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Intervals of properness for binary linear
error-detecting codes

R. Dodunekova* E. Nikolova**
Mathematical Sciences Computer Science
Chalmers University of Technology Bourgas Free University
and Goteborg University 101 Aleksandrovska Str.
412 96 Goteborg, Sweden 8000 Bourgas, Bulgaria

Abstract We show that a binary linear code C' of length n, and the
dual code C* of minimum code distance d*, are proper
for error detection if d- > [2]| 4+ 1, and C is proper in
the interval [PEL=24= 1] if [2] 41 < db < |2]. We also
provide examples, mostly on Griesmer codes and their duals,
which satisfy the above conditions.

Key words: linear code, error detection, proper code, interval proper-
ness.

1 Introduction

The probability of undetected error of a linear binary code C = [n, k, d], used to
detect errors on a symmetric memoryless channel with symbol error probability

g, is expressed in terms of the code weight distribution {Ag, Ai,...,A,} as
P, (C,¢e) = ZAiei(l -, e€|0,1/2], (1.1)
i=d

and, in terms of the dual weight distribution {By, By, ..., B}, as

Pu.(C, g) = 27 (k) Xn:Biu —2)' —(1-¢), e€]0,1/2]. (1.2)

1=0
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The code C' is proper for error detection if P, (C, €) is an increasing function of
e in [0,1/2], and it is good if P, (C, ¢) has its absolute maximum at ¢ = 1/2,
the worst case channel condition, i.e., if

P.(C,e) < P(C,1/2) =272 - 1), e€]0,1/2], (1.3)

see [1] and [2]. Thus a proper error-detecting code is also good, but it has the
advantage of performing better on better channels, i.e., channels with smaller
symbol error probability. A proper binary linear code with parameters [n, k, d]
performs like an “average” error-detecting code, since the procedure of averaging
P,.(C, ¢) over all [n, k| binary linear codes results in an increasing function of
g, see [3].

Examples of proper codes are the Perfect codes over finite fields, the Maxi-
mum Distance Separable codes, some Reed-Muller codes, some Near Maximum
Distance Separable codes, the Maximum Minimum Distance codes and their du-
als, as well as many cyclic codes. For more examples see the survey [4]. The
concept of properness may be extended to non-linear block codes. Examples of
proper non-linear codes are the Kerdock and the Preparata codes, and codes
satisfying or achieving the Grey-Rankin bound, see [5].

Even if a code C' is not good, for some applications it might be sufficient to
know that its probability of undetected error satisfies the upper bound in (1.3)
for € in some subinterval [a, b] of [0, 1/2]. It then seems reasonable to call C' good
in [a, b]. We call C proper in [a, b], if its probability of undetected error increases
for € in [a, b]. Note that if a code is proper in [a, 1/2] it is also good in this
interval.

So far most studies on properness and goodness of error-detecting codes in-
volve the code weight distribution, in one form or another. However, the code
weight distribution is known for relatively few codes, since its computation is
an NP-hard problem, see [6]. It should therefore be useful to have criteria for
properness and goodness which do not involve the code weight distribution. In
this work we give two such criteria. In Section 3 we prove that a binary linear
code C of length n, and the dual code Ct with minimum code distance d-,
are proper for error detection if (Theorem 1)

n

oo

J+1
and C' is proper in the interval

[n+1—2dL 1]
n—d+ 21

if (Theorem 2)

2 era<]3]



As we see, the larger the dual code distance, the larger the above interval of
properness of C' (and goodness as well, since the interval ends at the point 1/2).
In fact, this is in agreement with a bound on P,.(C, ¢) derived in [7], which
suggests that codes with large dual code distance might be more appropriate for
error detection, see Remark 2 and (3.11) in Section 3. In Section 4 we provide
examples using Theorem 1 of families of Griesmer codes which are proper, to-
gether with their dual codes, and apply Theorem 2 to give intervals of properness
of codes dual to Griesmer codes. As we will see, the interval of properness of
the dual code converges to (0, 1/2] when the dimension & of the Griesmer code
increases. For instance, in Example 4 the dual code is proper in the interval
[9.8-107%, 1/2] when k > 13. Thus, in practice, for channels with ¢ > 9.8-107*
the dual code is essentially proper. We begin in Section 2 with some preliminary
material.

2 Preliminaries

Consider a binary linear code C = [n, k,d] and its dual code C*+ = [n,k,d],
with weight distribution {Ag, A1,...,A,} and {By, By,..., B,}, respectively.
For brevity, we denote

ei=—, i=1,2,...,n (2.1)

= 3| .

As is easily seen the derivative of (1 — &)™ * is

(e'(1 — 5)’”)' =neM1—e)" " e —e), i=1,2,...,n. (2.2)

Remark 1. (2.2) shows that the function P,.(C, ¢) of (1.1) increases for ¢
in [0, g4], and C is thus proper in this interval. In particular, C is proper if
1

n=2
We will further need the first order Pless Power Moment of C,

n

D idi=2""(n - By), (2.3)

1=d

(see [8], p. 133), and the average non-zero Hamming weight d¢ of C,

_ 1 n ' Qkfl

Recall that C is of full length if its generating matrix does not contain any
column of zeros [9]. Clearly, for such a code the minimum dual code distance is
greater than one.



3 Main results

As above, we let {Ag, A1,...,A,} denote the weight distribution of C' = [n, k, d]
and {By, By, ..., B,} the weight distributions of the dual code C*. Noticing that
(1.2) gives

P (C,e) = =2 N " iBi(1—2e) +n(l—g)"", €0, 1/2],
i=dt

we have

ok (3.2)
=1-=) B (1 - 0",
i=d+
where we have put
1
=1—-— 1/2]. .
b=1-55-g €01/ (3.3)

Theorem 1. Let the binary linear code C of length n have minimum dual code
distance d*-. If

n

=]+, (3.4)
then both C and the dual code C* are proper.

dLZ{

Proof. That Ct is proper follows from Remark 1 since (3.4) implies

d* o1
n = 2
To show the properness of C' we use (3.2) and (3.3). For
,— 1
6 = : 7 we have by (3.4)
1 _
6> 1s1 acicnm
n—1 2

and again by Remark 1, the second term in the second line of (3.2) is an increasing
function of § in [0, 1/2]. From this and (2.3) applied to C* we obtain by (3.2)

P! (C 2k & . .
F(Cre) >1— max — Z iBi6" (1 — &)~
n(l —g)rt 0<é<i/z Mo

1=
2k.2—n+1 n -
—1- 22 s
i=dt
2k7n+1
>1- AR 0, €€ [0: 1/2]1

n



which shows that C' is proper. [ ]

Assume C = [n, k, d] is a binary linear code with minimum dual code dis-
tance d- > 1. By (1.1), (2.2), and (2.3) we have

P, (C,1/2) =n2 ") " Ai(e; — 1/2)
i=d

= g "2 [Z iA; — (n/2) i Ai] =n2 ",

i=d

and C is thus proper and also good in intervals of the form [a, 1/2]. Below we
give one such interval, where a is determined by the length of the code and the
minimum dual code distance.

Theorem 2. Let the binary linear code C of length n have minimum dual code

distance d*+. If
n

[g} T1<dt< bJ (3.5)

then C' is proper in the interval

n+1—2d" 1
_— . 3.6
Proof. From (3.2), (3.3), and (2.3), we obtain
P i—dt
P(C,¢) L RN )
w8 g gdterg _gynedt 2 N g [0
n(l—e)r-t ( ) n ZZ 1-6
i=d+
2k & (3.7)
>1-6""11=06)" "5 B
>1—2l§ 1 =)™, selo,1/2).
Noting from (3.5) that for
_n+1-2d"
R TR
we have 0 < o < 1, we set
1 «o
525—5, O[()SO!S]., (38)
and write the second term in the last line of (3.7) as
271715de1 1—6 n—d* = (11—« d+—1 14+« n—d*
(1= = (1= ) (1 +0) 59

_ (1 i a?)dJ-fl(l + a)n+172dJ-'
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x T
Since the functions (1 + %) and (1 — %) are increasing for x > 1 and

1ye 1\
(1+—> — e, (1——) —e 7, as T — 0o,
x x
we have
(1= )™ (1 + o) 24" < exp{—a?(d- — 1)} - exp{a(n+ 1 — 2d4)}
=exp{—a(d —1)(a—a)} <1, ap<a<l.

This inequality, (3.8), and (3.9) give

2n—15dJ'—1(1 _ 6)n—dJ' < 1’ 0 < ) < 1 — %’
2 2
which implies, by (3.3) and (3.7),
1 1 n+1-—2d*
P (C,e)>0 —>e>1- =
ue(?g)—7 2—6— 1+O[0 n_dJ_ ’
and the statement follows. [ |
Corollary 1. When (3.5) is satisfied and in addition
(n —d)(n—d*) < n(d+—-1), (3.10)
then C' is proper.
Proof. Tt is easily seen that (3.10) is equivalent to
_ oL
n+1-—2d < g
n—d- T n
and from Remark 1 and Theorem 2, it follows that C is proper. [ ]

Corollary 2. Assume C* is of full length and d* = n/2, n > 4. Then C
and C* are proper.

Proof. The properness of C+ follows from Remark 1. Clearly, d*+ and n satisfy
(3.5). Because C* is of full length, we have d > 2 and hence (3.10) is also
satisfied, since

(n—d)(n—d*") < (n—2)n/2=n(d"—1).

C is thus proper by Corollary 1.



Remark 2. A binary linear code C = [n, k,d] satisfies the Singleton bound
d<n—k+1.
The defect s of C' is defined as
s=n—k+1-d.

Recall that when the defect of C equals zero, the defect st of the dual code C*+
equals zero as well, and C' and of C* are Maximum Distance Separable (MDS)
codes. For non-MDS codes s and s are positive. It has been shown in [7] for

non-MDS codes that

n—d+

Pu(Ce) < (2" = 1) Y (7;) G120y
" (3.11)
+ Z (27" k=i _ 1) <7Z> £i(1 — 26)"1,

i=n—dL++1

The above upper bound suggests that codes with a small dual defect, or large
dual code distance, might be more appropriate for error detection. Note that
this is in agreement with the results in Theorems 1 and 2. In fact, the interval
of properness (3.6) is larger for larger minimum dual code distance.

4 Examples

The Hamming codes and their duals, the Simplex codes (see [10], p. 30), are
known to be proper for error detection. In fact, their properness follows from
Theorem 1 as well, since (3.4) holds for the Simplex code C+ = [2™—1, m, 2™ 1].
The parameters of the Simplex code achieve the Griesmer bound ([10], p. 546),

The first three examples below give other families of codes meeting the Griesmer
bound with equality, which satisfy (3.4) and thus are proper, together with their
duals, by Theorem 1. The examples are based on the observation that when (3.4)
holds true for C* = [n, k*, d*] then

dt > 2k 1 (4.12)
Indeed, (3.4) and the Griesmer bound give for C**
dL

_-QkL—l’

1
okL—1

1
QdL—lznzdL<1+§+...+ ):2&
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which implies (4.12). Another way to derive (4.12) is by noting that (3.4) implies
for the average non-zero Hamming weight do. of C+

dos > ”‘2“, (4.13)

which together with (2.4) and (3.4) gives (4.12).

Example 1. N. L. Manev [11] has shown the uniqueness of the binary Griesmer
codes with parameters

[s2F — 20t — 541, k, 2571 =2, k—1>a>0. (4.14)

Clearly, when s > 2 the condition (3.4) is satisfied and the codes and their duals
are proper, by Theorem 1. When s =1, (4.14) describes the binary MacDonald
codes, known to be proper together with their duals [12-13].

Example 2. T. Helleseth [14] considered binary codes meeting the Griesmer
bound with equality. These codes have parameters

p
22%— ), k, s2k~1 — Zz“z Ck>ui> . > u, > 10 (4.15)
=1

The codes have been characterized when p = 2 (for this case see also [15]), and
with the additional condition u;,_1 —u; > 2, 2 <7 <p, when p > 2. If s > p+1,
the codes and their duals are proper by Theorem 1, since

P

20+ —n —1=2[s26"" — Zp: 24 ] — [s(2F—1) =) (2 —1)] -1

i=1 i=1
=s—p—12>0,
which easily implies (3.4). If s =p we have

k—1
L=n/2, n=p2k- 22“»2’““ Y =225,

=1 =1

and since a Griesmer code is of full length, the codes and their duals are proper,
by Corollary 2. Consider now the case s < p. We have

p
3dt —m—2=s2F"1 Y 2l ps—p-2
=1
) (4.16)
>k N Coml_p 150, k>5,

i=1



since, when k = 2m + 1,

p
1
2“4—§:TW¢—p—122m=7§?m+?mﬁ+.”+? —m-1
=1

2 22m — 3m — 1
:22m_§[22m_1]_m_1:%>0, m22,

and, when k£ = 2m,

P
2k1—§:T”1—p—1z2%1%—%2%l%+¥m3+.“+2-—m—1
=1
22m — | 22m—L — 3m — 2

—-m-1= 3 >0, m>3.

— 22m—1 _

As is easily seen, (4.16) implies the first inequality of (3.5) for &£ > 5. Since
n+1-—2d =p—s+1> 0, the second inequality of (3.5) is satisfied as well.
Thus when s < p and k > 5, Theorem 2 shows that the dual codes are proper
in the interval postl .
TS sy 3) (4.17)
When s < p and k£ = 4 we necessarily have p = 2, s = 1, and since the
condition (3.5) is satisfied for codes with u; = 1, their duals are proper in the
interval (4.17).
The intervals of properness obviously converge to (0, 1/2] when k tends to
oo. In particular, when p = 2, s =1, and k > 14, the interval in (4.17)
contains [9.8 - 107, 1/2] and the dual codes are thus proper in this interval.

Example 3. H. C. A. van Tilborg [16] has shown the uniqueness of the binary
Griesmer codes with parameter

[2F '+ k, Kk, 2572 42], k>3, k#b5. (4.18)

When k£ = 3, the code and its dual are proper by Theorem 1, since the condition
(3.4) holds true. When k = 4 the code and its dual are proper by Corollary 2.
When k > 6, the code parameters (4.18) satisfy (3.5) and by Theorem 2, their

dual codes are proper in
k—3 1]

%24 k-2 21
When k > 16, the dual codes are proper in [9.8 104, 1/2].

Example 4. The binary Griesmer codes

[2F — k=t 3 | okl okt 9l 2<i<k—1, i#k—2,



have been studied by S. M. Dodunekov and N. L. Manev [17]. For k > 4, the
codes satisfy (3.5) and, by Theorem 2, their dual codes are proper in the interval

2 1
ok—1 _ 9k—i-1 _ 1’ é]’

which contains [9.8-107*, 1/2], when k > 13.

Example 5. T. Helleseth and H. C. A. van Tilborg [18] constructed an infinite
sequence of k-dimensional binary linear codes with parameters

[2F + 2872 — 15, k, 28T 4250 8], k>, (4.19)

meeting the Griesmer bound with equality. For k£ > 8 these codes are unique,
while there are five non-isomorphic codes for £ = 7. By Theorem 2, the dual
codes are proper in

o 3l
2k-1y2k3 7 2]
When k > 12 the dual codes are proper in the interval [9.8-107*%, 1/2].

By shortening the codes with parameters given by (4.19), other Griesmer
codes have been obtained in [18] with

oF—l L ok=3 15 <dt <2142k 3 8 k>

It can be shown for these new codes that they also satisfy (3.5), and intervals of
properness can be given, in accordance with Theorem 2.

Example 6. The irreducible binary cyclic codes C(r,t,s), introduced by Del-
sarte and Goethals in [19], depend on three parameters satisfying r > 1, ¢ > 1,
s>1 and s|2" + 1. The code C(r,t,s) is of length

22'I‘t —-1
n= ,
s
and it has two non-zero weights,
227‘75—1 + -1 t s—1 27‘t—1 227"t—1 — (=1 t2rt—1
I T VUEE A L O
s s

In [20-21] the codes C(r,t,s) and their duals C*(r,t,s) have been completely
classified with respect to properness. In particular, it has been shown in [21],
that a code C*(r,t,s) with s > 3 and ¢ odd is not proper. Since in this case
the length and the minimum code distance of C(r,t,s),

22rt71 _ -1 2rt71
d= T = (8 ) y
S

10



turn out to satisfy (3.5), C+(r,t,s) is proper in the interval

(s —1)(2" +1) 1
22rt—1 _ ] + (s _ 1)27‘t—1’ 21’

(4.20)

by Theorem 2. Indeed, since ¢ > 3 and r > 2 (because s > 3), the first
inequality of (3.5) follows for C(r,t,s), from
s(3d—n—2)=3-2%""1 _3(s—1)2""t — 22" 1 1 - 25
=271 _3(s—1)2""1 +1 - 25
> 227‘t—1 _ 3 . 27‘ . 27‘t—1 _ 27‘+1 _ 1
> 227‘t—1 o 3 . 27‘(t+1)—1 - 27‘(t+1)—1

— 92ri—1 _ gr(t+1)+1

— 2r(t—|—1)—|—1(2r(t—1)—2 o 1) >0

— I

where in the fourth line we have used the obvious fact that

27‘—|—1 + 1 < 2T(t+1)—1

I

and the second inequality in (3.5) follows from
sn+1-2d)=(s—1)2"+s-1=(s—1)(2" +1) > 0.

Remark 3. In [21], the non-properness of the codes C*(r,t,s) with s >3 and
t odd was shown by choosing the point

5 .
e, =4 H+3-2rl it s=5,
ol it s>7,

for which P! (C*(r,t,s), €s5) < 0. The point &, lies, of course, outside the
interval of properness (4.20), which can be easily checked.
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