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ABSTRACT

Input estimation problems in structural dynamics often lead to solving damped

least squares problems. Explicit block inversion algorithms are developed to

invert the associated upper triangular block Toeplitz matrix. Moreover, the

inversion algorithms are used to introduce a new type of regularization technique.

For optimal regularization parameters, it is demonstrated by a numerical example

that the solution using the proposed regularization technique has an upper bound

equal to zeroth-order Tikhonov regularization.

1 INTRODUCTION

Accurate knowledge of the operational loading conditions acting on a physical struc-

ture through its designated life is a crucial component in the design of all mechanical

systems. In some cases, it is impossible to measure these forces directly. The structure

may prohibit the use of a force transducer without it being destroyed or the transducer

itself may alter the system properties. In these situations; when the force/input loca-

tions are inaccessible for direct measurements, indirect methods need to be utilized.

Input estimation problems are difficult since frequently only a fraction of the poten-

tially available response data is used to estimate all inputs. Moreover, measurement

noise may render the identified inputs useless if it is not treated correctly.

Input estimation procedures dealing with transient input histories applied with

known spatial distribution have received increasing attention, see [1], [2], [3], [4], [5],

[6], [7] and [8], to mention just a few. Different methods are usually developed to

accommodate a specific application.
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Generally, input estimation problems are ill-posed. Treatment of these problems

requires additional information about the solution sought. Regularization methods are

commonly used to restrict the computed solution to be smooth and thereby consistent

with complementary physical observations, see e.g. [9], [10], [11] and [12].

This paper focusses on the upper block triangular Toeplitz matrix, which is readily

derived from the governing equations of motion. For a survey on techniques for solving

systems with Toeplitz matrices see [13] and the references therein, cf also [14]. Here,

the resulting regularized deconvolution problem is solved by explicit block inversion,

which gives valuable insight to the exact sequence of operations performed in the

inversion. The formulation is used to introduce a new type of regularization procedure.

An extensive tutorial survey of numerical algorithms associated with these discrete

regularized deconvolution problems is given in [15].

The paper is organized as follows. In Section 2, the input estimation problem is

defined and the dynamic programming algorithm is outlined. A modified version of

this algorithm is used in Section 3 to derive general formulations of the explicit inverse

of the Toeplitz matrix. The advocated formulation with Markov parameters is used to

introduce a new type of regularization procedure in Section 4. A numerical example

is given to illustrate certain properties of the regualization procedure in Section 5.

Finally, conclusions are drawn in Section 6.

2 PROBLEM DEFINITION

2.1 Theoretical preliminaries

Consider the continuous-time governing equations of motion for a causal, linear and

time-invariant mechanical system with ndof degrees of freedom

Mq̈(t) + V q̇(t) + Kq(t) = f(t) (1)

where q̈(t), q̇(t) and q(t) are vectors of accelerations, velocities and displacements,

respectively. M denotes the symmetric and positive definite mass matrix; V and

K denote positive semidefinite damping and stiffness matrices, respectively; f(t) is

the excitation vector. Introducing the state vector x(t) = [q(t)T q̇(t)T]
T ∈ R

ns where

ns = 2ndof and the dummy equation q̇(t) = q̇(t), Eq. (1) can be rewritten in first order

state-space form according to

ẋ(t) = Acx(t) + Bcu(t)
def
=

[
0 I

−M−1K −M−1V

]
x(t) +

[
0

M−1P u

]
u(t) (2)
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Here, P u ∈ R
ndof×ni is of full column rank and relates the excitation vector to ni

independent inputs u(t) ∈ R
ni as

f(t) = P uu(t) (3)

In this paper, measured quantities ŷ(t) ∈ R
no are assumed to be accelerations which

are directly related to ẋ(t). Thus, the output y(t) ∈ R
no relation becomes

y(t) = Caẋ(t) = CaAcx(t) + CaBcu(t) (4)

Time discretization of the continuous-time state-space matrices Ac → A, Bc → B,

and the input yields the discrete-time counterpart of Eq. (2) and (4) as

xk+1 = Axk + Buk (5a)

yk = Cxk + Duk (5b)

with C
def
= CaA and D

def
= CaB. A is the plant matrix, B the input influence matrix,

C the output influence matrix and D the direct throughput matrix. The direct or

forward problem, i.e. computing the system response from a known input sequence

u
def
= [uT

N uT
N−1 . . . uT

0 ]T with initial states x0 at time k = 0, can be written as

xk+1 = Ak+1x0 +
k∑

i=0

AiBuk−i (6a)

yk = CAkx0 + Duk +
k−1∑

i=0

CAiBuk−1−i (6b)

for times k = 0, . . . , N , with the definition
∑−1

i=0 . . .
def
= 0. Equation (6b) can be

written in the form

yk = H0
kx0 +

k∑

i=0

H iuk−i (7)

where

H i =

{
D i = 0

CAi−1B i = 1, . . . , N
(8)

H0
i = CAi i = 0, . . . , N (9)

Here, H i ∈ R
no×ni are the Markov (impulse response) parameters and H0

i ∈ R
no×ns

represents the influence from initial conditions x0 on the output at time step i. The

output of the system for a given input can be solved in a straightforward manner if the

parameters H i and H0
i are known (from analysis or experiments) for all time steps.
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Equation (7) can be re-arranged into

y0
k

def
= yk − H0

kx0 =
k∑

i=0

H iuk−i (10)

where y0
k is the output at time k, which has been compensated for effects of non-zero

initial conditions. Expressing this relation for each discrete time k = 0, . . . , N in block

matrix form yields




H0 H1 . . . HN

0 H0 . . . HN−1

...
...

. . .
...

0 0 . . . H0




︸ ︷︷ ︸
def
= H0




uN

uN−1

...

u0


=




y0
N

y0
N−1

...

y0
0


 (11)

The coefficient matrix H0 is in upper block triangular Toeplitz form and consists of

(N +1)2 matrix blocks, each of dimension no ×ni. The condition number of H0 grows

as its size increases, i.e. as the number of time steps N increases. Thus, for long time

series, H0 may become ill-conditioned. For extensive treatment of basic linear system

theory, see [16].

2.2 Input estimation problem

The inverse or input estimation problem constitutes computation of the input seq-

uence u for a known sequence of measurements ŷ
def
= [ŷT

N ŷT
N−1 . . . ŷT

0 ]T compen-

sated for effects of non-zero initial conditions ŷ0 def
= [(ŷ0

N)T (ŷ0
N−1)

T . . . (ŷ0
0)

T]T

def
= ŷ − [(H0

Nx0)
T (H0

N−1x0)
T . . . (H0

0x0)
T]T of the outputs. Solving the input esti-

mation problem in the least squares sense corresponds in the algebraic problem that

minimizes the norm of the residual H0u − ŷ0 as

min
u

‖H0u − ŷ0‖2
2 (12)

with the straightforward solution

uLS = H
+

0 ŷ0 (13)

Here, H
+

0
def
= [H

T

0 H0]
−1

H
T

0 is the Moore-Penrose pseudoinverse of H0. For a case

where no=ni, H0 will be a square matrix and H
+

0 becomes the regular matrix inverse

H
−1

0 . It follows that the existence of a unique solution requires that the block diagonal

element H0 in H0 must be of full column rank. Moreover, this implies that the

entire block matrix H0 is of full column rank and that there must be at least as
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many equations as there are unknowns, i.e. no ≥ ni. This will be assumed to hold

throughout the rest of this paper. It should be noted that H0 drops rank if at least one

of the inputs does not have instant influence on any of the outputs, the so-called non-

collocated input/output configuration. This problem can be overcome by reformulating

the Markov parameters according to [8].

Equation (12) represents a discretization of an ill-posed problem. Consider the

associated continuous-time convolution integral relation of Eq. (12) given as

y(t) =

∫ t

0

H(t − τ)u(τ)dτ (14)

where H denotes the continuous-time impulse response kernel representation of H 0. In

Eq. (14), u(t) does not depend continuously on the output y(t). The integral operator

diminishes the effects of rapid oscillations (noise) in u(t), i.e. small changes (noise) in

the outputs may correspond to large changes in the predicted inputs. In general, any

attempt to solve Eq. (12) with Eq. (13) will produce meaningless results unless u is

restricted. Regularization methods are frequently adopted to incorporate additional

information of the sought solution, i.e. they impose restrictions on u.

One of the most successful and widely known regularization methods is Tikhonov

regularization or damped least squares. Tikhonov regularization was originally invented

independently by Phillips [9] and by Tikhonov [10], cf also [11] and [12]. The restric-

tions on u are imposed by an a priori bound on ‖Liu‖2 modifying Eq. (12) to

min
u

{‖H0u − ŷ0‖2
2 + λ‖Liu‖2

2} (15)

where λ is a real regularization parameter that controls the balance between the re-

strictions on u and the minimization of the residual norm. Li ∈ R
nL×ni(N+1), where

nL ≤ ni(N + 1), is typically a discrete approximation to the ith-order derivative

operator. For example, zeroth-order Tikhonov regularization corresponds to choos-

ing L0 = I ∈ R
ni(N+1)×ni(N+1) and first-order Tikhonov regularization corresponds to

choosing

L1 =




I −I 0 . . . 0

0 I −I . . . 0
...

...
. . . . . .

...

0 0 . . . I −I


 ∈ R

niN×ni(N+1), I ∈ R
ni×ni

except for a scaling factor. For simplicity, L0 will be utilized throughout the rest of

this paper.

The regularization parameter λ is still to be determined. Denote the regularized

solutions of Eq. (15) by uλ. A log-log plot of the residual norm and the norm of
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the solution, i.e. a log-log plot of (‖H0u
λ − ŷ0‖2,‖Liu

λ‖2) for λ ∈ [0,∞), will in

general produce an L-shaped curve. The regularization parameter can be chosen in

correspondence to the maximum curvature in this graph. Since the true solution û

is unknown, the optimal regularization parameter minimizing ‖û − uλ‖2 cannot be

obtained in general. The use of L-curves to find near optimal regularization parameters

is analyzed and advocated by Hansen in [12].

2.3 Dynamic programming algorithm

Dynamic programming (abbreviated DP) is a classical method for solving certain kinds

of optimization problems, see [17]. In [2] the DP algorithm appears as a recursive and

explicit algorithm that solves

min
u

{‖
√

W D(y − ŷ)‖2
2 + λ‖Liu‖2

2} (16)

for a given λ and with the output sequence y
def
= [yT

N yT
N−1 . . . yT

0 ]T given by Eq. (5b).

Equation (16) differs from Eq. (15) in W D only. W D is a block diagonal weighting

matrix with (N + 1) equal, positive definite and symmetric block diagonal elements

W ∈ R
no×no . The derivation in [2] sets out from a discrete first order state-space

formulation, see Eq. (5), but without the direct throughput matrix in Eq. (5b). Thus,

it does not allow for direct coupling of the inputs and outputs. An extended derivation

including the direct throughput matrix is given by Nordström in [18].

The DP algorithm constitutes two principle steps: a descending and an ascend-

ing sweep. The descending sweep establishes the input/output relationships at each

discrete time, whereas the ascending sweep calculates the input that minimizes Eq. (16)

using the relationships established during the descending sweep and state sequences

given by Eq. (5a). The algorithm derived for zeroth-order Tikhonov regularization in

[18] is outlined next, with minor modifications.

2.3.1 Descending sweep

Define the following matrices

E
def
= −(DTWD + λI)−1DTW (17)

W̃
def
= (I + DE)TW (I + DE) + λETE (18)

For time step k = N calculate

RN = CTW̃C, sN = CTW̃ ŷN

V N = EC, wN = −EŷN

(19)
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For time steps k = N − 1, N − 2, . . . , 0 calculate

Gk+1 = (DTWD + λI + BTRk+1B)−1

V k = −Gk+1(D
TWC + BTRk+1A)

wk = Gk+1(D
TWŷk + BTsk+1)

Rk = CTWC + ATRk+1A + (DTWC + BTRk+1A)TV k

sk = (CTW + V T
k DTW )ŷk + (A + BV k)

Tsk+1

(20)

This is known as the descending sweep, from which the matrices V k and the vectors

wk need to be stored for later use in the ascending sweep.

2.3.2 Ascending sweep

For time steps k = 0, 1, . . . , N compute the optimal inputs according to

u
opt
k = V kxk + wk

xk+1 = Axk + Bu
opt
k

(21)

for a given initial state x0. This is known as the ascending sweep.

3 EXPLICIT BLOCK INVERSION ALGORITHMS

The damped least squares problem given by Eq. (15) with Li taken as L0 = I, i.e.

zeroth-order Tikhonov regularization, is equivalent to an expanded or enlarged formu-

lation given as

min
u

∣∣∣∣∣

∣∣∣∣∣

[
H0√
λI

]
u −

[
ŷ0

0

]∣∣∣∣∣

∣∣∣∣∣
2

(22)

The solution to Eq. (22) may be formed in numerous ways, e.g. by use of QR decompo-

sition, (truncated) singular value decomposition, or computation of an inverse matrix

by forming the corresponding normal equations. For solution methods for this kind

of enlarged system see [15], [19] and [20]. Moreover, extensive treatment of numerical

methods for least squares problems is given in [21]. Here, explicit block inversion algo-

rithms are derived in state-space matrix form, see Section 3.2.2 and Markov parameter

form, see Sections 3.1 and 3.2.3. The algorithms give valuable insight to the exact

sequence of operations in the matrix inversion. The explicit block inverses formulated

in this section, are used to introduce a new regularization procedure, see Section 4.

3.1 Square system

Consider the special case no = ni of Eq. (11). As previously stated, H0 will be square

and H
+

0 ≡ H
−1

0 . The inverse can be written in explicit block form according to

8

H
−1

0
def
=




H̃0 H̃1 . . . H̃N

0 H̃0 . . . H̃N−1

...
...

. . .
...

0 0 . . . H̃0


 (23)

with block elements defined as

H̃0
def
=H−1

0 (24a)

H̃k
def
= −

k∑

i=1

H̃k−iH iH
−1
0 k = 1, 2, . . . , N (24b)

Proof. The proof follows from the definition of the inverse. H
−1

0 H0 is upper triangular

and given as

H
−1

0 H0 =




I0 I1 . . . IN

0 I0 . . . IN−1

...
...

. . .
...

0 0 . . . I0




where

Ik =
k∑

i=0

H̃k−iH i k = 0, 1, . . . , N (25)

which can be verified by using Eqs. (11) and (23). Insert Eq. (24a) in Eq. (25) with

k = 0

I0 = H̃0H0 = H−1
0 H0 = I

and Eq. (24b) in Eq. (25) with k > 0

Ik =
k∑

i=0

H̃k−iH i =
k∑

i=1

H̃k−iH i + H̃kH0 =

=
k∑

i=1

H̃k−iH i −
k∑

i=1

H̃k−iH iH
−1
0 H0 = 0

yielding

H
−1

0 H0 =




I 0 . . . 0

0 I . . . 0
...

...
. . .

...

0 0 . . . I




i.e. H
−1

0 is the inverse of H0 by definition. �
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An alternative explicit solution can be derived setting out from the discrete state-

space formulation given by Eq. (5). Extracting uk from Eq. (5b) and inserting it into

Eq. (5a) yields the inverse representation

xk+1 = (A − BD−1C)xk + BD−1yk (26a)

uk = −D−1Cxk + D−1yk (26b)

in which the input/output relation has been interchanged. The corresponding explicit

inverse block elements are

Ĥ0
def
=D−1 (27a)

Ĥk
def
= − D−1C(A − BD−1C)k−1BD−1 k = 1, 2, . . . , N (27b)

with the same matrix structure as Eq. (23). The two principally different approaches

to the explicit inverses are mathematically equivalent.

It should be noted that H−1
0 does not exist when no > ni. A mere substitution

of H−1
0 (or D−1) to H+

0 = (HT
0 H0)

−1HT
0 (or D+ = (DTD)−1DT) in Eq. (24) (or

Eq. (26)) will not produce the least squares solution of Eq. (11) in this case.

3.2 Regularized system

Consider the damped least squares problem given by Eq. (22) where no ≥ ni and

λ ∈ [0,∞). The problem satisfies the normal equations

(H
T

0 H0 + λI)uλ = H
T

0 ŷ0 (28)

H
T

0 H0 + λI is symmetric and positive definite, yielding a unique regularized solution

uλ to Eq. (28) according to

uλ = (H
T

0 H0 + λI)−1H
T

0 ŷ0 (29)

for a given λ > 0. The block elements in

_

H
def
=




_

HN,N . . .
_

HN,1

_

HN,0

...
. . .

...
...

_

H1,N . . .
_

H1,1

_

H1,0
_

H0,N . . .
_

H0,1

_

H0,0




def
= (H

T

0 H0 + λI)−1H
T

0 (30)
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can be derived explicitly by use of the DP algorithm, see Section 3.2.2. Here, the block

elements are expressed in the state-space matrices. In Section 3.2.3, the block elements

of

H̆
def
=




H̆N,N . . . H̆N,1 H̆N,0

...
. . .

...
...

H̆1,N . . . H̆1,1 H̆1,0

H̆0,N . . . H̆0,1 H̆0,0




def
= (H

T

0 H0 + λI)−1 (31)

are expressed in the Markov parameters. Note the indexing order of the block ele-

ments in
_

H and H̆ . The two principally different approaches in forming the explicit

inverses; in state-space matrix form and in Markov parameter form, are mathematically

equivalent.

3.2.1 Dynamic programming algorithm - modified

Three issues concerning the DP algorithm Eqs. (17)–(21) need to be addressed before

the block elements of Eqs. (30) and (31) can be derived. These issues are:

• The weighting matrix W introduced in the DP algorithm needs to be accounted

for.

• Effects of non-zero initial conditions on the measurements ŷ need to be compen-

sated for.

• The explicit state sequence x
def
= [xT

N xT
N−1 . . . xT

0 ]T that the DP algorithm

depends on, Eq. (21), needs to be embedded in the formulation.

A weighted version of Eq. (29) equivalent to the solution of the DP algorithm can be

derived by a change of definitions according to

C → Cw
def
=

√
WC D → Dw

def
=

√
WD ŷ → ŷW def

=
√

W Dŷ (32)

Furthermore, applying these changes to the DP algorithm eliminates W in

Eqs. (17)–(20) since the weighting matrix is incorporated in the new definitions given

by Eq. (32). Throughout the rest of this paper, the weighting matrix will be chosen

as W = I for simplicity, but without loss of generality since these definitions can be

incorporated at any stage of the proceeding derivations.

The last two issues given above can be overcome by substituting ŷ in Eqs. (19)

and (20) with ŷ0 and substituting Eq. (21) with

uλ
k = V k

k∑

p=1

Ap−1Buλ
k−p + wk (33)

where
∑0

p=1 . . .
def
= 0. By the modifications introduced in this section, the modified

DP algorithm will produce a mathematically equivalent solution to that of Eq. (29).
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3.2.2 Explicit inverse expressed in state-space matrices

Consider the bottom block row of Eq. (29), with block element definitions according

to Eq. (30), given as

uλ
0 =

_

H0,N ŷ0
N + . . . +

_

H0,1ŷ
0
1 +

_

H0,0ŷ
0
0 (34)

It is also given by the modified DP algorithm as

uλ
0 = w0 (35)

where w0 is given in Eqs. (19) and (20) with
√

W = I and ŷ substituted with ŷ0

according to Section 3.2.1. The bottom block row in Eq. (30) can be established by

expanding w0 in Eq. (35) and comparing it to Eq. (34), yielding by identification of

terms
_

H0,0 = G1D
T

_

H0,1 = G1B
T(CT + V T

1 DT)
_

H0,k = G1B
T(

∏k−1
l=1 (A + BV l)

T)(CT + V T
k DT)

_

H0,N = G1B
T(

∏N−1
l=1 (A + BV l)

T)CTW̃

(36)

where k = 2, . . . , N − 1. Proceeding in the same manner, the ith block row 0 < i < N

is established by comparing

uλ
i =

_

H i,N ŷ0
N + . . . +

_

H i,1ŷ
0
1 +

_

H i,0ŷ
0
0 (37)

with

uλ
i = V i

i∑

p=1

Ap−1Buλ
i−p + wi (38)

yielding

_

H i,j = V i

∑i

p=1 Ap−1B
_

H i−p,j

_

H i,i = V i

∑i

p=1 Ap−1B
_

H i−p,i + Gi+1D
T

_

H i,i+1 = V i

∑i

p=1 Ap−1B
_

H i−p,i+1 + Gi+1B
T(CT + V T

i+1D
T)

_

H i,k = V i

∑i

p=1 Ap−1B
_

H i−p,k

+Gi+1B
T(

∏k−1
l=i+1(A + BV l)

T)(CT + V T
k DT)

_

H i,N = V i

∑i

p=1 Ap−1B
_

H i−p,N

+Gi+1B
T(

∏N−1
l=i+1(A + BV l)

T)CTW̃

(39)
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where j = 0, 1, . . . , i− 1 and k = i + 2, i + 3, . . . , N − 1. The Nth block row is given by

uλ
N =

_

HN,N ŷ0
N + . . . +

_

HN,1ŷ
0
1 +

_

HN,0ŷ
0
0 (40)

or

uλ
N = V N

N∑

p=1

Ap−1Buλ
N−p + wN = V N

N∑

p=1

Ap−1Buλ
N−p − Eŷ0

N (41)

Identification of terms yields

_

HN,j = V N

∑N

p=1 Ap−1B
_

HN−p,j

_

HN,N = V N

∑N

p=1 Ap−1B
_

HN−p,N − E

(42)

where j = 0, 1, . . . , N − 1. This concludes the derivation of the explicit block elements

defined in Eq. (30). The block elements, expressed in state-space matrices, are given

by Eqs. (36), (39), and (42). It can be verified that Eq. (30) becomes upper block

triangular and with equivalent block elements as in Eq. (27) when no = ni and λ = 0.

3.2.3 Explicit inverse expressed in Markov parameters

By utilizing the results given in Section 3.2.2, i.e. Eqs. (36), (39), and (42), it is

possible to express the block elements of Eq. (31) in Markov parameter form, see

Eq. (8). Note that the G-matrices in Eqs. (36) and (39) involve explicit inverses,

see Eq. (20). A mathematically equivalent algorithm which redefines these matrices

in Markov parameter form can be derived from Eqs. (17)–(20) using Eq. (8). The

details of the derivation are very tedious and are therefore omitted. Consider GN−r, cf

Eq. (20), given as

GN−r = (DTD + λI + R
{0,0}
N−r )−1 = (HT

0 H0 + λI + R
{0,0}
N−r )−1

def
= (HT

0 H0 + λI + BTRN−rB)−1
(43)

where r = 0, 1, . . . , N − 1 and {0, 0} denotes an index pair given by row 1 of

row 1 : {k, j} → {0, 0}
row 2 : {k, j} → {1, 1} {0, 1}
row 3 : {k, j} → {2, 2} {1, 2} {0, 2} {0, 1}
row 4 : {k, j} → {3, 3} {2, 3} {1, 3} {1, 2} {0, 3} {0, 2} {0, 1}

...

row N : {k, j} → · · ·
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which will be referred to as the index ladder. A new row in the index ladder is con-

structed in two steps. Consider the q:th row given as

row q: {k, j} → {q − 1, q − 1} · · · {0, 1}

where 0 < q ≤ N . The next row q + 1 is given by first adding {1, 1} to each index

pair of row q and, secondly, the row is expanded by a decreasing set of index pairs

according to

row q + 1: {k, j} → {q, q} · · · {1, 2}︸ ︷︷ ︸
row q + {1,1}

{0, q} {0, q − 1} · · · {0, 1}︸ ︷︷ ︸
expansion

R
{0,0}
N−r , cf Eq. (43), is given recursively for all r by a descending sweep starting the

recursion with the set of matrices

R
{k,j}
N = HT

k+1W̃Hj+1 (44)

for appropriate pairs of indices k and j given by row r + 1 in the index ladder. W̃ is

written in Markov parameter form as

W̃ = (I + H0E)T(I + H0E) + λETE

E = −(HT
0 H0 + λI)−1HT

0

(45)

If r > 0, the descending sweep continues to the top row of the index ladder as

R
{k,j}
N−s = HT

k+1Hj+1 + R
{k+1,j+1}
N−s+1

−(HT
0 Hk+1 + R

{0,k+1}
N−s+1 )TGN−s+1(H

T
0 Hj+1 + R

{0,j+1}
N−s+1 )

(46)

for s = 1, 2, . . . , r with index pairs {k, j} according to row r − s + 1. Note that

Eq. (44) constitutes computation of (r + 1)(r + 2)/2 unique R-matrices. The proce-

dure given above is repeated until G1 is established. This concludes the algorithm for

establishing the G-matrices in Markov parameter form.
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Example. GN and GN−1 are established next, to illustrate the algorithm. GN is

given by

GN = (HT
0 H0 + λI + R

{0,0}
N )−1

according to Eq. (43). Since r = 0, the appropriate index pair on row r+1 = 1 of the

index ladder is already {0, 0}. Thus, Eq. (44) becomes

R
{0,0}
N = HT

1 W̃H1

yielding

GN = (HT
0 H0 + λI + HT

1 W̃H1)
−1

W̃ is defined by Eq. (45). GN−1 is given by

GN−1 = (HT
0 H0 + λI + R

{0,0}
N−1 )−1

With r = 1, the set of appropriate index pairs is {1, 1} and {0, 1}. The recursion starts

with the set of matrices given by Eq. (44) yielding

R
{1,1}
N = HT

2 W̃H2 R
{0,1}
N = HT

1 W̃H2

Equation (46) is used for a one-step recursion to the top (row 1) of the index ladder as

R
{0,0}
N−1 = HT

1 H1 + R
{1,1}
N − (HT

0 H1 + R
{0,1}
N )TGN(HT

0 H1 + R
{0,1}
N )

Thus, GN−1 is established as

GN−1 = (HT
0 H0 + λI + HT

1 H1 + HT
2 W̃H2

−(HT
0 H1 + HT

1 W̃H2)
TGN(HT

0 H1 + HT
1 W̃H2))

−1
�



15

The explicit inverses
_

H and H̆ differ in H
T

0 only, i.e.
_

H = H̆H
T

0 cf Eqs. (30) and

(31). It is clearer to derive the the block elements of H̆ in Markov parameter form

than the corresponding block elements of
_

H . To accomplish this, H
T

0 needs to be

extracted and eliminated from
_

H . Consider the block elements of the bottom row of
_

H given by Eq. (36). Extraction and elimination of the corresponding block elements

of H
T

0 yields the bottom block row of H̆ as

H̆0,0 = G1

H̆0,1(V
T
1 ) = H̆0,0B

TV T
1 i.e. H̆0,1 is a function of V T

1

H̆0,k(V
T
k ) = H̆0,k−1(V

T
k−1 ≡ ATV T

k ) + H̆0,k−1B
TV T

k

H̆0,N = (H̆0,N−1(V
T
N−1 ≡ ATCT) + H̆0,N−1H1)W̃ mod

(47)

for k = 2, 3, . . . , N − 1. W̃ mod, where W̃ = W̃ modH
T
0 , is identified in Markov

parameter form according to

W̃ mod
def
= ((HT

0 H0 + λI)−1HT
0 )THT

0 H0(H
T
0 H0 + λI)−1

−2H0(H
T
0 H0 + λI)−1 + λH0(H

T
0 H0 + λI)−1(HT

0 H0 + λI)−1
(48)

utilizing that (HT
0 H0 + λI)−1 is symmetric. Consider Eq. (46) for r = N − 1, i.e.

while establishing G1, with the following definition

R
{k,j}
N−s = HT

k+1Hj+1 + R
{k+1,j+1}
N−s+1

−(HT
0 Hk+1 + R

{0,k+1}
N−s+1 )TGN−s+1︸ ︷︷ ︸

def
= R̆

{0,k+1}

s

(HT
0 Hj+1 + R

{0,j+1}
N−s+1 ) (49)

for s = 1, 2, . . . , N − 1. In computation, the R̆-matrices need to be stored during

the descending sweep. Utilizing the definition given in Eq. (49) and the fact that the

G-matrices are symmetric, Eq. (47) can be rewritten in Markov parameter form by

identification of terms as

H̆0,0 = G1

H̆0,k =
∑k

l=1 H̆0,l−1R̆
{0,k−l+1}

k

H̆0,N =
∑N

l=1 H̆0,l−1H̆
T

N−l+1W̃ mod

(50)

for k = 1, 2, . . . , N − 1. Proceeding in the same manner, the ith block row 0 < i < N

16

of Eq. (39) can be rewritten by identification of terms according to

H̆ i,j =
∑i

p=1(R̆
{0,p}

i )TH̆ i−p,j

H̆ i,i =
∑i

p=1(R̆
{0,p}

i )TH̆ i−p,i +
M

H i,i with
M

H i,i
def
= Gi+1

H̆ i,k =
∑i

p=1(R̆
{0,p}

i )TH̆ i−p,k +
M

H i,k with
M

H i,k
def
=

∑k

l=i+1

M

H i,l−1R̆
{0,k−l+1}

k

H̆ i,N =
∑i

p=1(R̆
{0,p}

i )TH̆ i−p,N +
∑N

l=i+1

M

H i,l−1H
T
N−l+1W̃ mod

(51)

for j = 0, 1, . . . , i− 1 and k = i + 1, i + 2, . . . , N − 1. Finally, identification of terms in

Eq. (42) yields

H̆N,j = E
∑N

p=1 HpH̆N−p,j

H̆N,N = E
∑N

p=1 HpH̆N−p,N−1 + (HT
0 H0 + λI)−1

(52)

for j = 0, 1, . . . , N − 1 with E defined by Eq. (45). This concludes the derivation of

the block elements in Eq. (31) in Markov parameter form given by Eqs. (50)–(52) and

definitions therein. It should be stressed that only the upper or lower triangular part

of the block inverse needs to be established, since H̆ of Eq. (31) is symmetric.

4 DYNAMIC TIKHONOV REGULARIZATION

Using the block inversion algorithm given in Section 3.2.3, it is possible to introduce

a new type of regularization procedure here called dynamic Tikhonov regularization.

The block matrices constituting H̆ , given by Eqs. (50)–(52), are all functions of the

scalar regularization parameter λ, i.e. H̆(λ). Introduce the definition

H̆(λ ≡ λ0 | λ0)
def
=




H̆N,N(λ0) . . . H̆N,1(λ0) H̆N,0(λ0)
...

. . .
...

...

H̆1,N (λ0) . . . H̆1,1(λ0) H̆1,0(λ0)

H̆0,N (λ0) . . . H̆0,1(λ0) H̆0,0(λ0)


 (53)

for a given zeroth-order Tikhonov regularization parameter λ0. The corresponding

regularized solution uλ(λ0 | λ0) is given by

uλ(λ0 | λ0)
def
= H̆(λ ≡ λ0 | λ0) H

T

0 ŷ0 (54)

which is equivalent to Eq. (29).

It is quite simple to establish a bounded and consecutive time step varying regular-

ization λ0, λ1, . . . , λN which is an advantageous property of the explicit block inversion

formulation presented in Section 3.2.3, cf also [22]. Starting with λ1, recompute N ×N
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block elements corresponding to time steps N to 1 of H̆ according to

H̆(λ ≡ λ1 | λ0, λ1)
def
=




H̆N,N (λ1) . . . H̆N,1(λ1) H̆N,0(λ0)
...

. . .
...

...

H̆1,N (λ1) . . . H̆1,1(λ1) H̆1,0(λ0)

H̆0,N (λ0) . . . H̆0,1(λ0) H̆0,0(λ0)


 (55)

for given regularization parameters λ0 and λ1. The regularized solution becomes

uλ(λ1 | λ0, λ1)
def
= H̆(λ ≡ λ1 | λ0, λ1) H

T

0 ŷ0 (56)

Proceeding in the same manner, H̆ is defined for the ith regularization parameter as

H̆(λ ≡ λi | λ0, . . . , λi)
def
=




H̆N,N (λi) . . . H̆N,i(λi) . . . H̆N,0(λ0)
...

. . .
...

. . .
...

H̆ i,N (λi) . . . H̆ i,i(λi) . . . H̆1,0(λ0)
...

. . .
...

. . .
...

H̆0,N (λ0) . . . H̆0,i(λ0) . . . H̆0,0(λ0)




(57)

for i = 1, 2, . . . , N with corresponding regularized solutions

uλ(λi | λ0, . . . , λi)
def
= H̆(λ ≡ λi | λ0, . . . , λi) H

T

0 ŷ0 (58)

For optimal choices of the regularization parameters λopt
0 , . . . , λopt

N the solutions will be

bounded according to

‖ uλ(λopt
0 | λopt

0 ) − uλ
dT ‖2 ≥ ‖ uλ(λopt

1 | λopt
0 , λopt

1 ) − uλ
dT ‖2 ≥ . . . ≥

≥ ‖ uλ(λopt
N | λopt

0 , . . . , λopt
N ) − uλ

dT ‖2 = 0
(59)

where uλ
dT

def
= uλ(λopt

N | λopt
0 , . . . , λopt

N ). It should be noted, that the solution given by

the dynamic Tikhonov regularization procedure uλ
dT is not equivalent to

uλ(λD) = (H
T

0 H0 + λD)−1H
T

0 ŷ0 (60)

where λD denotes a block diagonal matrix with λNI, . . . , λ0I as diagonal blocks. Next,

Eq. (59) is verified by a numerical example.
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5 NUMERICAL EXAMPLE

A 20 degree of freedom mass chain, depicted in Fig. 1, is used in the following numer-

ical example. The spring stiffness is k=1 N/m and all masses are equal; mi=1 kg for

i = 1, . . . , 20. Finally, 0.1% stiffness-proportional viscous damping is added to the

model. The resonance frequencies of the system span from fmin = 0.0122 Hz to

fmax = 0.317 Hz. The system is excited by two identical transient forces û6(t) and

û14(t) applied to masses m6 and m14 respectively. The non-zero part of the excitation

is defined according to

û6(t) = û14(t) = (1 − cos 2πf0t) sin 6πf0t 0 < t <
1

f0

(61)

where f0 = 0.06 Hz. The excitation is shown in Fig. 2. The analysis is carried out

for approximately 33 seconds using N + 1 = 101 time steps with a sampling frequency

fsamp of 3 Hz.

Consider the collocated case of sensor placement, i.e. all inputs have instant and

distinguishable influence on the output, yielding two accelerometers attached to masses

m6 and m14. Fictitious measurement data ŷ0 is generated by solving the forward

problem given by Eq. (11) and artificially adding noise to the calculated response y0.

The initial states x0 are taken as zero and the input u is taken as the discrete-time

counterpart of Eq. (61), denoted û. The measurement data is established for sensor i

and time step k = 0, . . . , N according to

ŷ0
i,k = y0

i,k(1 + 0.02 · N(0, 1)) + 0.01 · max(|y0
i |) · N(0, 1) i = 6, 14 (62)

i.e. Gaussian white noise with zero mean and unit variance is added as an overall level of

1% of the maximum absolute value added to 2% relative to each individual value. The

input estimation is carried out using an otherwise ideal system description. Moreover,

the system is fully observable and controllable, which means that all eigenmodes can

be detected and excited by the used sensor/input configuration.PSfrag replacements

kkkkkk kk
m1 m2 m3 m4 m18 m19 m20• • •

Figure 1: Mass chain with 20 degrees of freedom.
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Figure 2: Transient excitation force applied to masses m6 and m14.

5.1 Classic Tikhonov vs. dynamic Tikhonov

To quantify deviations of the ith optimal regularized solution uλ(λopt
i | λopt

0 , . . . , λopt
i )

to the true or sought solution û, an error measure ε% is defined as

ε%(λopt
i )

def
= 100 · ‖ uλ(λopt

i | λopt
0 , . . . , λopt

i ) − û ‖2 / ‖ û ‖2 (63)

for i = 0, 1, . . . , N . The optimal regularized solutions are computed using the true

solution and in accordance with the procedure given in Section 4 for a realization of

Eq. (62). Typical results for the error measure given by Eq. (63) are plotted in Fig. 3.

The corresponding optimal regularization parameters are given in Fig. 4. The circles

in the two figures mark the results for optimal zeroth-order Tikhonov regularization.

Note that relatively small changes in the first half of the regularization parameters

produce a greater decrease of the error measure than the relatively larger changes

in the following half of parameters. In general, it is intuitively clear that the first

regularization parameters have the greatest influence on the error measure. Moreover,

Fig. 3 verifies the bounds given by Eq. (59).
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Figure 3: Error for optimal choices of dynamic Tikhonov regularization parameters.
The first data point, marked by a circle, corresponds to optimal result of zeroth-order
Tikhonov regularization.

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

PSfrag replacements

λ
o
p
t

i

i

Figure 4: Optimal dynamic Tikhonov regularization parameters. The first data point,
marked by a circle, corresponds to the optimal zeroth-order Tikhonov regularization
parameter λopt

0 .



21

6 CONCLUSIONS

Explicit block inversion formulations have been derived to solve damped least squares

problems. The dynamic programming algorithm is modified to enable the derivation of

the block inverse in state-space matrix form. Using this formulation, the block inverse

is identified in Markov parameter form. The two formulations are mathematically

equivalent. However, the Markov parameters (impulse response parameters) can be

determined directly from physical vibration tests or from an analytical model, which

is advantageous.

The inversion algorithms give valuable insight to the exact sequence of operations

performed. This knowledge is utilized to introduce a new type of regularization pro-

cedure called dynamic Tikhonov regularization. The regularization parameters in dy-

namic Tikhonov regularization have the attractive feature of being intimately con-

nected to the time steps. For optimal regularization parameters, the zeroth-order

Tikhonov solution is an upper bound of the regularized solution which is illustrated by

a numerical example.
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