10* 2.23 0.42 0.28 0.16 0.43
3 M x10* 9.77 0.94 0.88 0.72 1.60

Table 2: Calculated error in prediction of the NSRP model for detail 1,2 and
3 in the four first and total time to failure.

If the alternative method is used it is possible to visually control the
fact that times between failures are exponentially distributed. Plot the
function F~'(F(t)) where F is the cumulative distribution function of the
exponential distribution with intensity one and F'(¢) is the distribution of
transformed times between failures. In the data set analysed this is really
not the case, especially not for detail 1, as shown in Figure 5. In the HPP,
times between failures should be independently distributed if the NHPP is a
good model. This can be checked by calculating the correlation between the
repair times. The times between repairs are not independently distributed
in the data sets examined. This observation indicates that the NHPP-
model is not suitable for modeling the behavior of these components.

Comparison A comparison of failure measure between the two models
shows that the NSRP model is better modeling this dataset. See Table 3.

12
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Figure 5:  The F~(F(t)) function. If the estimation is good the plot
follows the line y—z.

detail NSRPM %10* NHPPM,10¢ XNHPDM

NSRPwm
1 2.12 2.39 1.13
2 0.34 0.43 1.26
3 1.05 1.60 1.48

Table 3: Calculated quotient of error measure in the two models

3 Development of the model

Of the two models presented, the NSRP is the better for this type of data.
Remember that the main reason for calculating failure times of components
for the older engine is that this will help us to understand how similar
components of the newer engine will behave. In this section we will see if
we can develop the model. A further investigation showed that there are
two classes of repairs. We will investigate if theses two repairs influence
the life of the components differently.

In Figure 2 we can see that the failure distributions seem to be very
similar after the first repair. We will use this to refine the model. In Figure
2 we also notice that the time to failure after first repair seemed much
longer than the times to the following repairs. This can also be seen in
Table 4 , if we look at the 6 parameter, the characteristic life.

3.1 Different repair stations

There are two different repair stations that repair the details: repair sta-
tions within close range of the aircraft A and the main central repair station
B. There is reason to believe that the main repair station repairs better than

13



the smaller repair stations.

To investigate if there is a difference between A and B without making
any assumptions we estimate the mean time to repair,u. Let R be the
Kaplan Meier estimation (1) of the survival function. The mean u can be
estimated by

.
i= [ R (13)
0
where 7 is the biggest observed time. The variance of this estimator is
N . d
0l — 2 2 % 14
i=1 Yt

where IV is the number of observations, Y; the number at risk in time ¢;
and d; the number of failures at time ¢;. A 100(1 — «) confidence interval

for p is expressed by
i+ 2 g /YT (15)

The process R(t) is asymptotically normal distributed so the distribution
of fi is also asymptotically normal distributed. Theoretical results can be
found in Andersen et al. (1).

We estimate g and calculate the confidence interval according to (13),(14)
and (15) but distinguish between repair A and B. In Figure 6 this is shown
for the first five repairs with 95% confidence interval for the mean. Note
that new details are not shown in this figure.(Repair type B is displayed as
a dot and repair type A as a ring. The dots and rings indicate upper and
lower confidence bounds. There is also a dot or ring in the middle of the
confidence region indicating the point estimation of the mean.) We can see
in the figure that there is a difference between the repair A and B, at least
for details 1 and 3. The non-parametric estimate 4 is shown in Table 4,
pagel6. There it is possible to compare this mean with the mean achieved
if the Weibull distribution was assumed. In Table 4 we see that the means
are very close, which is an indication that the Weibull distribution is a good
approximation.

3.2 Simplify the model

Now when we are aware of the difference in survival depending on where the
component has been repaired we model time to next failure with different
parameters depending on where the component has been repaired, but we
still use different failure distribution after every repair time, that is F,
depends on n. In Table 4 the # and o parameters are shown for the time to
first failure and for the following five times to failure after repair for detail
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Figure 6: Confidence interval on expected time to failure after repair number
1 to 5. Dots are repair type B and rings are repair type A.

1,2 and 3. Also fiy, the mean of Weibull distribution, and u, the mean of
non-parametric distribution, are shown.

We notice that the estimates of § and a do not change very much
between successive repairs if we disregard new components. This makes
it natural to suggest a model with the same distribution for T3, i > 2.
Maximum likelihood estimates of § and a are shown in Table 5. Note that
these values are close to those in Table 4.

When the details in the new engine design begin in service little is
known so this may be a good model to start with. Bayesian updating
principles may be usable as well, see e.g. Shimi and Tsokos (14), survey or
e.g. Michael and Giuntini (4), Weibull example.

3.3 Aging

An interesting question to ask is if the time to next repair decreases with
the number of repairs. If we look at the points in Figure 6, do we see a
downward trend? A simple test can be made to answer this question. We
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detail failure nr rep type 0 a Pw M

1 1 - 554 3.09 496 498
1 2 A 145 1.48 131 131
1 3 A 159 146 144 142
1 4 A 109 1.26 101 102
1 ) A 125 198 110 110
1 6 A 119 137 109 109
1 2 B 359 3.00 321 323
1 3 B 330 3.14 295 295
1 4 B 335 2.83 298 296
1 5 B 331 3.69 299 297
1 6 B 297 331 266 272
2 1 - 355 2.36 315 315
2 2 A 45 1.76 40 40
2 3 A 43 169 38 38
2 4 A 43 176 38 38
2 5 A 41 169 37 37
2 6 A 40 176 36 35
2 2 B 41 220 36 36
2 3 B 52 1.04 51 51
2 4 B 62 164 55 56
2 5 B 37 0.84 41 39
2 6 B 4 229 39 39
3 1 - 589 1.99 522 526
3 2 A 76 177 67 67
3 3 A 58 1.61 52 52
3 4 A 54 143 49 49
3 5 A 65 149 58 58
3 6 A 59 166 53 53
3 2 B 101 191 90 90
3 3 B 105 147 95 95
3 4 B 98 127 91 92
3 5 B 103 139 94 94
3 6 B 119 1.68 106 106

Table 4: Parameters 6 and « in the Weibull distribution ,u,, the mean in this
Weibull distribution and u the non-parametric estimated mean.

test the hypotheses that all y are equal versus that they are not. To carry
out this test we must know the numbers of degrees of freedom. This is
a complex thing to find out when we have censored data. If we assume
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detail repair type 6 a

1 A 134 141
1 B 341 2.98
2 A 41 1.77
2 B 49 1.36
3 A 59 1.51
3 B 107  1.55

Table 5: Parameters 6 and « in the Weibull distribution if all T3, ¢ > 2 were
considered to belong to the same distribution.

that the f is estimated with many observations the estimated variance of
[t is near the true variance. We also assume that the variance of each ji is
equal. We can then perform a ordinary x2 test, described in appendix B.
The results turn out to be that we can only reject the hypothesis in the
case detail 3 repair type A. Note that this test only includes the five first
repairs. If we only look at the estimated values of fi in Figure 6 we may
think that there is a larger difference in y in detail 2 repair type B, but the
confidence interval is much bigger, which indicates that we are less certain
of the true value.

Another approach to the aging problem is to assume that the deteriorate
a little every time they are repaired. If they do not, they may in theory
be repaired ad infinitum and still have the same failure distribution. We
suggest the following Weibull model for the Tj, ¢ > 2

F)=1—e @ t>0, (6>0,a>0,p>0), (16)

where n is the repair number. This means that the expected time to failure
after repair number n is

BIT,] = 0" - T(~ +1),
a;
and p < 1 thus indicates aging. Maximum likelihood estimates of the
parameters (6, a, p) are shown in Table 6.

Here some p are bigger than 1. This is an indication that this may
not be a good model. If we make a 95% confidence interval over the true
parameter p based on profile likelihood we see that in all cases except one
we can not reject that p = 1. In the case where we could reject p =1, p is
very close to one. This means that if we use p = 1 the resulting error is very
small. No aging parameter is necessary. If the aging parameter is admitted
the model gets one extra parameter that will complicate the model but add
little new information. Profile likelihood is shortly described in appendix
E, more can be found in Venzon and Moolgavkar (17).
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detail repair type 0 « p 95% confidence-interval
164 1.43 0.92 (0.8412 , 1.0146)
371 3.04 0.95 (0.9205 , 1.0026)
45.7 1.79 0.98 (0.9666 , 0.9902)
47.0 1.36 1.01 (0.9205 , 1.0026)

( )

( )

61.8 1.51 0.99 0.9794 , 1.0058
101.9 1.55 1.01 0.9846 , 1.0426

W WIN N = =
W W T

Table 6: Parameters in modified Weibull distribution if all T;, ¢ > 2 were
considered to belong to the same distribution and a 95% confidence intervals
over the parameter p.

4 Discussion and conclusion

We have used two models to predict the time between failures on a data
set containing failure times of components in an aircraft engine. The
model used was a Non-Stationary Renewal Process (NSRP) and a Non-
Homogeneous Poisson Process (NHPP). A question arises with model is
preferably to use.

In order to understand and measure what model was most suitable
to model current data a couple of error measures were considered. The
use of the NSRP model was better for this dataset, see Table 3. In the
NSRP model non-parametric estimators as Kaplan-Meier (1) and Nelson
Aalen (5) were used at an early stage to avoid making any assumptions
on parametric distributions. Kernel smoothing (2) was used to analyse
times between successive repair times. With the help of the non-parametric
estimations a parametric distribution was chosen. Several plots, Figure 2
and 3, showed that the Weibull distribution modeled the data set well
enough to make reasonable predictions. For the choice of error measure
(11) the expected error in the NSRP model is equal to the variance of the
Weibull distribution (12). However, the error was somewhat smaller, which
can be a consequence of the fact that the real distribution has smaller tails
than the Weibull distribution.

Looking closer at the model, we found that different repair stations had
an impact on the times between repairs, see Table 6. We would like to model
the time to next failure with different distributions depending on where the
component has been repaired. We also noted that the first time to failure
was much longer than the following times. However, the following times
were from the same distributions. A more advanced model that suggested
that the components deteriorated with time (16) was suggested but it was
rejected by data.

The model we suggest has a distribution to the first failure F., and
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then two different distributions to the following failures F4 and Fp de-
pending on where the component was repaired. We have 6 parameters to
estimate, {Onew, Unew,04,a4,08,ap} see Table 5. We use {Opew, @new}
to model the time to next failure if the component is new and {04, a4} if
the component has been repaired at station A, and finally we model with
{0p,ap} if the component has been repaired at station B.

The models used data from an older version of an aircraft engine called
RMS. A newer engine called RM12 is available but little data exist for that
engine. The models in this work can of course be used for RM8 but the
main goal was to use them for RM12. That is one of the reasons why a
parametric model was chosen since a parametric model may be easier to
transfer to the RM12 case than a non-parametric model. However, more
work needs to be done in this area.
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Appendix

A: Kernel smoothing; Let H(t) be a step function with jumps at the
event times ¢, < ty < ... < t,. Let AH(t;) = H(t;) — H(t;—1) denote the
magnitude of the jumps in H(¢;) at time ¢;. The kernel smoothed estimator
of h(t) is a weighted average of values of AH (t;) for t; close to t. Closeness
is determined by a bandwidth b so that t; € [t — b,t + b] are included in
the weighted average. The bandwidth is chosen either to minimise some
measure or to give a desired degree of smoothness. Let K () be the kernel
function that describes how much weight is given to points at a distance
from ¢. Three common kernel functions for z € [-1,1] are

=3 K@=30-2); K@)=p0-a)

The estimation is given by
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When t > ¢, — b and ¢t < t; + b this estimate is biased but can be cor-
rected. More information about kernel smoothing can be found in Klein
and Moeschberger (9).

B: x? test; We have 5 estimated means {fi1, ..., fis}, each with an esti-
mated variance {S%,..., 52} . We want to test Hp : p; equal vs Hj : j1; not
equal. The number of observations we used to estimate u; varies because
we use censured data. We assume that u; is estimated with a great deal of
data and hence S? is near the true variance. We also assume that all the
variances are equal. We calculate

1 ) 1 X N 1
Sw= ¢ ;_1 Sis Sv= 4 ;:1 (f1; —p)°; where fi = ;:1 fi
and
4Sb 2
Sy M

The P-values of this test is shown in Table 7. We can only reject the Hy

detail repair type P-values

1 A 0.245
1 B 0.530
2 A 0.226
2 B 0.599
3 A 0.001
3 B 0.712

Table 7: P-values of the test Hy : u; equal vs Hy : u; not equal.

hypothesis in the detail 3 repair type A case.

C: Maximum likelihood estimator; We observe {t;,...,t,} as failures
and {ty41, ..., tn} as censured times. We want to estimate the parameters in
(4) by the maximum likelihood method. If the censuring process is random
the maximum likelihood estimator is

T n
LO,a|t) =[O, alt)- [ ROa|t), (17)
i=1 i=r+1
and the maximum likelihood estimation, 6 and & of 0 and « is obtained by

(0,a) = argmax L(6, « | t;).

6,
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D: Least Square Method; To estimate parameters in (4) by the least
square method we rewrite F' on a form that is linear in the parameters,

log(—log(1 — F(t)) = log(s)a = alog(t) — alog(8). (18)

We handle the censured observations by estimate R(t) = 1 — F(t) with
Kaplan-Meier estimator (1). We denote

log(—log(R(t1))) 1 log(t1)
Y= : P X= 0 [P (
log(—log(R(t,))) 1 log(t,)

SalES]
N——

where
—alog(@) =a; —-a=1b

and consider the equations Y = XP. Let P be the estimation of P and
Y = XP the expected failures under P. The vector P that minimises
(Y-Y)T.(Y-Y) is called the least square estimation of P and is calculated
by
P=X"X)"'xTYy (19)
The parameters 6 and « are obtained by
a=-b and @ =e b

One could argue that ¢; is the random component and not R(¢;). In
that case we rewrite (18) to

1og(=108(R(1) | 10(8) = 10g(t)

and define
log(t) 1 log(—log(R(t1)))
v=| |5 X=|; : ;P=(Z)
log(t,) 1 log(—log(R(tn)))
where

log(8) = a; =b.

b2

We may now minimise (Y —¥)7 - (Y —Y) by (19) and obtain 6 and « by
a=y and 6 =e".

We have used the first approach in this report.
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E: Profile Likelihood; To make a confidence interval of the parameter
pin (16) we first define the profile likelihood

L(p) = mang(p,a,G),

where L is defined in (17) and let

I(p) = log(L(p)),

be the log-likelihood function. Let

p = argmax(p).
P
Then _ _
2(1(p) — U(p)) ~ x5,

and a 95% confidence region is

fzc:{p:i@)—i(p)sw}.

2
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Discrete Approximations of Life Distributions
in Optimal Replacement
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Abstract

Discretization of continuous random variables is used in a stochas-
tic optimization problem. We present a measure connected to an op-
timization model that suggests what parts to replace in an aircraft
engine. The optimization model requires a discrete random variable
with restrictions on the points of support. Four methods to make
discretizations are discussed and adapted to the constraints of the
model. The methods are compared and the choice of the number of
points of support is discussed. Finally the consequence of using a so
called narrow scenario tree is commented upon.

Keywords: optimal maintenance; discretization; points of support

1 Introduction

Aircraft engines can be more economically maintained and resources saved
if the maintenance process is optimal. The optimality is here defined in
economical terms, and the main factor for economical savings determines
which components should be replaced on each service occasion. Several op-
timization models have been developed to deal with this problem. Epstein
and Wilamowsky (4) and Dickman et al. (5) have developed models for
components with predetermined deterministic lives. Andréasson (2) has
developed a model for details with deterministic lives but also details with
stochastic lives. Another approach to the problem is to construct a general
maintenance policy that is not always optimal but at least satisfactory. A
survey of replacement and maintenance polices can be found in Wang (14).

We will use the model presented in Andréasson (2), formulate it as a
two-stage model, and define an error measure. Different discrete approx-
imations will be used in order to incorporate components with stochastic



lives into the model. With the help of the error measure we will compare
different approximations. Work on different ways of making discretizations
of continuous distribution functions for implementation in models has been
done by Hgyland and Wallace (7), Keefer (9), Miller and Rice (10) and
Smith (12), (13). Other work on discretization and tree reduction in multi-
stage problems has been done by i.e Dupacova et al. (3), Frauendorfer and
Schiirle (6) and Pflug (11). We will make discretizations with restrictions
on the points of support of the density function.

This paper consists of three parts. In the first part we present the
optimization model and the error measure. The second part introduces
different discretizations methods, and the last part compares the different
methods with respect to the error measure. The objective is to conclude
how many points of support are necessary and what method of discretiza-
tion to use. Furthermore, we discuss the consequence of making a narrow
scenario tree.

2 Optimization model

The aim of the optimization model is to minimize the expected cost of
maintenance for an aircraft engine. In order to describe the maintenance
we classify the components of the engines into two categories; deterministic
details and stochastic details.

Definition 1: A deterministic detail is a component that has a prede-
termined limited time in service which must not be exceeded.

Components that are vital for safety are deterministic. If a deterministic
component fails there is a risk that the engine will stop functioning. The
predetermined time limit is set so low that there is practically no risk the
component will fail before this time.

Definition 2: A stochastic detail is a component that is not deterministic.

Stochastic components are allowed to operate in the aircraft engine until
they fail. If a stochastic component fails during a flight the engine will still
work but with reduced performance. In this paper only one stochastic detail
is used but it is possible to extend the model to several stochastic details.
The life U of a new stochastic component is modeled with a distribution G
and the remaining life of a functioning stochastic component with an age



of ug is modeled with a distribution G where

P(ug < U < u+ug)

Glw) 1— P(U < uo)

P(USU+U0|U>U0):

G(u +u) — é(uo)‘

%

1-— G(UO)

We assume that G (u) > 0 if u > 0 and U to be a non-negative random
variable.

The engine is repaired for two reasons, either the stochastic detail has
failed or a deterministic detail has reached its predetermined time limit.
The repair of the engine is associated with a cost for bringing the engine
to service. At service, there is an opportunity to replace other components
and consequently extend the time to the next repair. Every time the engine
is at the repair bay, an optimization is performed. The input data is the
state of the components in the engine and the output data is a suggestion
of what parts to replace. The optimization model is described in detail in
Andréasson (2).

In order to solve the optimization problem, for an engine consisting of
many parts, simplifications must be made. The main simplification in this
paper is that in the sequence of life distributions for the stochastic detail
only the first life distribution is modeled in a stochastic way, the remaining
life distributions are replaced by the expected value of the life distribution.
This simplification makes the model easier to formulate and solve, but there
are some drawbacks, described in Section 4.2.

Another simplification inherent in the optimization model is that the
time, during which the maintenance cost is minimized, is divided into T’
discrete time points instead of a continuous approach. The optimization
model is formulated as a stochastic two-step model. More information
about stochastic optimization models can be found in Kall and Wallace

(8).

2.1 First stage model

In order to decide which components to replace we introduce the first step
binary variables z§ for deterministic details ¢ = 1,...,N and &, for the
stochastic detail. The variables z},...,z{’, 3o take the values 0 or 1 with
a 1 indicating replacement of the detail. The lower index indicates the
time point and zero indicates that this is a decision we have to make now,
hence a first step variable. We introduce the replacement strategy vector
xo = (z3,...,2},50) and we want to find the solution

%o = argmin F(xg),
x0€{0,1}N+1



with
F(xo) = / £ (x0,u) dG(u) = Eglf (x0, ), (1)

where f is defined in section 2.2.

2.2 Second stage model

In the second stage model we take into consideration possible future prob-
lems. Overall we want to minimize the expected cost of maintaining the
engine during a fix time period containing 7' equidistant time points. We
denote the time points nodes. One approximation of the optimization
model is that components are only allowed to break and be replaced at
nodes. If T is large we get good resolution at the cost of long calculation
time, and if T is smaller the resolution gets worse but the calculation time
shortens.

The lives of the deterministic components that are currently in the
engine correspond to the node indices 71,...,7N-

The life of the stochastic component currently in the engine U is trans-
formed to a node by 75 = 75(u), which is a function from U to an index
set 1,...,T describing which node corresponds to every u. For later conve-
nience let us construct 7s(u) as a step function in such a way that it is right
continuous, increasing in u, and does not jump at any nodes. Furthermore
if U takes the exact time corresponding to node i, we let 75(u) = 4. This
implies that f (defined in (2) below) for a fixed x¢ is a right continuous
step function in u and does not jump at any node. The reason for this is
that f only changes values when 7 (u) is changing values. The function f
also decreases in u (formulated as a lemma in section 2.4). The function 7
can be written as

%s(u) =i if ue [wi,luz;l + (1 — wi,l)ui,wiui + (1 — wi)ui_H),

where u; is the time corresponding to node ¢ and w; € (0, 1). This definition
means that we treat components that are going to break some time after
u; as broken at time u; and we therefore replace them at time w;. This is
an approximation since at time u; we never know if the components will
break in the near future. The motivation for this approach is that we are
interested in the first stage variables x¢ and not the replacement schemes
(the second stage variables) if we get the outcome u. Remember here that
the nodes do not correspond to any actual maintenance times. In reality
a stochastic component is replaced as soon as it is observed as broken,
whether this times corresponds to a node or not.

The lives of new (replacing) deterministic and stochastic details are
described with node indices 7;,...,7ny and 7, with 7, indicating the node
closest to the expected value of the life distribution G.



We introduce the second stage binary variables as (zj,...,z)),t =
1,...,T for the deterministic components, §;,t = 1,...,T for the stochas-
tic component currently in the engine, and s¢,t = 1,...,T for the replacing
stochastic components. Furthermore, we let z; be binary variables indicat-
ing whether service is performed on the engine at time ¢t = 1,...,T. Thus
the vectors (z},...,z},3;, 8, 2) describe if replacement and service are
performed at times t = 1,...,T with 1 indicating replacement and service,
respectively.

Costs associated with the maintenance are c¢;, cs, and d, where ¢; is
the cost of replacing component ¢ = 1,..., N, ¢, the cost of replacing the
stochastic component and d a fixed cost for the service process. Thus
(c1y-..,¢N,cs,d) is the vector of costs associated with the replacements
and service made at each node.

In order to simplify the notation we introduce the set N' = {1,..., N}.
The second stage function f describes the cost if we make replacement xq,
when the stochastic life is u and is defined as

T
f(X(),’U,) = ;nel’lr/)l (Z Cz'.'L'i + CS(St + gt) + dzt) 5 (2)
t=0 \ieN
where ¢ is the set of points x = (z},...,2,84, 84,2 t = 1,...,T) such
that
To+ Y @ > 1, i€N, (3)
t=1
Ti+€—1 )
Yooz > 1, £=0,....,T-m, i€N, (4)
t=t
.Z’; S 2t, t:07"'7T7 i€N7 (5)
If 75(u) > T constraints (6)-(13) shall be removed
T
Yo o= 1, (6)
t=0
§t = 1, (7)
t=0
Te+0—1 7s(u)

£=0,...,min(F(u), T —75), (8)

g
&
_|._
gsz
v
=



Ts+€—1

Yoos > 1, L=Rw+1,...,T—1, 9)
t={
So = 0, (10)
t—1
se <Y 8k t=1,...,7(u), (11)
k=0
§t S Zt, t_O, .,i‘s(u), (12)
St S 2t t= 07 - 7T7 (13)
2o = 1, (14)
zl s, 50,2 € {0,1}, t=0,....,T, i€N. (15)

The constraints (3) force the installed deterministic components to be
replaced before their lives 7; are consumed. The components that replace
the current deterministic components are not allowed to be in the engine
more than 7; nodes. This is regulated by constraints (4). Constraints (5)
force the indicator variables z; to be one if we replace any deterministic
component at node t.

Constraints (6) to (13) are constraints regulating replacement of the
stochastic component and should be removed if 75(u) > T, because then
replacement of the stochastic component is not necessary. Constraint (6)
tells us that the installed stochastic component can only be replaced once
and (7) tells us that the replacement must occur before node 7;. The
component that replaces the current stochastic component is not allowed
to be in the engine more than 7, nodes. This is regulated by constraints
(8) and (9).

Constraints (10) and (11) mean that no replacing stochastic compo-
nent is allowed to be installed before the current stochastic component is
removed.

Constraints (12) and (13) force the z; variables to be one if we replace
the stochastic component at node ¢. The engine is at the repair bay at
time zero, hence constraint (14) sets zo = 1. In constraints (15) we have
the binary restrictions.

Note that in this model it is only the time to first failure 75 of the
stochastic component that is modeled with distribution G. The remaining
times are all assumed (modeled) to be deterministic and equal to the node
T, closest to expectation under G. This is sometimes called a narrow sce-
nario tree, see Altenstedt (1). In the model there is no requirement that
the components function at node T'.



2.3 Maximum discretization

In the above formulation 7 corresponds to a discretization of G. The
structure of the second stage model requires discretization to work. In
section 2.4 we will measure how good a discretization is. In order to do
that we introduce two kinds of discretizations. The first discretization
allows probability mass on all nodes and the second allows probability mass
only at a subset of the nodes.

Let k7 = {u1,...,ur} be the maximal set of nodes where probabil-
ity mass is allowed, let n < T be a positive integer, and denote k, =
{kl,...,k’n} C KT.

Definition 3: The discretization G is a discretization of G that allows
probability mass in all T nodes in kr. We call this discretization the
mazimum discretization .

Definition 4: The discretization G, is a discretization of G that allows
probability mass in at most n nodes in k7. We call this discretization the
n-node discretization .

A maximum discretization Gt has the corresponding probability mass func-
tion
D1y, ifu=uwu,

gr(u) =< : (16)
prr, if u=ur,

and a n-node discretization G, the probability mass function

p1, ifu=k,
gn(u) =41 (17)
Pn, ifu==k,.

We discuss different discretization approaches in section 3.

Nodes with non-zero probability mass are also called points of support
for a distribution. Points of support for a distribution H (u) are all points
w such that, if a < u < b, then H(b) — H(a) > 0, for any a, b.

2.4 Measure of error

In order to reduce the time needed to complete the optimization, we want
a discretization with as few points of support as possible but we still want
a good replacement strategy. Using the maximum discretization (16) or



the n-node discretization (17) yields different replacement strategies. The
maximum discretization gives the replacement strategy

%} = argmin Fr(x), (18)
xp€{0,1}N+1

where Frr(xg) is defined in (1) with G replaced by Gr, so that

T

Fr(xg) = Zf(XO)ui)piT'

i=1
The n-node discretization (17) gives the replacement strategy

x§ = argmin F,(xo), (19)
x0€{0,1}V+1

with F, defined in (1) with G replaced by G, so that

n

Fu(x0) = Y f(x0,ui)pi-

i=1

As Gr is a distribution using the maximum number of nodes in the
model we compare the quality of G, to G by introducing the error measure
for the expected cost between two discretizations G and G, as

e(Gn,Gr) = Fr(xf) — Fr(xg). (20)

Note that e(Gp,Gr) > 0. In order to make a discretization that has a
small error we use the following result.

Theorem 1: The error measure can be bounded with the following in-
equalities,

e(Gn,Gr) < 2sup | F,(x0) — Fr(xo) |< Csup | Gn(u) — Gr(u) |, (21)

where C' is a bounded constant.

The first inequality is proven in Pflug (11) but the short proof is stated
here for the convenience of the reader.

Proof:(First inequality) Set ¢ = sup, | Fn(x0) — Fr(xo) | . Let M =
{x0 : Fr(xo) < Fr(x%) + 2¢}. Suppose that X2 ¢ M, then

Fr(X)) + 2 < Fr(%3) < F,(X5) + ¢ < Fa(%g) +¢ < Pr(Xg) + 2.



This contradiction establishes X3 € M, i.e.

e(Gn,Gr) = Fr(x3) — FT(ig) < 2e=2sup | F,(x0) — Fr(x¢) | .O
X0

In the second inequality in (21) we use the fact that the second stage
function f in (1) is right continuous and does not jump at any nodes. We
also use the following lemma.

Lemma 1: The second stage function f decreases in u for any fix xg, i.e

f(xo,u) > f(x0,u+¢), Ve>0

Proof: We will check that the point x = (z},...,2], 84, 81,25 t =1,...,T),
which solves the minimization problem (2) when u = wug still satisfies the
constraints when u = ug +¢. This means that f(xq,u) decreases in u since
we can guarantee the same cost at u = ug + £ as when u = uy.

The relevant constraints to consider are (7),(8),(9) and (11). In the case
when 75(up) = 7s(ug + €), all constraints are the same. In the case when
7s(up) < T and 7s(up + &) > T, x belongs to ¥ when u = ug + € since
removing constraints means less restriction on the second stage variables.
We now consider the case when 75 (ug) < 7s(ug +¢) < T.

We know from constraints (6) and (7) that x satisfies §; = 0, ¢ >
7s(uo) + 1. This observation makes (7) true when u = ug + ¢

We now consider constraints (8) and (9) when u = uo + € but § =
0, t > 7(ug) + 1. The first 75(uo) + 1 constraints in (8) are identical to the
constraints in (8) when u = ug. The remaining 7(ug+¢€) —7(up) constraints
in (8) are identical to the first 7(ug + &) — 7(up) constraints in (9) when
u = up. All the constraints in (9) when v = ug + € can be found in (9)
when u = wug.

The first 75(ug) constraints in (11) are identical when 4 = ug and u =
ug +&. When u = up + € and we use §; = 0, t > 7(ug) + 1 the remaining
7s(uo + €) — 7s(up) constraints state

7s(uo)

s¢ < Zgiy t:%(u)+17-"7%(u+5)7
i=1

which is not really a restriction since Zf;(lu‘)) 3; = 1 according to constraint

(7), and all variables are binary according to (15).



We have now checked that solution x does not violate any constraints
when u = ug + € since the constraints do no mean any restrictions or are
identical to the ones occurring when u = ug.0

A consequence of Lemma, 1 is that the longer the life of the stochastic detail
is the cheaper it is to maintain the engine.

Proof:(Second inequality): Denote Y = f(xo,U) = f(U) and note that
Y is a non-negative stochastic variable. We rewrite

P(Y>y)=1-P(f(U)<y)=1-PU > f7'(y)) = PU < f~'(y)),

where
00, if y < fmin,
0, if y > fmae,

and fin and foe; depend on x¢ and are the minimum and maximum
costs of maintaining the engine. Note that P(U < f~l(y)) = G(f~1(y))
if f does not change values at node points, i.e. if f~1(y) ¢ xr. Note that
this follows from the assumption on 7.

Equation (1) can be rewritten

BalY] = /OOOP<Y>y)dy:/0°°P(U<f1<y))dy

o) fmaz
/ G ) dy = funin + / G () dy.
0

min

Now
2sup | Fp(xo) — Fr(xo) |
X0
= 2sup| Eg,[Y] - Eg,[Y]]
X0
fmam

= 2sup| Gr(f ') — Gu(f '(y)dy |

X0 fmin

< Csup|Gr(u) —Gp(u) |,

10



with C = 2sup,_ (fmes — fmin). Then
Fraz < fmas :min{%([%] +1) (ci+d) + ( [TZS] +1) (cs+d),
ree 2 (e (B

Frmin > fmin = [ﬁz(ﬁ)] d+ ) [Z] Ci

-
ieN bt

where [z] is the integer part of z. Thus C' is bounded.O

and

3 Different discretization approaches

When modeling a discretization of G(u),u € [0,00) with n < T points of
support, the following questions arise:

1. How many points of support should we use?
2. Which points of support &, C k7 should we choose?
3. How should we place the probability mass?

Answering questions 2 and 3 simultaneously may lead to optimization prob-
lems, that are as difficult to solve as the original optimization problem. In
section 4 we try to answer question 1 by simulation.

We will describe four different approaches and describe how existing
methods can be adapted to our situation. The methods are first presented
without any restrictions and then with our restrictions.

3.1 Method minimizing the Sup-distance

Theorem 1 bounds the error measure (20) by a constant times the sup-
distance between G, and Gr. Here we discuss a discretization that min-
imizes the sup-distance between G, and G. The reason is that when T
tends to infinity, G7 tends to G uniformly in order to be a sequence of
discrete approximations of G. The triangle and inverse triangle inequalities
gives

sup | Gr(u) —Gu)| < sup | Gn(u) — Gp(u) | +sup | Gr(u) — G(u) |
= sip | Gn(u) — G (u) | +e,

11



and

sup | Gn(u) — G(u) |

v

sup | Gp(u) — Gr(u) | —sup | Gr(u) — G(u) |
= sup | Gn(u) = G(u)r | —,

which gives

sup | Gn(u)=Gr(u) | —¢ < sup | Gn(u)—G(u) [< sup | Gn(u)=Gr(u) | +e,

where € = sup,, | Gr(u) — G(u) | is small when T is large.

Assume that we do not have a restriction that the points of support
have to be in the set k7. Then we can minimize sup, | G(u) — Gp(u) |
where G, is a discretization with n points of support with masses p; at u;,
i =1...,n by choosing point of support i as

21 -1 1
o ) and p; = e (22)

This can be realized by looking at Figure 1, where a,b,c,d,e and f indicate
the greatest difference between G and G, in intervals 1,2,3 and 4. The
overall sup-distance is equal to the maximum distance of a,b,c,d,e or f and
is minimized if all distances a,b,c,d,e and f are equal. This gives a sup-
distance of (2n)~!.

U; = G_l(

Figure 1: A fictive distribution G and G3 where a,b,c,d and f are the maz-
imum sup-distance between the functions in intervals 1,2,3 and 4.

With our restrictions on the points of support we get a greater sup-
distance. Assume we fix the n points of support in k7 and form discretiza-
tion (17). Let p = (p1, - - -, pn) be the probability vector and p the solution

12



to
p= arg;nin{Sgp | G(u) — Gn(uv) |} (23)

In most cases p is not unique. We then choose the solution that minimizes
the sup-distance in every interval [(0, k1), (k1, k2), - - -, (kn, 00)]. The overall
sup-distance is the maximum of the sup-distance in those intervals so the
solution also minimizes the overall sup-distance (23). The solution is as
follows

G(k1) + G(k2)

= 2 )

_ G(ki) + G(kir1)  G(ki-1) + G(ki) _ G(kiy1) — G(ki-1)
pi= 2 B 2 - 2 ’
b Glln) + Gllr)

2 )

where ¢ = 1,...,n — 1. In the intervals (0,k1) and (k,,o0) the sup-
distance will be G(k;) and 1 — G(k,) respectively regardless of p. In
interval (k;, k;y1) the minimum sup-distance is (G(k;+1) — G(k;))/2 and
it is achieved since

Gulk) = >pi= G(ky) ; Glkz) 3 G(kjt1) ;G(kj_l)

G(k,) + G(ki_;,_l)
2 )

=2

and
swp | Galks) - ) |= T = GE),
u€ (ki kit1)

If we have the liberty to choose both p; and which n points of support
ki € kT we want to use we get the following problem. Let (p;, k;),7 =
1,...,n be the discretization with p; the mass in node k;. Let p, K,, be the
solution to

(P, £n) = argmin{sup | G(u) — Ga(u) |}. (24)
p.ki€rT
As above the solution is not unique. Solving this problem is the same
as solving problem (23) for all () choices of points of support. (Many
combinations are unlikely to be best and can be omitted.) In general a
good set of points of support are points that lie dense where G increases
much.

Instead of the above optimization we suggest to choose points of support
near the points in (22). This can be achieved by choosing the n points of
support as follows.

13



1. Choose the first point of support as

1
k1 = argminsup | G(u) — — | .
1 = argminsup | G(u) — 5

2. Choose the i’th point of support as

. 2(1 - G(ki 1))
ki = Gu) — i)
uejiggl;i_l up | Glu) 2n—i+1)+1

+G(ki—1) |- (25)
Here we try to spread G(ki),...,G(ky,) uniformly in the interval [0, 1] but
since k; has to be from set xr this is not always possible. Equation (25)
considers the remaining part of the interval [0, 1], namely [G(k;—1),1] and
spreads the points uniformly in it. Here we start from the beginning of the
interval [0,1], but it would be equally good to start from the end. Note
that if there is no restriction of possible points, this choice coincides with
(22). Now probabilities can be chosen by (23).

3.2 Bracket means method

This method consists of dividing G into n intervals {[to,t1],. .., [tn—1,tn]}
where ty = 0, t,, = co. We now make a discretization by putting the mass

ti

ti—1

at the point
ti
B Ji tdG(t)

U; = % .
ft;_l dG(t)

The intervals can be chosen in many ways. One common choice is that
all points of support have equal probability mass. A similar method is the
bracket median method, in which one uses the median in each subinterval
instead of the mean, see Smith (13).

In the case where the points of support have to be in the set s, it
is not always possible to find subintervals so the mean in each subinterval
corresponds with a node in k7. A simple example that shows this is this:
One interval [0, 00) and mean in distribution does not match node in k7.

We present two ways to find approximations that almost satisfy the
bracket mean condition. For the first approach we decide which points of
support we should use. In the second approach we use a probability vector
that helps to choose points. Both methods are expressed as optimization
problems that are rewritten in a standard form in appendix A.
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Approach 1: Let y; be a metric measuring the distance between point
sets. Fix the n nodes k, C k7. Let &y, = {@1,...,Un} be a set of points
of support, that is not a subset of kr. The solution p = {p1,...,pn} is
obtained for the optimization problem

P = argmin p (Ky,, ky) (26)
pEY

where ¢ is the set of points p such that

s
/ dG(t), i=1,...,n,
ti—1

pi =
I

u; = — tdG(t), i=1,...,n,
biJg;

ti > ti-1, 1=1,...,n,

ty = 0,

t, = oo.

Solving (26) gives the discretization of the distribution as in (17). A pos-
sible metric py is p1 = Yo, wi(k; — @;)* where w; is a weight.

Approach 2: Let us; and pos be metrics with ps; measuring the distance
between probability vectors and p9e measuring the distance between point
sets. Let @ = {q1,...,qn} be a probability vector with desirable probabil-
ities and let &, = {i1,...,%,} be a set of points of support, that is not a
subset of k7. Then a discretization p = {p1, ..., p,} with points of support
kn = {k1,...,kn} is obtained as the solution (p,ky) to the optimization
problem

(f’: ’%n) = a‘rgmin M21 (qa p) + 22 (K/na R-/n)ﬂ (27)

PEP,knCKT

where ¢ is the same set as in the first approach. The solution of (27) gives
the discretization of the distribution as in (17). Metrics p2; and uas need
to be chosen so that they do not completely dominate each other. If paq
dominates, we get the brackets with the probabilities we desire but the
mean in each bracket may be far from a node. If uss dominates, the mean
in each bracket will be near a node but the probabilities will be far from
those desired.
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3.3 Method minimizing Wasserstein distance

Pflug (11) suggests the following discretization

k1tko
o= [ dG,
0k,-+;ci+1
pi = iy s dG(t), Z':2,”"n_17
2

Pr = o, GO,

where {k1,...,k,} € Kk, are the points of support of the given G, derived
as the discrete distribution minimizing the Wasserstein distance, see Pflug
(11). In Pflug (11) an error measure similar to equation (20) is used, for
which he presents a bound depending on the Lipschitz continuity of f with
respect to u. His result is not directly applicable to our problem since f is
not Lipschitz continuous but we will nevertheless use his method to decide
probabilities for comparison purposes.

3.4 Moment preserving method

If we have no constraints on the points of support and the first 2n — 1
moments of the distribution G are finite, then it is possible to create a
discrete approximation with n points of support that correctly matches
2n — 1 moments. Let

Mj = / quG(u),

be the j’th moment. The discretization can be obtained by finding u; and
p; that satisfy

n
> pul=M; j=0,...,2n—1. (28)
i=1

For a solution see Miller and Rice(10) and Smith (12). It can be shown
that if all M; are finite and from a probability distribution that spans [a, ]
then all u; will be real and lie in the interval [a, b] and all p; > 0.

In our problem, we must choose points from the set k7. In order to
compare the methods we will use the same points as for the method that
minimizes the sup-distance.

Another approach is to calculate points of support using (28) and then
choose the points of support in k7 that are closest to the points obtained.
For some distributions this method resulted in points very far out in the
tail.
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We have n fixed points of support u;,7 = 1,...,n and we want to find
probabilities p;,i = 1,...,n so that the discretization matches as many
moments as possible. Following a simple argument of degrees of freedom
we see that the maximum number of moments we can approximate is n —1,

(if My is not counted as a moment). Thus we look for a solution pi,...,p,
to
n .
> piul=M; j=0,...,n—1. (29)
i=1
There is no guarantee that there exists a solution with p; > 0,i=1,...,n.

If some p; < 0 we suggest removing one constraint. The least important
constraint is usually the highest order moment constraint

n

n—1
E piu; = My_1.
i=1

Removing this we obtain the equations (29) with j = 0,...,n — 2. If the
solution to these satisfies p; > 0,7 = 1,...,n we are done. If not, we should
remove one more moment constraint and keep removing constraints until
a solution is found resulting in p; > 0,i =1...n.

After removing moment constraints the solution to the problem is not
necessarily unique. (There are more variables than equations). In order
to choose one solution we can use a function z that represents some other
desired properties in the discretization and solve

p = argmax z(p),
PEy

where ¢ is the set of points p = (p1,...,p,) such that

n
meZ = M;, j=0,...,n—1-—m,
i=1

Di Z 0, 1:=].,...,’I’L,

where m is the number of removed moment constraints. The function z
can ,e.g., be formulated to promote p; of the same sizes if that is a desired

property.

4 Test results

In this section we will present numerical results illustrating the different
discretization methods in section 3. We will use a Weibull distribution
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to describe the life of the stochastic component. We use the following
parameterization,

Guw)=1—eGW"  t>0, (6>0,a>0) (30)

where 6 is the characteristic life and « is the shape parameter. The max-
imum number of time nodes, T', was set to 30. The distance between the
time nodes was set to one and 6§ was set to 9. Tests were made with the «
parameter being both 1 and 2.

In the following we will make an attempt to establish a rule of thumb
for how many points of support are needed. We will also comment on the
consequence of using a narrow scenario tree.

4.1 Error measure

We study how the error measure depends on different discretizations meth-
ods and different number of points of support. We model the engine with
two components, one stochastic and the other deterministic. When deter-
mining components to replace, there are four alternatives:

1. Replace the deterministic component.
2. Replace the stochastic component.

3. Replace both components.

4. Do not replace any components.

The optimal replacement alternative was calculated in optimization prob-
lem (19) with n =1,...,10 points of support.

The points of support were chosen by equation (25). The probabilities
were chosen in four ways, by the method that minimizes the sup-distance,
the method that minimizes the Wasserstein distances, the method that
preserves the moments, and the bracket method approach 1.

The best discretization possible was a discretization with 30 points of
support, one in every node, for which the optimal replacement alternative
was calculated according to (18). Finally the difference between the two
discretizations, using error measure (20), was calculated. The calculation
was performed in AMPL (a modeling language for mathematical program-
ming).

The parameters and remaining lives of the components used are shown
in Table 1.

The expected life of the stochastic component 7, is connected to the
shape parameter « in (30). The parameter 7, was set to 9 when a = 1
and 8 when o = 2. The age of the stochastic component was changed
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Parameter Alternatives

T 4,6
T 6,10
c 60,100,130
Cs 70,100,150
d 70,100, 150
a 1,2

Table 1: Parameters changed in the optimization model (2) and Weibull dis-
tribution (30).

from new to an age of 9 in four steps, (new, 3,6,9). The error measure was
calculated for all levels of the parameters, ages of the stochastic component
and discretization methods. In Figure 2 the result of the test is presented.

The method that preserves the moments seems worse and the methods
that minimize the Wasserstein and Sup-distance seem better. It seems that
using two points of support is worse than just using the expected value of
the distribution. At three points of support or more the error measure
seems rather constant, compared with using one or two points of support,
if we disregard the moment method with @ = 1. Some work has been done
on three points of support discrete distributions, cf. Keefer (9).

Further tests showed that the error measure decreases as a increases.
With constant 6, the variance of the Weibull distribution (30) decreases
with the increasing a parameter. If the variance is great it is harder to
describe the distribution with just a few points of support.

4.2 Narrow tree approximation

The greatest approximation is that only the first life of the stochastic com-
ponent is modeled with several points of support. After the stochastic
component is replaced it is modeled with the expected value of the life dis-
tribution, which is the same as using one point of support. The reason why
this approximation was invented in the first place was that it was natural
to think that what happens in the near future has a greater impact on
the decision we have to make today, than what is going to happen a long
time from now. The optimization model works in a different way. Basi-
cally it tries to find a scheme with replacement times that, for the entire
service period, minimize the expected cost of maintaining the engine. The
approximations sometimes lead to irrational solutions, such as when a new
stochastic detail is replaced.

A simple example that illustrates this is the following one. Assume
we have one deterministic and one stochastic detail. The engine is at the
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Error measure as function of number of points of support, alpha=1
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Figure 2: Y-axis is the mean error measure with parameters as in Table 1.
X-axis is the number of points of support, S = method that minimizes the
sup-distance, B = Bracket method, W = method that minimize Wasserstein
distance, M = Moment preserving method.

repair bay because the deterministic detail needs replacement. For the sake
of simplicity assume that the stochastic component is new, that is G=0G.
We use the model to answer the question if we should replace the stochastic
detail. Assume the price for making repairs is z; = 20 and that replacing a
component costs ¢; = ¢; = 10. We model the stochastic component with 2
points of support. It fails in node 3 with probability p4 = 0.5 and in node
5 with probability ps = 0.5. The expected value of G corresponds to a
distance of 4 nodes. Consequently the stochastic component that replaces
the first stochastic component must be replaced at least at every four nodes.
Assume that the deterministic component has a life of 4 nodes. The total
time we need to maintain the engine is 7' = 8 nodes. Note that there is no
restriction that the engine needs to function at node 8. In figure 3 we see
three replacement schemes.

In node zero we see the first stage variables, that is the decision we
make now. Given that we have to replace the deterministic component we
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Node 0 1 2 3 4 5 6 7 8

Det

. ‘ ‘ A Cost=110
Stoc ‘ ‘
Det

‘ ‘ B Cost=70
Stoc .
Det

. . C Cost=80
Stoc . .

Figure 3: Three replacement schemes in an optimization problem that con-
tains one deterministic and one stochastic component. A dot indicates
replacement. The prices of replacing a component is 10 and the cost of
bringing the engine to service is 20

can either keep the stochastic component (schemes A and B) or replace it
(scheme C). For each scheme a cost g is calculated. The model will suggest
a replacement of the stochastic component if the cost go < paga + pBgs.
With our prices this is 80 < 90. Consequently we replace the stochastic
component even if it is assumed to be new.

In the case where a = 1 the Weibull distribution (30) becomes an ex-
ponential distribution. The exponential distribution has a constant failure
or hazard rate, which means that the risk of failure is constant over time.
Thus a stochastic component with an exponential distribution never needs
replacement. Table 2 contains results on the percent of replacements from
the test run with the exponential distribution. It seems that the model
very often replaces the component even if replacement is not necessary.
The problem is not solved by increasing the number of points of support.
When 30 points of support is used the stochastic component is still replaced
in 18% of the times. When only one point of support is used there is no re-
placement of the stochastic component because the replacing component is
modeled in the same way. This model problem can probably be corrected
if more than the first stochastic life distribution is modeled with several
points of support.

21



PoS S B w M

1 0 0 0 0

2 0.44 0.11 0.56 0.11
3 0.10 0.31 0.10 0

4 0.15 0.20 0.19 0.06
5 0.11 0 0.11 044
6 0.31 0.22 031 0.55
7 0.24 0.27 024 041
8 0.12 0.09 0.13 0.24
9 0.24 0.26 0.24 0.37
10 0.13 0.13 0.13 0.26

Table 2: The percent of times the optimization model replaced the stochastic
component even if it was not aging. PoS=Points of Support, S = method that
minimizes Sup-distance, B = Bracket method, W = method that minimizes
Wasserstein distance, M = Moment preserving method.

5 Summary and further work

An optimization model for replacement of parts in an aircraft engine con-
taining stochastic and deterministic components has been studied. We
made a discretization of the distribution of the life of the stochastic com-
ponent. The structure of the optimization model demands that the points
of support of the discretization coincide with the nodes in the model. Four
different discretization methods were presented, the bracket mean method,
the moment preserving method, a Wasserstein distance minimizing method,
and a method that minimizes the Sup-distance. The discretization methods
were adapted to the constraints in the optimization model.

An error measure closely connected to the optimization model was de-
fined and a maximum limitation of the error was derived. With the help
of the error measure and test runs the different methods were compared.
According to the test, the methods that minimize the Wasserstein and Sup-
distance were better. The moment preserving method performed worse.
The minimum number of points of support suggested is three.

When using the narrow scenario tree many details were replaced even
if they did not need replacement. This model problem can probably be
corrected if more than the first stochastic life distribution is modeled with
several points of support.

Possible future work is to model more lives with several points of sup-
port. Furthermore we need to study a model with more stochastic details
and how to make discretizations if the lives of the components are corre-
lated.
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Appendix

A: Bracket method. The optimization problems in section 3.2 is here
rewritten in a less explicit form. Let

¢
Hi (t1,t2) ftol dG(u)
HEt)=| Hitioi,t) |[=| [i', dGw) |, (31)
L
Hn(tnflatn) o1 dG(U)
Jil tdG(u)
Bl(tl,tg) Hi(t1,t2)
: i tdG
Bt)= | Biltii,ty) |=| L=l@0 (32)
Bn (tn—I; tn) fttn"_l t dG(u)
Hp(tn1,tn)
where t = (t1,...,t,). Problem (26) can now be formulated
t = argmin pq (K, B(t)), (33)
ter
and the problem (27) and be formulated
(t,Fn) = argmin s (p, H(t)) + paz(kn, B(t)), (34)

kn CkT,tel

where I is the set of points t such that

ti > ti1+e, 1=1,...,n,
to = 0,
t‘n = G_l(pz)a
where € is a positive small number and p, is a probability near 1. If
nice metrics are chosen the objective function will be continuous. The
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constraints form a compact set in t. Problem (33) is solved by standard
methods. Problem (34) can be solved for every fix choice of k, C k.
We can make (Z) different choices of k, and need to check which one
minimizes the objective function in (34). For large T this is computationally
demanding.
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