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A GENERALIZED POINCARE-LELONG FORMULA

MATS ANDERSSON

ABSTRACT. We prove the following generalization of the classical
Poincaré-Lelong formula. Given a holomorphic section f with zero
set Z to a Hermitian vector bundle £ — X, let S be the line bundle
over X \ Z spanned by f and let Q = E/S. We prove that the
Chern form ¢(Dg) is locally integrable and closed in X and that
there is a current W such that dd°W = ¢(Dg)—c(Dg) — M, where
M is a current with support on Z. In particular this implies that
the top Bott-Chern class is represented by a current with support
on Z. We also present a variant where we have several sections
f; to E. This leads to a current representation of lower order
Bott-Chern classes.

1. INTRODUCTION

Let f be a holomorphic (or meromorphic) section to the Hermitian
line bundle L — X, and let [Z] be the current of integration over the
divisor Z defined by f. Then the Poincaré-Lelong equation states that

dd®log(1/|f) = er(Dr) — [Z],

where ¢ (D) is the first Chern form associated with the Chern con-
nection Dy, on L, i.e., ¢;(Dy) = a©p, where Oy, is the curvature; here
and throughout this paper @ = i/27. Our main result is the following
generalization.

Theorem 1.1. Let f be a holomorphic section to the Hermitian vector
bundle E — X of rank m. Let Z = {f = 0}, let S denote the (trivial)
line bundle over X \ Z generated by f, and let Q = E/S.

(i) The Chern form c¢(Dg) is in L}

1oe(X) and closed as a current in X.

(ii) There is a current W of bidegree (x,*) and order zero in X which
is smooth in X \ Z and with logarithmic singularity at Z, such that

(11) ddW = C(DE) - C(DQ) - M,

where C(Dg) denote the natural extension of ¢(Dg), and M is a current
of order zero with support on 7. More precisely,

M = M, + -- -+ Muinmn),
where My, has bidegree (k,k) and p = codim Z. Furthermore,
M, = [Z"],
Date: January 15, 2004.
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where [ZP] is the current of integration over the components of Z (counted
with multiplicities) of codimension precisely p.

(iii) The forms log|f|c(Dg) and

2 A 3l £I2
(12) el 2 ), as0,
are locally integrable in X and
/\a8|f|2 A 5|f\2

M, = lim )\|f|2 A cp-1(Dg) = dd(log | f|ex-1(Dg))1z.
A—0Tt

|fI*

Here cx(D) denotes the k:th Chern form with respect to the Chern
connection D associated to the Hermitian structure, i.e., cx(D) is the
component of bidegree (k, k) of the total Chern form det(a©+1), where
© = D? is the curvature tensor.

For the explicit expression for W, see the proof in Section 5. If W,
denotes the component of bidegree (k, k) then (1.1) means that

(13) ddCWk_l = Ck(DE) — Ck(DQ) - Mk,.
Since @ has rank m — 1, ¢, (Dg) = 0, and therefore
ddCWmfl = Cm(DE) - Mma

which means that the current M, represents the top degree Bott-Chern
class ¢, (E). Of course this implies in particular that M, represents
the usual Chern class ¢,,(E); this was proved already in [1]. It also
follows that the Bott-Chern class ¢ (F) is equal to ¢ (Q) if £ < p.

If f is a complete intersection, i.e., p = m, and W,,_; denotes the
component of bidegree (m — 1, m — 1), then

(1.4) dd“Wp—1 = cm(Dg) — [Z];

this means that W,,_; is a Green current for Z.

If E is a line bundle, then W = W, = log(1/|f|) so (1.3) is the usual
Poincaré-Lelong formula.

In the recent paper [7], Meo proves (1.3) for k¥ = p under an extra
integrability assumption.

Clearly M, is always a positive current. It also follows from part (iii)
that M is positive if ¢;_1(Dg) is a positive form. For an even more
precise formula for M, see Proposition 6.5 below. Let us say that E
is positive if £* is Nakano negative. It then follows that @) is positive,
and this in turn implies that ¢(Q) is positive. In particular then M is
positive. We also have

Theorem 1.2. If E in Theorem 1.1 is positive, then (one can choose

W such that) W < 0 where | f| < 1.
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As an application, assume that X is compact, and that we have sections
[ to rank m; bundles E; — X, such that ) m; =n. If E = @E; and
[ = @®f;, then the intersection number v of the varieties Z; = {f; =0}
is equal to the integral of ¢, (E) over X. Since M, represents the class
¢n(M), we thus get the representation

V:/Mn,
X

i.e., an integral over the intersection Z = NZ;. If F is positive then
M, is positive. If Z is discrete, then the formula is just the sum of the
points in Z counted with multiplicities.

We also consider the possibility to represent lower order Chern classes
with residue currents. If E has a trivial subbundle of rank r, then
ck(F) vanishes for k& > m — r. Therefore it is natural to guess that
these classes cx(F) could be represented by currents with support on
the set where r given sections fi,..., f. are linearly dependent. In fact
we have

Theorem 1.3. Let f = fi,..., f. be holomorphic sections to the Her-
mitian vector bundle E — X, and let

Z={fiN...Nf. =0}
Let S be the r-bundle over X \ Z generated by f;, and let Q@ = E/S.

(i) The Chern form c¢(Dg) has an extension C(Dg) as a current across
Z, defined by analytic continuation of A — |h|**¢(Dg) to A = 0, where
h=fiN... fr. If, in addition, locally

(1.5) [finN . A fe]l >0|fi]---|fr| for some & >0,

then ¢(Dg) is locally integrable in X and C(Dg) is its natural exten-
sion.

(ii) There is a current M of bidegree (x,*) with support on Z, and a
current A of bidgree (x,% — 1) (smooth outside Z) such that

(1.6) dA = 0A = ¢(Dg) — C(Dg) — M.

If k < codim Z, then My = 0. Moreover, if (1.5) holds, then M has
order zero and A is locally intergrable in X .

It follows that
(17) dAk = Ck(DE) — M, k>m— T,

and thus Mj is a current representative for the Chern class ¢, (E), for
k>m-—r.

The condition (1.5) holds whenever the sections f; take values in lin-
early independent subbundles. In particular, it is always fulfilled when
r = 1. It turns out that (1.5) holds if and only if, locally, there is a
resolution over which S has a trivial extension across the singularity,

see Section 5.
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We can also extend Theorem 1.1 to several sections, provided that (1.5)
holds.

Theorem 1.4. Under the same hypotheses as in Theorem 1.3 together
with (1.5), there is a current W of bidegree (x,*) and order zero, such
that

ddW = C(DE) — C(DQ) — M,

where M s a current of order zero with support on Z.

Let us briefly describe how Theorem 1.1 is proved. Consider the exact
sequence

(1.8) O—>Si>E—g>Q—>O

of vector bundles over X \ Z. Notice that jj* is the orthogonal pro-
jection onto S (or rather onto jS). Following [3] we deform the Chern
connection D on E to Dy = D— Dy, ,x(77%); then ¢(Dy) = ¢(Dgs)c(Dg)
and one can find a form v in X \ Z such that

adv=>b and db=c(Dg)—c(Ds)c(Dg).

We introduce another deformation D, of D such that ©, vanishes on
S, and therefore ¢(D,) = ¢(Dg). This makes it possible to compute
an explicit formula for ¢(Dg). Clearly ¢(Dg) is smooth in X \ Z, and
it turns out that in a suitable desingularization it is actually smooth
across the singularity. It follows that ¢(Dg) is locally integrable in X .

It also turns out that v is locally integrable, actually smooth across Z
in a suitable resolution, and therefore a0V = B, if V and B denote
the natural extension to X. By the usual Poincaré-Lelong formula,
c(Ds) — 1 = dd°log(1/|f|), and since C(Dg) is smooth in a suitable
resolution, it turns out that (1.1) holds with

W =log(1/[f[)C(Dq) -V,

and M = dd(log|f|C(Dg))1z. Theorem 1.2 then follows essentially
by applying the ideas in [3].

To prove Theorem 1.3 for r = 1 we find a form a in X \ Z such that
a = c¢(Dg) — ¢(Dg), and we prove that a is locally integrable in X. If
A denotes its extension across Z, then

dA = O(Dg) — C(Dg) ~ M,

where M' is a residue current with the stated properties. We can also
explicitly reveal that b = a — adlog|f|> A ¢(Dg), and this implies that
M=M.

Theorems 1.3 and 1.4 are proved along the same lines, but the analysis
of the singularities of the various forms is more involved. Moreover,
for the proof of Theorem 1.4 we also have to check that for a suitable
solution v to dd°u = ¢(Dg) — 1 in X \ Z, the form u A ¢(Dg) has a a
current extension to X. As before we can then take W = UAC(Dg) —

V.
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The plan of this paper is as follows. We first recall the definition of
Chern classes and introduce some notation and technical tools which
we use to prove Theorem 1.3 in Section 3. We then recall the techniques
developed by Bott and Chern in [3] to define Bott-Chern classes. In
Section 4 we complete the proofs of Theorems 1.1 and 1.4. Finally, we
discuss positivity of Hermitian vector bundles and the proof of Theo-
rem 1.2.
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2. DIFFERENTIAL GEOMETRIC DEFINITION OF CHERN CLASSES

We first have to recall the differential geometric definition of the Chern
classes. Let £ — X be any differentiable complex vector bundle over
a differential manifold X, with connection D: & (X, E) — &1 (X, E)
and curvature tensor D? = © € &(X, EndF). The connection D = Dg
induces in a natural way a connection Dgnqr on the bundle EndF by
the formula Dg-& = D(g- &) — g - D€, and in a similar way there is a
natural connection Dpg+ on the dual bundle E*, etc. In particular we
have Bianchi’s identity

If I denotes the identity mapping on E, then ¢(D) = det(a© + I) is
a welldefined differential form whose terms have even degrees, which
is called the Chern form of D. It is a basic fact that ¢(D) is a closed

form. Moreover its de Rham cohomology class is independent of D and
is called the (total) Chern class c¢(F') of the bundle F.

To prove this, one can consider a smooth one-parameter family D; of
connections of F' with Dy = D. If E’ is the pull-back of E to X x [0, 1],
then D' = D, + d; is a connection on E’ and its curvature tensor is

O =0,+dtAD,
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where Dt = dD,;/dt. Tt is readily checked that it is an element in
E1(X,End(F)). Since (d + d;) det(a®' + I) = 0 we have that

dg/ol det(a®' + 1) = -/01 d, det(a®' + I) = ¢(D) — ¢(Dy).

In order to make the computation more explicit we introduce the exte-
rior algebra bundle A = A(T*(X)@® F @ F*). Any section £ € &(X, F)
corresponds to a section £ of A; if E = & @er+...+En Qe in a local
frame e;, then we let E=&ANei+...+E&n Aep. In the same way,
a € &(X,EndE) can be identified with

a= Zajk/\ej/\e,’;,
ik
if €] is the dual frame, and a =}, a;x ® e; ® e} with respect to these
frames. A given connection D = Dp on F' extends in a unique way
to a linear mapping £(X,A) — £(X,A) which is a an anti-derivation
with respect to the wedge product in A, and such that it acts as the
exterior differential d on the T*(X)-factor. It is readily seen that

Dt = DE,
if ¢ is a form-valued section to E. In the same way we have

Lemma 2.1. Ifa € &(X,EndE), then

(22) DEndEa = DZI:

Proof. If £ € E(X, E) and n € £(X, E*), then
Dnap(€ ® 1) = Dpé @ n+ (—1)"¢ @ Dg-n,
and thus the snake of Dgnqr(§ ® ) is equal to
D€ A+ (=1)¥*'€ A Dgenp = D(E A1)

as claimed. 0

Since Dgnarl =0, (I = Ig) we have from (2.1) and Lemma 2.1 that
(2.3) DO =0 and DI=0.

We let I,, = I™/m! and use the same notation for other forms in the
sequel. Any form w with values in A can be written w = W' A I,,, + w"
uniquely, where w” has lower degree in e, e;. If we define

/w=d,
e

then this integral is of course linear and moreover

(2.4) d/ew= /eDw.

In fact, since DI,, = 0,

/Dw:/dw'/\fm—f—Dw":dw':d/w.
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Observe that
(2.5) ¢(D) = / (0B + T = / (0®+

Lemma 2.1 and (2.3) together imply that the Chern form ¢(D) is closed.
Furthermore, following the outline above, we get the formula

(2.6) / / aD A et = (D)) — ¢(Dy),

thus showing that ¢(Dy) and ¢(D;) are cohomologous. For further
reference we notice that

1 ~ =~ ~
(2.7) d / / aD A e®® AT,y = cp(Dy) — cp(Dy):;
0 e

this follows by precisely the same argument.

Recall that if the connection D is modified to D; = D — v, where
v € £1(X,EndE)), then ©; = © — Dgyqpy + v A y. If we form the
explicit homotopy D; = D — tv, therefore

(28) @t =0 - tDEndE’Y + tQ’)/ A Y
and hence, by Lemma 2.1,
(2.9) O, = O — tD7 + >y A 7.

3. CHERN CLASSES DEFINED BY RESIDUE CURRENTS

From now on we assume that F is a holomorphic Hermitian bundle
and that Dp is the Chern connection and D, is its (1,0)-part. Then
the induced connection Dg- on E* is the Chern connection on E* etc.
In particular, our mapping D on A is of type (1,0), i.e., D = D'+ 0.

Assume that S is a trivial subbundle of E, generated by the sections
fi,---, fr- The reader who is mainly interested in Theorem 1.1 may
assume that r = 1 throughout this section; in this way several techni-
calities disappear.

Let o; be the unique sections to the dual bundle E* such that o,
vanishes on S+ and 0; - fr = 0jx. Consider the new connection D, =
D —~, on E, where

(3.1) Ja =Y _ DfjNoj.
j

Then D,f; =0, and so D¢ is in S if £ is a section to S. Moreover, if
€ is a section to S+, then D, = Dg&. Let g: E — @ be the natural
projection. Then

(3.2) 96 = 9(Daf)

is a welldefined connection on ), and we claim that it is actually the
Chern connection Dg. In fact, if n = g&, then

Dgn = g(Dr(g™n)) =79(Da(g*n)) = g(D4).



It follows that Ogn = ¢(0,&), and since ©,§ = 0 if £ takes values in

S, we have that
0 x*
a®a ~ < 0 O!@Q )

with respect to the smooth isomorphism £ ~ S & () defined by j* & g,
where j* is the orthogonal projection. Therefore,

_ IS %
O‘®“+IE_< 0 IQ+a®Q,>’
and taking the determinant, we find that

(3.3) e(Dg) = c(Dy).

The natural conjugate-linear isometry E ~ E* n+— n*, defined by
n*€:<€an>a 565(X5E)a

extends to an isometry on the space of form—valued sections.
Lemma 3.1. There is a matriz of (1,0)-forms ¢ji in X \ Z such that
(34) DIUj = Z¢jk N Ok.

k

Thus Ilg+Dg+ = Dg-, and so ¢, is just the connection matrix for Dg-
with respect to the frame o;.

Proof. We must see that if £ is a section to S*, then D%.¢ is still a
section to E*. By duality this is equivalent to that Dpg takes sections
to St to sections to S+. However, this is easily seen to hold because if
is a section to S+ and € is a section to S, then (£, D'n) = —(0¢,n) = 0,
since O€ is a section to S. O

Lemma 3.2. If Dg is the Chern connection on E, then
Di.n* = (0n)*, n€&(X,E).

We omit the simple proof. If r = 1, then o = f*/|f[?>, and by
Lemma 3.2, D'f* = (0f)* =0, so we have
1
D'o = D'(f*/|f") = GW A f*=—0log|f* Ao,
so that

¢ = —0log|f|*.

In the sequel we often use the shorthand notation D'c = ¢ Ao etc. We
also often write ¢ rather than  when £ is a form-valued section to F
or E*; for instance we write © f even when we mean O f.

Proposition 3.3. If v, is defined by (3.1), then

(3.5) —tD, +1*Y, A9, = —t(Df NOo +Of ANo)+ (t—t*)Df AN Ao.
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Proof. To begin with,
D% = Zij/\Oj+ij/\gaj+Zij/\¢jk/\ak’
J Jk
Yo NYa =Y _DfjNoj-Dfy Aoy,
J

where the dot means the natural contraction of E and E* so that
- (aAn) =a(€-n)if £ and n are sections to E and E*, respectively,
and « is a form. Since 0 - Dfy, = —D'0; - fi, = ¢;i, we get the desired
formula. U

The following formula is the key point in the analysis of the singularities
of C(DQ).

Proposition 3.4. We have the explicit formula
(3.6) c(Dq) = /f1 AGLA ... A fo Ao, A Ot —a X Dijndo;

in X\ Z.

Proof. Since ©, = © — DgnarYa + Ya N Ya, cf., (2.8), we have that
O.=0-Y (0fjAaoj+ Df; Adoy).

By (2.5) and (3.3) we know that

(3.7) ¢(Dg) = ¢(Dy) = / (00t

e

Let oy, denote interior multiplication with f;. Then
(38)  6,(D_Dfjnda;) =0, o1=~f;, 6,0=-06f,
J

and
(3.9) 6 ;(1=aOfy ANoy) =0, k#j.
For degree reasons
e 220NN — (1 —a@fy Aay) A... A (1 —aOf, Ao,),

and therefore
c(Dg) = /(1 —aOfiAo))A...A(1—aBf, A ar)eo‘é A el=Pirdo,

Let Ly =1 — aOf; A og. By (3.8) and (3.9) we have

/(1—a@fj/\aj)/\eaé/\Lg/\.../\L,«/\efDf/\ga

e

:/(e“é—éﬁeaé/\al) ALyA ... AL, Ael=PInoe

€

:—/al/\eaé/\LQ/\.../\Lr/\efDfAé"/\fl,

€
where the last equality follows from an integration by parts. Repeating
this procedure for each of the factors Lo, ..., L, we end up with (3.6).

g
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Proposition 3.5. If

a6 = (~1)4(@Of Ao+ aDf Ado))t
(3.10) a:/eosz/\a/\e”@/\; T+ 1)

then

(3.11) da = ¢(Dg) — ¢(Dq)

in X\ Z.

Proof. We choose the homotopy D; = D — tv, between D = D, and
D, = D,. In view of (2.6) and Proposition 3.3 we have that

1
a = // an Ao A ef-f—aé—ta(@f/\a-i—Df/\éa)—(t—t2)DfA¢Aodt
eJO

satisfies (3.11) in X \ Z. We claim that actually the component of
bidegree (x,* — 1),

1 = ~ —
a = — // an /\ o /\ el+a®*ta(@f/\0'+Df/\80')dt,
eJO

satisfies (3.11). For bidegree reasons it immediately follows that
dam,mfl - gam,mfl - cm(DE‘) - cm(DQ),

since 0t m-1 = Omi1,m—2 = 0. For any k we have, cf., (2.7), that

1 - _
d/ /an Ao A ea@)—ta(@f/\a—f—Df/\aa)—(t—t2)Df/\(b/\a A im—lc —
0 Je

k(D) — cx(Dg),

and for the same reason this must hold even if the (2,0)-form (¢ —
t2)Df A ¢ Ao is deleted in the exponent. Computing the t-integral we
get (3.10). O

Notice that the natural conjugate linear isometry E ~ E*, n — n*,
extends to a conjugate linear isometry

AE ~AE*, fAg— (fAg)*=[f"Ng"

Lemma 3.6. Let f1,..., f, be given sections to E and define s, € E*
by

s@-fz/f,/\.../\5/\.../\f1/\ff/\f;/\.../\f:/\fm_T,

where £ is put on place £. Then

(3.12) sefe=AN. A LP
(3.13) Sp fk = 0, k 75 E,
and

(3.14) se-6E=0, £€85H

if S is the subspace (subbundle) spanned by f1,..., fr.
10



Proof. Let ey, ..., e, be an ON-basis (frame) for E such that e, ..., e,
is a basis for S. Then, if £ € S*, € = & 41041 A ... A Emem, and thus
(3.14) holds. Moreover, (3.13) is obvious, and (3.12) follows easily by
expressing the f; in the frame e;. (]

It follows that
(3.15) a; = si/|h[?,
where h is the section h = fi A...A f, to ATE.

Proof of Theorem 1.3. Consider the formula (3.10) for a. There is a
certain homogeneity property in o;. Suppose that o; = qba; for some
scalar funfztion ¢. Since ZJ_. Df; A aj_has odd degree, we can replace
>_; DfiNOo;by ¢ 3 D findoy, since A, D finoj will be cancelled.
Clearly |h|*a is a welldefined current across Z if Re )\ is large enough.

We are going to show that it has an analytic continuation to Re A > —e,
and we will define the current A as

A = |h|*a|y=0;

it will then coincide with a outside Z.

Notice that h = fi A...A f, is a holomorphic section to the bundle A"E
over X. To obtain the analytic continuation we will rely on Hironaka’s
theorem. It is clearly a local question so we may assume that h =
hie1+- -+ h,€, for some local holomorphic frame €; to A"E. In a small
neighborhood U of a given point in X, Hironaka’s theorem provides an
n-dimensional complex manifold U and a proper mapping II: U—U
which is a biholomorphism outside IT"*({h; - - - h, = 0}), and such that
locally on U there are holomorphic coordinates 7 such that II*h; =
WP 7o where u; nonvanishing; i.e., roughly speaking II*h; are
monomials. Since this set has Lebesgue measure zero it is enough to
find the analytic continuation of A — II*(|h|**a). One then define
|h|*a for small Re A as the push-forward of I1*(|h|**a).

However, the analytic continuation of II*(|h|**a) is a local question
in U, and locally, by a resolution over a suitable toric manifold, see,
e.g., [8], we may assume in the same way that one of the functions so
obtained divides the other ones. For simplicity we will make a slight
abuse of notation and suppress all occurring IT* and thus denote these
functions by h; as well. We may therefore assume that h = h°h’ where

h? is a holomorphic function and A’ is nonvanishing. Observe that then
s; = h°s}; and |h| = [h°||I'], and therefore

(3.16) oj=0'/h°
where ¢’ is smooth. In view of the homogeneity property decribed
above, we get that |h|?*a is a sum of terms like
0y
hO 2’0 A ’
(R0 G
where v is a strictly positive function and oy is a smooth form. It is

wellknown that such a form has the desired analytic continuation to
11




Re A > —¢, see, e.g., [1]. At A = 0 it is just the well-known principal
value residue current .

— | .

[(hoy] ¢
In view of the discussion above, this proves that the current A is wellde-

fined. In the same way, in view of formula (3.6) for ¢(Dg) one finds
that |h|**c(Dg) can be analytically continued to A = 0. Since

d(|h[*a) = |h|**¢(Dg) — |h[*c(Dq) + d|h[* A a
by Proposition 3.5, we get formula (1.6), with
M = —d|h|** A a|y=.
Moreover, My = 0 if k¥ < codim Z; this follows with precisely the same

argument as the corresponding statement for R/ in [1] (Theorem 1.1).

For further reference we also notice that actually
(3.17) M = =0|h|* A a|r=o;
this holds because

o|h° > 0.

a
(h0)¢ N~

Let us now assume that in addition (1.5) holds. Notice that a fac-
torization like h = h°h’ is preserved under further desingularizations.
Therefore, by a series of such desingularizations we may assume that
also fr = f2ff for 1 < k <r, where each f? is a holomorphic function
and f; is nonvanishing. Moreover, we may assume that hq,...,h, are
almost monomials. In particular, we may assume that A° is a mono-
mial. The condition (1.5) now means that

i P < CIR°,

and since h° is a monomial this implies that f?--- o = gh° for a neces-
sarily nonvanishing holomorphic ¢g. By redefining h® we may therefore
assume that

(3.18) JofO =,
Recall that oy = (s}/|h'|?)/h° and notice that we also have
Sfe:f{)"'f?"'ffsfq'-
Under the assumption (1.5) we therefore have
(3.19) o;=07/f}
where o7 is smooth. Moreover,
Dfe= D(f(f;) = f{Dfy +df¢ A fi.

In view of (3.6), all singularities 1/f; are cancelled, so ¢(Dg) is smooth
in this resolution. Thus ¢(Dg) is locally integrable on the original
manifold and C(Dg) = |h|**¢(Dg)|x=o is the trivial extension. From
(3.10) we know that a is a sum of terms like

Zij/\aj/\(ZDfi/\gffrF@fz‘/\Ui)e

12



and so it is easily seen that any factor 1/ f](-) from o; occurs together
with a factor f or df] from Df;. Therefore, a is a sum of terms like

dfp A... Ndf) Aw

fg cee fé)k ’
where w is smooth. Since we may assume that each f? is a monomial,
it is easy to see that a is locally integrable, and that d|h°** A a|y—¢

has measure coefficients. Therefore this holds also for A and M, and
in particular, A = |h|**a|y—=¢. Thus the proof is complete. O

If r =1 we get the simpler expression

_ I+a - (_an/\ég)f
a—/eosz/\a/\e A; )

Since each term in exp(I + a©) has the same degree in e; and e} it
must be multiplied with terms with the same property in order to get
a product with full degree. Therefore we get

(3.20) a=— /eiJ’aé_an A ZO’ A (o)t
e 0

In [1] we introduced the currents

o A —
U= 5o = P A0 A D (00) 7,
£

and

_ o ~ A N/
R=0|f[** A 5 |,\:0=(9\f|2)‘/\0/\ E :(aa)e 1|>\:0'

The current R is supported on Z and

(3.21) (6, —d)U=1-R.
In view of (3.20) we therefore have that

(3.22) M= / O+ -aDf A R

(3.23) A=— / @O+ -aDf A 17

€

and moreover, cf. (3.6),

(3.24) C(Dg) = / @O +=aDf A £ AT,

One can say more about the (p,p)-current M,, where as before p =
codim Z. Let Zf be the irreducible components of the variety Z of
codimension p. From [2] we have

Theorem 3.7. Suppose that r = 1. If p = codim (Z), then My = 0

for k <p and
Mp = ZQJ[ZJPL

where a; are nonnegative integers, the multiplicities of f.
13



4. BOTT-CHERN CLASSES

Let £ — X be a Hermitian vector bundle with Chern connection Dg.
The Bott-Chern class ¢(FE) is the equivalence class of the Chern form
¢(Dg) in

EBkglc,k(X) N Ker d/ddc Dy gk,k(X).
To begin with we recall the construction in [3] that proves that ¢(E) is
independent of the Hermitian structure on F.

Lemma 4.1. Let D be a connection depending smoothly on a real pa-
rameter t. Moreover, assume that L € £(X,End(E)) depends smoothly
ont and that

(4.1) Dl .uL=D.
Also assume that ©; has bidegree (1,1) for all t. If

U—/ /L /\ea@t”dt
1 — o

bz/ /aDt/\e"‘@t“dt.
0 e

Proof. In view of (2.4) we have that (suppressing the index %)
d/z/\eaéJrf: /Di/\ea(:)+f’

then adv = b, where

and by identifying bidegrees we get that
a/z/\eaé—l—f:/Dli/\eaé—Ff: /BAea(:)—Ff_
[ [ [

Since db = ¢(D;) — ¢(Dy), cf., (2.6), and dd® = —add, we thus have
(42) —ddv = C(Dl) — C(Do).

To see an example of such an L, let us assume that E is equipped with
a metric that varies smoothly with ¢, and let D = D; be the Chern
connection. Then we can define L € £(X, EndF) by

d
pm (&m=(L&m), &ne&(X, E).

In fact, for fixed &, n — d{&,n) /dt is conjugate linear in 7, and thus
the element L& must exist. We claim that

which of course implies (4.1). In fact, since d (£, n) = (D&, n)+ (&, Dn),
differentiation with respect to ¢ gives

d (L&, n) = (LDE,m) + (L&, Dn) + (D€, m) + (&, Dn).

We also have that d (L&, n) = (D(LE),n) + (L&, Dn), and comparing,

we get (4.3). Since any two given Hermitian metrics are connected
14



by such a homotopy, it follows, cf., (4.2), that the Bott-Chern class is
independent of the metric.

If the metric is given by the matrix 7 is a given local frame for E, then
(4.4) L=711%

in this frame. In fact, (£,n) = n*7& so

d
g &m =n"tE = T = (7€, ).

We now consider another situation. Assume that we have the short
exact sequence of Hermitian vector bundles 0 — S % F % Q — 0,

where () and S have the metrics induced by the Hermitian metric on
E. Then

(4.5) JF®g: E—=-SeQ

is a smooth vector bundle isomorphism. If Dg and D¢ are the Chern
connections on S and () respectivey, then

Dg —p”
Dgp ~
: ( 8 Dq )
with respect to the isomorphism (4.5). We shall now modify the con-

nection D to Dy = D — v, where v = Dy 4pjj*. It turns out that
v =g*ofoj* thus y Ay =0, and that Dg,ggy = 07. Moreover, it

follows that
DS % )
D ~
Byb ( 0 DQ

@5 *
s ~ ( 0 Oq ) ’
so that ¢(Dy) = ¢(Dg)c(Dg). If Dgy = D —ty we have ©; = © —t0y;

thus it has bidegree (1,1). If we let

1
x [+a0—tad¥ ~ f+a0 1 A~
(4.6) b:/o /ory/\el+ O—tady z:/or)//\el+ @/\m(—a&y)e

>0

and hence

it follows from (2.6) that db = c¢(Dg) — ¢(Ds)c(Dg). Moreover, if
L = j;5%/(1—t), then (4.1) holds. In fact, D = —~, and [jj*, g*oS0j*] =
g* o Boj* (notice that [a,b] = ab + ba if 1-forms) so that

(4.7) DiﬂndE,tL = Dgpapl —t[y, L] = 1 i t’Y T 1 i t’)’ =7
Proposition 4.2. If
m—1 (—1)f [~ - ) N -
(4.8) wv= 7 Ji* AN (I + a® — adY)m—ir—1 A (—ad7)y,
=1 ¢
then adv =

15



Proof. Observe that

e - =
8/ 6/ 17 A €I+a®1dt — / ¢ / Dl]] A e[—|—a@1dt — 0’
0 el —1 0 e 1 —1

since Dyjj* = 0 in view of (4.7). Therefore,

1—e _ ef+aé—ta5’7 . ef+aé—a5’"y 1—e . - .
043/ /jj* A dt = / /ai/\e”ae_m‘”.
0 e 1—-t 0 e

The proposition now follows by letting ¢ — 0 and computing the t-
integral on the left hand side. (]

Altogether we therefore have that —dd“v = ¢(Dg) — ¢(Dgs)c(Dg) and
thus ¢(E) = ¢(5)¢(Q). The formula for v is precisely the same as in [3]
but expressed in our notation.

5. BOTT-CHERN CLASSES DEFINED BY RESIDUE CURRENTS

Let S be the bundle over X \ Z generated by the holomorphic sections
fi,..., fr to E. If 0; are the sections to E* as in Section 3, then clearly

it =Y _fing;.
i

Moreover, if we let v, = Dfq(75%), then with the short-hand notation
from Proposition 3.3 we have

(5.1) = (Df —fA¢) Ao,
and
(5.2) 0= (Df —fAP) Ao+ (Of + f ANDP) Ao

Proposition 5.1. With the notation above we have:

(i) The forms v, b, and c(Dg) A c(Dg) are locally integrable in X.

(i1) If the natural extensions are denoted by capitals, then

(5.3) oV = B,
and

Proof. We use the same notation as in the proof of Theorem 1.3. After a
suitable desingularization we may assume that f = f°f’ and o = o'/ f°.

Therefore,
froe=) finog =) find,

and thus it is smooth. It follows that also 4, = D'(f A o) and 07,
are smooth. Since (5.4) holds in X \ Z and ¢(Dg) is smooth it follows
that also ¢(Dg) A ¢(Dg) is smooth in the resolution. We can conclude
that all the forms are locally integrable in X and that (5.3) and (5.4)

holds. O
16



When r = 1, the presence of the factor ],3/* = f Ao implies the simpler
expressions, cf., (4.6) and (4.8),

:;(—

1)¢ / - - -
fAGANI+aO—aD fA00)y 1 eN—aDfAIJo),

and
(5.6)
b= / (Df - f/\¢)/\aAeI+"‘9AZ O‘D*’;:‘;‘{A‘ﬁ) A (G0
We also have
Proposition 5.2. If r =1 we have that
(5.7) b=a—adlog|f]> Ac(Dg)

in X\ Z.

Proof. To begin with we rewrite (5.6) as

(58) h= / I+a6 A Z @Df2‘+a1f)/\ (b)“—l Ao A (ga)f —

o
_ /ef+aé—an+afA¢ A ZGA (50)4.

¢ £=0
From (5.8) we have, cf., (3.20) and recall that ¢ = —9dlog|f|?,

b:/ef+aé_anA(1+ozf/\gz§)/\zezo/\(8o)zz

a+ adlog|f|> Ace(Dg).
(]

It is now a simple matter to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Since ¢(Dyg) is smooth in a suitable resolution,
it follows that log | f|c(Dg) is locally integrable there. Thus it is locally
integrable in X and since ¢(Dg) — 1 = dd°log(1/|f|) we have

dd*(log(1/]f])e(Dq)) = C(Ds) A C(Dq) — C(Dq) — M
with
(5.9) M = dd‘(log| f|c(Dg))1z.
If we define W =log(1/|f|)c(Dg) — V, we therefore have, cf., Proposi-
tion 5.1, that dd°W = ¢(Dg) — C(Dg) — M as wanted. We now claim
that the current M so defined coincides with the residue current in The-
orem 3.7 (and in Theorem 1.3). In fact, this current is equal to —dA1,

and since dB is locally integrable, we have in view of Proposition 5.2
that

—dAl; = —d(adlog |f|*c(Dg))1|z = dd“(log | f|c(Dg))1z = M.
17



To complete the proof of part (iii), take a resolution as before, so that
f = f°f". Then it is easily seen that (1.2) is locally integrable for
A > 0, and that the limit when A — 0% is equal to M. One just has to
notice that log | f| = log|f°| + log|f’|, and hence

M = dd*(l0g |f|e(Dq)) = dd°log |°| A c(Dg) = [f° = 0] A e(Dq),

where [f° = 0] is the current of integration over the divisior defined by
f°. Thus the theorem is proved. U

Remark 1. Notice that when m = 1 then W = log(1/|f|) and therefore
(1.1) is indeed the classical Poincaré-Lelong formula in this case. O

It remains to prove Theorem 1.4.

Proof of Theorem 1.4. Assume that we have r sections f; and that (1.5)
holds. We first have to check that ¢(Dg) is locally integrable in X and
find a locally integrable form u such that dd°U = C(Dg) — 1, where as
before the capitals denote the natural extensions to X.

Let 7 be the metric matrix with respect to the frame f; for S — X'\ Z;
i.e., Tk = (fj, fr). In X \ Z we make the deformation
(510) T;k = (1 - t)Tjk + t‘fj|25jk:-

Notice that when ¢ = 1, the corresponding Chern class is

T

¢(Dsy) = \(1 - dd°log| f;1).

1
In particular, it follows that it is locally integrable in X, and we let
C(Dg,1) denote the natural extension.

Proposition 5.3. The Chern forms c¢(Dg) and ¢(Ds,) are locally in-
tegrable in X. With L = L; etc as in Section 4 we have that

1 i
Uy = / /Lt A e®tdt
0 e

18 locally integrable in X, and
(5.11) dd°U, = C(Ds) — C(Dg,1).

Proof. With the notation in the proof of Theorem 1.3 we have in a
suitable desingularization that

AN = (A AT
and from (3.18) we conclude that

B =fiA...AfL

In particular, f{f A... A fl # 0 so f! is a local frame for S (or rather
the pullback of S to the resolution manifold). Let

le'k = <fgl-, fi)
and
() = (1 = )7 + t| £ 261
Then

0E
Tjk = f] f]?TJI'ka
18



and hence
Tt = F*TtIF,

where Fji = f0;r. The matrix F' corresponds to a change of frame
outside the singularity, and since the definition of u; is invariant and
just depends on the given deformation (5.10), we can compute u; with
respect to the new frame f] instead. However, 7; is clearly invertible,
and therefore, cf., (4.4), L = (7/)~'7/ and the corresponding ©} are
smooth, and so are also ¢(Dg) and ¢(Dg;). Since dd‘u; = ¢(Dg) —
¢(Dg,1) in this resolution, (5.11) holds on X. O

It is a simple matter to find a current us in X \ Z such that

r

dduy = \(1 - ddlog|f;]) — 1 = ¢(Ds1) — 1.

1
For instance we can take

k
51:_10g|f1" §k+1:é“k—]og|fk+1‘/\(1—ddclog‘fﬂ), uy =¢§'.
1

Summing upp we thus have that
ddc(ul + UQ) = C(DS) —1.
Since ¢(Dg) and u, are smooth in a suitable resolution, and us has just
logarithmic singularites, it follows that u = u; + uy has logarithmic
singularities. Since ¢(Dg) is smooth in the resolution (uy +u2) Ac(Dg)
has logarithmic singularities, and
ddu A ¢(Dg) = (¢(Dg) — 1) A c(Dg)
in X \ Z. We can conclude that
dd*(U A C(Dg)) = C(Ds) A C(Dg) — C(Dg) — M,

where M is a current of bidegree (*, *) with support on M. Therefore,
cf., Proposition 5.1, finally dd‘W = ¢(Dg) — C(Dg) — M, with W =
UAC(Dg)—V. Thus Theorem 1.4 is proved. O

6. PosITIVITY

Let F — X be a Hermitian holomorphic bundle as before and let e;
be an ortonormal local frame. A section

A :iZAjk(X)ej@e};
ik
to 77, (X) ® End(E) is Hermitian if Aj;, = —Ag;. It then induces a
Hermitian form a on T°(X) ® E* by
a({f b2 6;, n b2 6;;) = A]k(fa 77)7
if £, n are (1, 0)-vectors. We say that A is (Bott-Chern) positive, A >5 0
if the form a is positively semi-definite. In the same way any Hermitian
A induces a Hermitian form a’ on 7"%(X) ® E and it is called Nakano

positive, A >y 0, if @ is positively semi-definite.
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Notice that a© is Hermitian; it is said to be Nakano positive if a® >y
0. Analogously we say that E is positive, £ > 0, if a© >pg 0. Neither
of these positivity concepts implies the other one unless m = 1.

Since O,;(E*) = —0;,(E) it follows that E is positive in our sense if
and only if E* is Nakano negative. The next proposition explains the
interest of Bott-Chern positivity in this context.

Proposition 6.1. Let
(6.1) 0-S—FEF—=-Q—0

be a short exact sequence of Hermitian holomorphic vector bundles.
Then E >pg 0 implies that () >g 0.

Proof. Tt is well-known, see for instance [5], that E <y 0 implies that
S <y 0. From the sequence (6.1) above we get the exact sequence
0= Q" — E*— 5 — 0. Since E* <y 0 implies @* <y 0, it follows
that F >pg 0 implies QQ >pg 0. O

The next simple lemma reveals that our definition of Bott-Chern pos-
itivity coincides with the one used in [3].

Lemma 6.2. A >3 0 if and only if there are sections fy to Ty ((X)®FE
such that

(6.2) A=iY fi® f;.
7

Observe that if f, = Y ff®e;, then f; =Y ff®e} since e, is ortonor-
mal.

Proof. If (6.2) holds, then
a(,€) =Y fil&) 1€ =D [fu&)P >0
V4

for all £ in T%® @ E*. Conversely, if a is positive, it is diagonalizable,
and so there is a basis f, for 77, ® E such that (6.2) holds. O

If we identify f, with > ff A e;j as before, then (6.2) means that
(6.3) A==i) fing;.
¢

If B =) Bje; ® e is a scalar-valued section to EndE, then it is
Hermitian if and only if Bjy = By; and it is positively semi-definite if

and only if
B=) ¢®g
¢
for some sections g, to F; or equivalently,
(6.4 B=Y gng
¢
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Proposition 6.3. Assume that A; are (1,1)-form-valued Hermitian

sections to E and By scalarvalued sections, such that A; >p 0 and
B, > 0. Then

(6.5) /AlA...AATABT+1A...ABm

e

is a positive (r,r)-form.

Proof. In view of (6.3) and (6.4), we see that (6.5) is a sum of terms
like

[ BN F NN NS NGt AGE s A A g A G =
e
(—i)’"cm_r/fl/\...f,/\...gm/\ff/\.../\f:/\...g;:

(—z‘)rcm_r/wAelA.../\em/\w/\e’{/\.../\e*
€

where w is an (r,0)-form and ¢, = (—1)?®~1/2 = j#@=1) By further

simple computations,

(—z‘)’“cm,(—1)m’/w/\a;/\e1/\.../\em/\e’{/\.../\e:n =
€

(=) Cmr (—1)™ Cmw A@ = i" w A @
the proposition follows, since the last form is positive. ]

Proposition 6.4. If E >5 0 (or E >y 0), then the Chern forms
ce(DE) are positive for all k.

Proof. Since a©® >p 0 by assumption, and clearly I > 0, it follows
from Proposition 6.3 that

k(D) = /e(a(:))k AT

is positive. ]

We have already noticed, cf., Theorem 1.1 (iii), that the current M is
positive if ¢;_1(Dg) >p 0. From (3.6) we have that (r = 1)

(6.6) cx 1(Dg) = / FAOA (D —aDf AdoYs 1 ALy 5 =

k—1
Z/f Ao A(a®)y_ 1 A(—aDf Ado); A Ly .
j=17e

If s = f* as before, then o = s/|f|?, and therefore we have

— —aDf A D ~ -
(67) Ck_l(DQ) = Z ];f/_\|28 < a |flc|2A S)j AN (a@)k_l_j A Im—k:-
j=17¢

Since ds = (D f)* it now follows immediately from Proposition 6.3 that
cx(Dg) is positive if a© >5 0.
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One can prove that, if we multiply with A|f[> A 9|f[?/|f|* and let
A — 0%, then all terms where the power of 9|f|* is less than p will
disappear; see for instance the proof of Theorem 1.1 in [1]. We thus
have

Proposition 6.5. If p = codim {f = 0}, then

2 A | £|2
M, = lim )\|f|2>‘aM/\
A0+

fI?
k—1 -
fAs —aDf A0s ~ ~
Op—1—i A L.
j§16|f|2/\( |f|2 )j/\(a )klj/\ k

From this formula it is apparant that M vanishes if £ < p, and that
M, is positive, regardless of a©.

Notice that if some of the A; in (6.5) are replaced by A} >p Aj;, then
the resulting form will be larger. This follows immediately from proof,
It is now easy to prove Theorem 1.2.

Proof of Theorem 1.2. Assume that E >p 0. Then log(1/|f|)c(Dg) is
positive when |f| < 1. From (5.5) we have that

k
v = Z fATA(@O —aDf ANIo)g_y A(—aDf Ado)e ALy k1.
L1 Ve

Thus it is an alternating sum of positive terms, and therefore it has no
sign. If we replace each factor —aD f Ado by a© —aDf Ao, then we
get a larger form which in addition is closed, since it is just a certain
constant times ¢ (Dg), cf., (6.6). Therefore, for a suitable constant v
v, = v + vcr(Dg) is a positive form that is cohomologous with vy.
Thus the current

Wi = Vi + vxCi(Dq) + log(1/|f])C(Dq)
will have the stated property. U

The modification of v in the proof is precisely as in [3] but with our
notation, and for an arbitrary k rather than just £ =m — 1. It is not
necessary to consider each vy separately. By the same argument one
can see directly that v = v + ve(Dyg) is positive and cohomologous
with v, if v is appropriately chosen.
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