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Abstract

The sizes of large inclusions within a cast of hard steel have a major influence on fatigue
characteristics, but are not directly measurable by routine means. Recently, two methods
have been proposed for estimation of the size distribution of large inclusions on the basis
of measurements made on the sections of inclusions revealed in samples from a polished
plane surface of the material. This paper reviews the two methods, showing that they are
closely related and that properties found by each may be deduced from those found by the
other. The paper also discusses the problem of inferring the distribution of the projected
(3-dimensional) size of large inclusions from measurements made by either of the methods
on sectional (2-dimensional) sizes. A simple new approximate solution to this stereological

problem is proposed and is compared to existing approaches.
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1 Introduction

The sizes of large inclusions within a cast of hard steel have a major influence on fatigue
characteristics (Murakami [1]), and are therefore important indicators of the quality of the
steel. However the sizes of inclusions vary from sample to sample and they cannot be
measured directly by routinely-usable methods. It is therefore necessary to describe sizes
by a statistical distribution and to use indirect methods of measurement to estimate this
distribution. Knowledge of the distribution of large sizes enables the user to estimate such
quantities as the typical size of the largest inclusion in a given volume of steel and to calculate
the probability that the largest inclusion in a volume will exceed any specified size.

It was shown by Murakami & Usuki [2] and Murakami et al [3] that the effect of inclusion
size on the fatigue limit can be quantified in terms of the square roots of the areas of
large inclusions projected onto a plane perpendicular to the direction of stress. In this
paper we therefore consider measurements of large inclusions revealed in polished sections
of the steel. We review two ways of collecting such measurements and of processing the
results to obtain estimates of the distribution of the largest inclusion in a volume. One
of the methods, the Area Maximum (AM) method, first proposed in this field by Prof Y
Murakami and co-workers, is based on the Gumbel distribution of statistical extreme value
theory. The other method is based on the analysis of inclusions larger than a specified high
threshold (Shi et al [4] and Davison & Smith [5]). There is a family of such threshold methods,
differing in the distribution assumed for sizes exceeding the threshold. We consider here the
particular threshold method, the Threshold Exponential or TE method, which assumes an
exponential distribution for sizes larger then the threshold. Of all the threshold methods,
this has the closest connection with the AM method. In both the AM and TE approaches
the variable measured is the sectional size of inclusions, whereas the aspects of interest for
fatigue properties are the sizes of the projected areas of inclusions. A stereological translation
from section sizes to projection sizes will therefore be a necessary part of the estimation
procedures.

This paper has two aims. The first is to show that although the AM and TE methods are
based on measurements of different quantities and require different calculations they share

a common basis in statistical extreme value theory. This knowledge is useful in clarifying



the purposes for which each method can be used and for translating results between the
two. The second aim of the paper is to exploit the connection between methods to derive
a new approximate relationship between the distributions of section size of large inclusions
revealed on a plane surface and the distribution of the true, but usually unobserved, 3-
dimensional projection size. We suppose that, to a reasonable approximation, inclusions are
spherical. The 3-dimensional size of an inclusion then coincides with its size as projected
onto a plane surface. Prof Murakami’s experimental work, summarized in [1], shows that it
is the distribution of this projected size that is crucial for fatigue properties.

The plan of the paper is as follows. In §2 the AM and TE methods are reviewed and
in §3 it is shown that both methods rest on a widely applicable model for the behaviour of
the upper tail of the distribution of sizes of individual inclusions. The discussion reveals the
relationship between characteristics of large inclusions estimated by the two approaches and
it allows translation between the two. In §4 we discuss the extension from areal properties of
inclusions revealed in measurements on planar sections to the volume properties crucial for
fatigue. A new approximate practical solution to the stereological problem for large inclusions
is presented and compared to existing approaches. The paper concludes in §5 with a summary
and a discussion of the implications of the stereological approximations of §4.Appendices
contain some technical material. For convenience in the stereological comparisons we discuss
size in terms of the diameters of spheres or circles rather than in terms of square root areas,

a difference merely of a constant of proportionality.

2 The Two Approaches

The basic procedures of the AM and TE methods are now described, including parameter
estimation and graphical model checking. For clarity of exposition we restrict attention here
to section sizes; the stereological translation to the largest projection inclusion size in a

specified volume of steel is taken up in §4.

2.1 Area Maximum Approach

For the AM method (see for example Murakami [1], ESIS [6] and Beretta & Murakami [7])

a number, n say, of separate regions (control areas), each of the same area A say, are



chosen on the polished surface, and the diameter of the largest inclusion within each region
is recorded. The result is a set of n observations of maximum diameters, z1,...,z, say.
A Gumbel extreme value distribution is fitted to these data. The Gumbel distribution has

distribution function

G(m:)\,é):Pr(SizeSm):exp{—(exp—xg)\)}, (oo <z<00), (21

where § > 0 and A are parameters, § measuring variability and A representing a typical size
of the largest inclusion. In fact X is the e~! quantile of the distribution G and is referred to
as the characteristic largest inclusion size in area Ag.

Several methods are available for estimating the parameters A and §. The simplest
method is a graphical procedure based on the Gumbel plot. Suppose that the data are
ordered from smallest to largest as z(;) < (3) < ... < (). Then the Gumbel plot is a plot
of —In(—1In(j/(n+1))) against 2(;). Under the Gumbel distribution the points are expected
to lie close to the line with slope 1/4 and intercept —A/d. Rough estimates of the parameters
may be obtained from this. The linearity or otherwise of the plot also gives an informal
check on adequacy of the Gumbel distribution and a simple way of comparing different data
sets.

A more objective estimation procedure is based on maximum likelihood. The log-

likelihood of the parameters based on data x1,zs,...,T, is
I(A,0) =) InG'(z;: \,0),
J

where G’ is the probability density function of the Gumbel distribution function (2.1), that
is, the derivative of G with respect to x. The function [(},d) is maximized numerically with
respect to A and § to obtain the maximum likelihood estimates of the parameters. (An
EXCEL spreadsheet for the estimation is available at http:/www.esisweb.org/activity/
activity.htm; see also ESIS [6]; and R-software to carry out these and related calculations
is available at http://www.maths.lancs.ac.uk/ stephena/ software.) Besides the ad-
vantage of greater objectivity, the maximum likelihood method also gives standard errors:
the negative of the inverse of the matrix of second derivatives of the log-likelihood with re-
spect to A and § gives the variance-covariance matrix of the estimates. Beretta & Murakami

[7] report extensive simulation experiments demonstrating the efficiency of the maximum



likelihood estimates.

The fitted distribution may be used to estimate the size of the largest inclusion in a plane
region larger than the control area Ay, or to compare largest inclusions from control areas of
different sizes. For example the size of the largest inclusion in an area A > Ay is a random

quantity whose distribution is given by:
GAo (g2 X, 8) = Gz : A+ 6 In(A4/Ao),d). (2.2)
The location parameter of this distribution, the characteristic value z.,
z. = A+ 01n(A/Ag), (2.3)

may be taken as a single summary value of the size of the largest inclusion in A.

An alternative single summary value is sometimes suggested, by analogy with the return
level used to quantify hydrological and meteorological extremes. If A is an integer multiple
of Ag then a typical value for the largest inclusion in A can be defined as the size that would
be expected to be exceeded by exactly one of the maxima from the A/Aq sub-regions. The
expected number of sub-region maxima larger than a size z is, from (2.1), (4/40)(1 — G(z :

A, 0)), so the value of z that makes this expectation equal to 1 is
z=A+06(—In(—In(1l — Ag/A))). (2.4)

Expression (2.4) is referred to as the size of the maximum inclusion with return period T' =
A/Ap, and the same terminology is used even if A/Ay is non-integer. Though the motivation
for expressions (2.3) and (2.4) is different, in the important case when Ay is small compared
to A their numerical values are close. Indeed, when Ag/A is small, —In(1— (4g/A)) = Ag/A

so that the logarithmic terms in (2.3) and (2.4) are almost the same.

2.2 Threshold Exponential Approach

For the TE method either a single area of the polished plane section of steel or multiple
sub-areas are chosen for study. All inclusions on the total inspected area larger than a given
size, ug say (called the threshold), are measured. Alternatively, for a pre-determined number
N, the N largest inclusions on the total inspected area are measured, and the threshold value

ug is then set equal to the size of the smallest of these. In either case, a set of measurements



Z1,%2,...,2N of the N diameters of all inclusions no smaller than g in the inspected area
is obtained. The statistical analysis is made on the excesses of these sizes over the threshold,
that is on the values y; = £; —ug,% = 1,..., N. An exponential distribution with distribution

function
Hy:a)=1-e?*  (y>0), (2.5)

where « is a positive parameter, is fitted to these excess sizes by estimating the parameter

a by the arithmetic mean g of y1,y2,...,yn:

(2.6)

joN
Il
<

Also, the rate of occurrence, u(ug) say, of inclusions of size greater than ug in the inspected

area is estimated by

fi(uo) = N/ Ay, (2.7)

where A; is the total area inspected.

These results may be used to estimate the size of the largest inclusion in other plane
regions. For example, as will be shown in §3, under the assumptions of the TE Method
the distribution of the largest inclusion in a region of area A has the Gumbel distribution

function G(z : \,d) with parameters

A =uo+ aln(Au(ug)) and 0=aq, (2.8)

and these may be estimated by substituting & and ji(ug) from (2.6) and (2.7).

For a single summary value for the size of the largest inclusion in region A, the location
parameter A in (2.8) may be employed, as in §2.1. In §2.1 an alternative motivation for
this characteristic size of the largest inclusion in A was discussed, based on a return level
argument. The natural analogue of this notion in the TE approach is the size that would be
expected to be exceeded by exactly one inclusion within the region A. However, the results
in §3 show that the resulting value is exactly the same as that given by expression (2.8).

To check the main assumption of the TE method (that of an exponential distribution for
the excess sizes y), and to allow quick visual comparison of different sets of data, a Gumbel

plot related to that in §2.1 may be used. Specifically, a plot of —In(—In(j/(n + 1))) against



the reversed ordered values of —Iny; should, if (2.5) is satisfied, produce an approximate
straight line with unit slope and intercept In o. In principle this could be used to estimate «,
but is not necessary or advisable for that purpose because of the simplicity of (2.6) and the
fact that (2.6) is already the maximum likelihood estimator, with corresponding optimality
properties. On the other hand the plot may be used to check a proposed value for ug. If this
ug is used to calculate the y; and a straight line plot is found, then u¢ and the assumption
of an exponential distribution are vindicated. If there is definite non-linearity then a larger

ug should be tried.

2.3 Relationship Between TE and AM Approaches

The relationship between the AM and TE approaches hinges on the relationship between the
distribution of the size of the largest inclusion in an area (§2.1), and the distribution of excess
size of inclusions larger than some high threshold (§2.2). A key factor in the relationship is
the number of inclusions in a region, since the larger the number of inclusions, the greater the
chance of observing a larger maximum. For a region of area A let N(A) denote the random
number of inclusions in A. In homogeneous material the distribution of N(A) will depend
only on the size of A and not on its shape or position, so that the expectation of N(A) will be
E(N(A)) = p A, where p is the expected number of inclusions in unit area; that is, the rate
of occurrence of inclusions. Moreover, if inclusions in separate regions are independent and
occur sparsely enough never to coincide, then their locations will be described by a Poisson

process (Stoyan et al [8]), so that the distribution of N(A) will be Poisson with mean p A:
Pr(N(A) = k) = e *A(uAd)¥/k,  k=0,1,...

We can apply the same logic to large inclusions alone. For example, the distribution
of the number, N(A,ug) say, of inclusions of size greater than a threshold size ug in area
A is Poisson with mean u(ug) A, where pu(ug) is the expected number of inclusions of size
greater than wug in unit area. Similarly for even larger sizes, say sizes greater than u > wyg,
the number N(A,u) of inclusions in A of size greater than u is Poisson distributed with
mean p(u)A, where u(u) is the appropriate expected number per unit area. Moreover, since

inclusions in A of size greater than u form a proportion Pr(X > u|X > ug) of those larger



than wug, where X is inclusion size, E(N(4,u)) = p(u)A is

E(N(A,u)) = E(N(A,ug)) x Pr(X > u|X > ug)
= p(ug)APr(X > ulX > ug),
and hence
p(w) = pug) Pr(X > u|lX > up)

so that the distribution of N(A,u) is Poisson with mean p(ug)A Pr(X > u|X > ug).
It is this fact that connects the threshold and area maximum approaches. The largest
inclusion in area A, M say, will be no larger than w if and only if N(A,u) = 0. Hence, from

the Poisson distribution,
Pr(M <u) = Pr(N(Au)=0)
= exp(—p(ug) APr(X > ulX > ug)). (2.9)

If, as in §2.2, the conditional distribution of excess size Y = X — ug, given that X > wy, is

exponential, then it follows that for any u > uq,

Pr(X >ulX >ug) = Pr(Y >u—ug|X > ug)
= e (u—uo)/a
and so from (2.9)
Pr(M <u) = exp(—p(ug)Ae (v u0)/e)

= exp(—exp(—(u — A)/9)),
for u > ug, where
A =wuo+ aln(u(ug)A) and 0=a. (2.10)

Thus an exponential distribution for the excess size over threshold wg implies a Gumbel
distribution for the largest inclusion M in an area, and the parameters are related by (2.10).
Conversely, if M has the Gumbel distribution Pr(M < u) = exp(— exp(—(u — A)/9)),

then by equating (2.1) and (2.9) we see that

Pr(X >ulX >up) = m exp(—(u — A)/d), for u>ug

= exp(—(u—A+3dIn(u(uo)A))/d),



and since the left hand side takes the value 1 when u = wg, it must be true that uy =

A — 61n(u(ug)A) and hence that
Pr(X > u|X > ug) = exp(—(u —ug)/9).

Thus a Gumbel distribution for M implies that excess size over ug must follow an exponential
distribution, again with parameters related through (2.10).
In this sense therefore the AM and TE approaches are based on equivalent assumptions,

with parameters related through (2.10).

2.4 Precision of Estimation

Anderson et al [9] compared the widths of confidence intervals for the characteristic size z.
obtained from the AM and TE methods. They found that for a clean air-melted steel in
which the AM method utilized observations on N = 40 maximum inclusion sizes in control

areas of size Ay = 200mm?

, and the TE method was based on the sizes of all inclusions
larger than 5um in the total 8000mm? area inspected (395 inclusions altogether), the widths
of 95% confidence intervals for z. for a wide range of extrapolation areas A (10°-~108mm?)

were related by

width(AM) = —1.34 + 2.12 width(TE),

to a good approximation. At A = 103mm? the width of the TE-based interval was 77% of
the width of the AM-based interval, declining to 52% at A = 108mm?2. Though the details
of these findings are specific to the steel analyzed, Anderson et al [9] give reasons to expect

the TE method to give shorter confidence intervals generally.

3 Justifications

3.1 Justification for Area Maxima Method

The choice of the Gumbel distribution for observed maximum sizes is motivated in part by a
limit result from extreme value theory, which shows that the distribution of the maximum of
N independent and identically distributed observations, standardized for location and scale,

converges to a Gumbel distribution as N — oo for a very wide range of distributions of the



individual observations, including Normal, log-Normal, exponential and Weibull distributions
(in fact for any distribution of individual observations X for which P(X > z) decays like
an exponential of a polynomial in z); see, for example, Leadbetter et al [10]. A further,
related, justification for use of the Gumbel distribution is its possession of the following
stability property. Suppose that from a number N = m x k of independent and identically
distributed observations we select the largest. Though the selection may be made directly,
it could also be made in two stages: say by firstly selecting the largest of each successive
set of m values, then taking the largest of the k resulting subset maxima. If individual
observations have distribution function F' then the fact that the two routes lead to the same

result is expressed by the relation
FN = (F™)F, (3.1)

since, for any n, F™ is the distribution function of the maximum of n observations. If we
wish to model maxima of different numbers of observations by a distribution function, G
say, of some common general form, differing for different numbers only in location and scale,
then if G(x) is the distribution function of the maximum of m observations, the distribution
function of the maximum of all N should be of form G(Az + B) for some constants A > 0

and B, and the relation (3.1) would require
G(Az + B) = G*(x),

which is called the max-stability condition for G. This condition limits the possible forms for
G, but it is easily verified that the Gumbel distributions G(x : A, d) satisfy it with A =1/§
and B=—Ink.

Thus the Gumbel distributions constitute a family of models for data on maxima that can
be expected to provide reasonable approximations whatever the distribution of individual
measurements, and which embody in a simple way a fundamental structural feature of the
data. Other distributions sometimes proposed — log-Normal distributions for example — do

not share these properties.

10



3.2 Justification for Threshold Method

A justification for the key exponential assumption (2.5) of the ET method is that for a wide
range of distributions of the size of individual measurements X the distribution of excess
X — ug over a threshold ug, for those sizes X that do exceed ug, is approximated by an
exponential distribution when wug is large enough. In fact it is found that whenever the
distribution of individual sizes X has the property that maxima can be approximated by a
Gumbel distribution then the distribution of excesses Y = X — ug over threshold uy may be

approximated by an exponential distribution in the sense that
Pr(Y <y|X >up) m1—e¥%  (y>0).

for large ug and some positive number a (Pickands [11]). Thus the exponential distribution
is appropriate for excess sizes over a high threshold whenever the Gumbel distribution is
appropriate for maxima. A second argument for use of the exponential distribution for
excesses is that it is invariant to the value of the threshold, in the sense that if excesses
X —wug of a threshold ug follow the exponential distribution (2.5) then (as is easily seen) for
a higher threshold wuy excesses over uy, given that X indeed exceeds ug, follow exactly the
same exponential distribution (2.5) (the ‘lack of memory’ property: Feller [12].) Thus an
exponential model for excesses has the property that the form of the model does not change
as ug increases, an attractive property since the threshold value is in a sense incidental and

should not be central to inference.

4 Stereology - the Largest Inclusion in a Volume

As shown in §3, the assumption of a Gumbel distribution for the sectional size of the largest
inclusion observed in a control area is equivalent to the assumption of an exponential dis-
tribution for section sizes greater than a given threshold. Under these assumptions we now
discuss the problem of estimating the distribution of the largest projection (3-dimensional)
size of the inclusions in a volume; that is, of translating the information about planar sizes
of large inclusions into information about spatial sizes. To do so we suppose that, to a rea-
sonable approximation, inclusions are spherical and occur randomly within the material. We

also assume that the density of inclusions is low enough to enable us to ignore the possibility

11



of intersections.

To relate the exponential distribution of planar sectional sizes to the distribution of 3-
dimensional projection sizes we use the inverse Wicksell transformation (Stoyan et al [8]).
An alternative to assuming an exponential distribution for large section diameters would be
to take section areas to be exponentially distributed, so that section diameters would follow
a Rayleigh distribution. As Takahashi & Sibuya [13,14] point out, this would produce the
mathematical simplification that under the Wicksell transformation projection diameters
would follow an exact Rayleigh distribution too. However in many steels it is diameters
rather than areas of large inclusions that are exponentially distributed and hence correspond
to maxima that follow a Gumbel distribution, and so we concentrate here on this case.
Figure 1 shows Gumbel plots of control area planar maximum inclusion diameters from a
medium Carbon steel (Murakami [1]); the curvilinearity of the plot (a) for squared diameters
contrasts with the approximate linearity of the plot (b) for diameters, confirming through
the relationship in §2 that for this example an exponential model for section diameters rather

than for areas is appropriate.

4.1 The Distribution of the Maximum Diameter of a Sphere

We derive the distribution of the diameter of the largest sphere in a volume on the assumption
that the excesses over the threshold wug of the diameters D, of sectional circles larger than
ug are exponentially distributed with mean «. In general the distribution function Fp, of
the diameter D,, of a sphere is given by the inverse Wicksell transform of the distribution of
the diameter of the sectional circle (Stoyan et al [8], p354). In the present case the inverse

transform gives:

2d, [ e~(y—uo)/x
Fp,(z) =1- -, /z Wd:[h T > uo,

where (1/a)e (¥—%0)/e 4 > yq, is the probability density of the diameter of the sectional
circle in the range of sizes above the threshold. Here d, is the mean sphere diameter. The
conditional distribution of the sphere diameter given that it is larger than the threshold wg
is:

_,_ J/a)
Fp, D >u () =1— Tuo/a)’ T 2> ug, (4.1)

12



where
J(y) = / - L dz
, (22— 22

This distribution is evidently independent of the parameter d,. To find the distribution of
the size of the largest sphere in a volume V we can argue as in §2.3, making use of the
Poisson distribution. If g, is the mean number of spheres with diameters larger than wg
in unit volume and if > ug, then the expected number of spheres with diameters greater
than z in volume V is 4, V(1 — Fpp, p,>u(Z)). The probability that the maximal inclusion
diameter Dypq, in volume V' is no greater than x is then the probability that there are no

inclusions of size greater than z in V', which, from the Poisson distribution, is

FD'umam (.73) = exp {_/J/'UV(]- - FDv|Dv2uo (.’If))} , X > ug.

The mean number of spheres pu, is shown in Appendix A to be related to the mean number

Lo Of circles with diameter larger than ug in a unit control area by:

2 a ug/a
o = L2/ J(uo/a). (4.2)

In Appendix B it is also shown that if we write

J(z) = \/gm_l/ze_wf(w) (4.3)

then

(1 + ﬁ) o <I(z)<1. (4.4)

When (4.1) — (4.3) are inserted into the expression for Fp, . (x) we find that

Fp,, ... (x) =exp {—M 2a exp (_a: ;u()) I(:c/a)} (4.5)

a ™

In this expression the two quantities y, and a are unknown and must be estimated from the
section measurements. How this is done differs between the AM and the TE methods, as

follows.

4.2 Stereological Details for the TE-Method

With this method estimates of both « and p, are directly available from
dz.’f—UO, ﬂazﬂ(UO)ZN/Al

13



where Z is the mean of the observed inclusion diameters larger than ug, N is the total
number of inclusions with diameter greater than ug, and A; is the total area over which
measurements were made. Inserting these estimates in (4.5) gives the final estimate of the

distribution of the maximum inclusion size in a body of volume V'
T — Uo x
exp (— - ) I (a)} (4.6)
r — Ug
_ 4.7
exp (-252) } (4.7

1/

\ V ik,
Py (2) exp{— z

Vi
eXp{— Ha
(0%

Here, I(x/&) is easily calculated numerically, or can be replaced by (1 + &/4z)”

X

3| 3w
8| 8>

? with an
error less than 2% when x/& > 1, or by 1 with a slightly larger error. The latter leads
to the approximation given in (4.7). The characteristic size z. corresponding to volume V

-1

is obtained as the solution to the equation Fp () = e . An exact analytic solution

of this equation is not available, but numerical solution is straightforward. The following
approximate solution (4.8) for large volumes V' can be verified by inserting it into (4.7) and

noting that the leading term in (4.8) is &In(Vpi,/&) when V — oo:

o [2 A o [2
e =up +aln (Vf‘ _) — % (m (Vf‘ \ﬁ» (4.8)
a T 2 a T

The expressions (4.6) and (4.8) are estimates subject to uncertainty. The uncertainty may

be expressed through confidence intervals for the true parameter values. This is particularly
simple for the TE-method, since the estimates & = Z —ug and fi(ug) = N/A are independent
and their standard deviations can be estimated by & and \/N—/A respectively. A Gaussian
approximation based on a first order Taylor expansion of Z — ug and N/A around their

expected values a and p, gives estimates of the standard deviations of Fip (z) and z.:

see, for example, Coles [15]. Confidence intervals based on the approximate Normality of
maximum likelihood estimators are then directly available. An alternative, likely to be more

accurate in small samples, is to base confidence intervals on profile likelihood. See Coles [15].

4.3 Stereological Details for the AM-Method

In this case we solve (2.8) and replace unknown quantities with their estimates to get

L s . _ A—u
oz:é, ua:u(uo):Aolexp< 8 0)7

14



where \ and § are the maximum likelihood estimates of the Gumbel parameters. By (4.5)

the distribution of the maximum inclusion size in a body of volume V' then is estimated by

- \% 24 T—\ "
Fp,,...(T) exp _SAO \/ b exp <— 3 ) I(z/0) (4.9)

1% 24 T —\
e ———\/——exp | ——= 4.10
Xp 5ag\ 7z p( ) (4.10)

Q

R R —-1/2
Here I(z/0) as above can be calculated numerically or replaced by (1 +0 /420) or by
1, which leads to the approximation in (4.10). Again, to estimate the characteristic size .

corresponding to the volume V requires numerical solution of Fp (z) = e~!. Alternatively

vmax

one can use the approximation

fe=A+dIn L\E (2 4m AV\E (4.11)
dA V) 2\ 5Ag VT

which is verified in the same way as (4.8).

Confidence intervals corresponding to (4.9) and (4.11) are obtained as for the TE-method.
The only difference is the estimation of the standard deviations and correlations of the
parameter estimates X and 4. For the maximum likelihood estimators, the correlation matrix
of the estimators is obtained as the negative of the inverse of the second derivatives of the

log-likelihood with respect to A and 6, as described in §2.1.

4.4 Uemura & Murakami’s Approximation

Uemura & Murakami [16] suggested an approximate solution to the stereological problem of
inferring the distribution of the projection size of the largest inclusion in a volume from the
distribution of the largest section diameter observed in plane sections. They suggested that
the Gumbel distribution of the largest section diameter in a control area A, can be taken to
be approximately the same as the distribution of the largest projection diameter in a volume
Vo = Ag X h, where h is the arithmetic mean of the square root areas of the largest sections
of inclusions in n measured control areas Ag. The distribution of the projection diameter of

the largest inclusion within a larger volume V may then be taken to be approximately
GV/Vo(x: X\, 8) = G(z : A+ 61n(V/Vj), ),
so that the characteristic size for the largest inclusion in V' is . = A + § In(V/V}).

15



This approach can be compared to that in the present paper for the case when sample
sizes are large enough for estimates to be close to their true values. Then 2h/7 is approx-
imately equal to the mean 0.577 § + A of the Gumbel distribution with parameters § and
A, and Uemura & Murakami’s approximating Gumbel distribution for the largest projection

diameter in volume V takes the form

exp {—exp (—m —A- (;ln(V/Vo)> } = exp {_Aoﬁ(0.25‘;7 STV exp (—%) } (4.12)

This can be compared to the corresponding expression (4.10). Evidently the two expressions

agree if z = (0.577 §+X)?/(25), and are similar for z close to this value. Figure 2(a) shows the
difference between the Uemura- Murakami estimate of the characteristic size of the largest
inclusion in volume V obtained from (4.12) and the exact value obtained by equating (4.9)
to e~! and solving numerically. The result is plotted in relation to the scale parameter § for
typical values of \/d and the extrapolation factor K = V/Vy = 2V/(Aey/7(A + 0.577 §)).
There is relatively small variation with K, and the error is less than £1.56 for a wide range
of Gumbel distributions. For comparison, Figure 2(b) shows the corresponding error in the
estimate of the characteristic size obtained by equating (4.10) to e~ ! and solving numerically.

The error is much smaller and decreases with increasing extrapolation.

5 Summary & Conclusions

The paper has shown that the AM and TE methods are related both through the assump-
tions on which they are based and through the estimates that they yield. However, data
requirements of the two methods are different: the AM method needs measurements only of
control area maxima, whereas the TE method needs measurements of all inclusion exceed-
ing a threshold size. In compensation the TE method yields more precise estimates of the
characteristic size of the largest inclusion in larger amounts of material, and its calculations
are very much simpler. It may be the more attractive alternative if automated measuring
equipment is available.

Knowledge of the relationship between the methods facilitates derivation of a new solution
to the stereological problem for large inclusions, and from that a new approximation. It is

found that estimates of the characteristic size of the largest inclusion in a specified volume of
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material based on this new approximation differ in many cases from Uemura & Murakami’s
[16] estimates by no more than 1.5 times the scale parameter ¢ of the Gumbel distribution of
section size maxima. Since values of § might typically lie in the range 0.5-3.5um, for many
purposes Uemura and Murakami’s approximation might be adequate. If greater accuracy is

needed, then the results of §4, which are easy to evaluate numerically, may be used.
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Appendix A: Justification of (4.2)

If a plane section is taken at random through a body, it intersects a sphere of diameter

D, = zx in a circle with diameter D, larger than ug if the centre of the sphere lies within
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a slab of thickness ¢t = (2 — u2)'/? about the plane. The mean number per unit volume
of such spheres with diameter between z and = + éx is then tu, fpy|Dy>u, ()0, where the

conditional density fp,|p,>u, 18

d 1J
fD”‘D”>u° (.’L‘) = %FDv\Dv>uo(w) = _a%

according to (4.1). Hence, summing up over all possible diameters, we get

Yo = b / Fou 1D 5wy (@)(@? — w22 da
ug

po [ T (z/a) 5 2\1/2
—— ———(z* —u dz,
o Juy Tawofa)© "

which gives

[e’e] 2
_ Qfly ' 2 Uo\1/2
o= J — Z0y1/2 gy,
7 T(uo/a) /u » (y) (y a2) y

A result (supported by numerical computations and analytical approximations) for the Bessel

function gives

> u ;. T
- T'(y) (v* = —5)"* dy = Se /=
w/uo/a 012 2

From it and (4.2) we obtain:

1y = (%) €%/ J(ug /).

Q™

Appendix B: Justification of (4.4)

We have

<
~—
S
N

I

/e‘z/\/;ﬂ—y?dz

v

= efy/ 2 V22 2+ 2y dz
0

o -1/2
_ 271/22171/267;// 2 22 (1 4 z dz. (B.1)
0 2y

Using the inequality e=*/2 < (1 4+ a)~%/? < 1 for a > 0 and the identity T'(1/2) =

J° 27"/2e7* dz = \/, we obtain

1\ /2 o A 2\ 12
(1 + —> VT < / z 122 (1 + —> dz < /.
4y 0 2y

Now, comparing (4.3) and (B.1), we observe that

e -1/2
I(z) = / z 22 (1 + i) dz/\/x,
0 2y

and hence the approximation is established.
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List of Figure Captions

Figure 1: Gumbel Plots for largest planar inclusions in a medium Carbon steel.
(a) Size = Squared Diameter; (b) Size = Diameter.

Dotted lines are informal linear approximations.

Figure 2: Errors in approximations for characteristic size of largest inclusion.

(a) (UM Approximation — Exact)/d; (b) (New Approximation — Exact)/d.
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Figure 1: Gumbel Plots for Largest Planar Inclusions in a Medium Carbon Steel
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Error in UM approximation/ &

Figure 2: Errors in Approximations for Characteristic Size of Largest Inclusion
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