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ABSTRACT

Statistical analysis of air-pollution levels measured by carry-on sensors
is presented. The analysis aims at estimation of the average exposure to
hazardous substances like toluene, benzene and xylene in different environ-
ments and at understanding the importance of general air-pollution, smoking
habits, car traffic, and other potential sources of these substances for humans
health.

The data on accumulated exposure are modelled as lognormal with linear
regression on exposure times and other covariates.

A new element of our analysis is the use of untransformed raw data,
i.e. directly measured exposures and not their logarithms as in previous
studies. We argue that our approach is more correct because exposure effects
of various hazardous substances accumulate, which is not possible to model
in a linear model for the logarithms of data.

Comparing our approach with ”conventional” models (regression of log
exposure) we find the same significance for the analyzed data but parameter
estimates differ both in values and interpretation, and only our modelling
can be reasonably extrapolated to different exposure times.

Keywords: air pollution, carry-on sensors, asymptotic uncertainty, log-
normal regression, parametric bootstrap.
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1. PREFACE

The word ”environment” can be used in various contexts. It can be working
environment, bio-environment, outdoor environment, natural environment,
etc. In the following, I will use the word environment as everything that
surrounds us.

It is well known that mankind and environment are constantly and in-
evitably interacting entities. The man’s activity on Earth has a profound
effect on environment as well as environment clearly affects our everyday’s
life. Therefore any environmental problem has two sides. One is a prob-
lem arising in nature due to some man’s (industrial) activity and another
is problems associated with nature hitting back. One can define environ-
mental problem as undesired negative effects of mankind’s activity which are
regarded as objective change and are experienced as a problem [1].

In general, there are four questions to be answered when dealing with
environmental problems:

1) What has happened and what is happening now?
2) What will happen in the future and what happens if...?
3) What is acceptable?
4) What should or must we do?
Environmental problems are not always global and large, they can be

quite small and invisible in the beginning. Nonetheless, even those small
problems may have severe consequences in following years. It is utterly im-
portant to wake up public interest to these problems and show that they re-
quire serious attention and pressing actions for their solving. The existence of
public interest to environmental problems usually ignites mass media which
closely follow their development and supply more information to the public.
It is also important that this circulation of information is fed by scientifi-
cally valid studies involving different models and hypotheses, observations
and measurements, as well as scientific analysis and interpretation [1].



2. ENVIRONMENT AND HEALTH OF POPULATION

2.1 Measurement and assessment of state of health

What is health? According to WHO’s definition, health is not only absence
of illnesses and weakness but a complete physical, mental and social well-
being. It is not easy to assess all components of health in view of many
perceptions and opinions about what is the most important and what should
be evaluated.

To measure and evaluate state of health of population and be able to
judge on environmental impacts is one of the central tasks of environmental
statistical research. Through systematic and alert examination of popula-
tion’s lifestyle and life quality, a reliable and timely analysis can be made to
avoid rush decisions. It is therefore important that methods and standards
that are used are well scrutinized and are reliable and trustworthy.

Problems with population’s health are not only purely medical. They
often mean a major social problem where different environmental aspects play
an important role and where surveys involving studies on social structure,
working life, and environment are hence necessary [2].

Health-related questions are very complex and opinions about what should
be measured differ. It is therefore of no surprise that measurement methods
and results are often unreliable and vary from source to source. This leads
to a situation where the choice of measure (gauge) is largely dictated by a
possibility of accumulating enough data and by access to developed methods
of analysis. All this makes it clearly important to develop statistical research
which can yield new more advanced and mathematically proven methods
that could be successfully used in all scientific fields.



2.2 Air pollution and its effect on health

Clean air is of vital importance for health. During the last years, a large scale
research is carried on that aims at mapping all air-born hazardous pollution
that we exposure ourselves to in our everyday’s life and at understanding
the consequences of that exposure. Degradation of lung capacity, respiratory
sickness and asthma are just a few of the maladies that are connected to air
pollution in many studies.

There is a lack of knowledge about air quality with regard to health that
leads to demands on further research on air pollution coming, say, from traffic
and its negative impacts on health. Moreover, there are demands on measure
and standard methods which can be used to follow the influence of different
substances on population’s health. Various hazardous substances that are
measured in environmental studies should be considered as indicators for
air pollution even if quantitatively the effect of that pollution is not known
yet [3].

In order to estimate exposure one uses data either from stationary sensors
or from measurements obtained with the aid of sensors put on individuum
(person-carried) or theoretically derived data. The numerical models are
good when dangerous substances just potentially can cause complex air pol-
lution, while person-carried data are better when measured substances have
direct impact on health.

In Sweden, the stationary measurements of cancerogenic substances are
usually made at relatively high levels from the ground, often the sensors are
placed at the roof of houses [4]. Since particular risks for humans depend
on personal (local) exposures rather than on the average background con-
centration measured by the stationary sensors, the former is better suited
for working out guiding principles in risk assessments and political decisions.
Person-carried data gives much better estimate of individual accumulated
exposure to a hazardous substance. It represents the basis of recent health-
related statistical research.

The measurements of personal exposures are heavy on resources while it
can also give results that are different from what stationary measurements
show.
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3. GENERAL INFORMATION ABOUT EXPOSURE DATA

Exposure data commonly have a skewed distribution with lots of low-value
points and a few observations taking high values, see Fig. 1.
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Fig. 1: Observed exposure data on benzene, toluene, and xylene.

It is convenient to use the so called log-normal distribution for analysis of
such data. See for example the modelling in [5, 6, 7]. In such a distribution, it
is assumed that the logarithm of the statistical variable Y , ln Y , is normally
distributed, i.e. Y has an exponential functional form, Y = exp(Z), where
Z is normal. In this case the large and irregular variations in exposure data
become smoother in the logarithmic scale and one can apply well-developed
theories of normal distribution for statistical analysis of the data. In princi-
ple, a number of other known distributions (Gamma, Weibuell, etc.) can be
used as well.

In the majority of studies on exposure data, one has a background in-
formation in form of covariates. Then, one traditionally can apply a linear
regression analysis to the log-normally distributed exposure data [5, 6, 7, 8, 9].



Since linear regression theory is usually derived for normally distributed vari-
ables, it is natural as a first approach to apply this to the logarithms of the
exposure data as it was done in the references above.

The most interesting covariates refer to as to how long an individual is
exposed to different environments. These exposure times should then have
linear effect on exposure measurements because two times longer exposure
time should double the contribution. This implies that the exposure times
cannot be additive when logarithms of statistical variables are used. This is
therefore a shortcoming of the traditional approach using linear regression on
the logarithmic exposure and makes the interpretation of estimated regres-
sion coefficients less obvious (as an average linear effect on the logarithms).

Other variables of different types can also affect linearly on exposure. In
some cases, multiplicative effect of variables can be anticipated that would
justify linear response in logarithmic scale. Under certain conditions, how-
ever, linear and multiplicative effects can approximate one another.
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4. SOME RELATIONS BETWEEN LOG-NORMAL AND
NORMAL DISTRIBUTIONS.

4.1 One-dimensional case

Let Y be a log-normally distributed variable with characteristic parameters
(µ, σ), modelling for instance, an accumulated exposure to a certain sub-
stance. This implies that Z ≡ ln Y is N(µ, σ). It follows from above that
(µ, σ) = (µz, σz) are the characteristic parameters of the lognormal distribu-
tion.

In order to distinguish between expectation and variance in the original
and logarithmic scales, we introduce different notations µz, σz and µY , σY ,
respectively, and use µz, σz as average and variance of normally distributed
Z = ln Y , while µY = E(Y ), σ2

Y = V ar(Y ).
For Z = ln Y , we have the frequency function of the normal distribution:

fZ(z) =
1√

2π σz

exp

[
−(z − µz)

2

2σ2
z

]
. (4.1)

The density function fY (y) for y > 0 is [10]:

fY (y) =
d

dy
P (eZ 6 y) =

d

dy
FZ(ln y) =

1

y
fZ(ln y) =

1

y

1√
2π σz

exp

[
−(ln y − µz)

2

2σ2
z

]
.

(4.2)

The expected value and the variance for the lognormal are most easily com-
puted in the normal distribution using Y = exp Z. This gives the well known
results:



Tab. 1: Comparison between log-normal and normal distributions [11]
Log-normal scale Original scale

Mean µz = ln µy − σ2
z

2
µy = exp(µz + σ2

z/2)
Median µ̃z = µz µ̃y = exp(µz)

Mean/Median µz/µ̃z = 1 µy/µ̃y = exp(σ2
z/2)

Variance σ2
z σ2

y = (exp(σ2
z)− 1) exp(2µz + σ2

z)

µY = E[Y ] =

∫ ∞

−∞
ez 1√

2πσ2
z

exp

[
−1

2

(
z − µz

σz

)2
]

dz =

exp

(
µz +

σ2
z

2

)
.

(4.3)

E[Y k] =

∫ ∞

−∞
ekz 1√

2πσ2
z

exp

[
−1

2

(
z − µz

σz

)2
]

dz =

exp

(
kµz +

σ2
zk

2

2

)
.

(4.4)

and since V ar(Y ) = E[Y 2]− µ2
Y , we have the relations shown in Table 1.

4.2 Two-dimensional case

When more than one substance is measured on the same person or when
measurements are repeated on the same individual we can expect such data
to be dependent. A natural approach to dependent log-normal distribution
is to start from the multivariate normal distribution.

A particular feature of the data we will study later on is that there were
two observations of the same type made on some individuals.

There is therefore a possible interdependence between repeated observa-
tions on the same person. Now, the natural approach to the case of two
measurements per person is to consider observations on different persons as
independent and having a two-dimensional log-normal distribution for the
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two data on the same person. With a relevant covariance structure, the
extension to more than two dimensions is straightforward.

For a vector Y =

(
Y1

Y2

)
, we define ln Y as a component-wise function

ln Y =

(
ln Y1

ln Y2

)
.

In the Z-scale, Z = ln Y and is modelled as N(µ, C) which means that

Z =

(
Z1

Z2

)
has the two-dimensional normal distribution. Since the two

measurements were made in the same way both times, it is natural to assume
the same standard deviations: σ1 = σ2 = σz. The expectation µ and the
covariance matrix C are:

µ =

(
µz1

µz2

)
(4.5)

C =

(
C11 C12

C21 C22

)
=

(
σ2

z σ2
zρ

σ2
zρ σ2

z

)
= σ2

z

(
1 ρ
ρ 1

)
, (4.6)

where ρ = ρ(Z1, Z2) = Cov(Z1, Z2)/σ
2
z .

Z has the following density function:

fZ(z1, z2) =
1

2π
√

det(C)
exp

[
−1

2
(z1 − µz1 , z2 − µz2) C−1

(
z1 − µz1

z2 − µz2

)]
(4.7)

which can be rewritten in the following form:

fZ(z1, z2) =
1

2πσ2
z

√
1− ρ2

exp
[
− 1

2σ2
z(1− ρ2)

(
(z1 − µz1)

2+

(z2 − µz2)
2 − 2ρ(z1 − µz1)(z2 − µz2)

)] (4.8)

In the Y -scale, the density function fY (y1, y2) for y1, y2 > 0 is:

fY (y1, y2) = fZ(z1, z2)

∣∣∣∣
∂(z1, z2)

∂(y1, y2)

∣∣∣∣ . (4.9)

Using z1 = ln y1 and z2 = ln y2, we get:
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d(z1, z2)

d(y1, y2)
=

∣∣∣∣∣
dz1

dy1

dz1

dy2
dz2

dy1

dz2

dy2

∣∣∣∣∣ =
1

y1

· 1

y2

and

fY (y1, y2) =
1

2πσ2
z

√
1− ρ2

exp
{
− 1

2σ2
z

√
1− ρ2

[
(ln y1 − µz1)

2 +

+(ln y2 − µz2)
2 − 2ρ(ln y1 − µz1)(ln y2 − µz2)

]}
· 1

y1

· 1

y2

(4.10)
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5. REGRESSION IN LOG-NORMAL DISTRIBUTION.

Suppose that we have covariates xi,k, k = 1 . . . K, associated to each obser-
vation Yi. Also let the effects of the covariates be linear in the expected value
of Y . This is the situation when exposure times in different environments
sum up and yield the measured accumulated exposure. In Sec. 8 this model
is compared to an alternative regression model.

In a one-dimensional model with fixed effects and non-stochastic covari-
ates, we set

E[Yi] = β0 +
∑

k

xikβk, (5.1)

where k refers to environmental group or factor.
The model is now such that Y is log-normally distributed with constant

σ2
z for which the following relation can be written:

E[Yi] = x′iβ = e(σ2
z/2+µzi ) (5.2)

which gives, as in Table 1:

µzi
= ln(x′iβ)− σ2

z/2, (5.3)

where x′i denotes the vector of covariates for observation i.
The frequency function of Zi can now be written explicitly as

fZi
(z) =

1√
2π σz

exp

[
−(z − (ln(x′iβ)− σ2

z/2))2

2σ2
z

]
(5.4)

For the two-dimensional case, the corresponding repetition on each com-
ponent have the form described by Eq. (4.8).



6. MAXIMUM LIKELIHOOD ESTIMATION

6.1 One-dimensional case

6.1.1 One-dimensional data without covariates

Let (y1, y2 . . . yn) be a random sample on Y which is lognormal(µ, σ). In the
Z-scale, observations (z1, ...zn), where zi = ln(yi) give the likelihood:

L1(µz, σz) =
1

σn
z (2π)n/2

exp

(
− 1

2σ2
z

n∑
i=1

(zi − µzi
)2

)
. (6.1)

We have also the following maximum likelihood estimations:

µ̂z =
1

n

∑
zi =

1

n

∑
ln(yi) (6.2)

σ̂z =

√
1

n

∑
(zi − z)2 (6.3)

The likelihood can be re-written in the Y-scale:

L1(µz, σz) =
1

σn
z (2π)n/2

exp

(
− 1

2σ2
z

n∑
i=1

(ln yi − µzi
)2

)
n∏

i=1

(
1

yi

)
(6.4)

with corresponding estimations:

µ̂z =
1

n

∑
(ln yi) (6.5)

σ̂z =

√√√√ 1

n

n∑
i=1

(
ln yi − 1

n

∑
(ln yi)

)2

(6.6)

Comparing equations 6.1 and 6.4 we see that the latter is multiplied by a
factor

∏
1/yi which does not depend on the parameters µz and σz, but only

on data yi.



We see that one gets the equivalent formulas for likelihood estimations
in both the original- and logarithmic scales, and by using the relations in
Table 1 we find the corresponding estimates of E(Y ) and V ar(Y ).

6.1.2 One-dimensional data with regression

In order to estimate the parameters when regression is involved, we could find
a maximum of the logarithmic likelihood using of Newton-Raphson iteration
scheme.

If θ =
(

β
σz

)
denotes the parameter vector, ∂ ln L

∂θ
and ∂2 ln L

∂θ∂θ′ , the vector

and matrix of the first and second derivatives and θ(0) an initial guess, the
Newton-Raphson method uses

θ(n+1) = θ(n) −
(

∂2 ln L

∂θ∂θ′

)−1
∂ ln L

∂θ
, (6.7)

where θ(n) is inserted in the derivatives. The equations converge without
problems for our data example if θ(0) is reasonably selected.

For that, we would need the following expression:

ln L1(β, σz) = −n

2
ln(2π)− n ln σz − 1

2σ2
z

∑
(ln yi − µzi

)2 −
n∑

i=1

ln yi

= −n

2
ln(2π)− n ln σz − 1

2σ2
z

∑
(ln yi)

2 − 1

2σ2
z

∑
ln(x′iβ)2 +

+
1

2

∑
ln(x′iβ)− nσ2

z

8
+

1

σ2
z

∑
(ln yi) ln(x′iβ)− 1

2

∑
ln yi −

∑
ln yi (6.8)

where µzi
is given by Eq. (5.3),
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and its derivatives:

∂ ln L1

∂βi

=
1

σ2
z

n∑
i=1

xij∑
j xijβj

[
ln yi − ln(

∑
j

xijβj) +
σ2

z

2

]
, (6.9)

∂2 ln L1

∂βiβk

=
−1

σ2
z

n∑
i=1

[
xikxim

(
∑

j xijβj)2

(
1− ln(

∑
j

xijβj) + ln yi +
σ2

z

2

)]
, (6.10)

∂ ln L1

∂σz

= − n

σz

+
1

σ3
z

n∑
i=1

(ln yi − ln(x′iβ))
2 − nσz

4
, (6.11)

∂2 ln L1

∂σz∂β
= − 2

σ3
z

n∑
i=1

xik∑
j xijβj

(ln yi − ln(x′iβ)) , (6.12)

∂2 ln L1

∂σ2
z

=
n

σ2
z

− 3

σ4
z

n∑
i=1

(ln yi − ln(x′iβ))
2 − n

4
. (6.13)

6.2 Two-dimensional case

We will now extend the solution to bivariate data with the same variance σ2
z

of both components in the Z-scale. This takes only one more parameter, the
correlation ρ.

In the Z-scale:
For two measurements on the same person, the likelihood function can

be written, taking z =

(
z1

z2

)
=

(
ln y1

ln y2

)
in the following form:

L2(β, σz, ρ) = fz(z1, z2) =

=
1

2π
√

det(C)
exp

{
−1

2
(z1 − µz1 , z2 − µz2) C−1

(
z1 − µz1

z2 − µz2

)}
=

=
1

2πσ2
z

√
1− ρ2

· exp
{
− 1

2σ2
z(1− ρ2)

[
(ln y1 − µz1)

2 + (ln y2 − µz2)
2

− 2ρ(ln y1 − µz1)(ln y2 − µz2)
]}

, (6.14)

where µz1 = ln
(∑

j x1,jβj

)
− σ2

z

2

and µz2 = ln
(∑

j x2,jβj

)
− σ2

z

2
.
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Taking the logarithm of Eq. (6.14) gives:

ln L2(β, σz, ρ) = ln

(
1

2πσ2
z

√
1− ρ2

)
− 1

2σ2
z(1− ρ2)

[
(ln y1 − µz1)

2+

(ln y2 − µz2)
2 − 2ρ(ln y1 − µz1)(ln y2 − µz2)

]
.

(6.15)

In case of m independent individuals with repeated measurements on
each, the likelihood function will be a product of L2(β, σz, ρ) for each in-
dividual and we get the corresponding sum of terms, Eq. (6.15) in the log
likelihood.

In the Y-scale, the likelihood function is according to (4.10)

L2(β, σz, ρ) = fz(ln y1, ln y2) · 1

y1 · y2

. (6.16)

ln L2(β, σz, ρ) = ln

[
fz(ln y1, ln y2) · 1

y1 · y2

]
=

= ln[fz(ln y1, ln y2)]− ln y1 − ln y2 (6.17)

It is seen that the likelihood function in the Y scale is different from the
one in the Z scale by the factor 1/(y1 · y2) that only depends on data and
does not depend on β, σz, or ρ. With subsequently taking logarithm and
derivative over β, σz, and ρ this factor disappears.

As in the one-dimensional case, we use the Newton-Raphson iteration
scheme for estimating parameters. The corresponding formulas for the first-
and second derivatives, ∂ ln L2

∂σz
, ∂ ln L2

∂βj
, ∂ ln L2

∂ρ
, ∂2 ln L2

∂βi∂βj
, ∂2 ln L2

∂σz∂βj
, ∂2 ln L2

∂ρ2 , ∂2 ln L2

∂σ2
z

,
∂2 ln L2

∂σz∂ρ
, ∂2 ln L2

∂βj∂ρ
, can be found in the Appendix 13.1.

The first and second derivatives are needed for both estimation of param-
eters and for estimating their variances.

6.3 Combination of one- and two-dimensional cases

In our case we have a mixture of individuals with single and with repeated
measurements and we can describe the data in the following manner.

Y data:
y1, y2, y3 . . . yn1︸ ︷︷ ︸

one−dimensional

, yn1+1, yn1+2, yn1+3, . . . yn1+n2︸ ︷︷ ︸
two−dimensional
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In the Z scale the same data would look like:

z1 = ln y1, . . . zn = ln yn1︸ ︷︷ ︸
one−dimensional

; zn1+1 =

(
ln yn1+1,1

ln yn1+1,2

)
, . . . zn1+n2 =

(
ln yn1+n2,1

ln yn1+n2,2

)

︸ ︷︷ ︸
two−dimensional

In both cases, the covariances can be denoted as X-data and take the
form:

x′1, . . . x
′
n1︸ ︷︷ ︸

one−dimensional;

xn1+1 =

(
x′n1+1,1

x′n1+1,2

)
, . . . xn1+n2 =

(
x′n1+n2,1

x′n1+n2,2

)

︸ ︷︷ ︸
two−dimensional

,

where x′ denotes covariance vectors.
Individuals on which measurements were performed only once are inde-

pendent from the individuals on which repeated measurements were done.
One therefore can consider these two cases as independent and can merge
the corresponding likelihood functions:

L(β, σz, ρ) =

n1∏
i=1

L1i(β, σz)

n1+n2∏
i=n1+1

L2i(β, σz, ρ) (6.18)

when L1i, L2i are the one-dimensional respective two-dimensional functions
of data Yi(Zi).
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7. ESTIMATION RELIABILITY

For a large random sample, there is strong argument in favor of the ML
method. The following properties are valid for the ML-estimations Θ̂n of Θ
based on the complete sample x1, ...xn [12]:

1) Under some conditions on the distribution, we have that Θ̂n is consistent;

2)
√

n(Θ̂n −Θ) is asymptotically normally distributed N(0, V );
3) The variance or covariance matrix V in the asymptotical distribution is
optimal, i.e. equivalent to Cramer-Raos lower bound for (asymptotically)
unbiased estimation variance [16].

The inverse of V , the information matrix D = V −1, has elements:

di,j =

∫
−∂2 ln f(x, Θ)

∂Θi∂Θj

f(x, Θ)dx (7.1)

Confidence intervals with approximate confidence degree (1−α) we take
from the approximate normal distribution for the parameter estimations
where the asymptotic relation gives:

√
n(Θ̂n −Θ) ≈ N(0, V ) (7.2)

(Θ̂n −Θ) ≈ N(0,
1

n
V ), (7.3)

where 1
n
V will be estimated as the inverse of the matrix −∂2 ln L

∂θ ∂θ′ . Thus for
component i

Θi = Θ̂ni ± a1−α/2

√
1

n
v̂ii, (7.4)

where 1
n

v̂ii is the i-th diagonal term of the estimate

1

n
V̂ =

(
−∂2 ln L

∂θ ∂θ′

)−1

(7.5)

taken in the estimated parameter point, and a1−α/2 is the percentile in the
N(0, 1)-distribution.



In Sec. 10.1 we compute these intervals for our data case. With 60 data
from 40 individuals, we can not assume that the asymptotic analysis as-
sures good accuracy. We will therefore check their validity by simulations in
Sec. 10.2
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8. COMPARISON BETWEEN REGRESSION BEFORE
AND AFTER TAKING LOGARITHMS OF DATA

To compare our modelling with the ”traditional” one, we look at regression
in the original scale (Model A) and in the logarithm scale (Model B).

1) A simple regression in the one-dimensional case:

Model A: The model in Eq. (5.1) gives

Z = ln Y ∼ N

[
ln(x′β)− σ2

z

2
, σ2

z

]

with E(Y ) = x′β
Assuming that x′β = β0 + β1(xi − x̄) we can write

Zi ∼ N

[
ln (β0 + β1(xi − x̄))− σ2

z

2
, σ2

z

]
.

Estimates of β0, β1, and σz are found iteratively.

Model B: The ”traditional” approach is instead

Z = ln Y ∼ N
[
x′b, σ2

z

]
,

with the same data size as for model A. This means that

Zi = b0 + b1(xi − x̄) + ε,

where ε ∼ N(0, σ2
z).

For zi = ln yi we have the following two estimates of regression coefficients
in model B:

b̂0 =z̄ (8.1)

b̂1 =

∑
(xi − x̄)(zi − z̄)∑

(xi − x̄)2
=

∑
(xi − x̄)zi∑
(xi − x̄)2

(8.2)



and if we assume that model A is true, then

E(b̂0) =
1

n

∑[
ln (β0 + β1(xi − x̄))− σ2

z

2

]
(8.3)

E(b̂1) =

∑
[(xi − x̄) (ln (β0 + β1(xi − x̄))− σ2

z/2)]∑
(xi − x̄)2

=

∑
[(xi − x̄) ln (β0 + β1(xi − x̄))]∑

(xi − x̄)2
. (8.4)

The expression for E[b̂1] is the same as if one made a linear least-squares
fit (regression) to ln(β0 + β1(xi − x̄)) for the real data points. Since the
logarithm function is non-linear and its derivative is unconfined, the value of
E[b1] depends on the size of the expression β0 + β1(xi− x̄) and especially on
the mean level β0. This means that there is no general relation between the
sizes of E[b̂1] and β1.

We can compare both the models in another way. If variations in xi are
small, one can make a series expansion of the logarithm and use the linear
term only:

ln (β0 + β1(xi − x̄)) = ln(β0) + ln

(
1 +

β1

β0

(xi − x̄)

)
≈ ln(β0) +

β1

β0

(xi − x̄)

If we now assume that we have a situation where model B is true but
model A is fitted then the true structure Zi ∼ N(b0+b1(xi−x̄), σ2

z is analyzed
as Zi ∼ N(ln(b0 + b1(xi − x̄))− σ2

z/2, σ
2
z .

Since the likelihood function is a smooth function (has continuous deriva-
tives and apparently has only one maximum), maximum-likelihood estimates
for small variations should be very close to estimates using the above written
series with only the linear term retained. This gives us a model for usual
linear regression (which is model B) but with

b0 = ln β0 − σ2
z/2, and

b1 = β1/β0

and shows how the models can approximate each other for small x-variations.

2) The multiple regression.
We continue to discuss the two estimates in the multiple-regression case

with univariate Y -data, but this time under the assumption that model A is
true. Here we use vector notations for Z, Y, β and let X be a matrix.
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Model A:
Z = ln Y ∼ N(ln Xβ − σ2

z/2, σ
2
z) (8.5)

with E[Y ] = Xβ;
n observations;
m covariates;

β = (β0 β̃ ′)′, with β̃ = (β1, . . . βm)′.

Again, estimates are found iteratively and closed expressions do not exist.

Model B:
Z = ln Y ∼ N(Xb, σ2

z)

with b = (b0 b̃′)′.

The relation between estimates in models A and B applied to the same
data can be most easily discussed if the covariates are centered so that the
mean is subtracted out of every column. Let therefore

X =
(
1 X̃

)

where
∑n

i=1 x̃i,j = 0, j = 1, 2, . . .m and where the first column is a vector
of ones.

In model B we have

Z = ln Y = Xb + ν, ν ∼ N(0, σ2
zI),

where I is the unity matrix.
The estimate of b is

b̂ = (X ′X)−1X ′Z.

Now, if model A is true, the expected value of Z is ln(Xβ)− σ2
z/2 and

E[b̂] = (X ′X)−1X ′
(

ln(Xβ)− σ2
z

2

)
.

If the variation in Xβ is relatively small compared to the constant β0 (in
the structure with centered covariates) we have

ln(Xβ) = ln(β0 1 + X̃β̃) = ln β0 + ln(1 + X̃β̃/β0)
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And since ln(1 + x) ≈ x for small x, this gives the approximation

E[b̂] ≈ (X ′X)−1X ′
[
(ln β0 − σ2

z

2
)1 + X̃

β̃

β0

]
.

Since

X ′X =

(
1′

X̃ ′

) (
1 X̃

)
=

(
n 0

0 X̃ ′X̃

)

has the inverse

(X ′X)−1 =

(
1/n 0

0 (X̃ ′X̃)−1

)

and writing a for (ln β0 − σ2
z/2)

X ′
(
a1 + X̃β̃/β0

)
=

(
1′

X̃ ′

) (
a1 + X̃β̃/β0

)
=

(
na

X̃ ′X̃β̃/β0

)
.

We get

E[b̂0] ≈ ln β0 − σ2
z

2
(8.6)

E[ˆ̃b] ≈ β̃/β0 (8.7)

The centering of X is important for the correct size of β0 (b0) and for
giving variations around zero. If non-centered covariates are used, the esti-
mates of β̃ and b̃ will not change , only β0 and b0 are transformed and the
corresponding relation becomes

E[b̃j] ≈ βj/(β0 +
∑

βkx̄.k), j = 1, 2, . . . m (8.8)

Using this relation we must remember that it is approximate and only
concerns the expected values. The actual estimates will have random errors
added to their expected values.
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9. ANALYSIS OF DATA

9.1 Introduction

Today, large quantities of potentially cancer-promoting substances are used
by the society. It is highly important to know if these substances adversely
affect our health. It is also important to know particular doses of those
substances that a person exposes him/herself to. Measurements of their
levels made on stationary stations are not sufficiently informative since they
give average values at the stations while local (time and place) peak values of
the concentrations of these substances can be much higher. We have therefore
adopted data from carry-on instruments for accumulated exposure.

In Gothenburg, 40 persons aging from 20 to 50 years drawn at random
from a given population agreed to take part in measurements where they
would carry small sensors sensitive to benzene, xylene, and toluene during
a week. The individuals were supposed to regularly fill special diaries and
questionnaires regarding their activity or unhealthy habits (smoking) during
the week. This information supplemented the measurements.

One half of those persons were involved in the measurements twice. We
have applied our modelling to a data set collected by the department of
Occupational and Environmental Medicine, see Ref. [13].

We first show results for an univariate analysis where we only use the
first measurement for individuals with repeated data. The analysis is based
on the univariate likelihood L1 (see Eq. (6.4)) and uncertainties of estimates
are computed by asymptotic theory as in Sec. 7. Then we go on to a mixture
of univariate and bivariate data and show the corresponding analysis based
on the likelihood L2 (see Eq. (6.14))

The contributions to measured amounts of benzene, toluene, and xylene
due to the variables in the list below (potential dangerous environments)
were estimated with help of linear and lognormal regressions.



9.2 List of covariate information

1 - house-heating method ((0) for electricity and central heating, (1) for oil)
2 - whether car is parked in a garage inside house (1-yes, 0-no)
3 - smoking (1-yes, 0-no)
4 - passive smoking, total hours of exposure
5 - filling up gasoline tank of a car
6 - hours spent in intensive traffic
7 - total time of going by car or a bus
8 - exposure to benzin vapors/car-exhaust gases professionally (1-yes, 0-no)
9 - the same during free time (1-yes, 0-no)

10 - total time being indoor (not home)
11 - total time being outdoor
12 - estimated home exposure.

Here the estimated home exposure is U T1/T2, where
U is the accumulated exposure in a stationary measurement device in the
bedroom;
T1 is the time at home with carry-on device during the measurement period;
T2 is the measurement time of the stationary device.

For repeated date the stationary device was only used once and U/T2 is
the same both times, only T1 different.

The set of covariates are well behaved. Correlations between the columns
never exceed 0.65 in absolute value and during the estimation they were all
centered by subtraction of their mean values.

9.3 Results

The analysis of data was made in three steps.
- In step one we used measurements on 40 individuals that were considered

as independent measurements. For individuals with repeated observations we
only used the first measurement. The theory for the one-dimensional case
was used to estimate parameters, see Sec. 6.1.2

- In step two we analyzed repeated measurements on 20 persons. The
data pairs were considered as dependent (yi1 and yi2 , i = 1 . . . 20) and a
two-dimensional theory was used, see Sec. 6.2. For comparison with the
traditional approach, with linear regression on the logarithms of data, we
analyze this model in Sec. 8.
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Tab. 2: Benzene data. Table showing resulting estimated parameters for model
A. The parameters which have been found to be significant at 5% level
(|β̂| > 1.96|σ̂|) are shown in bold.

parameter 40 persons 20 persons 40 persons
description independ. meas. depend. meas. whole data

β̂ σ̂ β̂ σ̂ β̂ σ̂

house-heating 0.0022 0.1432 0.3078 0.1529 0.1787 0.1437
car parking 0.3615 0.2310 0.2703 0.1434 0.1821 0.1524

smoking habits 0.3250 0.1398 0.2760 0.1152 0.4046 0.1149
passive smoking 0.0015 0.0178 -0.0158 0.0103 -0.0232 0.0121

tanking car -0.0032 0.0023 -0.0023 0.0016 -0.0037 0.0018
traffic 0.0175 0.0168 -0.0258 0.0188 0.0002 0.0141

car or bus 0.0684 0.0148 0.0595 0.0147 0.0730 0.0132
benzin work -0.1881 0.2420 0.0219 0.2291 -0.2965 0.1952
-”- free time -0.0625 0.1080 -0.0306 0.0697 -0.0154 0.0788

indoor not home 0.0023 0.0026 0.0045 0.0016 0.0033 0.0016
outdoor 0.0070 0.0088 0.0175 0.0075 0.0128 0.0081

home exposure 1.1563 0.2123 1.1744 0.2781 1.0524 0.1721
σ 0.2278 0.0255 0.1821 0.0222 0.2443 0.0271
ρ -0.3711 0.2236 -0.4879 0.2957

- The final analysis was made using all the data, corresponding to both
single (on 20 persons) and repeated measurements (on another 20 persons),
and a theory which is described in Sec. 6.3.

Estimated values of the parameters for the case of benzene are shown in
Table 2.

The most interesting result of our analysis was obtained on benzene data.
Analysis that was made using all the data, corresponding to both single (on
20 persons) and repeated measurements (on another 20 persons) showed that
smoking, rides by bus and car, estimated home exposure, staying indoor but
not at home, and tanking cars have a pronounced effect with regard to the
exposure to benzene (numbers in bold in Table 2). Exposure to benzene
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during tanking of a car is questionable because of negative sign of the es-
timate for that parameter. Here the significance is judged from asymptotic
approximation. See Sec. 10 for more details on this point.

Analogous analysis was done for toluene and xylene as well. However,
it was found that only estimated home exposure is a significant parameter
for these two substances. Furthermore, the validity of asymptotic uncer-
tainty estimates is examined in Sec. 10.1 and gives motivations for making
confidence intervals broader, see Sec. 10.2.

9.4 Comparing the models A and B

We have fitted model B to the same data as a comparison. In order to discuss
this in relation to Sec. 8, we select the case with 40 independent univariate
data. However, the variation in estimated x′iβ̂/β̂0 is moderate but not small
as needed for Sec. 8 to be accurate.

Analysis of the full model with 12 covariates (plus β0 and σz) is given for
model B (40 person independent measurements) in Table 3.

Although b̂ and β̂/β̂0 differ, we can see that for significant parameters the
sign and order of magnitude are reasonably close.

Reducing the models so that only significant covariates are retained only
give marginal changes of the estimates as shown in Table 4.

We can see from Tables 3 and 4 that both models give the same infor-
mation about which covariates are significant and also that b̂ and β̂/β̂0 are
reasonably close for significant variables, possibly with the exception of the
last covariate (estimated home exposure). Here the model A:s parameter es-
timate is close to 1 and appears much more reasonable than model B:s since
it would have the value 1 if no estimation errors were involved.

Another point of interest for the comparison is extrapolation to situations
with different exposure times. In model A, different exposure times will give
different values of xi,j but we can use the same estimated β-values for example
for the time in traffic etc. In model B, such extrapolation is not possible since
the logarithm of accumulated exposure does not react linearly on exposure
times, only accumulated exposure itself does!
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Tab. 3: Benzene data. Table showing resulting estimated parameters for model
B. The parameters which have been found to be significant at 5% level
(|β̂| > 1.96|σ̂|) are shown in bold. 40 persons, independent measurements.
β̂/β̂0 are taken from model A

parameter b̂ σ̂b β̂/β̂0

β0 0.1140 0.0412 1.0000
house-heating -0.0415 0.1497 0.0017

car parking 0.2982 0.1928 0.0279
smoking habits 0.4366 0.1309 0.2516

passive smoking -0.0078 0.0161 0.0011
tanking car -0.0031 0.0027 -0.0025

traffic 0.0317 0.0161 0.0135
car or bus 0.0583 0.0127 0.0530

benzin work -0.0889 0.2055 -0.1456
-”- free time -0.2000 0.1194 -0.0484

indoor not home -0.0001 0.0024 0.0018
outdoor 0.0039 0.0103 0.0054

home exposure 0.4522 0.0727 0.8952

Tab. 4: Benzene data. Table showing resulting estimated parameters for models
A and B with significant covariates only.

parameter Model B Model A

description b̂ σ̂b β̂/β̂0 β̂ σ̂

β0 0.1140 0.0412 1.0000 1.2842 0.0609
smoking habits 0.3706 0.0869 0.2534 0.3254 0.1160

car or bus 0.0491 0.0088 0.0459 0.0589 0.0137
home exposure 0.4883 0.0684 0.8316 1.0680 0.2076
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Fig. 2: Residuals for benzene data.

9.5 Residuals

Graphical representation of data is very useful in a case of just few variables.
In the opposite case of many variables, such graphs are difficult to interpret.
Then, as a rule, it is better to first try to fit the data by a model, and then
only plot the residuals in order to reveal flaws of the model (non-linear effects
of predictors or non-constant variance). In our case, we plot the values of yi

or residuals eyi
as functions of regression equation Ê[ln Y ], see Fig. 2,

Ê[ln Y ] = µz = ln x′β̂ − σ2
z/2 (9.1)

V ar(ln Y ) = σ2
z (9.2)

ey = ln Y − (ln x′β̂ − σ2
z/2) (9.3)

The plot of residuals shows random variations without any clear pattern.
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10. CONFIDENCE INTERVAL FOR ESTIMATED
PARAMETERS

10.1 The validity of asymptotic confidence interval

In order to investigate the true confidence level of the asymptotic confidence
interval (95%) we generate simulated data Y ∗

i , i = 1 . . . n from the normal
distribution as follows.

20 independent data points are simulated in accordance with zi ∼ N(ln x′β−
σ2

z/2, σ
2
z) and 20 independent pairs of data points are simulated in accordance

with the following equations:

zi1 = µi1 + σzU, where

µi1 = ln x′i1β − σ2
z/2 and

zi2 = µi2 + ρ(zi1 − µi1) +
√

1− ρ2σzU, where

µi2 = ln x′i2β − σ2
z/2, and U ∼ N(0, 1)

Here U denotes new independent random numbers in every generation.
We use estimates for βi, σ, and ρ while generating the data (see Table 2,

40 persons, whole data). The parameters β∗i are estimated in accordance with
Sec. 6.3 and the confidence intervals are then calculated for the estimated
values following Sec. 7, i.e. in our case:

β∗i = β̂∗i ± 1.96σ̂∗β, (10.1)

where σ̂∗β is asymptotic standard deviation for the corresponding β∗. Finally,
we count how often the estimates of the real data happen to be within the
confidence intervals of the equation above.

Confidence levels for the parameters corresponding to exposure to ben-
zene for the number of simulations n = 7500 are as presented in Table 5 from
which we see that the confidence level is somewhat low. Therefore we use a
parametric-bootstrap method below.



Tab. 5: Observed covering of asymptotic 95%-confidence intervals in 7500 simula-
tions of benzene data.

Param. Description 95% conf. interval Simul. hit
β1 House-heating method (el./oil) (-0.1029 ; 0.4603) 81.11
β2 Garage inside house (-0.1166 ; 0.4808) 80.46
β3 Smoking ( 0.1794 ; 0.6298) 79.84
β4 Passive smoking (-0.0469 ; 0.0005) 78.14
β5 Tanking a car (-0.0072 ; -0.0002) 80.46
β6 Hours in intense traffic (-0.0274 ; 0.0278) 83.37
β7 Total time in a car or bus ( 0.0471 ; 0.0989) 81.28
β8 Benzin vapors professionally (-0.6791 ; 0.0861) 81.95
β9 Benzin vapors, free time (-0.1698 ; 0.1390) 80.03
β10 Total indoor time ( 0.0002 ; 0.0064) 80.42
β11 Total outdoor time (-0.0031 ; 0.0287) 81.96
β12 Estimated home exposure ( 0.7157 ; 1.3897) 84.29
σ ( 0.1912 ; 0.2974) 83.57
ρ (-1.0675 ; 0.0917) 44.76

10.2 Bootstrap simulation in finite data sets

The asymptote is not sufficiently exact for 40 persons, but simulations can
give better accuracy for confidence intervals, see Ref. [12]. Parametric boot-
strap can be used instead, a more general method which is based on numerical
computer simulations.

In this method, one uses an estimated parametric distribution with the
introduced Maximum Likelihood (ML)-estimations of the parameters as a
replica of the initial source distribution (i.e. the probability distribution
which the data originate from).

Estimations uncertainty can be obtained by generating new data sets of
the same size as the initial one, using this distribution [12]. First, we find
the parameter θ̃ in the parametric distribution F (x, θ̂) that corresponds to
the estimation θ̂ = θ̂(y1, y2 . . . yn) of θ based on the real data y1, y2 . . . yn. As
usual, θ̃ = θ̂.

Next, we generate new data y∗1, y
∗
2 . . . y∗n from F (y, θ̂) with each y∗i being

independent of others and use the same method as described in Sec. 10.1.
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Since y∗i are log-normal, we generate first the normal variables z∗i ∼ N(ln x′iβ̃−
σ̃z

2/2, σ̃z
2) and take y∗i = exp(z∗i ). The estimation θ̂∗ = θ̃(y∗1, y

∗
2 . . . y∗n) is then

calculated exactly as for the real data. This procedure is repeated 7500 times.
The distribution of (θ̂∗− θ̃) gives an estimate of the distribution of (θ̂−θ) [14]
and the distribution of (θ̂∗ − θ̃)/σ̂∗

θ̂∗
gives an estimate of the distribution of

(θ̂ − θ)/σ̂θ̂ which is the studentised expression often used for confidence in-

tervals. It turns out that for the regression coefficients β̂∗ the distribution
looks very normal (Fig. 3 left panel). For σ̂∗, and ρ̂∗ the distribution is
non-symmetric, see Fig. 3. Here β̂ is an estimate of the real β, and σ̂ is an
estimate of σ.

We calculate then the ”studentized” quantity,

ui =

(
β̂∗ − β̃

σ̂∗

)

i

, i = 1 . . . 7500

where β̃ is the true estimate of β, β̂∗ is an estimate of β that is given by our
simulation, and σ̂∗ is an asymptotic standard deviation of each β̂∗ given by
our modelling, and obtain the distributions of, for instance, β12, σ, and ρ,
see Fig. 3.
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Fig. 3: Simulated histograms of ui for estimated home exposure parameter and for
σ, and ρ (from left to right).

One would expect that in accordance with the asymptotic theory (see
Sec. 7), the simulated values ui for each β were normally distributed, i.e.
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∼ N(0, 1). However, from the percentiles for different confidence intervals
(Table 6), one can see that the median value for λα/2 and λ1−α/2 are -3.28 and
2.99, respectively, instead of 1.96 (for α = 0.05) as for the standard normal
distribution.

All distributions for studentised β-variables are wider than the N(0, 1)-
distribution, probably due to uncertainty in σ̂-estimations. For the σ-parameter,
the distribution is strongly distorted while for the ρ-parameter the asymp-
totic approximation is totally unsuitable. Here a different bootstrap approach
may have an advantage, but this has not been at focus in this work.

Tab. 6: Percentiles.

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

β1 -4.1505 -3.3346 -2.6660 -1.9728 1.7927 2.3601 2.9889 3.6953
β2 -4.4497 -3.4142 -2.7822 -2.0673 1.8167 2.3729 2.8998 3.5944
β3 -4.4537 -3.3646 -2.7544 -2.0332 1.8456 2.5187 3.1446 3.9441
β4 -4.2728 -3.3049 -2.6473 -2.0014 2.0442 2.7405 3.4140 4.4140
β5 -4.1968 -3.3166 -2.5960 -1.9507 1.8625 2.5260 3.0766 3.8671
β6 -3.6098 -2.9400 -2.3796 -1.7717 1.7746 2.3072 2.8574 3.4115
β7 -4.0329 -3.1680 -2.5595 -1.9315 1.8163 2.4011 2.9611 3.5943
β8 -4.0324 -3.1432 -2.5028 -1.8948 1.8219 2.4262 2.9867 3.9250
β9 -4.3429 -3.4181 -2.6300 -1.9483 1.9226 2.5514 3.1913 4.2415
β10 -4.1174 -3.1816 -2.5127 -1.9231 1.9159 2.5498 3.1722 3.9961
β11 -4.1980 -3.2602 -2.6160 -1.9539 1.7454 2.3887 2.9440 3.7356
β12 -3.5457 -2.8677 -2.3637 -1.7709 1.6652 2.2251 2.6668 3.3120
σ -4.2432 -3.5337 -3.0008 -2.3519 0.7145 1.0377 1.2922 1.5891
ρ -29.025 -20.125 -14.735 -9.9412 0.1752 0.6234 0.9908 1.4165

Looking back at our estimates in Table 2 (40 persons, whole data), we
now see that ”smoking habits” (t-value = 3.52), ”car or bus” (t-value = 5.53),
”estimated home exposure” (t-value = 6.115) are still significant (α = 0.05)
while ”tanking cars” and ”indoor not home” fail to be significant.
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11. CONCLUSIONS

Environment-oriented statistical research is important for quantification of
pollution and its adverse effects on health. It is now well known that air
pollution contribute to development of astma and chronic irritation of air
pathways, as well as allergy in both children and adults.

During last years, a great emphasis was put to studies devoted to iden-
tification of hazards that humans exposure themselves to and to revealing
relations between the exposures and their impacts on health. In this situ-
ation, it is highly desirable to further improve statistical methods for data
treatment and their validation in all environmental research programs.

We present statistical analysis of accumulated air-pollution levels mea-
sured with help of carry-on sensors. In contrast to previous studies, we use
the untransformed raw data, i.e. directly measured exposures and not their
logarithms. We believe that our approach is more correct because it is the
raw accumulated exposures to various hazardous substances rather than their
logarithms that should be summed up in accumulated data. However, our
analysis incurs an extra ”expense” of more complex estimates and computa-
tions.

In particular, we demonstrated the following.

• Accumulated exposure is affected by exposure times in different envi-
ronments. It is possible to combine the linear regression in the original
scale (the untransformed raw data) with lognormal distribution.

• It is shown how a single and repeated observations can be used in the
same analysis.

• Asymptotic methods for uncertainty analysis appeared to be unreliable
for data volume of actual size (40 persons, 60 observations). Alterna-
tive simulations-based methods show how large the uncertainties are in
reality.



• In accordance to the asymptotic uncertainty analysis (individual 95%
confidence level) made on the whole data, the following parameters
were found to be of significance: ”smoking”, ”tanking cars”, ”time of
going by car or bus”, ”time being indoor, not home”, and ”estimated
home exposure”.

Simulation analysis for the same data shows that ”smoking”, ”time of
going by car or bus”, and ”estimated home exposure” are still signifi-
cant, while ”tanking cars” and ”time being indoor, not home” can no
longer be distinguished from zero for a 95% confidence level.

• Comparison of a traditional modelling (linear regression for the log-
arithms of accumulated data) with our model (linear regression for
the untransformed data) shows that both the models can approximate
each other for small relative variations in regression equation. For larger
variations, the difference between the models becomes more important.
In particular, our suggested model can easily account for extrapolation
to a new case with other exposure times in different environments, while
the traditional method looses its applicability.

• For the actual data example, the same parameters turn out to be sig-
nificant in model A and B , but the values of the parameters and their
interpretations are different. The differences between the parameter
estimates are also somewhat larger than explained by the special case
with small x-variations. In both models, however, qualitative effects of
the significant parameters are yet the same.
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I am grateful to Jacques de Marè for being my second supervisor through
this work and giving valuable comments after reading my thesis.

Thanks to all members of the Mathematical Statistics group for everyday
assistance and nice and supportive atmosphere.

I am also grateful to Peter Jagers for always leaving the door open for
coming and expressing my needs and problems.

The discussions with Gerd Sällsten and Lars Barreg̊ard, as well as their
kind permission to use their exposure data is greatly appreciated.

Finally, I wish to cordially thank my husband for his help, support, and
his always believing in me.



13. APPENDICES

13.1 Derivatives used in two-dimensional case

In order to simplify the resulting appearance of equations, we will use the
following auxiliary notations:

A1 ≡
∑

j

x1j · βj (13.1)

A2 ≡
∑

j

x2j · βj (13.2)

µ1 ≡ z1 − ln(A1) +
σ2

2
(13.3)

µ2 ≡ z2 − ln(A2) +
σ2

2
(13.4)

Q ≡ 1− ρ2 (13.5)

The derivatives now are as follows.
First derivatives:

∂L

∂βj

=
(1− ρ)

Qσ2

(
µ1

x1j

A1

+ µ2
x2j

A2

)
(13.6)

∂L

∂σ
=

1

σ

[
−2 +

(µ1 + µ2)(1− ρ)

Q

]
+

(µ2
1 + µ2

2 − 2ρµ1µ2)

Qσ3
(13.7)

∂L

∂ρ
=

(ρ + µ1µ2/σ
2)

Q
− ρ(µ2

1 + µ2
2 − 2ρµ1µ2)

σ2Q2
(13.8)



Second derivatives:

∂2L

∂βi∂βj

=
1

Qσ2

[
ρ

(
µ2x1ix1j

A2
1

+
µ1x2ix2j

A2
2

+
x1ix2j + x1jx2i

A1A2

)

−
(

x1ix1j

A2
1

+
µ1x1ix1j

A2
1

+
µ2x2ix2j

A2
2

+
x2ix2j

A2
2

) ]
(13.9)

∂2L

∂βj∂σ
=

1− ρ

Qσ

(
x1j

A1

+
x2j

A2

)

+
2

σ3Q

[
ρ

(
µ2x1j

A1

+
µ1x2j

A2

)
−

(
µ1x1j

A1

+
µ2x2j

A2

)]
(13.10)

∂2L

∂β∂ρ
= − 2ρ

Q2σ2

[
ρ

(
µ2x1j

A1

+
µ1x2j

A2

)
−

(
µ1x1j

A1

+
µ2x2j

A2

)]
(13.11)

∂2L

∂σ2
=

[
2

Q
− 3(µ1 + µ2)

Qσ2
+

6µ1µ2

Qσ4

]
ρ−

− 2

Q
+

1

σ2

[
2 +

3(µ1 + µ2)

Q

]
− 3(µ2

1 + µ2
2)

Qσ4
(13.12)

∂2L

∂ρ2
=

8µ1µ2

Q3σ2
ρ3 +

[
2

Q2
− 4(µ2

1 + µ2
2)

Q3σ2

]
ρ2

+
6µ1µ2

Q2σ2
ρ +

1

Q
− µ2

1 + µ2
2

Q2σ2
(13.13)

∂2L

∂ρ2
=

[
2(µ1 + µ2)

Q2σ
− 4µ1µ2

Q2σ3

]
ρ2

+
[
µ2

1 + µ2
2 − σ2(µ1 + µ2)

]
ρ +

1

Q2σ3

[
σ2(µ1 + µ2)− 2µ1µ2

]
(13.14)
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13.2 Characteristics of hazardous chemicals [15]

13.2.1 Toluene

Toluene is a clear, colorless liquid with an aromatic odor. It is a natural
constituent of crude oil. Toluene is both volatile and flammable at room
temperature. Toluene can be smelled in air at a level of about 80 parts per
billion (ppb). In water, it can be tasted at a level of 40 ppb. These levels are
well below the dangerous concentrations for short exposure times. Toluene
has a moderate tendency to accumulate in the food chain.

Gasoline (which contains from 5% to 7% of toluene) is the largest source
of toluene air pollution. Toluene is released to the atmosphere during the
production, transport, and combustion of gasoline. Toluene exposures are
highest in areas of intense traffic and near gasoline stations. Toluene is
however short-living in air because of its high chemical reactivity.

Common household products and cigarette smoke are the principal sources
of toluene indoors. Indoor toluene concentration is often several times higher
than outside. Cigarette smokers inhale about 80 to 100 micrograms of
toluene per cigarette. Toluene-containing consumer products include vari-
ous aerosols, paints, paint thinners, varnishes, rust inhibitors, adhesives, and
solvent-based cleaning agents. Toluene is used as a solvent in cosmetic nail
polishes at concentrations of up to 50%.

Although most environmental toluene is released directly to the atmo-
sphere, it is occasionally detected in drinking water supplies. Nonetheless,
drinking water levels of toluene are usually low.

13.2.2 Benzene

Benzene is a volatile, colorless, highly flammable liquid. Today, most (98%)
benzene is commercially derived from petrochemical and petroleum refining
industries. Benzene is a by-product of various combustion processes, such as
forest fires and the burning of wood, garbage, organic wastes, and cigarettes;
it is also released to the air from crude oil seeps and volatilizes from plants.

Benzene is one of the world’s major commodity chemicals. Benzene is
an important raw material for the manufacture of synthetic rubbers, gums,
lubricants, dyes, and pharmaceutical and agricultural chemicals; it is also
found in consumer products such as glues, paints, and marking pens.

Benzene is also a natural component of crude and refined petroleum. The
mandatory decrease of lead alkyls in gasoline has led to an increase in the
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aromatic hydrocarbon content of gasoline to maintain high octane levels.
Benzene is widespread in the environment, and is commonly found in air,

water, and humans. The major environmental sources is car exhaust, car
tanking, hazardous waste sites, chemical spills and manufacturing sites, and
petrochemical industries.

As can be seen from the environmental sources, inhalation accounts for
up to 99% of the total daily intake of benzene. Smoking is the largest source
of benzene exposure for the general public. The estimates of daily intake of
benzene from a single cigarette vary: from 5.9 to 90 µg. Passive smoking is
also a source of exposure.

13.2.3 Xylene

Xylene is a colorless, sweet-smelling liquid that catches on fire easily. It
occurs naturally in petroleum and coal tar and is formed during forest fires.
You can smell xylene in air at 0.1− 4 parts of xylene per million parts of air
(ppm) and begin to taste it in water at 0.53− 2 ppm.

Xylene is one of the top 30 chemicals produced in the world in terms
of volume. It is used as a solvent and in the printing, rubber, and leather
industries. It is also used as a cleaning agent, a thinner for paint, and in
paints and varnishes. It can be found in small amounts in gasoline.

Xylene has been found in waste sites when discarded as used solvent, or
in varnish, paint, or paint thinners. It evaporates quickly from the soil and
water into the air. In the air, it is broken down by sunlight into other less
harmful chemicals. It can be broken down by microorganisms in soil and
water as well. Only a small amount of xylene is accumulated in fish, plants,
and animals living in xylene-contaminated water.

Breathing xylene in workplace air or in automobile exhaust is the main
source of xylene in human body. Next is breathing cigarette smoke that has
small amounts of xylene in it or drinking contaminated water or breathing
air near waste sites and landfills that contain xylene. The amount of xylene
in food is much likely to be quite low.

Xylene affects the brain. High levels from long-term exposure to xylene
can cause headaches, lack of coordination or sense of balance and dizziness.
Exposure at high levels of xylene for short periods can also cause irritation
of the skin, eyes, nose, and throat; difficulty in breathing; problems with the
lungs; delayed reaction time; memory difficulties; stomach discomfort; and
possibly changes in the liver and kidneys. It can cause unconsciousness and
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even death at very high levels.
It is not known if xylene harms the unborn child if the mother is exposed

to low levels of xylene during pregnancy. Xylene has not been proven to
be carcinogenic although the corresponding studies are not conclusive and
cannot exclude the opposite.
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