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A NODAL METHOD FOR ABSORPTION - DIFFUSION PROBLEMS

M. ASADZADEH* AND A. SOPASAKIS'

Abstract. We construct a nodal method for a two dimensional absorption—diffusion problem.
The method gives rise to a seven point stencil for which the truncation error analysis shows an accu-
racy of at least O(A2). We devise a numerical method which constructs a matrix whose entries are
amplified according to contributions from each of the nodes in a rectangular domain. Numerical im-
plementations are provided for selected examples where the exact solutions are known for comparison
purposes.
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1. Introduction . The purpose of this paper is to construct and implement
a nodal diffusion method for an absorption-diffusion problem in a two-dimensional
convex polygonal domain 2 associated with some boundary conditions:

{ ~div(D - V¢) + 046 =0, in @, (1.1)

ap+B(n-Ve) =S, on 89,

where D = D(z,y) is a piecewise smooth coefficient, o, is an absorption coefficient, o
and (3 are certain parameters to determine the character of the boundary condition.
Finally S = S(z,y) is a smooth source function and n = n(z,y) is the outward unit
normal to the boundary at the point (z,y) € 0. Problem (1.1) arise, e.g. as a diffu-
sion approximation of a particle transport equation governed by absorption, scattering
and fission events. Nodal methods are often applied in discretizing particle transport
equations and are studied in various settings, e.g. a self-consistent nodal method
is considered in [1] and variational nodal methods are studied in [2] [4]. Numerical
analysis of the nodal methods are, mostly, due to the works by Hennart and his group
where they analyze also different hybrids with both finite element and finite difference
schemes, see ,e.g. [5], [6] and [7]. Other related studies can be found, e.g. in [8]-[11].
Our goal in this work is to derive a consistent second order nodal diffusion scheme
approximating an absorption-diffusion problem with piecewise smooth diffusion coef-
ficient. We implement the problem in two settings; in an absorption-free and also full
absorption-diffusion case. The absorption-free assumption is for simplicity reasons.
Otherwise the absorption term is regularizing and the results of absorption-free case
would obviously be valid for the full absorption-diffusion problem.

An outline of this paper is as follows: we start in Section 2 by presenting a nodal
method for a general absorption diffusion problem in two dimensions. We construct a
seven point scheme which will be used in the numerical implementations. We analyze
the consistency of the scheme in Section 3. Subsequently, in Section 4 we consider
the absorption-free case and we present a succinct truncation analysis of it in Section
5. In Section 6 we introduce the idea of implementing a solution to the nodal method
which is suitable for seven point stencils in general and is therefore not restricted to
just this nodal method in particular. Two examples are subsequently presented which
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are chosen specifically for benchmark and comparison purposes since their solutions
are known. In the first example, in Subsection 6.1 we solve a very simple constant
coefficients Laplacian. Then in Subsection 6.2 the full example of an absorption -
diffusion problem with variable coefficients is presented and solved. Some concluding
comments are presented in Section 7.

2. The Problem and the Method. We consider a general two—dimensional
absorption diffusion problem,

+a(mmm@%#§—%umwaw=m (21)

on a rectangular domain Q := {(z,y) : 0 < z < X, 0 < y < Y}, with a non-negative
absorption coefficient (o, > 0) associated with a Robin type boundary condition:

ap+pn-¥V=_5. (2.2)

‘We develop a nodal method for this problem which will be based on the usual current
unknowns. To begin with, we impose a grid. The unknowns are the scalar fluxes
and currents on the cell edges. The configuration and definition of the unknowns is
provided below.

Ax .

Y12 © _1
i+1/2 T = i(x”% +z,-,%)

1
Yi =5y T95-1)

Azi=m1 —2;

2

o Ayj=yjr1—y;1

Xit1/2

1 Yi+d
= lim 7/ b(w,y)dy
T 1 Ay; vy s 5

Vit

. 0
. Di(e.4) 52 (@, )y,

1
z—zit5 y,-,%

1 x
= lim /
youi+t Azi Jy,
i-gz

it}

=— lim
YUl T 1

Note that the underlying mesh is a uniform rectangular grid with the element
size Az x Ay and with a hexagonally coupled mesh of seven point stencil (6 vertices
plus the center). We also note that the integrals on the right side of (2.3) and (2.4)
are continuous functions of z, while the integrals on the right side of (2.5) and (2.6)
are continuous functions of y.
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Operating on (2.1) by ALy,‘ f;_"*: (-)dy, we obtain,
iz

d 1 0¢

d - 92 _b
E (Dl,i] H¢](I)) _Ua,i]¢]( )— _A_ijQ,z) dy (Iyyj+%) dy (1‘7]/]-7%) . (27)

We assumed that Dy, Ds and o, are constant for sufficiently small Az x Ay. We also
define Dy, ;; and ¢; viz:

D, ij = Dy(x,y), for Tp1 <x<zy, Y1 <Y<y, n=12 (2.8)

64(2) = —

Vi1
= A_y]/ ? oz, y)dy, for z;, 1 <z < Tip - (2.9)

2
Vi1
Note that, due to assumptions on D and o, (2.7) is exact. Now, using (2.6), we
approximate the right hand side of (2.7) by replacing it by its average value over z
and taking a limit in y. We therefore obtain for z; 1 <z < ;. 1,

1 1 1
UL I 2.10
Ay; | Az T0it3 T Ag, ik (2.10)

1
= Aoiay, Ty T Jioy)

d2
Duij 75 #i(2) = 9a,ij65(2)

Applying the boundary condition, qu(a:,-i%) =it (see Egs. (2.3) and (2.9)) and

defining 1y ;; = /5 we write the solution for (2.10) as follows,

Jijrr — i1
(x) = ——2dT3  TWTa o phiiie L e huiiT, 2.11
¢i(x) Dy AniAy, + Che + Cae (2.11)
with C1 = C1(J; ;1,754 1) and Ca = Ca(J; ;. 1,J; ;1) are provided in detail in
the Appendix.
Our main objective will be to establish equations in the unknown J. To this end
we operate on (2.11) obtaining,

d . s
2503(@) = Ciby €97 = Oyl yje ™7,
Evaluating the above at 2 = 2,1 and applying (2.4) we get,
—Jiyrj=a@d 1+t hig i tad—aldog (2.12)

2 2 -1
—Ji—%,j = _bld’z‘—%,]‘ - a1¢i+%1]- — ClJi,]#% +61Ji’j,%} (2.13)

Note: all coefficients for these equations and those that will follow are provided in the
Appendix unless otherwise specified.

Now, going through exactly the same procedure, except transverse — integrating in
the y-direction rather than the z-direction, we obtain the following “rotated” version
of (2.12) and (2.13),

,Ji:jJr% = CQJZ-JF%J‘ - CQJ,-,%J + b2¢i,j+% + aQ‘Z’i,j—%: (2.14)

“Jig-y = el it odig; - ey by, (2.15)

3,
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It is now possible to solve for the J’s in equations (2.12-2.15). Thus obtaining,

Jirg = EndiyjtEabiyy;+ Esdiyiy +Eady; g

Jiog=Fabioy; = Badivyy— Fsbijiy — Padijy
where, to avoid notational complexity, once again we display all coefficients in the
Appendix. Replacing “” by “i + 1”7 in (2.17) we obtain an alternatine equation for
Ji1,; which we use in order to design our numerical scheme by setting J;; 1 ; =
Ji—%,]“’i:—)i-i-l:

0=FE1¢;_y;+ B3y + Esdj_y + (B2 — Ed)dyyy (2.18)
+ —Es¢ipj1y — Esbiraj- 1 — Eadiysyay,

This seven point stencil is centered at (i +1/2, j) around the (i, 7) and (i + 1, j) cells,
as can be seen in Figure 2.1.

i

[/ T T )
Fi1G. 2.1. The stencil

An analogous equation holds in the y direction for the (4,7) and (i,7 + 1) cells.
Boundary conditions involving ¢(z, y) can be obtained using (2.2), (2.16) and (2.17).

3. Consistency Analysis. Here we will use a truncation analysis to argue that
(2.18) and its rotated analog, in the y direction, limit to the continuous equation (2.1)
as Az and Ay — 0. We do this by expanding (2.18) about the center point (mH%,y,-).
In an effort to make the analysis more readable we distinguish between the unknowns
¢>i+%1j that line on the horizontal cell edges, and the unknowns ¢7M+% that line on
the vertical cell edges by using the following notation,

fi+%,j :¢i+%,j Gij+i= ¢i,j+%' (3.1)

For simplicity we assume a quasi-uniform mesh (uniform in each direction) with Az =
Az; and Ay ~ Ayj;, but the procedure can be similarly implemented for variable mesh
sizes. Recall that f and g are cell-average unknowns from (2.3) and (2.5) respectively;
hence by Taylor expansion

1 Yi+d
firo=ag | ey (3:2)
Y._1

imz
1 Yi+d
= T/ [f(@ira/2,95) + (W — ¥5) fy(@ira/2,95)
Y Jy,_
1 2
+§(y — i) fyy(@ig1y2,95) + .. ]dy

Ay? 4
=flziy1,y) + wa(-’”w%:yj) +0(A%).
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Note that f;11/2; is not the same as f(z;41/2,¥;). We now set
FH»%,]‘ = f(xi+%ayj)7 Fyy,H»%,j = fyy(931+%=yj)7
etc. Then,
Ay? Ayt
-fi+%1j = FiJr%J + 24 Fllll,iJr%;J' + 1920

Az? Azt
Gijry =Gijr1 + ﬂGm,i,H% + ﬁGzzzz,i,j+% + 0(Azf). (3.4)

F,

vwyy,itig T 0(ay%) 3:3)

Note that similar expansions are carried out about (;41/2, y;) for the remaining nodes
appearing in our stencil (2.18). To further simplify the resulting expression we apply
the same procedure as in (3.2), and expand as follows

F, F, F,
Fi_y1po;=F - AxF, + Azz% - Az3% + A.’t"% +0(Az®)

F, F,
Fyyi-1y2,5 = Fyy — Fyye Az + Az2% - Ag? % +0(Az"),

Fyyyyi-1/25 = Fyyyy — DFyyyye + - + O(A14)=
etc.

for both F and G components. We therefore substitute (3.3), (3.4) and the expansions
above in (2.18) thus obtaining, for piecewise constant D and a quasi-uniform mesh,
that the truncation error is no more than O(Az? + Ay?). The calculation is extensive
due to the large number of parameters involved but quite routine and as such we
do not include it here (however a similar such calculation is undertaken in detail in
Section 5).

4. The Nodal Method for Problems with o, = 0. In this section we estab-
lish a nodal scheme for the special case of o = 0. We therefore consider the following
problem,

52 (@ Gea@n) + o (Datan Go@n)) =0, (1)

with the same boundary condition, (2.2). This problem, and the nodal method we
will develop here, are unusual in that there is no absorption, whereas conventional
nodal methods require o, # 0. The procedure just outlined in Section 2 is no longer
applicable since among other things the form of the solution (2.11) changes radically
for o, = 0. Instead the method which we develop below relies on scalar flux unknowns,
rather than the usual current unknowns. We will use the same grid as before and the
same configuration and definitions for our unknowns (2.3-2.6). Working in exactly
the same way as in (2.7) - (2.10) we now obtain the analog of (2.11) which is now
valid for o = 0:

Ji,j+% —J;

$i(@) = T b (e gy, )@ ) (42)

2DijA.’L‘iij
Pi1

+ (:IIH; - x) Az

2

+(z—
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Thus, we now have
d Jijrr —Jij-1 D.:
Dijdile) = W(I — @)+ A—Z(¢i+%,]‘ — i)
Evaluating this at z = z;31 and using (2.4), we get

1 Ay,
~iegs = 25Uy = Jis ) ¥ Di g (Big = b g ).

Subtracting and adding these two equations we get,

y

Ji+%,j+‘]i,j+% =Jv_%’] (4.3)

-3
Ay,
Jiviitdion =72Diiﬁ(¢i+%,]‘7¢i—§,j)7 (4.4)
respectively. Note that (4.3) is just the balance equation.

Now, going through exactly the same procedure, except transverse — integrating
in the y-direction rather than the z-direction, we again obtain (4.3), and the following
“rotated” version of (4.4):

Ami
Tigrg + gy = ~2Di g Gijey —dijoy) (4.5)

For system (4.3)—(4.4)2t0 be solvable we need a fourth equation. To get this, we

operate on (4.2) by z5- . ”}’(-)dz to obtain,
2

z,_

1 [T 1 Ag 1
vl j(z)dr = —Em(Ji,H% ~Jig )+ 5y i)
i-7

(4.6)
We also get the analogous equation,
bi5 = —%%Uﬂ%,j —Ji)+ %(¢i,j+% +¢i; 1) (4.7)
Eliminating ¢;; between (4.6) and (4.7), we obtain:
_ 1 _As
12 D;; Ay,

1 ij 1
= *Em( i3 e b)) T 5@ugan 1)

1
igry = Jij-3) + 5(0ir g+ bing )
(18)

This condition makes ¢;(x) (defined by (4.2)) and ¢;(y) to have the same average
value in the (i,7)-cell. Note that(4.3)-(4.5) and (4.8) give us 4 equations per cell.
Thus, there are a total of 4 IJ such equations. In addition (see (2.2)) there is a
boundary condition of the form,

(constant) ¢ + (constant) J = Source,

at each edge on the outer boundary. There are a total of 2I 4+ 2.J such conditions.
Hence,
# of equations = 4IJ + 21 +2J = 2(21J + 1+ J)
=2[I(J + 1) + (I + 1)J] = 2[# of all edges]
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Since there are exactly two unknowns per cell edge, then we have the same number
of equation as unknowns.
Now we shall show that it is possible to eliminate the J’s from these equations,
thereby reducing the number of unknowns by a factor of two. From (4.3) we get,
Jigry = Jig-y = ~Uirgy = Jicg )

1) 3 2.

Hence, (4.8) can be written as

12D;
— 3 [¢1+2,; + iy By~ by = Jups iy (49)
(Am, + Ay,)
Adding (4.4) and (4.9), we get
3Dij(¢ir1j+ i 15— bijrr —dij 1)

Ay;
JH%,]' D”A (¢1+2 J ¢i—%,j) (Ay] A )
Az; Ay;

(4.10)
Subtracting (4.4) from (4.9), we get

Ay, 3Dij(¢ir 1+ i 15— bijrr — iy 1)

D;
+42)

i35 = Vi Az, (¢z+2,1 ¢i7%,j) (Ay]

(4.11)
Replacing “i” by “i + 1”7 in (4.11) we find
Ay;
Ji+%,j = —Djy1, ]Ax (¢’1+2 J ¢z‘+%,]‘)
3Dij1 (4.12)
Ay; } A]m,-ﬂ (Girgy+ dirsy = Pirrrs —Pirsy 3)
(Am,-Jrl Ay; )

Finally, eliminating J;, 1 ; between (4.10) and (4.12), we obtain the following equation
for the ¢’s:

D1y Dy
Azryy Birti = Pirg) + xp Ging = bi44)
3D1]AI,

(Az? + Ay?)(d)”? Gt bt~ Pijry — Piyy)
(3D,+11]A1‘,+1
Az}, + Ays
=Ly + Ly + Ls,

0=-

)(¢i+%,j T birty~ Pirrgat ~ Pirrg-t)

where by Ly, Ly and L we denote the first, second and third lines of (4.13) respec-
tively. This equation spans the (i, ) and (i + 1, j) cells. An analogous equation holds
for the (4, ) and (i, j+ 1) cells. Boundary conditions involving only ¢ can be obtained
using (2.2), (4.10) and (4.11).

5. Truncation Analysis . Once again we will show that (4.13) is consistent
with (4.1) by expanding (4.13) about the point (z;,1,y;)- We use the same notation

8 ASADZADEH-SOPASAKIS

as in (3.1). For this section we will assume a uniform mesh and let D = 1. Then
using the same expansion (3.3,3.4,etc) the first line of (4.13) becomes,

1
L =- Az (¢1+2] 2¢z+2]+¢’z—— )

1 Ayl Ay?

Ap Fivgi T g Fuvirgs — Z(FH%,J‘ t21 wa#%,j)

Fiogst AQZ] wafgu) + O(A4)]

zitlgt AZ F“H2] AQZ Pw#;y

S Fovisss)

itig T Am‘Fz,H%J + ATx?FM’H%,]‘ + A2§2Fyyﬂ+2’] + 0(A4)]

+ AzF,

St

1
Li=— 5 (birgy =200y 5+ 0 gj) = —A2Fp 04, + 04T (5.1)

Similarly, the second and third lines of (4.13) can be written as:

2
AyF

Ly+Ls= witdi ¥ g wit )

3A
al [(4Fl+ J+ AP,

Az? + Ay?
Az? Az?

~(Cigis + Sy Coniars + Gy + 51 Canis (5.2)
Ag? Ag?

94 Ceziriin} T Giny 3 + 5 Gw,m,j—%) + O(A4)]'

T Gipgry +
Therefore,

3Az
Az? 4+ Ay?

~(16+ %AE2G11 + %AgﬁGw) +o(ah)].

Lo+ L= [(4F + A2 Fya + AT"’QFM) (5.3)

Using (5.1) and (5.3), we may write (4.13) as,

3[(4F + A$2sz =+ Ag/_szy) - (4G + %AmZGm + %Agﬂny)] — O(AQ)
Az? + Ay? .
(54)

The corresponding equation is obtained by interchanging z and y, and F and G:

—Fp +

3 (4G + AyQny + ATQQGMD) - (4F + %AyQFyy + %AzQsz)]
Ay? + Az?

~Gyy + =0(A?%).

We now add (5.4) and (5.5), to get

3

AT 1 ig7] 20" 0 — AP0 (F — G) = (&%),

—(Fyz + Gyy) +
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We note that (5.4) and (5.5) implies G = F + O(A?). Using this, (5.6) immediately
becomes,

—(Fro + Gyy) = O(A?).

This shows, at least for D = constant and a uniform mesh, that the truncation error
is no more than O(A?).

6. Numerical Implementations and Examples. We provide numerical im-
plementations which validate our approximations. We display in particular two exam-
ples. First, and as a basic benchmark, we solve a Laplacian equation in two dimensions
with constant coefficients corresponding to a less regular absorption-free case. Then
we move into our more elaborate example which is a full two dimensional absorption
diffusion equation with variable coefficients for which the exact solution is also known.

We implement the seven point nodal scheme using an idea similar to that of
constructing a mass matrix from contributions of each element of our domain much in
the same way done in the finite element procedure. We start by establishing “center”
points in our domain. A “center” is any point corresponding to (z;1/2,¥;) in Figure
2.1 around which we have nodes in the same positions as our seven point stencil in
that figure requires. Once those “centers” are found we write an algorithm which will
run through them building a system of equations (one equation per “center” point).
Each equation will of course be just copies of our seven point nodal scheme. Note
that the coefficients of our nodal schemes are well established in Sections 2 and 4
leaving the corresponding ¢ values as unknowns. As we move through the “centers”
establishing our equations some of the ¢ values corresponding to boundary points are
known. Otherwise they are unknown. In that respect each of those equations will
be placed in a row of its own while building our “load” matrix A. In other words we
establish a system of equations which in matrix form can be written as, AX = B. If
for instance we are at equation 4, which would correspond to center i, the coefficients
of the unknown ¢’s are placed in row i of matrix A while the ¢’s which are on the
boundary, if any for that particular equation, will be placed into matrix B in row, i.
The placement of the coefficients of each of the stencil points in matrix A is based on
the position of the nodes in that stencil. In that respect the size of A is, [# of centers,
# number of nodes] while that of B is, [# of centers, 1]. The solution is established
by solving the system AX = B. Note that the number of equations is bigger than the
number of unknowns once the number of nodes becomes higher than 20. In general
we solve this system as a least squares problem.

6.1. Example 1. Nodal method for a simple Laplacian. The following
simple example equation is solved here,

0 ¢ 2] o¢

—D — ~—D(z,y) — = 1

e D@y 5 (@y) + By (2,9) By (z,9) =0, (6.1)
where D(z,y) is taken to be 1. We specify the following exact solution for (6.1),

#(x,y) = e¥(cos(z) + sin(z)),

which also provides the boundary conditions used for any domain size we choose. A
variety of different domains are used which are made specific in the corresponding
figures and tables. The nodal scheme (4.13) from Section 4 is implemented in a
matlab code and the exact solution superimposed together with the approximate can
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Comparisons: Exact vs Approximate (Laplacian)

Exact Sol
Approx. Sol

. =.0385,
X. (A x =.0391) y-ey )

F1G. 6.1. Ezample 1. Location: [z]X[y] = [-4 6]x[0 1]. The ezact and approzimate solutions
for the Laplacian equation. We obtain 3187 nodes in our domain by setting Az ~ .03 and Ay ~ .03
in this particular ezample.

be seen in Figure 6.1. Our algorithm automatically creates 3187 total nodes (using
only the information from the boundary) to produce the solution in the figure for the
section —4 < z < 6 and 0 < y < 1. In Figure 6.2 we display a different section of the
solution (20 < z < 25 and 20 < y < 28) as it increases exponentially. We carry out
a comparison of errors in the following table. The domains for carrying out our error
estimates are randomly chosen.

Absolute and relative errors per step size

Location Max.

[x] x [y] Az Ay Abs. err.

.16 5 .026

1 25 .004

[1, 2]x[1, 2] .05 125 .0067

.029 .0625 .000097
.031 .000015

.16 1

.16 5

(Rel. Err.) # nodes

(

(

(

(

(

(

16 (
[-1, 4]x[4, 5] 1 . . (
01 (
(

(

(

(

(

(

131) 7
.05) 31
. 127

511
2047
22

. 47
. 175
. 671
. 2063
. 7

05

16
1
[-10, -9]x[10, 11] | .05
03

31
127
511
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Solution for Laplacian System

G Appr. Nodal Sol.
- Exact Sol

Total nodes:5095

y—coord. Ay = 0.125
x—coord. A x = 0.061538

F1G. 6.2. Ezample 1. A different location: [z]x[y] = [20 25]><[20 28] The ezact and approz-
imate solulions for the Laplacian equalion. The sol: tially. Total nodes:
5095, Az ~ .0615 and Ay ~ .125.

6.2. Example 2. A diffusion problem with variable coefficients. A more
elaborate example problem is solved here for the following variable coefficients diffu-
sion problem,

0 100

—_ — 2 =
By 5y =) a0 =0,

which has the following analytic solution,

é(z,y) = ae’“’\/gcos (%) ,

where a = 100 and b = .0999. The solution is presented, for the domain ; =
(4,5) x (0,10) in Figure 6.3 as well as, for a larger domain 2, containing Q0 in Figure
6.4. We let Qs = (2,10) x (—10,10) . The actual errors are once again presented at
the following table,

ASADZADEH-SOPASAKIS

Solutions Absorption Diffusion

O Appr. Nodal Sol
Exact Sol.

« Bdry
Total nodes=4479

-coord. (A x = 0.031034) y-coord. (Ay = 0.03125)

F1G. 6.3. Fzample 2. The ezact and approzimate solulions for the full absorption diffusion
equation. Location: [z]x[y] = [4 5]x[0 10]. Here we allow 4409 nodes by setting Az ~ .03 and
Ay~ .03.

Absolute and relative errors per step size

Location max

[x] x [y] Az Ay Abs. err.
32 .5 11
.16 . .00625
1, 21,2 | 1 . 0039
05 . .0015
.029 . .00047 2047
.33 .5 .003 7

(Rel. Err.) # nodes
¢
(-
(-
(-
€
¢
.14 2 .001 (. 58
(-
(+
(-:02
¢
(-
(-

7
31
127
511

[5,6]x[7,8] | 09 .1 .001 199
04 .05 100032 799
024 .00009 3199
1 2 0005 58

5, 6x[23,24] | 09 .1 .00034 199
04 05 00011 799
024 025 00003 (- 3199

7. Conclusions. We have shown that the nodal-diffusion method applied for the
absorption-diffusion problems is at lease second order accurate. We investigate the
consistency of our discrete scheme which corresponds to a seven-point finite difference
or a finite volume scheme. For simplicity our truncation error analysis is performed
for the absorption-free problems. However, theoretically in the presence of absorption
term this accuracy may be further improved. This is due to the fact that positive
absorption in, e.g. particle transport problems, adding to the loss term, would in-
crease the regularity of the exact solution. The absorption term is reconsidered in the
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Solutions Absorption Diffusion

O Appr. Nodal Sol
- Exact Sol.

Bdry
Total nodes=5040

x. (Ax=0.12346) y—coord. (Ay = 0.125)

FiG. 6.4. FEzample 2. The ezact and approzimale solulions for the full absorption diffusion
equation. Location: [z]x [y] = [2 10]x[-10 10]. Here we allow 5040 nodes by setting Az ~ .123 and
Ay~ 125,

implementations through concrete examples. Both analysis and implementations can
be extended to the cases of analytical as well as variational nodal-diffusion methods.

8. Appendix. Note: Dy ;j, Do ;; and Sj; denote the value of D (z,y), D2(z,y)
and S(z,y) at ;12 <& < Tip12 and Y172 <Y < Y172

UNTE Y —ly,i;Az; —l,ijAz;
C =e 2\ =dijyr tdigpre MR 0 = J em R

+ ;1 ;Sij Az Ayje i de — ¢i+%,jsijAziij) /(SiAziAy; (e be — 1))

l1,ijz,_1 Y B _ . .
=e "2 (7Ji,i+% + Ji’jJr%e hijhei g Ji,j—% - Ji’j,%e hij Ami

+ ¢i+%,jsz'jAziijeih”jAz" - ¢i—%,jsijAzz'ij) /(SijAz;Ay;(e 2t — 1))
We also define:

Ey = —(a1 + 2c1c2(a1 — b1))/d, B> = (b1 +2c2¢1(b1 — a1))/d,
Es=¢ (b2 + ag)/d E, = 26261(111 - bl)/d, d= —4csc; — 1

where the ag, by, and ¢, are defined as follows for k =1, 2:

_ —Dyijly,ij(e72miiton 4 1)

2Dk’ijlk!ije—lk,ijAzk b
k= (efm,.,,,ﬂjAmk _ 1)

(E—Qlk,,-,-Aa:;. — 1)
(=1+e 58%) i Diig _ _
= - (1 + e isban) Ay, Az, S, for Azy = Az;, Az = Ay,

ap =
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