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Abstract
This paper considers the stationary linear Boltzmann equation with
inelastic (granular) collisions in the case of an interior source term together
with an absorption term and general boundary reflections. First, mild L'-
solutions are constructed as limits of iterate functions. Then boundedness
of all higher velocity moments are obtained.

1 Introduction

The linear Boltzmann equation is frequently used for mathematical modelling in
physics, (e.g. for describing the neutron distribution in reactor physics, cf. [1]-
[4]). In our earlier papers [5]—-[11] we have studied the linear Bolzmann equation
for a function f(x,v,t) (in the time-dependent case), or F'(x, v) in the stationary
case, representing the distribution of particles with mass m colliding elastically
and binary with other particles with mass m, and with a given (known) distri-
bution function Y (x,v,). In recent years a significant interest has been focused
on the study of kinetic models for granular flows, see e.g. [13]-[15], whose papers
study the non-linear Boltzmann equation for granular gases, (mostly in the case
of hard sphere collisions). Our paper [12] considers the time-dependent linear
Boltzmann equation for inelastic (granular) collisions. The purpose of this paper
is to generalize our earlier results for the stationary equation, cf. [11], to the case
of inelastic collision for granular gases.

So we will study collisions between particles with mass m and particles with
mass m,, such that momentum is conserved,

mv + m,v, = mv' +m,v., (1.1)

where v, v, are velocities before and v', v. are velocities after a collision.
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In the elastic case, where also kinetic energy is conserved, one finds that
the velocities after a binary collision terminate on two concentric spheres, so all
velocities v’ lie on a sphere around the center of mass, v = (mv+m,v,)/(m+m.),
with radius - |v—v, |, and all velocities v/, lie on a sphere with the same center
v and with radius ——|v — v,/|, cf. Figure 1 in [5].

In the granular, inelastic case we assume the following relation between the

relative velocity components normal to the plane of contact of the two particles,

w' -u=—a(w-u), (1.2)

where a is a constant, 0 < a <1, and w =v — v,,w' = v/ — v/ are the relative
velocities before and after the collision, and u is a unit vector in the direction of
impact, u = (v —v')/|v —v'|. Then we find that v/ = v/, lies on the line between
v and v}, where v} is the postvelocity in the case of elastic collision, i.e. with
a =1, and v, lies on the (parallel) line between v, and v/,.

Now it follows that the following relations hold for the velocities in the gran-
ular, inelastic case,

U

vV=v-(a+1)——(w-u)-u,
m —+ My
, m (1.3)
v,=V.+(a+1)——(w-u) - u,
m + m,
where w - u = wcosf,w = |v — v,|, if the unit vector u is given in spherical
coordinates,
u = (sinf cos ,sinfsin ¢, cos ), (1.4)

0<6<m/2,0<(<2m.
By (1.3) we get for the relative velocity after collision, w' = v/ — v/, that

w =w-—(a+1)(w-u)-u, (1.5)

and we also find (for w' = w!) that

(W' | = |w|V/sin2 6 + a2 cos? 6. (1.6)

Furthermore, the change of kinetic energy AF in a binary granular collision can
be calculated by

2AE = mV'|> + m, VL] — m|v[]* — m,|v.|* =

——(1-a?) mm

— w?cos? 0.
m 4+ m,

One can also see that all velocities v/ and v’ terminate on two different spheres
(with different centers, if a # 1), cf. [13]-[15],

(1 —a)m, (14 a)m,w

w

2(m + my) 2(m + m,)
(1—a)m (1+a)mw

om+m.) . 2(m+ m.)

(1.7)

!
A4

v+
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(1.8)

<
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where v = (mv + m,v,)/(m+m.,),w =v —v,, w=|w|, and 7 is a unit vector.

Moreover, if we change notations, and let 'v,’ v, be the velocities before, and
v, v, the velocities after a binary inelastic collision, then by (1.2) and (1.3), cf.
[13]-[15],

lV _ (a + 1)m* ( )
TR Rk
i " a(m+m,)

In the following sections of this paper, we give in Section 2 some preliminaries on
the stationary, linear Boltzmann equation with an interior source term together
with an absorption term and general boundary reflections. Then in Section 3
solutions are constructed as limits of iterate functions, and in Section 4 bound-
edness of higher velocity moments are studied.

2 Preliminaries

We consider the stationary transport equation for a distribution function F'(x,v),
depending on a space variable x = (x1,z9,23) in a bounded convex body D
with (piecewise) C'-boundary T' = @D, and depending on a velocity variable
v = (v1,v2,v3) € V = R®. The stationary linear Boltzmann equation in the case
of given interior source apG(x,Vv), where oy > 0 is a constant and G > 0 is a
given (measurable) function, together with an absorption term aF(x,v), a > 0,
is in the strong form

aF(x,v) + vVxF(x,v) = yG(x,V) + (QF)(x, V). (2.1)

The collision term can, in the case of inelastic (granular) collision, be written, cf.
[13]-]15], and also [1]-[12],

(QF)(x,v) = //‘/Q[Ja(e,w)Y(x,'v*)F(x,' v)—
- Y (x,v.)F(x,v)|B(0,w)dv,.djdC,

(2.2)

with w = |v—v,|, where Y > 0 is a known distribution, and B > 0 is given by the
collision process, and finally J, is a factor depending on the granular process, (and
giving mass-conservation, if the gain and the loss integrals converges separately).
Furthermore, 'v,' v, in (2.2) are the velocities before and v, v, the velocities after
the binary collision, cf. equation (1.9), and Q = {(4,¢) : 0< 0 < 6,0 < { < 27}
is the impact plane.



If the collision term is written in a weak form with a testfunction g = g(v),
then we (formally) get

(QF,g) = /V (QF)(x, v)g(v)dv =

(2.3)
- ///VVQ[Q(V') — g(WF(x,v)Y(x,v,)B(0, |v — v.|)dvdv.dbd(,

where v’ is the velocity after collision.
_In the following of this paper we will study the angular cut-off-case with
§ < m/2. Then the gain and the loss term in (2.2) can be separated

(QF)(X’ V) = (Q+F)(X’ V) - (Q_F)(X’ V)’ (24)

where we can write

(QFF)(x,v) = / /V (0. 0)Y (V. P V) B0, w)dv. B =

(2.5)
= / K,(x,/v = v)F(x,v)d'v,
v
and
(Q F)(x,v) = L(x,v)F(x,v) (2.6)
with the collision frequency
L(x,v) = // Y (x,v.)B(6,w)dv,.dfd(, w = |v — v,|. (2.7)
%9
In the case of a non-absorbing body we have the following relation
L(x,v) = / K,(x,v — v')dv'. (2.8)
v

For hard sphere collisions the function B(f,w) can be written, cf. [1]-[4] and
[13]-[15],
B(f#,w) = const - wsinf cos O, w = |v — v,|. (2.9)

Another physically interesting case is that with inverse k-th power collision forces

k—5
B(0,w) =b(0)w,y = P (2.10)
with hard forces for k£ > 5, Maxwelllian for £ = 5, and soft forces for 3 < k < 5.
The factor J, in the gain term can in the hard sphere case be calculated and
found to be proportional to a2, cf. [13]-[15].
The equation (2.1) is supplemented with (general) boundary conditions

V|

F(x,v) = (1—B) /V R(x,% — v)F, (x, )d¥, (2.11)

|
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where 3 is a constant, 0 < 8 < 1. The function R > 0 satisfies
/ R(x,v = v)dv =1, (2.12)
1%

and n = n(x) is the unit outward normal at x € I'. The functions F_ and
F, represent the ingoing and outgoing trace functions corresponding to F. Fur-
thermore, in the specular reflection case, the function R is represented by Dirac
measure R(x,Vv — v) = §(v — Vv + 2n(nv)), and in the diffuse reflection case
R(x,Vv — v) = |nv|W(x, v) with some given function W > 0 (e.g. Maxwellian
function).

Now using differentiation along the characteristics, the equation (2.1) can
formally be written

%(F(X +1tv,v)) = oG (x + tv,v)+

+ / K,(x+tv,'vov)F(x+tv,'v)dv — [a+ L(x + tv,v)|F(x + tv,v).
14
(2.13)

Let
ty = tp(x,v) = inf {r:x—7v ¢ D}
TER 4
and x, = x,(x,Vv) = x —t,v. Here t;, represents the time for a particle going with
velocity v from the boundary point x;, = x — ¢, v to the point x.
Then we have the following mild form of the linear Boltzmann equation

F(x,v) =F_(xp,V) —i—/o b[(QF)(x —71v,V)+oG(x—7v,v) —aF (x — 7V, V)]dr

(2.14)
and the exponential form
F(x,v) = F_(xp,v)e~ Jo* (et Lix=sv,v))ds |
123
+/ e I LV [0 G(x — v, v) + (2.15)

0
+ | Ki(x—7v,'v—ov)F(x—71v,'v)dVv]dr
14

Remark. One finds that F' is a mild solution (2.14) if and only if F' satisfies
the exponential form (2.15) of the equation, (cf. our earlier papers and also the
classical result by di Perna-Lions). For a proof we (among others) use that

d
%(tb(x +tv,v)) =1 (2.16)



3 Construction of stationary solutions

We construct mild L'-solutions to our problem as limits of iterate functions F",
when n — oo. Let first F~!'(x,v) = 0 for all x,v € R3. Then define, for
given function F™~! the next iterate F", first at the ingoing boundary (using
the appropriate boundary condition), and then inside D and at the outgoing
boundary (using the exponential form of the equation);

V|

F'(x,v) = (1-7) ; |nV|R(x,\7 — V) (x, V)dv, (3.1)

nw<0,xell'=0D,veV =R

F'(x,v) = F"(x — tyv,Vv)e Job(a+L(x—sv,v))ds +
123
+/ e~ Jo (e Li=svv))ds [ G (x — Tv, V) +
0
+ | Ko(x—7v,'v—=v)F" (x —7v, 'v)d'v]dr, (3.2)
v
xe€D\T_(v),veV =R

Let also F™(x,v) =0 for x € R* \ D. Now we get a monotonicity lemma, which
is essential in the following, and which can be proved by induction.

Lemma 3.1 F"(x,v) > F" }(x,v),x€ D,ve V,ne N

Using differentiation along the characteristics, we get by (3.2) that

d
a(F"(x +tv,v)) = G(x +tv,v) —aF"(x + tv,v)+

+ / K (x+tv,v—=v)F" (x+tv,'v)dv — L(x +tv,v)F"(x + tv, V).
v
(3.3)

Then integrating (3.3), it follows by Green’s formula that
a// F(x, v)dxdv+// F}(x,v)|nv|dvdl =
DV v
= ao/ G(x,v)dxdv + // F"(x,v)|nv|dvdl'+ (3.4)
DV rv
+ // L(x,v)[F" (x,v) — F"(x,v)]dxdv,
DV
where by (2.12) and (3.1)

//FV F™(x,v)|nv|dvdl = (1 — B) //w F''(x,v)|nv|dvdl  (3.5)
6



Now by Lemma 3.1 it follows that

a// F™(x, v)dxdv+ﬁ// F(x,v)nv|dvdl < aO/ G(x,Vv)dxdv
DV rv DV (3.6)

So, if G € L'(D x V), then we have for all « > 0 that

//DV F'(x,v)dxdv < %//DV G(x,v)dxdv < . (3.7)

Then Levi’s theorem (on monotone convergence) gives (also in the inelastic
granular case) existence of a mild (defined by (2.14)) L!-solution F(x,v) =
lim,, oo F™(x, V) to the stationary linear Boltzmann equation (2.1) with (2.11),
and F' = F, 4 3,q, satisfies for 0 <a <1,a,09 > 0,0 < 3 <1, the inequality

a//DV F(x, v)dxdv + 5//W P\ (x,v)nv|dvdl <

< ag // G(x,v)dxdv.
fol%

Furthermore, if L(x,v)F(x,v) € L'(DxV), then we get equality in (3.8) together
with uniqueness in the relevant function space, cf. [6] and also [3].
So, for instance, if 8 =p-a,apg = a > 0,p > 0, then

/ /D Flxv)dxdvp / /F Fxv)lavidvar - / | Gxvaxiv. (39

In summary, we have the following existence theorem for solutions to our station-
ary linear Boltzmann equation with general boundary reflections.

(3.8)

Theorem 3.2 Assume that K,, L and R are nonnegative, measurable functions,
such that (2.8) and (2.12) hold, and L(x,v) € L. (D x V). Let a,ap > 0 and

loc

0 < B <1 be constants, and G(x,v) € L'(D x V) with [[ Gdxdv > 0.

a) Then there exists a mild L'-solution F(x,v) to the problem (2.1), (2.4)-
(2.6) with (2.11). This solution, depending on a,«, g and 3, satisfies the
inequality (3.8).

b) Moreover, if L(x,v)F(x,v) € L*(D x V), then the trace of the solution F
satisfies the boundary condition (2.11) for a.e. (x,v) € I'xV. Furthermore,
mass conservation, giving equality in (8.8), holds, together with uniqueness
in the relevant L'-space.



Remarks.

1) The statement in Theorem 3.2(b) on existence of traces follows e.g. from
Proposition 3.3, Chapter XI in [3].

2) The assumption LF € L'(D x V) is for instance satisfied for the solution
F in the case of inverse power collision forces, cf. (2.11), together with
e.g. specular or diffuse boundary reflections. This follows from a statement
on global boundedness of higher velocity moments, cf. Theorem 4.1 and
Corollary 4.2 in the next section.

3) For bounded gain operators the problem of existence and uniqueness for
solutions to the linear Boltzmann equation has been studied earlier by a
different technique, cf. ref. [3]. But in our approach unbounded operators
also are included, e.g. the case of hard inverse power collision forces.

4) An interesting problem concerns the question: what happens, when the
coefficients «, ap and 3 go to zero? That problem has been studied (and
partly solved) in our earlier papers, but a general existence result for the
stationary linear Boltzmann equation is not yet recieved; cf. also the L!-
result in [16] for velocities bounded away from zero, and cf. [17]. But
the problem on uniqueness for stationary solutions has been solved in our
earlier papers by use of an H-theorem for a relative entropy functional.

4 On boundedness of higher velocity moments

In this section we first study some velocity estimates, and then use these results
to prove boundedness of higher velocity moments in the case of inverse power
collision forces together with e.g. specular boundary conditions. These results
generalize our earlier statements to the granular inelastic case. The following
proposition on the difference of the squares of velocities after and before collision
is an analogue of Proposition 1.1 in [5], and can be proved in (almost) the same
way.

Proposition 4.1 Let v and v/, (0, () be the velocities for a particle with mass m
before and after a binary granular collision with a particle, having the correspond-
ing velocities v, and v., and mass m,, such that (1.1) and (1.2) hold. Then the
following estimate holds, (for 0 < a<1,0<6<7/2,0<( <27),

[va(0, Q)" = [v|* <

4.1
< 2(a+ 1)p,wcosB[3|v,| — p|v|cosb], (41)

with w = |v — v, p = my/(m+my), p=m/(m+ m,).
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Now we can prove that the following type of estimate holds also in the inelastic
granular collision case, (analogously to the elastic case, cf. Proposition 1.2 in [5]).

Proposition 4.2 Suppose v and v, are velocities as in Proposition 4.1. Then
for all o0 > 0, there are positive constants Cy and Cy (depending on o, m, m, and
a), such that

(L+ va(@))7? = (1L +[v[)7? <
< Cy(weos ) (1 + |v,|)maxEo=D(1 4 |v|?)e=2D/2 (4.2)
— Cy(wcos? B)(1 + |v|?)lo-1/2

In the rest of this section we assume inverse power collision forces with the
function B(6,w) given by (2.10).

To get higher velocity estimates for our solution F' (given by Theorem 3.2
(a)), we start from equation (3.3), i.e. the differentiated mild form (along the
characteristics) for the iterate function F, and multiply this equation by (1 +
v?)?/2 where v = |v|,0 > 0. Then

d

i1+ V)P (x + tv,v)] = ap(1 4+ v2)72G(x + tv, v)+

+ / Ko(x+tv)v = v)(1+0)2F" Y(x + tv, v)d'v— (4.3)
v

— [+ L(x + tv,v)](1 + v?)72F* (x 4 tv, v).

Now integrating (4.3), it follows by Green’s formula that

//DV (1 4+ v2)°2F"(x,v)dxdv + // (14 v?)72F" (x,v)|nv|dvdl =
= // (1+0%)72G(x, V)dXdV+// (1 4+ v»)72F"(x,v)|nv|dvdT+
D

v N 4.4)
///DVV[K x,'v—v)1+0v?)PF(x,) v)—-
(x,v =' v)(1 4+ v?)?2F"(x, v)]|dxdvd'v,

Using the collision estimate (4.2) together with the assumption on inverse power
forces (2.10) and some elementary estimate, cf. [5], w = |v —v,|, -1 <y <1,
~+1

—w"T < (14 u) " =27 (1 +0%) e,

we find that the interior collision term in (4.4) is bounded from above by

+C // (1+02)0_+;L1F”(X, v)dxdv+
D

14
+Cy // (1 —i—vQ)oTilF"(x, v)dxdv—
D

14

-Gy // (1+ ’UQ)%‘ZFTL(X, v)dxdv
DV
9



with positive constants Cy, Cy,Cy > 0. Here we have assumed that the function
Y in (2.2) satisfies

/ (14 v,) ™) sup (Y (%, v,))dv, < oo, [ inf (Y(x,v,))dv, >0. (4.5)
14 xeD v x€D

To handle the ingoing boundary term, I, (o), in (4.4), we specialize in two
physically interesting cases:

a) “Non-heating boundary” (e.g. specular reflection):
R(x,v—=v)=0 for |v|> |v| (4.6)

Here we find that

I, (0) < (1-5) // (1 +v%)°2F(x,v)|nv|dvdl.
v
b) Diffuse reflection boundary:
R(x,v — v) = |nv|W(x, V). (4.7)

Here we get

I (0) < (1=5)Cw, // F(x,v)nv|dvdl
v
with a constant

Cwe = /V(l + 0272 sup(W (x, v))dv < oo. (4.8)

xel

Then, the higher moment estimations follow in both the boundary cases, respec-
tively

a) “non-heating boundary”:

// (14 v?) ”/2F”(xvdxdv+ﬂ// (14 v?)72F! (x,v)|nv|dvdl
fol%

+Cy // (I1+w ) 5 F™(x,v)dxdv < o // (1 +v%)7°G(x, v)dxdv+
DV DV

C‘l//DV(l—f—UQ)

3 F™(x,v)dxdv + C, // 1+ 02)%FH(X, v)dxdv,
DV
(4.9)

10



b) diffuse boundary:
// (1+v*)72F" (x, v)dxdv + // (14?72 F?(x,v)|nv|dvdl+
DV
+ Co // (1+vw )TFn(Xa v)dxdv < ag // (1+ UQ)"/ZG(X, v)dxdv+
DV DV
+C // (1+ 1)2)6+271F"(x, v)dxdv + Cy // (1+ UQ)UT_IF"(X, v)dxdv+
DV DV

+(1-08)Cw,s //1“V F(x,v)|nv|dvdl, -
4.10

where by (3.6)

ﬂ// F(x,v)nv|dvdl' < ag // G(x,v)dxdv.
Inig DV

Letting n — oo and using that F"(x,v) ' F(x,v), then the estimates
(4.9) and (4.10) hold also for F'(x,v). Now by (3.8), the moment for o = 0,
i.e., the mass [ [ Fdxdv, is bounded. So, successively, by (4.9), (4.10), we
get boundedness of all higher velocity moments, o > 0, for both soft and
hard collision forces, —1 < v < 1, i.e., =3 < k < o0, and for both “non-
heating” and diffuse boundaries. Then the following theorem for higher
velocity moments holds for our solution also in the inelastic case.

Theorem 4.1 Assume that the collision function B(0,w) is given for inverse k-
th power forces by equation (2.10) with 3 < k < o0, i.e., —1 < v < 1, and suppose
that the function Y (x,v,) satisfies (4.5). Let the boundary relation (2.11) be
given by a “non-heating” boundary (4.6), (e.g. specular reflection), or by diffuse
reflections (4.7) with (4.8).

Then the higher velocity moments belonging to the mild solution F' in Theorem
3.2 (a), are all bounded,

// (1+0?)?F(x,v)dxdv < o0;
fol%

e, forallo >0,0<a <1, a0 >0,0< <1, and -1 <vy<1,1f
(1+02)°2G(x,v) € LY(D x V).

We will now finish this section by proving that our solution F' satisfies the
assumption LF € L'(D x V), giving existence of traces at the boundary together
with uniqueness and mass-conservation; cf. Theorem 3.2 (b) and Remark 2 in
Section 3. This result holds for both hard and soft inverse collision forces.

11



Corollary 4.2 The solution F = F,(x,v) in Theorem 3.2 (a) satisfies
L(x,v)F(x,v) € L'(D x V), (4.11)

if a) in the hard force case v = (k—5)/(k—1) > 0, the assumptions of Theorem
4.1 are satisfied together with

(14 wv.)” sgg(Y(x, v,)) € LY(V), (4.12)
(14 v¥)"2GQ(x,v) € L'(D x V), (4.13)

and if b) in the soft force case, =1 <y=(k—5)/(k—1) <0,

sup(Y(x,v,)) € L'(V) N L=(V). (4.14)

x€D

Proof. We estimate the collision frequency as follows
a)
L(x,v) = // b(0)|v — v.|"Y (x,v,)dv.dOd( <
%!

// )1+ )2 (1 +0,)Y (x, v, )dv,dfd¢ <
< const.(1 + v?)"/2,
and then we use Theorem 4.1.

b) For soft forces, the collision frequency is bounded,

L(x,v) = //VQ b(O)wY (x,v,)dv,.did( =

= / b(0)[ wY (x,v,)dv, + / Y (x, v.)dv,|dOd¢
Q w<1l w>

X,V X

< on /0 " b(8)df[sup(Y (x, v.) /w wdw + / sup(Y (x, v.))dv.]

< constant,

so [[ LFdxdv < const. [[ Gdxdv.

12
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