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Abstract
We consider Merton�s portfolio optimization problem in a Black and

Scholes market with non-Gaussian stochastic volatility of Ornstein-Uhlenbeck
type. The investor can trade in n stocks and a risk-free bond. We assume
that the dependence between stocks lies in that they partly share the
Ornstein-Uhlenbeck processes of the volatility. We refer to these as news
processes, and interpret this as that dependence between stocks lies solely
in their reactions to the same news. We show that this dependence gen-
erates covariance, and give statistical methods for both the �tting and
veri�cation of the model to data. Using dynamic programming, we derive
and verify explicit trading strategies and Feynman-Kac representations of
the value function for power utility.

1 Introduction

A classical problem in mathematical �nance is the question of how to optimally
allocate capital between di¤erent assets. In a Black and Scholes market with
constant coe¢ cients, this was solved by Merton in [15] and [16]. Recently, [6]
solved the same problem for one stock and a bond in the more general market
model of [3]. In [3], Barndor¤-Nielsen and Shephard propose modeling the
volatility in asset price dynamics as a weighted sum of non-Gaussian Ornstein-
Uhlenbeck (OU) processes of the form

dy (t) = ��y (t) dt+ dz (t) ;
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where z is a subordinator and � > 0. This framework is a powerful modeling
tool that allows us to capture several of the observed features in �nancial time
series, such as semi-heavy tails, volatility clustering, and skewness. We extend
the model by introducing a new dependence structure, in which the dependence
between assets lies in that they share some of the OU processes of the volatility.
We will refer to the OU processes as news processes, which implies the inter-
pretation that the dependence between �nancial assets is reactions to the same
news. We show that this dependence generates covariance, and give statistical
methods for both the �tting and veri�cation of the model to data.
In this extended model we consider an investor who wants to maximize her

utility from terminal wealth by investing in n stocks and a bond. This problem
is an n-stock extension of [6]. We allow for the investor to have restrictions on
the fractions of wealth held in each stock, as well as borrowing and short-selling
restrictions on the entire portfolio. For simplicity of notation, we have formu-
lated and solved the problem for two stocks and a bond. However, the general
case is completely analogous. The stochastic optimization problem is solved
via dynamic programming and the associated Hamilton-Jakobi-Bellman (HJB)
integro-di¤erential equation. By use of a veri�cation theorem, we identify the
optimal expected utility from terminal wealth as the solution of a second-order
integro-di¤erential equation. For power utility, we then compute the solution
to this equation via a Feynman-Kac representation, and obtain explicit opti-
mal allocation strategies. All results are derived under exponential integrability
assumptions on the Lévy measures of the subordinators.
Recently, portfolio optimization under stochastic volatility has been treated

in a number of articles. In [9] and [11], Merton�s problem is studied with sto-
chastic volatility being modelled as a mean-reverting process. The paper [18]
use partial observation to solve a portfolio problem with a stochastic volatility
process driven by a Brownian motion correlated to the dynamics of the risky
asset. Going beyond the classical geometric Brownian motion, [4], [5], and
[8] treat di¤erent portfolio problems when the risky assets are driven by Lévy
processes, and [12] derive explicit solutions for log-optimal portfolios in terms
of the semimartingale characteristics of the price process. For an introduction
to the market model of Barndor¤-Nielsen and Shephard we refer to [2] and [3].
For option pricing in this context, see [17].
This paper has seven sections. In Section 2 we give a rigorous formulation of

the market and the portfolio optimization problem. We also discuss the market
model and the implications of the dependence structure. In Section 3 we derive
some useful results on the stochastic volatility model, and on moments of the
wealth process. We prove our veri�cation theorem in Section 4, and use it in
Section 5 to verify the solution we have obtained. Section 6 states our results,
without proofs, in the general setting. We discuss our results and future research
in Section 7.
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2 The optimization problem

In this section we de�ne, and discuss, the market model. We also set up our
optimization problem.

2.1 The market model

For 0 � t � T <1, we assume as given a complete probability space (
;F ; P )
with a �ltration fFsgt�s�T satisfying the usual conditions. Introduce m in-
dependent subordinators Zj , and denote their Lévy measures by lj(dz); j =
1; :::;m: Remember that a subordinator is de�ned to be a Lévy process taking
values in [0;1) ; which implies that its sample paths are increasing. The Lévy
measure l of a subordinator satis�es the conditionZ 1

0+

min(1; z)l(dz) <1:

We assume that we use the cádlág version of Zj : Let Bi; i = 1; 2; be two Wiener
processes independent of all the subordinators. We now introduce our stochastic
volatility model. It is an extension of the model proposed by Barndor¤-Nielsen
and Shephard in [3] to the case of two stocks, under a special dependence struc-
ture. To begin with, our model is identical to theirs. We will discuss the
di¤erences as they occur.
The next extension of the model, to n stocks, is only a matter of notation.

Denote by Yj ; j = 1; :::;m, the OU stochastic processes whose dynamics are
governed by

(2.1) dYj(t) = ��jYj(t)dt+ dZj(�jt),

where the rate of decay is denoted by �j > 0: The unusual timing of Zj is
chosen so that the marginal distribution of Yj will be unchanged regardless of the
value of �j : To make the OU processes and the Wiener processes simultaneously
adapted, we use the �ltration

f� (B1 (s) ; B2 (s) ; Z1 (�1s) ; :::; Zm (�ms))gt�s�T :

From now on we view the processes Yj ; j = 1; :::;m in our model as news
processes associated to certain events, and the jump times of Zj ; j = 1; :::;m as
news or the release of information on the market. The stationary process Yj is
representable as

Yj (s) =
R t
�1 exp (u) dZj (�js+ u) ; s � t;

but can also be written as

(2.2) Yj (s) = yje
��j(s�t) +

R s
t
e��j(s�u)dZj(�ju); s � t;

where yj := Yj (t) ; and yj has the stationary marginal distribution of the process
and is independent of Zj (s) � Zj (t) ; s � t: In particular, if yj = Yj (t) � 0;
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then Yj (s) � 0; since Zj is non-decreasing. We set Zj (0) = 0, j = 1; :::;m; and
set y := (y1; :::; ym) : We assume the usual risk-free bond dynamics

dR (t) = rR (t) dt;

with interest rate r > 0. De�ne the two stocks S1; S2 to have the dynamics

(2.3) dSi (t) = (�i + �i�i (t))Si (t) dt+
p
�i(t)Si (t) dBi (t) .

Here �i are the constant mean rates of return; and �i are skewness parameters.
We will call �i + �i�i (t) the mean rate of return for stock i at time t: For
notational simplicity in our portfolio problem we denote the volatility processes
by �i instead of the more customary �2i : We de�ne �i as

(2.4) �i (s) := �
t;y
i (s) :=

Pm
j=1 !i;jYj (s) ; s 2 [t; T ] ;

where !i;j � 0 are weights summing to one for each i: The notation �t;yi denotes
conditioning on Y (t) : Our model is here not the same as just two separate mod-
els of Barndor¤-Nielsen and Shephard type. The di¤erence is that the volatility
processes depend on the same news processes. These volatility dynamics gives
us the stock price processes

(2.5) Si (s) = Si (t) exp
�Z s

t

�
�i +

�
�i � 1

2

�
�i (u)

�
du+

Z s

t

p
�i (u)dBi (u)

�
:

This stock price model does not have statistically independent increments and
it is non-stationary. It also allows for the increments of the returns Ri (t) :=
log (Si (t) =Si (0)) ; i = 1; 2; to have semi-heavy tails as well as both volatility
clustering and skewness. The increments of the returns Ri are stationary since

Ri (s)�Ri (t) = log
�
Si (s)

Si (0)

�
� log

�
Si (t)

Si (0)

�
= log

�
Si (s)

Si (t)

�
=L Ri (s� t) ;

where " =L " denotes equality in law.

2.2 Discussion of the market model

This section aims to show that the dependence structure proposed in Section 2.1
is not only simple from a statistical point of view, but also has very appealing
economical interpretations.
The paper [3] suggests a model with n stocks with dynamics

dS (t) = f�+ �� (t)gS (t) dt+�(t)
1
2 S (t) dB(t);

where � is a time-varying stochastic volatility matrix, � and � are vectors, and
B is a vector of independent Wiener processes. This model includes ours as a
special case with � being a diagonal matrix. However, in the classical Black
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and Scholes market, dependence is modelled by covariance. In the case of two
stocks this means that for s � t;

S1 (s) = S1 (t) exp
��
�1 � 1

2�11 �
1
2�12

�
(s� t) +p�11B1 (s) +

p
�12B2 (s)

�
;

and

S2 (s) = S2 (t) exp
��
�2 � 1

2�21 �
1
2�22

�
(s� t) +p�21B1 (s) +

p
�22B2 (s)

�
;

for a volatility matrix �; and B1 (t) = B2 (t) = 0.
In our model, stock prices develop independently beside from reacting to the

same news. From an economic viewpoint, one can expect the model parameters
to be more stable than in the classical Black and Scholes market. For example,
we do not require stability over expected rate of return. Instead we ask that
every time the market is �nervous� to a certain degree, i.e. for every speci�c
value of the volatility �i; the mean rate of return �i + �i�i will be the same.
We can interpret this as that we only need stability in how the market reacts
to news.
As we will see, for the purpose of portfolio optimization we do not need to

know the weights !i;j : More importantly, the model generates a non-diagonal
covariance matrix for the increments of the returns over the same time period,
which is the most frequently used measure of dependence in �nance. Since the
returns have stationary increments, it is su¢ cient to show this result for Ri;
i = 1; 2: Note that we have

Cov (R1 (s)�R1 (t) ; R2 (u)�R2 (v))
= Cov (R1 (s) ; R2 (u))� Cov (R1 (s) ; R2 (v))

� Cov (R1 (t) ; R2 (u)) + Cov (R1 (t) ; R2 (v)) ;

for s; t; u; v 2 [0; T ] : As will be shown below, for s; t 2 [0; T ] ; we have that

Cov (R1 (s) ; R2 (t))(2.6)

=
�
�1 � 1

2

� �
�2 � 1

2

� mX
j=1

!1;j!2;jV ar (Yj (0))

� e
��js + e��jt � e��j js�tj � 1 + 2�j min (s; t)

�2j
;

which for s = t simpli�es to

Cov (R1 (t) ; R2 (t))(2.7)

= 2
�
�1 � 1

2

� �
�2 � 1

2

� mX
j=1

!1;j!2;jV ar (Yj (0))
e��jt � 1 + �jt

�2j
:

This result says that the model generates a covariance matrix between returns,
but we do not immediately know which correlations that can be obtained. It
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turns out that we can get correlations Corr (R1 (t) ; R2 (t)) in the entire interval
(�1; 1) :
To derive Equation (2.6), by de�nition of �i we have that

E [R1 (s)R2 (t)]

= E
��Z s

0

�1 +
�
�1 � 1

2

�
�1 (u) du+

Z s

0

p
�1 (u)dB1 (u)

�
�
�Z t

0

�2 +
�
�2 � 1

2

�
�2 (u) du+

Z t

0

p
�2 (u)dB2 (u)

��
= �1�2st+ �1s

�
�2 � 1

2

� mX
j=1

!2;jE
�Z t

0

Yj (u) du

�

+ �2t
�
�1 � 1

2

� mX
j=1

!1;jE
�Z s

0

Yj (u) du

�

+
�
�1 � 1

2

� �
�2 � 1

2

� mX
i;j=1

!1;i!2;jE
�Z s

0

Yi (u) du

Z t

0

Yj (u) du

�
:

Similarly,

E [R1 (t)] = �1t+
�
�1 � 1

2

� mX
j=1

!1;jE
�Z t

0

Yj (u) du

�
:

This gives that

Cov (R1 (s) ; R2 (t))

=
�
�1 � 1

2

� �
�2 � 1

2

� mX
j=1

!1;j!2;jCov

�Z s

0

Yj (u) du;

Z t

0

Yj (u) du

�
:

By stationarity, we have that E [Yj (t)] = �Yj ; for some constant �Yj > 0; for all
t 2 R: If we assume that u � v; the independence of the increments of Yj gives
that

Cov (Yj (u) ; Yj (v))

= E
��
Yj (u)� �Yj

� �
Yj (v)� �Yj

��
= E

�
e��j(v�u)Yj (u)

2
+ Yj (u)

Z v

u

e��j(v�s)dZ (�js)

�
� �2Yj

= e��j(v�u)E
h
Yj (0)

2
i
� e��j(v�u)�2Yj

= e��j(v�u)V ar (Yj (0)) :

The same calculations for v � u shows that

Cov (Yj (u) ; Yj (v)) = e
��j jv�ujV ar (Yj (0)) ;
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and we get

Cov

�Z s

0

Yj (u) du;

Z t

0

Yj (u) du

�
(2.8)

=

Z s

0

Z t

0

Cov (Yj (u) ; Yj (v)) dudv

= V ar (Yj (0))
e��js + e��jt � e��j js�tj � 1 + 2�j min (s; t)

�2j
:

By Itô�s isometry (see [22]) we get, similar to above,

V ar (Ri (t)) =
mX
j=1

 
2
�
�i � 1

2

�2
!2i;jV ar (Yj (0))

e��jt � 1 + �jt
�2j

+ !i;j�Yj t

!
;

for i = 1; 2: This gives

Corr (R1 (s) ; R2 (t))

=
1

2

�
�1 � 1

2

� �
�2 � 1

2

����1 � 1
2

�� ���2 � 1
2

�� mX
j=1

!1;j!2;jV ar (Yj (0))

� e
��js + e��jt � e��j js�tj � 1 + 2�j min (s; t)

�2j

� 1vuutPm
j=1

 
!21;jV ar (Yj (0))

e��js�1+�js
�2j

+
!1;j�Yj s

2
�
�1�

1
2

�2
!

� 1vuutPm
j=1

 
!22;jV ar (Yj (0))

e��jt�1+�jt
�2j

+
!2;j�Yj t

2
�
�2�

1
2

�2
! ;

and, for s = t;

Corr (R1 (t) ; R2 (t))

=

�
�1 � 1

2

� �
�2 � 1

2

����1 � 1
2

�� ���2 � 1
2

�� mX
j=1

!1;j!2;jV ar (Yj (0))
e��jt � 1 + �jt

�2j

� 1vuutPm
j=1

 
!21;jV ar (Yj (0))

e��jt�1+�jt
�2j

+
!1;j�Yj t

2
�
�1�

1
2

�2
!

� 1vuutPm
j=1

 
!22;jV ar (Yj (0))

e��jt�1+�jt
�2j

+
!2;j�Yj t

2
�
�2�

1
2

�2
! :
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There is always a trade-o¤ between accuracy and applicability when design-
ing models. An obvious advantage of our model is that we do not have to
estimate a stochastic volatility matrix, and hence we need less data to obtain
good estimates of the model parameters. A drawback is that, to obtain high
correlations, we need the model to be very skew. This might not �t observed
data. It remains to see if the trade-o¤ was a good one.

2.3 Statistical methodology

In this section we describe a methodology for �tting the model to return data.
We will do this for a Normalized Inverse Gaussian distribution (NIG) ; which
has been shown to �t �nancial data well, see e.g. [1], [7] and [20]. Our
choice plays no formal role in the analysis. We assume that we are observ-
ing Ri (�) ; Ri (2�)�Ri (�) ; :::; Ri (k�)�Ri ((k � 1)�) ; where � is one day,
and k+1 is the number of consecutive trading days in our period of observation.
TheNIG-distribution has parameters � =

p
�2 + 
2; �; �; and �: Its density

function is

fNIG (x;�; �; �; �)

=
�

�
exp

�
�
p
�2 � �2 � ��

�
q

�
x� �
�

��1
K1

�
��q

�
x� �
�

��
e�x;

where q (x) =
p
1 + x2 and K1 denotes the modi�ed Bessel function of the

third kind with index 1: The domain of the parameters is � 2 R; � > 0; and
0 � j�j � �:
A standard result is that if we take � to have an Inverse Gaussian distribution

(IG) ; and draw a N (0; 1)-distributed random variable "; then x = �+��+
p
�"

will be NIG-distributed. The IG-distribution has density function

fIG (x; �; 
) =
�p
2�
exp (�
)x�

3
2 exp

�
� 1
2

�
�2x�1 + 
2x

��
; x > 0;

where � and 
 are the same as in the NIG-distribution. The existence and
integrability of Lévy measures lj such that the volatility processes �i will have
IG-distributed marginals is not obvious. See [2] and [21, Section 17] for this
theory. The Lévy density l of the subordinator Z of an IG-distributed news
process Y is

l (x) = (2�)
� 1
2
�

2

�
x�1 + 
2

�
x�

1
2 e�


2x
2 ;

where (�; 
) are the parameters of the IG-distribution.
The method described in [3], which we will further extend, uses that the

marginal distribution of the volatility processes �i are invariant to the rates of
decay �j : These parameters �j are then used to �t the autocorrelation function
of the �i to log-return data. The autocorrelation � is de�ned by

�� (h) =
Cov(�(h);�(0))
V ar(�(0)) ; h 2 R:
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For simplicity of exposition we will assume that we only need one � to cor-
rectly model the autocorrelation function of both stocks. However, for reasons
to be explained later, we will assume thatm = 3; and that all �1 = �2 = �3 = �:
For our model calculations show that, for general m;

��i (h) = !i;1 exp (��1 jhj) + :::+ !i;m exp (��m jhj) ;

where the !i;j � 0; are the weights from the volatility processes that sum to
one. Observe that since we have assumed the rates of decay �j to be equal, we
immediately get that ��i (h) = exp (�� jhj) : We proved this more simple result
in Subsection 2.2. The proof of the general case is analogous.
We assume that we have �tted NIG-distributions to the empirical marginal

distributions of two stocks, and that we have found a � such that our model has
the right autocorrelation function. This can be done by empirically calculating
the autocorrelation functions ��i (h) for di¤erent values of h; and then �nd a
� so that the theoretical and empirical autocorrelation functions match. We
denote the IG-parameters of the volatility processes �i by (�i; 
i) ; i = 1; 2:
By Equation (2.7) we can now �t the covariance of the model to the empirical
covariance from the return data. This can be done by letting the two stocks
�share�the news process Y3, and each have one of the news processes Yi; i = 1; 2;
�of their own.�In general, this is done for each rate of decay. We formulate this
mathematically as

�1 = !1;1Y1 + !1;3Y3 � IG (�1; 
1)
�2 = !2;1Y2 + !2;3Y3 � IG (�2; 
2) :

We now state two properties of IG-distributed random variables that we will
need below. For X � IG (�X ; 
X), we have that

aX � IG
�
a
1
2 �X ; a

� 1
2 
X

�
:

Furthermore, if Y � IG (�Y ; 
Y ) and is independent of X and we assume that

X = 
Y =: 
; we have that X + Y � IG (�X + �Y ; 
) : Because of this formula
we can let

!1;1Y1 � IG (�1;1; 
1)
!1;3Y3 � IG (�1;3; 
1) ;

where

(2.9) �1;1 + �1;3 = �1;

and
!2;1Y2 � IG (�2;1; 
2)
!2;3Y3 � IG (�2;3; 
2) ;

where

(2.10) �2;1 + �2;3 = �2;
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We see, by the scaling property of the IG-distribution, that the two expressions
for the distribution of Y3,

(2.11) Y3 � IG
�
!
� 1
2

1;3 �1;3; !
1
2
1;3
1

�
;

and

(2.12) Y3 � IG
�
!
� 1
2

2;3 �2;3; !
1
2
2;3
2

�
;

must be identical. With the aid of Equation (2.8), in which we use that the
variance V ar (Y (0)) of a stationary inverse Gaussian process Y is �=
3, we see
that Equation (2.7) becomes

(2.13) 2
�
�1 � 1

2

� �
�2 � 1

2

� !1;3
!2;3

�2;3

32

e��j� � 1 + �j�
�2j

= C

where C is the covariance that we want the returns to have. It is now straight-
forward to check that there are non-unique choices of !i;j such that we can
obtain both the right autocorrelation function of �i and a speci�c covariance
for the returns. The autocorrelation function parameter � is already correct by
assumption, and we constructed the news processes Yj so that their marginal
distribution would not depend on it. Hence we only have to take care of the
covariance of the returns Ri. We do this by using Equations (2.9),..., (2.13).
Note that there is nothing crucial in our choice of covariance as measure of
dependence, nor does it matter how many di¤erent rates of decay we use.
We now give a simple approach to determine how well our model captures

the true covariance. We begin by �tting a marginal distribution to return data,
thereby obtaining the parameters �i and �i; i = 1; 2: Since we have that the
return processes Ri; i = 1; 2; are semimartingales, their quadratic variations, de-
noted by [�] ; are

R s
t
�i (u) du; s � t: That is, for a sequence of random partitions

tending to the identity, we have

[log (Si=Si (t))] (s) =

Z s

t

�i (u) du;

where convergence is uniformly on compacts in probability. This is a standard
result in stochastic calculus. For each trading day we now empirically calcu-
late the integrated volatility, that is, we calculate the quadratic variation of
the observed returns over a trading day and, by the formula above, use that
as a constant approximation of the volatility during that day. If we do this
for a number of trading days, we get approximations of the volatility processes
�i for that period of time. Using the �tted parameters �i, �i and generated
N (0; 1)-distributed variables in Equation (2.5), we can now simulate �alterna-
tive�returns. We then calculate the covariance-matrix of both the return data
set and the simulated alternative returns and compare them statistically.
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2.4 The control problem

A main purpose of this paper is to �nd trading strategies that optimizes the
trader�s expected utility from wealth in a deterministic future point in time.
The utility is measured by a utility function U chosen by the trader. This
utility function U is a measure of the trader�s aversion towards risk, in that it
concretizes how much the trader is willing to risk to obtain a certain level of
wealth. Our approach to �nding these trading strategies, and the value function
V , is dynamic programming and stochastic control. We will make use of many
of the results found in [6], since most of their ideas are applicable in our setting.
However, we need to adapt their results to our case.
In this section we set up the control problem under the stock price dy-

namics of Equation (2.3). Recall that �1 and �2; are weighted sums of the
news processes, see Equation (2.4). We begin by de�ning a value function V
as the maximum amount of expected utility that we can obtain from a trad-
ing strategy, given a certain amount of capital. We then set up the associated
Hamilton-Jakobi-Bellman equation of the value function V: This equation is a
central part of our problem, as it is, in a sense, an optimality condition. Most
of the later sections will be devoted to �nding and verifying solutions to it.
Denote by �i (t) the fraction of wealth invested in stock i at time t, and set

� = (�1; �2) : The fraction of wealth held in the risk-free asset is (1� �1 � �2).
We allow no short-selling of stocks or bond, which implies the conditions �i 2
[0; 1] ; i = 1; 2; and �1 + �2 � 1; a.s., for all t � s � T: However, these re-
strictions are partly for mathematical convenience. We could equally well have
chosen constants ai; bi; c; d 2 R; ai < bi; c < d; such that the constraints would
have taken the form �i 2 [ai; bi] ; i = 1; 2; and c � �1 + �2 � d; a.s., for all
t � s � T: The analysis is analogous in this case, but more notationally complex.
This general setting allows us to consider, for example, law enforced restrictions
on the fraction of wealth held in a speci�c stock, as well as short-selling and bor-
rowing of capital. We state the main results in this setting, further generalized
to n stocks, in Section 6.
The wealth process W is de�ned as

W (s) =
�1 (s)W (s)

S1 (s)
S1 (s) +

�2 (s)W (s)

S2 (s)
S2 (s)

+
(1� �1 (s)� �2 (s))W (s)

R (s)
R (s) ;

where �i (s)W (s) =Si (s) is the number of shares of stock i which is held at time
s: We also assume that the portfolio needs to be self-�nancing in the sense that
no capital is entered or withdrawn. This can be formulated mathematically as

W (s) =W (t)+
2X
i=1

Z s

t

�i(u)W (u)

Si(u)
dSi(u)+

Z s

t

(1� �1(u)� �2(u))W (u)
R(u)

dR (u) ;

for all s 2 [t; T ] : See [14] for a motivating discussion. The self-�nancing condi-
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tion gives the wealth dynamics for t � s � T as

dW (s) =W (s)�1 (s) (�1 + �1�1 (s)� r) ds(2.14)

+W (s)�2 (s) (�2 + �2�2 (s)� r) ds+ rW (s)ds
+ �1(s)

p
�1(s)W (s)dB1(s) + �2(s)

p
�2(s)W (s)dB2(s);

with initial wealth W (t) = w:
Our de�nition of the set of admissible controls now seems natural.

De�nition 2.1 The set At of admissible controls is given by At := f� =
(�1; �2) : �i is progressively measurable, �i (s) 2 [0; 1] ; i = 1; 2; and �1+ �2 � 1
a.s. for all t � s � T; and a unique solution W� of Equation (2.14) existsg.

An investment strategy � = f� (s) : t � s � Tg is said to be admissible if
� 2 At. Later we will need some exponential integrability conditions on the
Lévy measures. We therefore assume that the following holds:

Condition 2.1 For a constant cj > 0 to be speci�ed below,Z 1

0+

(ecjz � 1) lj(dz) <1; j = 1; :::;m:

Recall that the Lévy density l of the subordinator Z of an IG-distributed
news process Y is

l (x) = (2�)
� 1
2
�

2

�
x�1 + 
2

�
x�

1
2 e�


2x
2 ;

where (�; 
) are the parameters of the IG-distribution. Hence Condition 2.1 is
satis�ed for cj � 
2=2:
We know from the theory of subordinators that we have

(2.15) E
h
eaZj(�jt)

i
= exp

�
�j

Z 1

0+

(eaz � 1) lj(dz)t
�

as long as a � cj with cj from Condition 2.1 holds.
Denote (0;1) by R+ and [0;1) by R0+; and assume that y = (y1; :::; ym) 2

Rm0+. De�ne the domain D by

D := f(w; y) 2 R+�Rm0+g:

We will seek to maximize the functional

J(t; w; y;�) = Et;w;y [U (W� (T ))] ;

where the notation Et;w;y means expectation conditioned by W (t) = w; and
Yj(t) = yj ; j = 1; :::;m: The function U is the investor�s utility function. It is
assumed to be concave, non-decreasing, bounded from below, and of sublinear
growth in the sense that there exists positive constants k and 
 2 (0; 1) so that

12



U(w) � k(1 + w
) for all w � 0: Hence our stochastic control problem is to
determine the value function

(2.16) V (t; w; y) = sup
�2At

J(t; w; y;�); (t; w; y) 2 [0; T ]� �D;

and an investment strategy �� 2 At, the optimal investment strategy, such that

V (t; w; y) = J(t; w; y;��):

The HJB equation associated to our stochastic control problem is

0 = vt + max
�i2[0;1];i=1;2;
�1+�2�1

f(�1 (�1 + �1�1 � r) + �2 (�2 + �2�2 � r))wvw(2.17)

+
1

2

�
�21�1 + �

2
2�2
�
w2vww

�
+ rwvw �

mX
j=1

�jyjvyj

+
mX
j=1

�j

Z 1

0

(v (t; w; y + z � ej)� v (t; w; y)) lj(dz);

for (t; w; y) 2 [0; T )�D: We observe that we have the terminal condition

(2.18) V (T;w; y) = U(w); for all (w; y) 2 �D;

and the boundary condition

(2.19) V (t; 0; y) = U(0); for all (t; y) 2 [0; T ]� Rm0+:

We now give a formal motivation to this equation. The HJB equation is
obtained by setting the supremum of the �in�nitesimal generator�A of (W;Y )
applied to the value function V to zero. In other words, if we assume that
V 2 C1;2, the HJB equation is

max
�i2[0;1];i=1;2;
�1+�2�1

(AV ) (w; y)

= max
�i2[0;1];i=1;2;
�1+�2�1

�
lim
t#0

E [V (t;W (t) ; Y (t))]� V (0; w; y)
t

�
= 0;

where we have used the de�nition of A in the �rst equality, and Itô�s formula
(see [19]) to evaluate E [V (t;W (t) ; Y (t))] : If we denote the continuous part of
the quadratic covariation by [�; �]c, use the notation V (t) for V (t;W (t) ; Y (t)) ;
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and set �X (t) := X (t)�X (t�) ; Itô�s formula gives that

V (t)� V (0)

=
mX
j=1

Z t

0+

Vyj (s�) dYj (s) +
Z t

0+

Vw (s�) dW (s) +

Z t

0+

Vt (s�) ds

+
1

2

Z t

0+

Vww (s�) d [W;W ]c (s)

+
X
0�s�t

8<:V (s)� V (s�)�
mX
j=1

Vyj (s�)�Yj (s)

9=; :
Let Nj denote the Poisson random measure in the Lévy-Khintchine represen-
tation of Zj : We have used that [Yj ; Yj ]

c
= 0; j = 1; :::;m; by Theorem 26 in

[19]. The Kunita-Watanabe inequality (see [19, p. 69]) tells us that d [X;Yj ]
c is

a:e:(path by path) absolutely continuous with respect to d [Yj ; Yj ]
c
; j = 1; :::;m;

for a semimartingale X: Equations (2.1) and (2.14) now give Equation (2.17)
once we have seen that, under quite general integrability conditions,

E

24 X
0�s�t

fV (s;W (s) ; Y (s))� V (s�;W (s�) ; Y (s�))g

35
= E

24 mX
j=1

Z t

0

Z 1

0+

V (s;W (s) ; Y (s�) + z � ej)� V (s;W (s) ; Y (s�))Nj (�jds; dz)

35
=

mX
j=1

Z t

0

�j

Z 1

0+

E [V (s;W (s) ; Y (s) + z � ej)� V (s;W (s) ; Y (s))] lj (dz) ds;

where we have used Fubini-Tonelli�s theorem and the fact that, for Borel sets
�; Nj (t;�)� tlj (�) is a martingale, j = 1; :::;m.

3 Preliminary estimates

This section aims at relating the existence of exponential moments of Y to
exponential integrability conditions on the Lévy measures, as well as developing
moment estimates for the wealth process and showing that the value function
is well-de�ned.

Lemma 3.1 Assume Condition 2.1 holds with cj = �j=�j for �j > 0. Then

E
�
exp(�j

Z s

t

Yj(u)du)

�
� exp

�
�j
�j
yj + �j

Z 1

0+

�
exp

�
�jz

�j

�
� 1
�
lj(dz)(s� t)

�
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Proof. We get from the dynamics (2.1) of Yj that

�j

Z s

t

Yj(u)du = yj + Zj(�js)� Zj(�jt)� Yj(s)

� yj + Zj(�js)� Zj(�jt)
=L yj + Zj(�j(s� t));

since Yj(s) � 0 when yj = Yj (t) � 0; and " =L " denotes equality in law. Recall
that we have de�ned Zj (0) = 0:We thus have, using Equation (2.15) in the last
step, that

E
�
exp

�
�j

Z s

t

Yj(u)du

��
� exp

�
�j
�j
yj

�
E
�
exp

�
�j
�j
Zj(�j(s� t))

��
= exp

�
�j
�j
yj + �j

Z 1

0+

�
exp

�
�jz

�j

�
� 1
�
lj(dz)(s� t)

�
:

Lemma 3.2 Assume Condition 2.1 holds for some positive constant cj : Then

E [exp(cjYj(s))] � exp
�
cjyj + �j

Z 1

0+

fexp (cjz)� 1g lj(dz)(s� t)
�

Proof. We see from Equation (2.1) that

cjYj (s) � cjyj + cjZj (�js)� cjZj (�jt)
=L cjyj + cjZj (�j (s� t)) :

The result follows from Equation (2.15).

Lemma 3.3 Assume Condition 2.1 holds with

cj =
2�(j�1j+�)!1;j+2�(j�2j+�)!2;j

�j
; j = 1; :::;m;

for some � > 0: Then

sup
�2At

Et;w;y
�
(W�(s))�

�
� w� exp

0@2� mX
j=1

(j�1j+ �)!1;j + (j�2j+ �)!2;j
�j

yj + C(�)(s� t)

1A ;
where

C(�) = � (j�1 � rj+ j�2 � rj+ r)

+
1

2

mX
j=1

�j

Z 1

0+

�
exp

�
2�
(j�1j+ �)!1;j + (j�2j+ �)!2;j

�j
z � 1

��
lj(dz):
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Proof. We have by Equation (2.14) and Itô�s formula that

W�(s) = w exp

�Z s

t

� (u; �1 (u) ; �2 (u)) du

+

Z t

s

�1 (u)
p
�1 (u)dB1 (u) +

Z t

s

�2 (u)
p
�2 (u)dB2 (u)

�
;

where

�(u; �1; �2) = �1(u)(�1 + �1�1 � r) + �2(u)(�2 + �2�2 � r)

+ r � 1
2
(�1(u))

2�1 �
1

2
(�2(u))

2�2:

De�ne

X(s) = exp

�Z s

t

2��1 (u)
p
�1 (u)dB1 (u) +

Z s

t

2��2 (u)
p
�2 (u)dB2 (u)

�1
2

Z s

t

(2�)2 (�1 (u))
2
�1 (u) du�

1

2

Z s

t

(2�)
2
(�2 (u))

2
�2 (u) du

�
:

Since the processes Yj(s) are right-continuous we have that �i(s); i = 1; 2; are
right-continuous. Due to the exponential integrability conditions on Yj we have
that

E

"
exp

 
1

2

Z T

0

�1 (t) + �2 (t) dt

!#
<1:

This implies that
R t
0
�i(u)

p
�i(u)dBi(u); i = 1; 2; are well-de�ned continuous

martingales. Then X(s) is a martingale by Novikov�s condition (see [19, p.
140]), and E [X(s)] = 1: Lemma 3.1 with �j = 2�2 (!1;j + !2;j) ; j = 1; :::;m;
gives

E
h
e
1
2

R T
t
(2�)2(�1(u))

2�1(u)du+
1
2

R T
t
(2�)2(�2(u))

2�2(u)du
i

� E
h
e2�

2
R T
t
�1(u)du+2�

2
R T
t
�2(u)du

i
=

mY
j=1

E
h
e2�

2(!1;j+!2;j)
R T
t
Yj(u)du

i
<1:

Hence, by Hölder´s inequality and using that �i 2 [0; 1]; i = 1; 2;

E
�
(W�(s))�

�
= w�E

�
exp

�
�

Z s

t

�(u; �1(u); �2(u))du

+�

Z s

t

�1(u)
p
�1(u)dB1(u) + �

Z s

t

�2(u)
p
�2(u)dB2(u)

��
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= w�E
�
exp

�
�

Z s

t

�(u; �1(u); �2(u))du

+�2
Z s

t

(�1(u))
2�1(u) + (�2(u))

2�2(u)du

�
X(s)

1
2

�
� w�E

�
exp

�Z s

t

2��(u; �1(u); �2(u))du

+2�2
Z s

t

(�1(u))
2�1(u) + (�2(u))

2�2(u)du

�� 1
2

� E [X(s)]
1
2

� w�e(s�t)�(j�1�rj+j�2�rj+r)

� E
�
exp

�
2� (j�1j+ �)

Z s

t

�1(u)du+ 2� (j�2j+ �)
Z s

t

�2(u)du

�� 1
2

= w�e(s�t)�(j�1�rj+j�2�rj+r)

�
mY
j=1

E
�
exp

�
2� ((j�1j+ �)!1;j + (j�2j+ �)!2;j)

Z s

t

Yj(u)du

�� 1
2

Applying Lemma 3.1 with

�j = 2� (j�1j+ �)!1;j + 2� (j�2j+ �)!2;j ; j = 1; :::;m;

proves the result.
We now use the result above results to show that the value function of our

control problem is well-de�ned.

Proposition 3.1 Assume Condition 2.1 holds with cj de�ned as in Lemma 3.3.
Then

U(0) � V (t; w; y)

� k

0@1 + w� exp
0@2� mX

j=1

(j�1j+ �)!1;j + (j�2j+ �)!2;j
�j

yj

+C (�) (T � t))) ;

where C(�) is de�ned as in Lemma 3.3 and k > 0.

Proof. We have that U(w) � U(0) since U is non-decreasing. This gives
that E [U (W�(T ))] � U(0); for � 2 At; which implies that V (t; w; y) � U(0):
The upper bound follows from the sublinear growth condition of U and Lemma
3.3:

V (t; w; y) = sup
�2At

E [U (W�(T ))] � k
�
1 + sup

�2At

E [U (W�(T ))]
�

�

� k

0@1 + w� exp
0@2� mX

j=1

(j�1j+ �)!1;j + (j�2j+ �)!2;j
�j

yj

+C (�) (T � t))) :
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From now on we assume that Condition 2.1 holds with

cj =
2�(j�1j+�)!1;j+2�(j�2j+�)!2;j

�j
; j = 1; :::;m:

This ensures that the value function is well-de�ned.

4 A veri�cation theorem

We state and prove the following veri�cation theorem for our stochastic control
problem.

Theorem 4.1 Assume that

v(t; w; y) 2 C1;2;1([0; T )� (0;1)� [0;1)m) \ C([0; T ]� �D)

is a solution of the HJB equation (2.17) with terminal condition (2.18) and
boundary condition (2.19). For j = 1; :::;m; assume

sup
�2At

Z T

0

Z 1

0+

E [jv (s;W� (s) ; Y (s�) + z � ej)� v (s;W� (s) ; Y (s�))j] lj(dz)ds <1;

and

sup�2At

R T
0
E
h
(�i(s))

2
�i(s) (W

�(s))
2
(vw (s;W

� (s) ; Y (s)))
2
i
ds <1; i = 1; 2:

Then
v(t; w; y) � V (t; w; y); for all (t; w; y) 2 [0; T ]� �D:

If, in addition, there exist measurable functions ��i (t; w; y) 2 [0; 1]; i = 1; 2; being
the maximizers for the max-operator in Equation (2.17), then �� = (��1 ; �

�
2) de-

�nes an optimal investment strategy in feedback form if Equation (2.14) admits
a unique solution W�� and

V (t; w; y) = v(t; w; y) = Et;w;y
h
U
�
W��(T )

�i
; for all (t; w; y) 2 [0; T ]� �D:

The notation C1;2;1([0; T )� (0;1)� [0;1)m) means twice continuously di¤er-
entiable in w on (0;1) and once continuously di¤erentiable in t; y on [0; T ) �
[0;1)m with continuous extensions of the derivatives to t = 0 and yj = 0;
j = 1; :::;m:

Proof. Let (t; w; y) 2 [0; T )�D and � 2 At; and introduce the operator

M�v := (�1 (�1 + �1�1 � r) + �2 (�2 + �2�2 � r))wvw

+
1

2

�
�21�1 + �

2
2�2
�
w2vww + rwvw �

mX
j=1

�jyjvyj :
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Itô�s formula gives that

v (s;W� (s) ; Y (s))

= v(t; w; y) +

Z s

t

fvt (u;W� (u) ; Y (u�)) +M�v (u;W� (u) ; Y (u))g du

+

Z s

t

�1 (u)
p
�1 (u)W

� (u) vw (u;W
� (u) ; Y (u)) dB1 (u)

+

Z s

t

�2 (u)
p
�2 (u)W

� (u) vw (u;W
� (u) ; Y (u)) dB2 (u)

+
mX
j=1

Z s

t

Z 1

0+

(v (u;W� (u) ; Y (u�) + z � ej)� v (u;W� (u) ; Y (u�)))Nj(�jdu; dz);

where Nj is the Poisson random measure coming from the Lévy-Khintchine
representation of the subordinator Zj : We know from the assumptions that
the Itô integrals are martingales and that the integrals with respect to Nj are
semimartingales. This gives us that

E [v(s;W�(s); Y (s))]

= v(t; w; y) + E
�Z s

t

(vt + L�v) (u;W�(u); Y (u)) du

�

� v(t; w; y) + E

24Z s

t

0@vt + max
�i2[0;1];i=1;2;
�1+�2�1

L�v

1A (u;W�(u); Y (u)) du

35
= v(t; w; y);

where

L�v :=M�v +
mX
j=1

�j

Z 1

0+

(v(t; w; y + z � ej)� v(t; w; y)) lj(dz):

We now get that
v(t; w; y) � E [U (W�(T ))] ;

for all � 2 At, by putting s = T and invoking the terminal condition for v: The
�rst conclusion in the theorem now follows by observing that the result holds
for t = T and w = 0:
We prove the second part by observing that since for each i = 1; 2; ��i (t; w; y)

is assumed to be a measurable function, we have that ��i (s;W (s); Y (s)) is Fs-
measurable for t � s � T: This, together with the assumptions that ��i 2 [0; 1]
and the existence of a unique solution W��of Equation (2.14), implies that
�� (s;W (s); Y (s)) is an admissible control. Moreover, since �� is a maximizer,

max
�i2[0;1];i=1;2;
�1+�2�1

L�v = L�
�
v
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The above calculations using Itô�s formula go through with equality by letting
� = ��: Hence,

v (t; w; y) = E
h
U
�
W�� (T )

�i
� V (t; w; y) :

Together with the �rst part of the theorem, this yields

v (t; w; y) = V (t; w; y) = E
h
U
�
W�� (T )

�i
;

for (t; w; y) 2 [0; T ]� �D, since the equality obviously holds for t = T and w = 0:

5 Explicit solution

In this section we construct and verify an explicit solution to the control problem
(2.16), as well as an explicit optimal control ��, when the utility function is of
the form

U(w) = 
�1w
 ; 
 2 (0; 1):

5.1 Reduction of the HJB equation

In this subsection we reduce the HJB equation (2.17) to a �rst-order integro-
di¤erential equation by making a conjecture that the value function v has a
certain form.
We conjecture that the value function has the form

v(t; w; y) = 
�1w
h(t; y); (t; w; y) 2 [0; T ]� �D;

for some function h(t; y): We de�ne the function � : [0;1)� [0;1)! R as

�(�1; �2) = max
�i2[0;1];i=1;2
�1+�2�1

f�1 (�1 + �1�1 � r) + �2 (�2 + �2�2 � r)(5.1)

� 1
2

�
�21�1 + �

2
2�2
�
(1� 
)

	
+ r:

If we insert the conjectured value function into the HJB equation (2.17) we get
a �rst-order integro-di¤erential equation for h as

ht(t; y) = �
�(�1; �2)h (t; y) +
mX
j=1

�jyjhyj (t; y)(5.2)

�
mX
j=1

�j

Z 1

0+

(h (t; y + z � ej)� h (t; y)) lj (dz) ;

where (t; y) 2 [0; T )� [0;1)m: The terminal condition becomes

h (T; y) = 1; 8y 2 [0;1)m;

since v(T;w; y) = U (w) = 
�1w
 .
For our purposes, we will need � to be continuously di¤erentiable.
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5.2 Continuous di¤erentiability of �

Here we prove that � is continuously di¤erentiable. We also obtain candidates
for optimal fractions of wealth.
A �rst-order condition for an interior optimum of �(�1; �2) is

(�i + �i�i � r)� �i�i (1� 
) = 0; i = 1; 2:

If we denote the interior optimum by ��i = ��i(�i); i = 1; 2; then we have

��i(�i) =
1

1�


�
�i�r
�i

+ �i

�
; i = 1; 2:

We get from inspection that Equation (5.1) is continuous and di¤erentiable
whenever ��i 2 (0; 1) ; i = 1; 2; ��1 + ��2 < 1: Elementary calculus now gives that
��i = 0; when ��i � 0; i = 1; 2; and that for ��1 + ��2 � 1; the vector of optimal
fractions of wealth is of the form

(��1 ; �
�
2) = (��; 1� ��) ; �� 2 [0; 1] :

In the latter case, Equation (5.1) alters to

�� (�1; �2) = max
�2[0;1]

f� (�1 + �1�1 � r) + (1� �) (�2 + �2�2 � r)(5.3)

� 1
2

�
�2�1 + (1� �)2 �2

�
(1� 
)

o
+ r:

Here the �rst-order condition for an interior optimum is

(�1 + �1�1 � r)� (�2 + �2�2 � r)� (���1 � (1� ��)�2) (1� 
) = 0:

In the name of consequence, we denote the interior optimum by �� = �� (�1; �2) :
This gives that

�� (�1; �2)

=
1

(1� 
)

�
(�1 + �1�1 � r)� (�2 + �2�2 � r)

(�1 + �2)

�
+

�2
(�1 + �2)

;

and we easily see that Equation (5.3) is continuous and di¤erentiable on �� 2
(0; 1) :
We will now prove that lim�!�̂i �

0
�i (�̂1; �̂2) = lim�!�i

��0�i (�̂1; �̂2) ; i = 1; 2;
for (�̂1; �̂2) such that ��1 + ��2 = 1: We prove the result for the derivative taken
in �1; the result for �2 being analogous. The key to this result is to observe
that when ��1 + ��2 = 1;

��1 =
1

1� 


�
�1 � r
�1

+ �1

�
=

1

(1� 
)

�
(�1 + �1�1 � r)� (�2 + �2�2 � r)

(�1 + �2)

�
+

�2
(�1 + �2)

:
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For notational simplicity, set �i = (�i + �i�i � r) ; i = 1; 2: Calculations show
that

�0�1 =
1

2 (1� 
)

 
2 (�1 � �2)�1 (�1 + �2)� (�1 � �2)2

(�1 + �2)
2

!

+ �2

 
�1 (�1 + �2)� (�1 � �2)

(�1 + �2)
2

!
� (1� 
)�22
2 (�1 + �2)

2

= ��1�1 �
(�1 � �2)2

2 (1� 
) (�1 + �2)2
� �2 (�1 � �2)
(�1 + �2)

2 �
(1� 
)�22
2 (�1 + �2)

2

= ��1�1 �
(1� 
)
2

��21 :

But we also have that

��0�1 =
1

2 (1� 
)

�
2�1�1�1 � �21

�21

�
= ��1�1 �

(1� 
)
2

��21 :

The proof that � is continuously di¤erentiable when �i = 0; i = 1; 2; is
similar to the result above and we omit it.
By the results of this subsection we can now conclude that for i = 1; 2; our

candidates for optimal fractions of wealth are

(5.4) ��i (�i) =
1

1� 


�
�i � r
�i

+ �i

�
;

whenever ��i 2 (0; 1) and ��1 + ��2 < 1; and

(5.5) ��i = 0;

when ��i � 0: When ��1 + ��2 � 1, the optimal fractions of wealth are

(5.6) ��1 (�1; �2) =
1

(1� 
)

�
(�1 + �1�1 � r)� (�2 + �2�2 � r)

(�1 + �2)

�
+

�2
(�1 + �2)

;

and

(5.7) ��2 = 1� ��1 :

Remark 5.1 Note that we can �nd a constant � > 0 such that

j�(�1; �2)j � �+ j�1j�1 + j�2j�2:

5.3 A Feynman-Kac formula

In this subsection we de�ne a Feynman-Kac formula that we verify as a classical
solution to the related forward problem of Equation (5.2).
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De�ne the function g (t; y) by

g (t; y) = Ey
h
exp

�R t
0

�(�1 (s) ; �2 (s)) ds

�i
; (t; y) 2 [0; T ]� [0;1)m;

where we denote �yi := �
0;y
i =

Pm
j=1 !i;jyj ; i = 1; 2; for yj = Yj (0) : Note that

g (0; y) = 1: We now show that g is well-de�ned under an exponential growth
hypothesis in �1 and �2:

Lemma 5.1 Assume Condition 2.1 holds with cj = 

�j
(j�1j!1;j + j�2j!2;j) for

j = 1; :::;m: Then

g (t; y) � exp

0@kt+ 
 mX
j=1

(j�1j!1;j + j�2j!2;j)
�j

yj

1A ;
for some positive constant k:

Proof. From Remark 5.1 we know that

j�(�1; �2)j � �+ j�1j�1 + j�2j�2

for some constant � > 0: Therefore,

g (t; y) = Ey
�
exp

�Z t

0


�(�1 (s) ; �2 (s)) ds

��
� Ey

�
exp

�Z t

0


�+ 
 j�1j�1 (s) + 
 j�2j�2 (s) ds
��

� e
�tEy
24 mY
j=1

e
(j�1j!1;j+j�2j!2;j)
R t
0
Y
yj
j (s)ds

35 :
By independence of the Yj ; j = 1; :::;m; we get by Lemma 3.1 that

g (t; y) � e
atEy
24 mY
j=1

e
(j�1j!1;j+j�2j!2;j)
R t
0
Y
yj
j (s)ds

35
� e
at

mY
j=1

exp

�

 (j�1j!1;j + j�2j!2;j)

�j
yj

+t�j

Z 1

0+

�
exp

�

 (j�1j!1;j + j�2j!2;j)

�j
z

�
� 1
�
lj (dz)

�
Hence, there exists a positive constant k such that

g (t; y) � ekt+
b
Pm

j=1


(j�1j!1;j+j�2j!2;j)
�j

yj
;

and we are done.
We now aim to show that g is continuously di¤erentiable in y.
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Lemma 5.2 Assume Condition 2.1 holds with cj = 

�j
(j�1j!1;j + j�2j!2;j) ;

j = 1; :::;m: Then g 2 C0;1 (([0; T ])� [0;1)m) ; that is, g (t; �) is continuous for
all t 2 [0; T ] and g (�; y) is once continuously di¤erentiable for all y 2 [0;1)m:

Proof. We will use the dominated convergence theorem to prove that we
can interchange expectation and di¤erentiation. Su¢ ciently general conditions
for us to do this are contained in Theorem 2.27 in [10], which essentially says
that we need to bound the derivative by an integrable function independent of
y:
Let (t; y) 2 [0; T ]� Rm+ and set

F (t; y) = e
R t
0

�(�y1 (s);�

y
2 (s))ds:

For each j = 1; :::;m; we have

@F (t; y)

@yj
=

�
@

@yj

Z t

0


�(�y1 (s) ; �
y
2 (s)) ds

�
e
R t
0

�(�y1 (s);�

y
2 (s))ds:

Since � is continuously di¤erentiable and �0 is bounded


�0 (�1 (s) ; �2 (s))
@�y (s)

@yj
= 
�0 (�y1 (s) ; �

y
2 (s))!je

��js � ce��js

for some strictly positive constant c: Theorem 2.27(b) in [10] now gives that

@F (t; y)

@yj
=

�Z t

0


�0 (�y1 (s) ; �
y
2 (s)) e

��jsds

�
e
R t
0

�(�y1 (s);�

y
2 (s))ds:

From the assumptions we have that����@F (t; y)@yj

���� � �cZ t

0

e��jsds

�
e
R t
0

�((�y1 (s);�

y
2 (s)))ds

� c

�j
e
�T+
j�1j

R t
0
�y1 (s)ds+
j�2j

R t
0
�y2 (s)ds;

where we once again can apply Lemma 3.1 to get that j@F (t; y) =@yj j is �nite.
Furthermore, with the aid of its proof, we can withdraw that on a compact set
with y in its interior, j@F (t; y) =@yj j is uniformly bounded in y by the random
variable

exp

�

 (j�1j!1;j + j�2j!2;j)

�j
Zj (�jt)

�
;

which is integrable by Condition 2.1. Once again, 2.27(b) in [10] can be applied
to show that g (t; y) = E [F (t; y)] is di¤erentiable in y: But di¤erentiability is a
local notion. Hence the result is independent of the choice of compact set, and
we conclude that

@g(t;y)
@yj

= E
h
@F (t;y)
@yj

i
; 8y 2 Rm+ ; j = 1; :::;m:
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We also have that y 7! @F (t; y) =@yj is continuous since y 7! (�y1 (s) ; �
y
2 (s)) ;

(�y1 (s) ; �
y
2 (s)) 7! �(�y1 (s) ; �

y
2 (s)) ; and (�

y
1 (s) ; �

y
2 (s)) 7! �0 (�y1 (s) ; �

y
2 (s))

are all continuous mappings. By using Theorem 2.27(a) in [10] we now get that
the mapping (t; y) 7! @g (t; y) =@yj is continuous.

Lemma 5.3 Assume Condition 2.1 holds with cj = 2 
�j (j�1j!1;j + j�2j!2;j)
for j = 1; :::;m. Then

mX
j=1

E

"Z T

0

Z 1

0+

jg (u; Y (u) + z � ej)� g (u; Y (u))j lj (dz) du
#
<1:

Proof. Di¤erentiability of g and the mean value theorem give that

jg (u; y + z � ej)� g (u; y)j

� sup
x2[0;z]

����@g (u; y + x � ej)@yj

���� z
� kz exp

0@ mX
j=1


 (j�1j!1;j + j�2j!2;j)
�j

(yj + Zj (�ju))

1A ;
where k is a positive constant depending only on T and the parameters of the
problem. Since


 (j�1j!1;j + j�2j!2;j)
�j

�
Y
yj
j (u) + Zj (�ju)

�
� 
 (j�1j!1;j + j�2j!2;j)

�j
(Zj (�ju) + yj + Zj (�ju))

=

 (j�1j!1;j + j�2j!2;j)

�j
(yj + 2Zj (�ju)) ;

we have

jg (u; Y (u) + z � ej)� g (u; Y (u))j

� kz exp

0@ mX
j=1


 (j�1j!1;j + j�2j!2;j)
�j

(yj + 2Zj (�ju))

1A :
From the Tonelli theorem, the assumptions, and Equation (2.15) we have

E

"Z T

0

Z 1

0+

jg (u; Y (u) + z � ej)� g (u; Y (u))j lj (dz) du
#

�
Z T

0

E
�Z 1

0+

kzlj (dz)

� exp

0@ mX
j=1


 (j�1j!1;j + j�2j!2;j)
�j

(yj + 2Zj (�ju))

1A35 du
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= k

Z 1

0+

zlj (dz)

Z T

0

exp

0@ mX
j=1


 (j�1j!1;j + j�2j!2;j)
�j

yj

+�ju

Z 1

0+

�
e
2
(j�1j!1;j+j�2j!2;j)

�j
z � 1

�
lj (dz)

�
du

<1:

We now show that g (t; y) is a classical solution to the related forward prob-
lem of Equation (5.2).

Proposition 5.1 Assume there exists " > 0 such that Condition 2.1 is satis�ed
with cj = 2



�j
(j�1j!1;j + j�2j!2;j) + " for j = 1; :::;m. Then g (t; �) belongs to

the domain of the in�nitesimal generator of Y and

@g (t; y)

@t
= 
�(�1; �2) g (t; y)�

mX
j=1

�jyj
@g (t; y)

@yj
(5.8)

+
mX
j=1

�j

Z 1

0+

(g (t; y + z � ej)� g (t; y)) lj (dz)

for (t; y) 2 (0; T ] � [0;1)m: Moreover, @g (t; y) =@t is continuous, so that g 2
C1;1 ((0; T ]� [0;1)m) :

Proof. We begin by observing that the conditions in Lemmas 5.1, 5.2, and
5.3 are ful�lled. The �rst two terms on the right-hand side of Equation (5.8)
are continuous since � is continuous and g (t; �) 2 C1 by Lemma 5.2, for all
t 2 [0; T ] : The integral operator is also continuous in both time and space. This
can be deduced from the integrability conditions on the Lévy measures lj (dz)
and Theorem 2.27 in [10] together with arguments similar to those of the proofs
of Lemmas 5.2 and 5.3. Hence, if g solves Equation (5.8) then @g (t; y) =@t is
continuous for (t; y) 2 (0; T ) � [0;1)m; and may be continuously extended to
t = T: Thus, g 2 C1;1 ((0; T ]� [0;1)m) :
Since y 7! g (t; y) is continuously di¤erentiable by Lemma 5.2, we conclude

from Itô�s lemma that the mapping s 7! g (t; Y (s)) is a local semimartingale
with dynamics

g (t; Y (s)) = g (t; y) +
mX
j=1

�j

Z s

0

Yj (u)
@g

@yj
(t; Y (u)) du

+
mX
j=1

Z s

0

Z 1

0+

(g (t; Y (u�) + z � ej)� g (t; Y (u�)))Nj (�jdu; dz) ;

where Nj is the Poisson random measure in the Lévy-Khintchine representation
of Zj : From Lemma 5.3 we have that

E

"Z T

0

Z 1

0+

jg (u; Y (u) + z � ej)� g (u; Y (u))j lj (dz) du
#
<1;
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and thus g (u; Y (u) + z � ej) � g (u; Y (u)) 2 F1; j = 1; :::;m (see [13, pp. 61-
62], for this notation). This implies that g (t; Y (s)) is a semimartingale, since it
belongs to a subclass of proper semimartingales that [13], for simplicity, de�ne
to be semimartingales. Taking expectations on both sides and applying Fubini�s
theorem gives

E [g (t; Y (s))� g (t; y)]
s

= �
mX
j=1

�j
s

Z s

0

E
�
Yj (u)

@g

@yj
(t; Y (u))

�
du

+
mX
j=1

�j
s

Z s

0

Z 1

0+

E [g (t; Y (u�) + z � ej)� g (t; Y (u�))] lj (dz) du:

Hence, if we note that Y is cádlág and y 7! g (t; y) is continuously di¤erentiable,
by letting s # 0 we get that g (t; �) is in the domain of the in�nitesimal generator
of Y; which is denoted by G, and

Gg (t; y) = �
mX
j=1

�jyj
@g

@yj
(t; y) +

mX
j=1

�j

Z 1

0+

(g (t; y + z � ej)� g (t; y)) lj (dz) :

Since g (t; Y (s)) 2 L1 (
; P ) for all s > 0 in a neighborhood of zero, the Markov
property of Y together with total expectation yields

E [g (t; Y (s))]

= E
�
E
�
e
R t
0

�

�
�
Y y(s)
1 (u);�

Y y(s)
2 (u)

�
du
��

= E
h
E
h
e
R t
0

�(�y1 (u+s);�

y
2 (u+s))du jFs

ii
= E

h
e
R t+s
s


�(�y1 (u);�
y
2 (u))du

i
= E

h
e
R t+s
0


�(�y1 (u);�
y
2 (u))due�

R s
0

�(�y1 (u);�

y
2 (u))du

i
:

Thus,

E [g (t; Y (s))� g (t; y)]
s

=
1

s
E
h
e
R t+s
0


�(�y1 (u);�
y
2 (u))due�

R s
0

�(�y1 (u);�

y
2 (u))du � e

R t
0

�(�y1 (u);�

y
2 (u))du

i
=
1

s
E
h
e
R t+s
0


�(�y1 (u);�
y
2 (u))due�

R s
0

�(�y1 (u);�

y
2 (u))du � e

R t+s
0


�(�y1 (u);�
y
2 (u))du

i
+
1

s

n
E
h
e
R t+s
0


�(�y1 (u);�
y
2 (u))du

i
� E

h
e
R t
0

�(�y1 (u);�

y
2 (u))du

io
= E

�
e
R t+s
0


�(�y1 (u);�
y
2 (u))du 1

s

n
e�

R s
0

�(�y1 (u);�

y
2 (u))du � 1

o�
+
g (t+ s; y)� g (t; y)

s
:
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By the Fundamental Theorem of Calculus we have that

e
R t+s
0


�(�y1 (u);�
y
2 (u))du 1

s

n
e�

R s
0

�(�y1 (u);�

y
2 (u))du � 1

o
! �
�(�y1 ; �

y
2 ) e

R t
0

�(�y1 (u);�

y
2 (u))du; s # 0:

We now need to show that we may interchange limit and integration. To do
this we de�ne the function

f (s) = e�
R s
0

�(�y1 (u);�

y
2 (u))du:

From the mean value theorem and the linear growth assumption on � we get
that

1

s
jf (s)� f (0)j

� 1

s
sup

u2[0;T ]
jf 0 (u)j s+ sup

u2[0;T ]

���
�(�y1 (u) ; �y2 (u)) e� R s0 
�(�y1 (u);�y2 (u))du���
� 
e


R T
0 (�+(j�1j�

y
1 (u)+j�2j�

y
2 (u)))du

�
 
�+ sup

u2[0;T ]
(j�1j�y1 (u) + j�2j�

y
2 (u))

!
:

Since each Zj is a non-decreasing process,

sup
u2[0;T ]

(j�1j�y1 (u) + j�2j�
y
2 (u))

� (j�1j�1 + j�2j�2)

+
mX
j=1

(j�1j!1;j + j�2j!2;j)Zj (�jT ) ;

which implies

e
R t+s
0


�(�y1 (u);�
y
2 (u))du 1

s

n
e�

R s
0

�(�y1 (u);�

y
2 (u))du � 1

o
� ce


R T
0 (�+j�1j�

y
1 (u)+j�2j�

y
2 (u))du

+ d
mX
j=1

(j�1j!1;j + j�2j!2;j)

� e2

R T
0 (�+j�1j�

y
1 (u)+j�2j�

y
2 (u))duZj (�jT ) ;

for some positive constants c; d: But by the independence of the Yj and Equation
(2.15) we have that

E
h
ce


R T
0 (�+j�1j�

y
1 (u)+j�2j�

y
2 (u))du

i
� c exp

0@kT + 
 mX
j=1

j�1j!1;j + j�2j!2;j
�j

yj

1A ;
28



for some constant k: In addition, we can use that there exists a positive constant
k" such that z � k"e"z; for all z � 0; which gives that

d

mX
j=1

(j�1j!1;j + j�2j!2;j)

� E
h
e2


R T
0 (�+j�1j�

y
1 (u)+j�2j�

y
2 (u))duZj (�jT )

i
� d̂

mX
j=1

(j�1j!1;j + j�2j!2;j)

� E
"
e

�
2
(j�1j!1;j+j�2j!2;j)

�j
+"

�
Zj(�jT )

#

= d̂
mX
j=1

(j�1j!1;j + j�2j!2;j)

� exp
�
�jT

Z 1

0+

�
e
2
(j�1j!1;j+j�2j!2;j)+�j"

�j
z � 1

�
lj (dz)

�
;

for some constant d̂: The last sum is �nite by our integrability assumption.
Therefore, by dominated convergence, we see that

E
�
e
R t+s
0


�(�y1 (u);�
y
2 (u))du 1

s

n
e�

R s
0

�(�y1 (u);�

y
2 (u))du � 1

o�
= �
�(�1; �2) g (t; y) :

Analogously, we may show that @g=@t exists. We now have that

Gg (t; y) = �
�(�1; �2) g (t; y) +
@g (t; y)

@t
;

which concludes the proof.
De�ne

h (t; y) := g (T � t; y) = Ey
h
e
R T�t
0


�(�y1 (s);�
y
2 (s))ds

i
;

or equivalently, by the time-homogeneity of Y;

(5.9) h (t; y) = Ey
h
e
R T
t

�(�y1 (s);�

y
2 (s))ds

i
:

From our conjecture of the form of the value function we now have our explicit
solution candidate, namely

(5.10) v (t; w; y) = 
�1w
h (t; y) :

The candidate for the optimal feedback control �� is given in Subsection 5.1. In
the next section we prove that Equation (5.10) coincides with the value function
in Equation (2.16).
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5.4 Explicit solution of the control problem

We will apply the veri�cation theorem to connect our explicit solution to the
value function of the control problem. To this end, we need two integrability
results.

Lemma 5.4 Assume Condition 2.1 holds with

cj =
8

�j
((j�1j+ 4
)!1;j + (j�2j+ 4
)!2;j) ; j = 1; :::;m:

Then Z T

0

E
h
(�i(s))

2
�i (s) (W

� (s))
2

h (s; Y (s))

i
ds <1;

for all � 2 A0; i = 1; 2:

Proof. We observe that the function h has the same growth as g: Therefore
by Lemma 5.1 and �i 2 [0; 1] ; i = 1; 2;Z T

0

E
h
(W�(s))

2
�
(�1(s))

2
�1 (s) + (�2(s))

2
�2 (s)

�
� (W� (s))

2(
�1)
h (s; Y (s))

i
ds

�
Z T

0

E
h
(W� (s))

2

(�1 (s) + �2 (s))

� exp

0@ks+ 
 mX
j=1

j�1j!1;j + j�2j!2;j
�j

Yj (s)

1A35 ds
� k"ekT

Z T

0

E
h
(W� (s))

2


� exp

0@(
 + ") mX
j=1

j�1j!1;j + j�2j!2;j
�j

Yj (s)

1A35 ds;
where k" is a positive constant such that

�1 + �2 � k"e"
Pm

j=1

j�1j!1;j+j�2j!2;j
�j yj :

Hölder�s inequality now givesZ T

0

E
h
(W�(s))

2
�
(�1(s))
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It is obvious that
2(
+")(j�1j!1;j+j�2j!2;j)

�j < cj j = 1; :::;m;

for " su¢ ciently small. Hence, the integrability condition in Lemma 3.2 holds.
We conclude by invoking Lemma 3.3.

Lemma 5.5 For j = 1; :::;m; assume Condition 2.1 holds with

cj =
8
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Proof. Following the arguments in the proof of Lemma 5.3, and then ap-
plying Hölder�s inequality with p = 4; q = 4=3, we getZ T
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for positive constants k0; k1; k2: We observe that
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and apply Lemma 3.3 to conclude thatZ T
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We sum up the results in this section in the following theorem.

Theorem 5.1 Assume Condition 2.1 holds with

cj =
8

�j
((j�1j+ 4
)!1;j + (j�2j+ 4
)!2;j) ; j = 1; :::;m:

Then the value function of the control problem is

V (t; w; y) = 
�1w
h (t; y) ;

where h is de�ned in (5.9). Furthermore, the optimal investment strategy is as
given by Equations (5.4),..., (5.7).

Proof. We see that V is well-de�ned under our assumption. Furthermore,
the integrability condition implies by Lemma 5.1 that h is well-de�ned, since
g and h has the same growth. Observe that the optimal investment strategy
depends only on (�1; �2) and not on the level of wealth w: This, together with
the fact that �� 2 [0; 1] � [0; 1] ; gives that there exists a unique solution W��

to Equation (2.14). Hence, �� 2 At:
Set v (t; w; y) = 
�1w
h (t; y) ; and note that the assumption in Lemmas 5.4

and 5.5 hold. We also have that the integrability conditions in Lemma 5.2 and
Proposition 5.1 holds, since we may choose " > 0 as we like. This allows us to
conclude that v 2 C

�
[0; T ]� �D

�
, since v is continuous in w on [0;1) ; and that

v is a classical solution of the HJB equation (2.17). We now apply Theorem 4.1,
and the proof is complete.

6 Generalizations

In this section we state, without proofs, the most important results for the case
of n stocks,

�i (s) 2 [ai; bi] ; i = 1; :::; n;

and

c �
nX
i=1

�i � d:

It can be seen that the additional di¢ culty in this setting is merely notational.
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The HJB equation associated to this stochastic control problem is

0 = vt + max
�i2[ai;bi];i=1;:::;n;
c�
Pn

i=1 �i�d

(
wvw

nX
i=1

�i (�i + �i�i � r) +
1

2
w2vww

nX
i=1

�2i �i

)

+ rwvw �
mX
j=1

�jyjvyj +
mX
j=1

�j

Z 1

0

(v (t; w; y + z � ej)� v (t; w; y)) lj(dz);

for (t; w; y) 2 [0; T )�D: We still have the terminal condition

V (T;w; y) = U(w); for all (w; y) 2 �D;

and the boundary condition

V (t; 0; y) = U(0); for all (t; y) 2 [0; T ]� Rm+ :

The solution to this equation can be shown to be

v (t; w; y) = 
�1w
h (t; y) = 
�1w
Ey
h
e
R T
t

�(�y1 (s);:::;�

y
n(s))ds

i
;

where � is de�ned as

�(�1; :::; �n)(6.1)

= max
�i2[ai;bi];i=1;:::;n;
c�
Pn

i=1 �i�d

(
nX
i=1

�i (�i + �i�i � r)�
1� 

2

nX
i=1

�2i �i

)
+ r:

The optimal fractions of wealth are given by the parameters �� = (��1 ; :::; �
�
n)

that obtain �(�1; :::; �n) in Equation (6.1).

7 Future research

We view this paper as a starting point for more research on our n-asset exten-
sion of the Barndor¤-Nielsen and Shephard model. Primarily, we would like to
perform the statistical analysis proposed in Subsection 2.2, in order to clarify to
what extent our model captures the true dependence between �nancial assets.
Another question of interest is portfolio optimization with the inclusion of

utility of consumption. Further, it would be intriguing to consider the more
general market model

dS (t) = (�+ �� (t))S (t) dt+
p
�(t)S (t) dB (t) +

mX
j=1

�j
S (t)

Yj (t)
dZj (�jt) ;

which is a modi�cation of a model proposed by Barndor¤-Nielsen and Shephard.
It allows for the so-called leverage e¤ect to be di¤erent for the various news-
processes, but also implies a distinction between good and bad news. A di¢ culty
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with this problem is that the stock prices are no longer continuous. In both these
cases it ought to be feasible to solve our n-asset extension, once we have handled
the one-asset problem.
A �nal issue that we aim to consider is, given our stochastic volatility market,

how much higher utility an investor obtains by trading according to our optimal
portfolio model compared to someone who follows the classical Merton policy.
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