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Abstract

This licentiate thesis consists of three papers. The first paper concerns homogenization of
partial differential equations and is an introduction to the theory for industrial applications.
Special emphasis is put on the research done by the homogenization groups at the univer-
sities in Narvik, Norway and Luleå, Sweden. The second paper concerns error-correcting
codes. The paper describes the author’s research on FEED (Far End Error Decoder), a con-
volutional decoder for mobile multimedia. The third paper describes some simulations de-
signed to shed further light on the properties of FEED.

Sammanfattning

Denna licentiatavhandling består av tre artiklar. Den första artikeln berör homogenis-
ering av partiella differentialekvationer och är en introduktion till teorin för industriella
tillämpningar. Speciell vikt läggs på forskning gjord av homogeniseringsgrupperna på uni-
versiteten i Narvik och Luleå. Den andra artikeln berör felkorrigerande koder. Artikeln
beskriver författarens forskning kring FEED (Far End Error Decoder), en faltningsavkodare
för mobil multimedia. Den tredje artikeln beskriver simuleringar avsedda att ytterligare
belysa FEED:s egenskaper.

Keywords: Homogenization of partial differential equations, error-correcting codes, chan-
nel coding, convolutional codes, streaming media, MPEG4, wireless IP, discrete Markov pro-
cesses

AMS 2000 subject classification: 35B27, 74Q15, 74Q20, 74Q99, 94B10, 60J20, 60G35, 94A14,
68P30



Acknowledgements

I thank:
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This thesis consists of three papers. Note that the first two papers are large and written in
monograph style, with individual tables of content. The papers are included in the thesis in
the following order:

[PAPER I] Homogenization of Partial Differential Equations: An Introduc-
tion to the Theory for Industrial Applications

[PAPER II] Sequential Decoding of Convolutional Codes Adapted for Speech
and Video Data Streams

[PAPER III] FEED Encoded Data with Regressive Bit Energy
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Homogenization of Partial Differential Equations:
An Introduction to the Theory

for Industrial Applications

Erik Alapää

Abstract

This paper is an introduction to homogenization research that has direct applications, i.e.
in solving real-world engineering problems concerning inhomogeneous media and in practical
materials science. Special emphasis is put on the work done by the homogenization groups at
the universities in Lule̊a and Narvik. After a brief introduction to some basic mathematical
tools used in homogenization, we move on to the subject of bounds for effective material
properties. Some recent research by the Narvik-Lule̊a groups on the subject of reiterated
homogenization of non-standard Lagrangians (applicable to iterated honeycomb materials) is
also considered. Also, one of the main intentions of this paper is to provide a large set of
references to guide the reader further in the subject matter.
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The subject matter of this work is the area of homogenization of partial differential equa-
tions. Homogenization has its roots in the sixties and has in the last twenty–five years grown
into a distinct field of mathematics. So, what is homogenization? Any reader with even a
minimal background in engineering will not have failed to notice at least a few small waves
from the “silent revolution” in materials science in the second half of the twentieth century—
today, high-tech materials such as ceramics, kevlar fiber composites, titanium, super-polymers
and others replace and often outperform classical engineering materials such as steel (though
steel is by no means obsolete, better types of specialized steel reach the market every year).
Note that many of these new materials exhibit anisotropic properties and/or a fine-grained
microstructure. Now, consider the mathematical modelling of these materials—if we describe
the rapidly varying material properties with equally rapidly varying functions, the numerical
analysis of the materials will become difficult and sometimes even intractable. To put it sim-
ply, homogenization of partial differential equations has as its main purpose to approximate
PDE:s that have rapidly varying coefficients with equivalent “homogenized” PDE:s that (for
example) more easily lend themselves to numerical treatment in a computer.

In this article, we give an introduction to some parts of the theory with special emphasis
on industrial applications. In particular, we introduce the reader to research done by the ho-
mogenization group at Lule̊a University of Technology, Sweden and Narvik University College,
Norway (see e.g. [Luk01, BL00, JL01, LM00, Luk99, Luk97, Wal98, Luk96, Sim02, Bys02],
and also section 5).

1 PDE:s with Rapidly Varying Coefficients

Suppose that we want to model a physical situation where the underlying material is heterogeneous—
for example the (stationary) heat distribution in an inhomogeneous body represented by the
set Ω ∈ R3 or the deflection of an inhomogeneous membrane Ω ∈ R2. These two physical
situations can be described by the following PDE:

Find u ∈ W 1,p(Ω) such that{
∇ · (aε(x,∇u)) = f on Ω,

u = g on ∂Ω.

In the equation above, the map a : Ω × RN → RN represents the heat conductivity in the
case of the heat distribution problem or the stiffness of the material in the deflection problem,
respectively. Similarly, f represents a heat source or a vertical force, and g represents the
temperature or the tension at the boundary ∂Ω. Finally, the parameter ε is very important
in homogenization—it describes how quickly the material parameters vary, and in the search
of an “equivalent” homogenized PDE, one considers a sequence {ε} → 0, see Fig. 1. The
smaller ε gets, the finer the microstructure becomes. In the case where the material to be
considered consists of one material periodically dispersed in another, we have the situation
depicted in Fig. 2, which also shows that two different periodical “Y -cells” can be used to
describe the same material. Except for the section on reiterated homogenization, we will
consider mainly linear problems, i.e. when the differential operator takes the form

∇ · (a(x,∇u)) = ∇ · (A∇u),

with A as an operator A : RN → RN , i.e. at each point x ∈ Ω, A(x) is an N × N -matrix.
Also (again, except for the section on reiterated homogenization) we will restrict ourselves
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Figure 1: The microstructure of Ω as ε → 0 (figure from [Bys02]).

Figure 2: A periodic composite with two different Y -cells (figure from [Bys02]).

to the Hilbert space case, i.e. p = 2, W 1,2(Ω) = H1(Ω), W 1,2
0 (Ω) = H1

0 (Ω), where the 0 as
usual denotes functions with zero trace on the boundary ∂Ω.

2 Homogenization of Elliptic Partial Differential Operators

We begin with a definition (here, and in the sequel, (·, ·) denotes the scalar product of vectors
in RN ) :

Definition 1. Let O denote an open set in RN and let α, β ∈ R such that 0 < α < β. Denote
by M(α, β,O) the set of N ×N -matrices A = (aij)1≤i,j≤N ∈ L∞(O)N×N such that{

i) (A(x)λ, λ) ≥ α |λ|2
ii) |A(x)λ| ≤ β |λ| (1)

for any vector λ ∈ RN and a.e. on O.

This section will give a short overview of some definitions and results concerning homog-
enization of elliptic partial differential operators. More specifically, we will consider partial
differential equations where the differential operator takes the form

A = −∇ · (A(x)∇) = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
. (2)
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Note that if the matrix A = I, the identity matrix in RN , then the operator in (2) is the
Laplacian

−∆ = −
N∑

i=1

∂2

∂x2
i

.

Remark 2. Condition i) in (1) is equivalent to the classical uniform ellipticity condition for
A:

∃α > 0 such that
N∑

i,j=1

aij(x)λiλj ≥ α
N∑

i=1

λ2
i , a.e. on O, ∀λ = (λ1, . . . , λN ) ∈ RN . (3)

In particular, the inequality above implies that A(x) is invertible a.e on O. In general, any
matrix A satisfying this inequality is said to be elliptic.

If we consider A as a linear operator, A : RN → RN , then by condition ii) in (1), we have

‖A(x)‖2 ≤ β a.e. on O,

where as usual, (a.e on O) the quantity

‖A(x)‖2 = sup
λ6=0

|A(x)λ|
|λ|

denotes the operator norm of A(x), i.e. the norm of A(x) as an element of L(RN , RN ), where
RN is equipped with the Euclidean norm.

A vital concept in the subject of solving differential equations is of course well-posedness:

Definition 3 (Well-posedness). Let P be a boundary value problem (b.v.p.) and let U , F
be two Banach spaces. The b.v.p. P is well-posed with respect to U and F if

i) for any element f ∈ F there exists a solution u ∈ U of F ,

ii) the solution is unique,

iii) the map f ∈ F 7→ u ∈ U is continuous.

The examples we will consider here are all well-posed. They are related to the equation

Au = −∇ · (A∇u) = f,

where A is given by (2) and the matrix A ∈ M(α, β, Ω). Of course, a boundary value problem
is formulated by supplementing this equation with boundary conditions of the appropriate
type (homogeneous or nonhomogeneous Dirichlet, Neumann or Robin (i.e. mixed) conditions).
Also, in homogenization another type of boundary condition is very common—if Y = (0, l1)×
. . .× (0, lN ) denotes a (generalized) rectangle in RN , then b.v.p:s with the condition u Y −
periodic, i.e. a periodic boundary condition, are central in the branch of homogenization
theory that deals with periodic structures.
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2.1 The Homogeneous Dirichlet Problem

Let Ω denote an open, bounded set in RN and consider the problem{
−∇ · (A∇u) = f in Ω

u = 0 on ∂Ω,

with the “source term” f ∈ H−1(Ω).
By multiplying with a test function v ∈ H1

0 (Ω), integrating and applying Green’s theorem
(standard procedure in the theory of PDE:s), the corresponding variational formulation is
obtained: {

Find u ∈ H1
0 (Ω) such that

a(u, v) = 〈f, v〉H−1(Ω),H1
0 (Ω), ∀v ∈ H1

0 (Ω), (4)

where a(u, v) is a bilinear form defined by

a(u, v) =
N∑

i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂v

∂xj
dx =

∫
Ω

A∇u∇v dx ∀u, v ∈ H1
0 (Ω).

For precise conditions when the two forms of the PDE are equivalent, we refer the reader
to [CD99, JKO94]. We now state a useful theorem that gives existence, uniqueness and an
estimate of how sensitive problem (4) is to variations in the right-hand side (i.e. f), see
[CD99]:

Theorem 4 (Homogeneous Dirichlet Problem). Suppose that A ∈ M(α, β, Ω). Then
there exists a unique solution u ∈ H1

0 (Ω) of problem (4) for any f ∈ H−1(Ω). Furhermore,
the solution has a continuous dependence on f ,

‖u‖H1
0 (Ω) ≤

1
α
‖f‖H−1(Ω), (5)

where ‖u‖H1
0 (Ω) = ‖∇u‖L2(Ω).

As before, let Ω denote a bounded, open set in RN and let ε denote a parameter which
takes its values in a sequence tending to zero. Also, let

Aε(x) = (aε
ij(x))1≤i,j≤N a.e. on Ω

be a sequence of (non-constant) matrices such that

Aε ∈ M(α, β, Ω).

We introduce the operator

Aε = −∇ · (Aε(x)∇) = −
N∑

i,j=1

∂

∂xi

(
aε

ij(x)
∂

∂xj

)
. (6)

Now, consider the equation
Aεu

ε = f (7)

with a Dirichlet boundary condition on ∂Ω. Equations of the type (7) model many prob-
lems in elasticity, heat conduction, electromagnetism etc. where the materials involved are
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inhomogeneous with periodically varying coefficients (as before, the parameter ε describes
the rapidly varying material properties, i.e. the heterogeneities of the material). Also, (7)
is very important from a theoretical standpoint because the main mathematical obstacles in
homogenization theory are already present in this basic equation.

A classical problem of type (7) is the Dirichlet problem{
−∇ · (Aε∇uε) = f in Ω

uε = 0 on ∂Ω,

with f ∈ H−1(Ω), as above. For any fixed ε, Theorem 4 immediately gives the existence and
uniqueness of a solution uε ∈ H1

0 (Ω) such that∫
Ω

Aε∇uε∇v dx = 〈f, v〉H−1(Ω),H1
0 (Ω) ∀u, v ∈ H1

0 (Ω).

Also, estimate (5) continues to hold, i.e.

‖uε‖H1
0 (Ω) ≤

1
α
‖f‖H−1(Ω).

This means that as ε → 0, the sequence of solutions {uε} is uniformly bounded. Since the
space H1

0 (Ω) is a reflexive Banach space, we can apply the Eberlein-Smuljan theorem. This
theorem tells us that there exists a subsequence {uε′} and an element u0 ∈ H1

0 (Ω) such that

uε′ ⇀ u0 weakly in H1
0 (Ω).

A few questions may now occur to the reader:

• Does u0 satisfy some boundary problem in Ω?

• If the first question is answered in the affirmative, is u0 uniquely determined?

• Does the “limit” boundary value problem involve a matrix A0 that depends on the space
coordinate x ∈ RN , or is A0 a constant matrix?

It turns out that in some situations, in particular if the material properties vary periodically, it
is possible to give explicit formulas for the matrix A0 which show that A0 is independent of the
subsequence {uε′}, which also implies that the solution u0 is independent of the subsequence
{uε′}. As a consequence, it will follow from the Eberlein-Smuljan theorem that the whole
sequence {uε} converges to u0, where u0 is the unique solution of the problem{

−∇ · (A0∇u0) = f in Ω
u0 = 0 on ∂Ω.

(8)

The problem (8) is called the homogenized problem, A0 is called the homogenized matrix
and u0 the homogenized solution. To prove the statements above, powerful tools such as
Tartar’s method of oscillating test functions or the concept of two-scale convergence are
needed. The full description of these tools lie well outside the scope of this work (For further
information, we refer the interested reader to [CD99, JKO94]. Also, a useful overview of two-
scale convergence is [LNW02]). However, we will give an overview of an important special
case, namely homogenizaton in R1, where interesting results can be obtained by utilizing
widely-known results from real analysis. This is the subject of the next section.

7



2.2 A One-Dimensional Example

Let Ω = (d1, d2) be an open interval in R. Consider the problem
− d

dx

(
aε duε

dx

)
= f in (d1, d2)

uε(d1) = uε(d2) = 0.

(9)

The function a is assumed to be a positive function in L∞(0, l1) such that{
a is l1-periodic
0 < α ≤ a(x) ≤ β < ∞,

(10)

where α and β are constants. As usual, the notation aε from (9) means

aε(x) = a(
x

ε
). (11)

The following result is classical in homogenization [Spa67]:

Theorem 5. Let f ∈ L2(d1, d2) and aε be defined by (10) and (11). Let uε ∈ H1
0 (d1, d2) be

the solution of problem (9). Then,

uε ⇀ u0 weakly in H1
0 (d1, d2),

where u0 is the unique solution in H1
0 (d1, d2) of the problem

− d

dx

 1

M(0,l1)(
1
a
)

du0

dx

 = f in (d1, d2)

u0(d1) = u0(d2) = 0.

(12)

(As usual, M(0,l1)( 1
a) denotes the mean value of 1

a over the interval (0, l1), i.e. M(0,l1)( 1
a) =

1
|(0,l1)|

∫
(0,l1)

1
a dx).

Proof. We begin by observing that the following estimate holds:

‖uε‖H1
0 (d1,d2) ≤

d2 − d1

α
‖f‖L2(Ω).

This inequality is a consequence of the coercivity requirement on a, the Lax-Milgram theorem
and Poincaré’s inequality, where d2 − d1 is the Poincaré constant. For a more detailed expla-
nation, see [CD99]. Now, H1 is a separable Banach space (and so is H1

0 since it is a closed
subspace of H1), so we can invoke the Eberlein-Smuljan theorem. Thus, for a subsequence,
still denoted by ε we have uε ⇀ u0 weakly in L2(d1, d2)

duε

dx
⇀

du0

dx
weakly in L2(d1, d2).

(13)
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Define
ξε = aε duε

dx

which satisfies
dξε

dx
= f in (d1, d2). (14)

The estimate on uε and (10) together imply that the following estimate holds:

‖ξε‖L2(d1,d2) ≤
β(d2 − d1)

α
‖f‖L2(d1,d2).

Again, the Eberlein-Smuljan theorem can be invoked. We get convergence (up to a subse-
quence)

ξε ⇀ ξ0 weakly in L2(d1, d2).

Furthermore, the limit ξ0 satisfies (see [CD99])

dξ0

dx
= f in (d1, d2). (15)

The estimate on ξε and (14) give

‖ξε‖L2(d1,d2) + ‖dξε

dx
‖L2(d1,d2) ≤

β(d2 − d1)
α

‖f‖L2(d1,d2) + ‖f‖L2(d1,d2).

Thus, ξε is bounded in H1(d1, d2). The Sobolev embedding theorem then tells us that ξε is
compact in L2(d1, d2), and consequently there exists a subsequence, still denoted by ε, such
that

ξε → ξ0 strongly in L2(d1, d2).

The next step is to examine the relation between ξ0 and u0. By definition,

duε

dx
=

1
aε

ξε. (16)

The assumption on a, (10) implies that 1
aε is bounded in L∞(d1, d2), since

0 <
1
β
≤ 1

aε
≤ 1

α
< ∞. (17)

Therefore, 1
aε weak∗-converges to the mean value of 1

a , i.e.

1
aε

⇀ M(0,l1)

(
1
a

)
=

1
l1

∫ l1

0

1
a(x)

dx weakly∗ in L∞(d1, d2).

Also, observe that due to (17),

M(0,l1)

(
1
a

)
6= 0.

To finish the proof, we will make use of the following theorem which is well-known in homog-
enization theory:
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Theorem 6 (Convergence of weak-strong products). Let E be a real Banach space and
let E′ denote its dual. Also, let {xn} ∈ E and {yn} ∈ E′ such that{

xn ⇀ x weakly in E
yn → y strongly in E′.

Then
lim

n→∞
〈yn, xn〉E′,E = 〈y, x〉E′,E .

Now, since we have ξε → ξ0 strongly in L2(d1, d2) for a subsequence, the theorem above
lets us pass to the limit in the weak-strong product in (16), and thus obtain

duε

dx
⇀ M(0,l1)

(
1
a

)
ξ0 weakly in L2(d1, d2).

Equation (13) now gives
du0

dx
= M(0,l1)

(
1
a

)
ξ0.

Equation (15) shows that u0 is the solution of the limit homogenized differential equation
(12). Since we have shown M(0,l1)

(
1
a

)
6= 0, we know that (12) has a unique solution. Thus,

we can again invoke the Eberlein-Smuljan theorem and conclude that the whole sequence
{uε} weakly converges in H1

0 (d1, d2) to u0, which ends the proof. �

3 Bounds for the Homogenized Properties

In this section, we will give a short overview of a large and important sub-area of homog-
enization theory—the search for bounds of the homogenized properties. For proofs of the
statements in this section, see [JKO94]. We continue to consider only linear problems. More
specifically, the matrix Aε(x) will be of the form

Aε(x) = A(
x

ε
), A Y − periodic.

Furthermore, A is assumed to be of the form A(x) = α(x)I, where α : RN → R satisfies the
inequalities 0 < β1 ≤ α(x) ≤ β2 < ∞. When we use the term two-phase composite we are
talking about a material where α only takes two values, i.e. it can be written on the form

α(x) = α1χΩ1(x) + α2χΩ2(x), α1 < α2,

where the sets Ωi are the periodical extensions of {x ∈ Y : α(x) = αi} and χΩi denote the
characteristical functions of the sets Ωi. Also, we let mi denote the volume fraction of the
material that occupies Ωi.

The most basic set of bounds are the Reuss-Voigt bounds [JKO94], which say that the
homogenized matrix, denoted by bhom in this section, satisfies the estimate

hI ≤ bhom ≤ aI, (18)

where I is the identity matrix and h and a denote the harmonic and arithmetic mean of α
over a cell of periodicity, respectively. If A and B are matrices, then the notation A ≤ B
means that B −A has positive eigenvalues. Thus, (18) can be written

h ≤ λi ≤ a,

10



where λi are the eigenvalues of the homogenized matrix bhom. In the particular case of a
two-phase composite, the Reuss-Voigt bounds imply

1
m1
α1

+ m2
α2

≤ λi ≤ m1α1 + m2α2.

An improved set of bounds are the so-called Hashin-Shtrikman bounds [JKO94]. According
to these,

L ≤ λ1 + · · ·+ λN

N
≤ U,

where L and U are defined by

L = a− 〈(α− a)2〉
n inf α + 〈(α− a)2〉(a− inf α)−1

,

L = a− 〈(α− a)2〉
n supα + 〈(α− a)2〉(supα− a)−1

.

In these expressions, 〈·〉 denotes the arithmetic mean. For the special case of a two-phase
material, L and U take the forms

L = m1α1 + m2α2 −
m1m2(α2 − α1)2

nα1 + m1(α2 − α1)
,

U = m1α1 + m2α2 −
m1m2(α2 − α1)2

nα2 + m2(α1 − α2)
,

respectively. The sharpest set of bounds we will mention here are the so-called generalized
Hashin-Shtrikman bounds [JKO94]:

tr(b− inf αI)−1 ≤
n〈 1

α+(n−1) inf α〉
1− inf α〈 1

α+(n−1) inf α〉
,

tr(b− supαI)−1 ≤
n〈 1

α+(n−1) sup α〉
1− supα〈 1

α+(n−1) sup α〉
,

(19)

where tr(A) stands for the trace of the matrix A. In the particular case of a two-phase
composite, (19) reduces to

tr(b− α1I)−1 =
n∑

i=1

1
λi − α1

≤ n

m2(α2 − α1)
+

m1

α1m2
,

tr(α2I − b)−1 =
n∑

i=1

1
α2 − λi

≤ n

m1(α2 − α1)
− m2

α2m1
.

The research on bounds and on finding methods for obtaining bounds is a large and highly
active area of investigation. As usual, various generalizations of the situation we described
in this section have been, and continue to be, investigated. For example, the problem can
be generalized to N phases and anisotropic behavior of the constituent materials. There are
also extensions of the methods, extensions that enable the study of other types of equations
such as the PDE:s that describe linear elasticity. An even more challenging problem is to
find bounds for nonlinear PDE:s—for a few recent developments in this area and further
references, see [Wal98].
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Figure 3: Gradually tighter bounds: Reuss-Voigt, Hashin-Shtrikman and generalized Hashin-
Shtrikman (figure from [Bys02]).

4 Reiterated Homogenization

One type of material that has attracted a lot of attention in the homogenization community
are the so-called honeycomb materials. Such a material is essentially a two-dimensonal, two-
component periodic structure where the interior consists of polygons (typically rectangles or
hexagons). Also, an iterated honeycomb is essentially a honeycomb within a honeycomb, see
Figs. 4, 5, 6. The rank describes the “nesting level” or number of iterations.

In many areas of homogenization, the problem can be expressed in terms of minimizing
an energy functional

Fh(u) =
∫

Ω
fh(x,∇u(x)) dx,

where h is a scale parameter which is essentially the inverse of ε. If fh can be written on the
form fh(x, ξ) = f(hx, h2x, ξ) we have a reiterated problem of rank 2. For more information
about our group’s work on reiterated homogenization, see e.g. [LLPW01]. After this short
introduction to the terminology, we turn our attention to an example in the case of reiterated
homogenization of non-standard Lagrangians.

4.1 Reiterated Homogenization; non-standard Lagrangians

In this section a few results concerning Γ-convergence of some reiterated non-standard La-
grangians will be presented. These Lagrangians are of the form f(x/ε, x/ε2, ξ) and satisfy

−c0 + c1 |ξ|α1 ≤ f(y, z, ξ) ≤ c0 + c2 |ξ|α2 . (20)

Note the difference between (20) and a standard Lagrangian, where we would have α1 = α2

— here, we consider the more general case where 1 < α1 ≤ α2. The function f(y, z, ξ)
is assumed to be Y -periodic and Z-periodic in the first and second variables, respectively.
Furthermore, f is assumed to be piecewise continuous in the first variable. Thus, f is of the

12



Figure 4: An iterated square honeycomb of rank 2 (figure from [Luk99]).

Figure 5: A laminate structure of rank 2 (figure from [LM00]).

Figure 6: An iterated hexagonal honeycomb of rank 3 (figure from [Luk97]).
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form f(y, z, ξ) =
∑N

i=1 χΩi(y)fi(y, z, ξ), where the fi satisfy∣∣fi(y, z, ξ)− fi(y′, z, ξ)
∣∣ ≤ ω

∣∣y − y′
∣∣ (a(z) + fi(y, z, ξ))

for all y, y′, z, ξ ∈ Rn and ω and a are continuous, positive, real-valued functions with ω(0) = 0.
In the second variable, f is assumed to be measurable, and in the third variable, f is assumed
to be convex and satisfying the growth condition (20) with 1 < α1 ≤ α2.

Let fε(x, ξ) be any sequence. Assume that fε(x, ξ) is measurable in the first variable and
convex and satisfying growth condition (20) in the second variable. A function g(x, ξ) which
satisfies the same conditions of convexity and growth as f is called the Γi-limit (i=1, 2) of the
sequence fε if for any open, bounded set Ω with Lipschitz boundary the following conditions
hold:

i) For any uε ∈ W 1,αi(Ω) such that uε ⇀ u weakly in W 1,αi(Ω) it holds that∫
Ω

g(x,Du) dx ≤ lim inf
ε→0

∫
Ω

fε(x,Du) dx.

ii) For every u ∈ W 1,αi(Ω) there is a sequence uε such that uε ⇀ u weakly in W 1,αi(Ω)
and uε − u ∈ W 1,αi

0 (Ω), ∫
Ω

g(x,Du) dx = lim
ε→0

∫
Ω

fε(x,Du) dx.

This definition of Γ-convergence was introduced by Jikov [Jik93] and is denoted g = Γi−lim fε.
Now, let i = {1, 2}, 1/ε = {1, 2} and put fε(x, ξ) = f(x/ε, x/ε2, ξ). Again according to

[Jik93] the limit fΓi = Γi − lim fεh
exists for some subsequence fεh

of fε. We now would like
to mention the following result by Lukkassen [Luk01]:

Theorem 7. It holds that fΓi = Γi − lim fεh
is independent of x and that

Qi
1f(ξ) ≤ fΓi(ξ) ≤ Qi

2f(ξ), (21)

where
Qi

jf(ξ) =
1
|Y |

inf
W

1,αj
per (Y )

∫
Y

P if(y, Du(y) + ξ) dy

and
P if(y, ξ) =

1
|Z|

inf
W

1,αj
per (Z)

∫
Z

f(y, z,Du(z) + ξ) dz.

In particular, if P if is regular, i.e. the left and right side of (21) are equal, then the limit
fΓi = Γi − lim fεh

exists and is given by

fΓi(ξ) =
1
|Y |

inf
W 1,t

per(Y )

∫
Y

P if(y, Du(y) + ξ) dy (t > 1 arbitrarily).

Remark 8. The inequalities (21) are the sharpest possible with respect to the powers αi in
W 1,αi

per (Y ).

14



Figure 7: The functions f and f ′ (figure from [Luk01]).

An interesting question now may occur to the reader—does the (unique) limit Γ− lim fε

exist for any sequence ε → 0? The answer is affirmative if the Lagrangian function f is
constant in the first variable, i.e. if f is periodic. Unlike the case when f is a standard
Lagrangian (see [BL00, Luk96]), this limit does not always exist if f is dependent on the first
variable. To illustrate this, we take a look at the “iterated chess Lagrangian” by Lukkassen
[Luk01]:

Example 9 (Iterated chess Lagrangian). Put Y = Z = [−1, 1]2 and let χ be the charac-
teristic function defined by

χ(x) =
{

1 if x1x2 > 0,
0 if x1x2 < 0

on Y and then extend χ periodically to R2. Also, let

f(y, z, ξ) =
1

α(y, z)
|ξ|α(y,z) ,

where α is defined by

α(y, z) =
{

α1 if χ(y + τ)χ(z + τ) = 0,
α2 otherwise,

where τ = (1/2, 1/2) and 1 < α1 < 2 < α2 < ∞. Let f ′ be defined as f but with a different τ ,
τ = (−1/2, 1/2). Now, let fε(x, ξ) = f(x/ε, x/ε2, ξ) and f ′ε(x, ξ) = f ′(x/ε, x/ε2, ξ). Note that
f and f ′ differ at 0 (see Fig. 7). If we set i = 0 and 1/(2ε) ∈ {1, 2, . . .} it can be shown that

Γi − lim fε = Qi
1f < Qi

2f
′ = Γi − lim f ′ε. (22)

Furthermore, if we let α1 and α2 change place, the reverse inequality in (22) is obtained
for i = 1. Note that in any case, P if = P if ′. This non-regularity of P if for the iterated
chess Lagrangian is explained by the fact that Qi

1f(ξ)/ |ξ|α1 → k1 and Qi
2f(ξ)/ |ξ|α2 → k2 as

|ξ| → ∞ for some constants k1, k2 < ∞. The proof can be obtained using similar arguments
as in p. 441 of [JKO94] (see also [JL01]).
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5 Some Applications of Homogenization Theory to Materials
Science

A good introduction to homogenization useful for non-mathematicians is the book [PPSW93].
One example of our cooperation with industry is the research done together with the automo-
bile company Volvo, see e.g. [PVB01]. Other examples of our applied research are [PMW97,
PBJV98, PEB02, PED03]. Here, it is also appropriate to list all the Ph.D. theses produced
by the Narvik-Lule̊a group: [Sva92, Hol96, Luk96, Wel98, Wal98, Mei01, Bys02, Sim02]. In
[Mei01] the interested reader will find further references to applied work done by our group.
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Sequential Decoding of Convolutional Codes
Adapted for Speech and Video Data Streams

Erik Alapää

Abstract

The present work concerns the use of error-correcting codes, more specifically convolutional
codes, for applications involving streaming media over wired and wireless networks. A C++
implementation of FEED, a new type of convolutional decoder especially well adapted for
such applications, is described. The remainder of the work is an investigation into further
improving the performance of FEED by optimizing a variable-energy modulation scheme,
i.e. optimizing the discrete symbol energy distribution that is used by the actual radio trans-
mitter in the transmission network. To provide some further support for the above investi-
gation, a conference paper describing a series of simulations is also included.

Sammanfattning

Denna uppsats behandlar användningen av felkorrigerande koder (faltningskoder) för
tillämpningar som involverar strömmande media över trådbundna och trådlösa nätverk.
En C++-implementation av FEED, en ny typ av faltnings(av)kodare speciellt väl lämpad för
sådana tillämpningar, beskrivs. Återstoden av arbetet utgörs av en undersökning med syfte
att ytterligare förbättra FEED:s prestanda genom att optimera en modulationsmetod som
utnyttjar variabel symbolenergi, d.v.s optimering av den diskreta symbolenergifördelning
som används av själva radiosändardelen i transmissionssystemet. Som ytterligare stöd för
ovanstående undersökning inkluderar vi också en konferensrapport som beskriver en simu-
leringsserie vi gjort med vår FEED-avkodare.
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Chapter 1

Introduction

The subject area of this paper is error-correcting codes for radio transmission. The work
described in the paper was part of the MulRes project that investigated transmission of mul-
timedia signals over wired and wireless TCP/IP (Inter- and intranet) links. The industrial
part of the project was to develop C++ code for FEED, a new type of sequential decoder es-
pecially well adapted for transmission of progressively (source-)encoded multimedia signals
(for definition of the term progressively encoded, see section 1.2).

1.1 The Structure of this Paper

The bulk of this paper is contained in chapters 2, 3 and 4 (see below). An article describing
simulations with FEED and non-uniform transmitter energy for the NORSIG 2002 confer-
ence is also included. We would also like to point out to the reader that chapter 5 contains
explanations of some concepts, acronyms and terminology used in this work, and that a
small index is also provided.

Chapter 2 describes the mathematics behind the FEED decoding algorithm that has roots
in the 70s but was put into its current form by prof. Hagenauer’s group in Munich. The
chapter is intended as a coherent and easy-to-read description of material relevant to FEED
from several articles by different groups (references are given in chapter 2).

Chapter 3 describes the author’s C++ implementation of FEED for the Swedish company
Ericsson. The chapter contains description of the simulation/test environment and key algo-
rithms and classes in the implementation. The material should be useful to code maintainers
and researchers wanting to deepen their understanding of FEED, and also for users of the
FEED software.

In chapter 4 we study the question of combining FEED with a transmitter capable of
applying non-uniform symbol energy to the transmitted symbols, and the results from our
mathematical model indicate that a simple energy truncation should be very nearly opti-
mal. The consequence of this is that in situations with low signal-to-noise ratio, a frame of
progressively encoded information should be truncated and the saved energy/bandwidth
should be used for applying more redundancy to the remaining (most important) informa-
tion symbols.
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Figure 1.1: Digital transmission system

Important bits Less important bits

Beginning End

Figure 1.2: Data frame of a progressively encoded source

1.2 Background for the FEED concept

Modern source compression schemes for multimedia (sound, video etc) are often progres-
sive—to explain this term, consider the transmission system depicted in Fig. 1.1 and the
compression of an audio signal using some suitable transform such as the FFT or a wavelet
transform. An audio frame is converted into a set of coefficients, which are sorted in de-
creasing size order. The ones that are below a given threshold are truncated, thus acheiving
the compression. Consider the transmission of the remaining coefficients (in decreasing size
order) over a noisy communication channel and reconstruction of the audio signal at the
receiver end, with the following observations:

• One can reconstruct a reasonable approximation of the signal if the most important
(i.e. largest) coefficients in the frame have been received correctly.

• Moving further into the frame, the reconstructed signal quality increases with the num-
ber of correctly received coefficients.

• Due to e.g. variable run-length encoding, if one coefficient has been corrupted by noise,
the following coefficients in the frame can actually degrade the reconstructed quality
[HSWD00].

The usual objective of channel coding (i.e. the use of error-correcting codes) is to mini-
mize the bit error rate at the receiver, subject to constraints on transmitter power, bandwith
etc. Given the observations above, another paradigm suggests itself—a channel decoder that
tries to decode as much of the frame as possible (for instance, heavy noise and timing con-
straints could prevent the decoder from processing the whole received frame), and delivers
only the data from the beginning of the frame up to the first uncorrected error to the source decoder.
FEED is such a decoder—it is based on an algorithm that augments a sequential decoder of
a convolutional code with the capability of calculating the reliability of a subpath of the de-
coded sequence, i.e. the probability that a given subframe of the decoded frame is error-free.
Chapter 2 is devoted to explaining the mathematics behind this path reliability calculation.

2



Chapter 2

Theory for the FEED Decoder

The roots of the FEED concept can be traced back at least to the 70s—to two articles, [BCJR74]
and [Mas72]. The term FEED itself was coined much later, by the Hagenauer group in Mu-
nich, and stands for Far End Error Decoder (the “far end” part will be explained in section
2.3.3). The description below is mainly based on [WSH01], but is intended for a wider au-
dience, i.e. it contains more background material etc. for the benefit of readers who are
not specialists in error-correcting codes. Besides reading the papers by FEED’s inventors,
[WSH01] [HSWD00], reading [BCJR74] and [Mas72] is highly recommended for anyone who
wants to deepen their understanding of the FEED theory.

2.1 General Problem and Optimal Solution

We want an augmented convolutional decoder that besides estimating the transmitted se-
quence also computes the reliability of the estimate(s). As shown in [BCJR74] and [WSH01],
this problem is a special case of a more general one: Estimating the a-posteriori probabili-
ties of the states and transitions of a Markov source (see “Markov process” in chapter 5)
observed through a discrete, memoryless channel.

Consider a transmission system that consists of a discrete-time finite-state Markov source
observed through a DMC, followed by a decoder, as in Fig. 2.1. Fig. 2.2 shows two equiv-
alent ways for graphical description of a time-invariant, finite state Markov source. The
upper part of the figure shows a state transition diagram for a Markov source with three states

MARKOV
SOURCE

DISCRETE
MEMORYLESS

CHANNEL
DECODER

xxtt yytt

Source
data

SOURCE
CODER

CHANNEL
CODER

CHANNEL CHANNEL
DECODER

SOURCE
DECODER

Received
data

Figure 2.1: Schematic diagram of transmission system.
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Figure 2.2: State transition diagram and equivalent trellis for a 3-state MS.

{0, 1, 2}. The arrows between the states shows the state transitions that have nonzero proba-
bility. The lower part of the figure shows a trellis for the same source. The horizontal axis in
the trellis represents discrete time, and the vertical axis represents the three possible states.
Also note that even though one single state transition diagram is insufficient to describe a
time-varying Markov source, such a source could still be described by a trellis.

We now move on with the description of the system in Fig. 2.1. The Markov source
has M distinct states m, m = 0, 1, . . . ,M − 1. The state at time t is denoted by st and the
corresponding output by xt, where the output belongs to some finite discrete alphabet X .
The state transition probabilities Pt(m | m′) = Pr{ st = m | st−1 = m′ } are a complete
description of the Markov source, and they correspond to the output distribution Qt(x |
m,m′) = Pr{xt = x | st−1 = m′, st = m }. By convention, the Markov source always starts in
the initial state s0 = 0, and then generates the output sequence x = x(0:T ] = {x1, x2, . . . , xT }.
The set of possible output sequences of length T is denoted by S and (as described above)
can be represented by a trellis. Because of this, the terms path (through the trellis) and
sequence will be used interchangeably. The output sequence x then travels through a DMC
with transition probabilities pc(yt | xt) where the xt belong to X and yt belong to some
alphabet Y . An output sequence y = y(0:t] = {y1, y2, . . . , yT } is produced by the DMC, and
since the DMC by definition is memoryless, we have Pr{y(0:t] | x(0:t] } =

∏t
τ=1 pc(yτ | xτ ).

The objective of the decoder is to produce an estimate x̂ of the transmitted sequence and to
calculate the path reliabilities Ry(x̂(0:t]) for the decoded subpaths x̂(0:t], 1 ≤ t ≤ T , given the
the entire received sequence y. Here,Ry(x̂(0:t]) denotes the a-posteriori probability that, given
the observation (i.e. received sequence) y, the estimate x̂(0:t] was the transmitted sequence.
Thus,

Ry(x̂(0:t]) = Pr{ x̂(0:t] | y }.

Set S(x(a,b]) = {z ∈ S | ∀a < τ ≤ b xτ = zτ}, i.e. S denotes the set of all paths
through the trellis that have a common subpath x(a,b], 0 ≤ a < b ≤ T , and let s(x(0:t])
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denote the state of our Markov source after producing x(0:t]. For simplicity, we also set
s0 = s(x(0:0]). With this notation, we can write the reliability of the subpath x̂(0:t] given the
observed sequence y as

Ry(x̂(0:t]) = Pr{ x̂(0:t] | y } =
∑

x′∈S(x̂(0:t])

Pr{x′ | y }.

Thus, Ry(x̂(0:t]) denotes the probability that the subpath x̂(0:t] is error-free. We then define
the reliability vector

Ry(x̂) = {Ry(x̂(0:1]), Ry(x̂(0:2]), . . . , Ry(x̂(0:T ])},

consisting of the reliabilities of all subpaths of x̂ that begin with the first symbol of x̂.
We are now ready for describing the derivation of a recursive algorithm for calculating

the path reliabilities. This derivation was done by the authors of [WSH01] and it is closely
related to the BCJR algorithm as described in [BCJR74]. Define

αt(m) = Pr{ st = m,y(0:t] } (2.1)
βt(m) = Pr{y(t:T ] | st = m } (2.2)

γt(m′,m) = Pr{ st = m, yt | st−1 = m′ } (2.3)

and

λt(m) = Pr{ st = m,y(0:T ] }
σt(m′,m) = Pr{ st−1 = m′, st = m,y(0:T ] }.

Now,

λt(m) = Pr{ st = m,y(0:t] } · Pr{y(t,T ] | st = m,y(0:t] }
= αt(m) · Pr{y(t,T ] | st = m }
= αt(m) · βt(m).

Note that the middle inequality follows from the Markov property, i.e. if st is known, the
behavior of the Markov source does not depend on y(0:t]. Similarly, for σt(m′,m) we get

σt(m′,m) = Pr{ st−1 = m′,y(0:t−1] } · Pr{ st = m, yt | st−1 = m′ }
·Pr{y(t,T ] | st = m }

= αt−1(m′) · γt(m′,m) · βt(m).

Thence, for t ∈ {1, 2, . . . , T}

αt(m) =
M−1∑
m′=0

Pr{ st−1 = m′, st = m,y(0:t] }

=
∑
m′

Pr{ st−1 = m′,y(0:t−1] }

·Pr{ st = m, yt | st−1 = m′ }
=

∑
m′

αt−1(m′) · γt(m′,m),

5
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where the Markov property was used again to obtain the middle inequality. Since the con-
vention is that the Markov source begins in the zero state, at t = 0 we also have the boundary
conditions

α0(0) = 1 and α0(m) = 0 for m 6= 0.

Similarly, for t ∈ {1, 2, . . . , T − 1}

βt(m) =
M−1∑
m′=0

Pr{st+1 = m′,y(t,T ] | st = m}

=
∑
m′

Pr{ st+1 = m′, yt+1 | st = m }

·Pr{y(t+1,T ] | st+1 = m′ }

=
∑
m′

γt+1(m,m′) · βt+1(m′),

and the boundary conditions are

βT (0) = 1 and βT (m) = 0 for m 6= 0,

since the Markov source ends in the zero state by convention. For γt we use the description
of the Markov source (the state and output transition probabilites Pt(· | ·) and Qt(· | ·)) and
of the DMC (the channel transition probabilities pc(· | ·)) to obtain

γt(m′,m) = Pr{ st = m, yt | st−1 = m′ }
=

∑
x∈X

Pr{ st = m | st−1 = m′ }

·Pr{xt = x | st−1 = m′, st = m } · Pr{ yt | x }
=

∑
x∈X

Pt(m | m′) ·Qt(x | m′,m) · pc(yt | x). (2.4)

Equations (2.2) and (2.3) can be used to write the joint probability of x̂(0:t] and y as

Pr{ x̂(0:t],y } = Pr{y(t,T ] | s(x̂(0:t]) } · Pr{ x̂(0:t],y(0:t] }

= βt(s(x̂(0:t]))
t∏

τ=1

γτ (s(x̂(0:τ ]), s(x̂(0:τ−1])).

To get the conditional probability

Pr{ x̂(0:t] | y } = Pr{ x̂(0:t],y }/Pr{y }

we observe that since the Markov source starts in the zero state s0 = 0, Pr{y } =∑M−1
m=0 Pr{y(0:T ], s0 = m } = β0(s0 = 0). Thus,

Ry(x̂(0:t]) = Pr{ x̂(0:t] | y }
= Pr{ x̂(0:t],y }/Pr{y }
= Pr{ x̂(0:t],y }/β0(0)

=
βt(s(x̂(0:t]))

∏t
τ=1 γτ (s(x̂(0:τ ]), s(x̂(0:τ−1]))

β0(0).
(2.5)

Next, we apply (2.5) to binary convolutional codes.
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2.2 Application of the General Algorithm: Path Reliability for Bi-
nary Convolutional Codes

Consider a binary convolutional encoder of rate k0/n0 and overall constraint length k0ν.
The encoder can be implemented by k0 shift registers, each of length ν bits, and the state
of the encoder is simply the contents of the shift registers (there are other definitions of
constraint length, but the definitions usually share the property that constraint length is
roughly proportional to the memory of the decoder, e.g. shift register depth or word length).

For example, in the FEED implementation described in chapter 3, we use an encoder
where k0 is fixed to 1 and n0 is usually 2 or 7 (n0 can vary in integer steps, but the usual
procedure to vary the rate is to use puncturing, which is also avaliable in our implementa-
tion). The encoder is built entirely in software and it uses 96-bit words for its operation, so
the memory is 95 bits, since one bit is needed for the “current” input bit. Thus, in our FEED
encoder, we have k0ν = ν = 96.

The input to the encoder at time t is the block (i.e. symbol) of k0 bits

ut = [u(1)
t , u

(2)
t , . . . , u

(k0)
t ],

and the corresponding output is a block (symbol) of n0 bits

xt = [x(1)
t , x

(2)
t , . . . , x

(n0)
t ].

The encoder state st kan then be represented as the k0ν-tuple

st = [s1t , s
2
t , . . . , s

k0ν
t ] = [ut, ut−1, . . . , ut−ν+1].

As stated before, the convention is that the encoder starts in the state s0 = 0 (where the 0
really represents k0ν zeros, but no confusion should arise from this). As an example, the de-
fault frame length in our FEED implementation is 1152 information bits and k0 = 1 as stated
above. This means that each information symbol ut consists of only one bit, so to encode
a frame, an information sequence u(0:T ] = [u1, u2, . . . , uT ] with T = 1152 information bits
would then be entered into the encoder. Again by convention, of these 1152 bits, the last
k0ν = 1 · 96 bits would be zeros, to ensure that the encoder returns to the zero state after
encoding the frame. We will only consider time-invariant convolutional encoders, i.e. the
encoder polynomials do not change during the encoding process. Such a convolutional en-
coder can be viewed as a finite state machine, i.e. a discrete-time, finite state, time-invariant
Markov process. Thus, the encoder can be analyzed as above and represented by a trellis or,
since the encoder is time-invariant, as a state transition diagram. The transition probabilities
Pt(m | m′) of the trellis are governed by the input statistics. Generally, the input sequences
are considered equally likely for t ≤ T − k0ν (remember, the last k0ν bits are an all-zero
“tail”). Since there are 2k0 possible transitions out of each state, Pt(m | m′) = 2−k0 for each
of these transitions. For the tail (t > T − k0ν) there is only one possible transition out of each
state, and this transition of course has probability 1. The output xt is completely governed
by the transition, so for each transition, there is a 0-1 probability distribution Qt(x | m′,m)
over the symbol alphabet X of binary n0-tuples. Of course, for time-invariant codes Qt(· | ·)
is independent of t.

To apply (2.5), the channel properties are needed to calculate γt(m′,m) with (2.4). For
instance, consider a DMC—during development and testing, performance simulations for

7
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our FEED implementation have been carried out using a binary-input, 256-output DMC
model. The symbol transition probabilities pc(yt | xt) can be calculated as

pc(yt | xt) =
n0∏

j=1

r(y(j)
t | x(j)

t ), (2.6)

where r(· | ·) are the transition probabilities for the DMC and

yt = [y(1)
t , y

(2)
t , . . . , y

(n0)
t ]

is the block received at time t. In the binary-input, 256-output DMC model, each yj
t could be

represented by an 8-bit quantity, e.g. an unsigned char in C/C++.
As for algorithmic complexity, the optimal algorithm described above is unfortunately

prohibitively complex—both the storage requirements and computational load increases ex-
ponentially with the number of states of the Markov source, i.e. an exponential increase with
encoder memory (constraint length), see [BCJR74]. Therefore, using a suboptimal algorithm
with better complexity properties is in order, and such an algorithm is described below.

2.3 Efficient, Suboptimal Decoding and Reliability Calculation Us-
ing Sequential Decoding and the Fano metric

The main problem with the algorithm described above is complexity; Shannon’s noisy chan-
nel coding theorem (5.2) shows that the error probability decreases exponentially with in-
creasing constraint lengths, i.e. long encoder memory. Thus, we would like to use long
constraint lengths. However, long constraint lengths do not work well with the classical
maximum-likelihood Viterbi algorithm, which has a complexity (both in memory and in
number of calculations) that increases exponentially with encoder memory K. The usual
solution to this problem is to use suboptimal decoding strategies, i.e. sequential decod-
ing. Analogously, the memory requirements and computational complexity for the path-
reliability-determining algorithm described above increase exponentially with the number
of states of the DHMS, i.e. the encoder memory. The description below (see also [WSH01])
shows how to avoid this exponential complexity increase by calculating the path reliability
in conjunction with sequential decoding. The ideas in [WSH01] make use of theory de-
veloped in [Mas72]—decoding of variable-length codes and sequential decoding using the
Fano metric are essentially “isomorphic” problems, i.e. solving one problem is equivalent to
solving the other.

2.3.1 A Connection Between Variable-Length Codes and the Fano Metric

Consider the transmission system shown in Fig. 2.3 for a variable-length code. Let U be a set
of M messages (information words). To each information word u ∈ U corresponds a code
word xu

xu = [xu,1, xu,2, . . . , xu,nu ]

of length nu. The code symbols xu,j , j = 1, . . . , nu belong to some alphabet X , e.g. if we
have a rate 1/2 binary convolutional code each bit (in this case, with one input to the encoder,
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ENCODER
CONCATE−
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Figure 2.3: Transmission system for variable-length code

an information word symbol is one bit) in an information word u would correspond to a
two-bit code word symbol xu,j ∈ X . Now, let S denote the set

{xu | u ∈ U}.

Then, S is our variable-length code, and we can send code words from S through a DMC.
The goal of the variable length decoder is to estimate the transmitted variable-length code-
word. The estimate is based on the received output sequence y = y(0:T ], and the goal is to
minimize the (a posteriori) error probability. Therefore, (since y is fixed, i.e. it is an observa-
tion that can be viewed as a fixed quantity for the analysis here), the estimate û is taken as
the message word u ∈ U that maximizes Pr{u,y }.

To calculate the maximizing estimate, we use the theory described in [Mas72]. Consider
the abstract transmission system depicted in Fig. 2.3. Denote the maximal codeword length
by T . The message u of probability Pu selects the codeword xu = [xu,1, xu,2, . . . , xu,nu ],
to which is added a “random tail” tu = [tu,1, tu,2, . . . , tu,T−nu ], and the message plus the
random tail together form a fixed-length input sequence z = [z1, z2, . . . , zT ] = [xu, tu]. This
sequence z is then transmitted over the DMC. The random tail tu is assumed to be selected
statistically independently of xu, and we also assume that the digits in tu are chosen inde-
pendently according to a probability measure Q() over the channel input alphabet, i.e,

Pr{ tu | xu } = Pr{ tu } =
T−nu∏
k=1

Q(tk).

The introduction of the random tail tu might confuse the reader at first, but its use will
become clearer below. It suffices to think of tu as either a convenient device for normalizing
the number of received digits that must be considered in the decoding process, or as the
digits resulting from subsequent encodings of further messages in a randomly selected code.

Let y = [y1, y2, . . . , yT ] denote the received word. By the definition of a DMC we have

Pr{y | z } =
nu∏
t=1

pc(yi | xu,i)
T−nu∏
j=1

pc(ynu+j | tj),

where pc(· | ·) denotes the transition structure of the channel, as before.

9
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The joint probability of sending the message u, adding the random tail tu and receiving
y can then be written

Pr{u, tu,y } = Pu Pr{ tu | xu } Pr{y | [xutu] }

= Pu

nu∏
i=1

pc(yi | xu,i)
T−nu∏
k=1

Q(tk)
T−nu∏
j=1

pc(ynu+j | tj).

If we replace the “dummy” index k on the last line of the previous equation by j, we get
Pr{u, tu,y } = Pu

∏nu
i=1 pc(yi | xu,i)

∏T−nu
j=1 pc(ynu+j | tj)Q(tj). If we then sum over all

possible random tails and set

P0(yi) =
∑
tk

pc(yi | tk)Q(tk), (2.7)

we get

Pr{u,y } = Pu

nu∏
i=1

pc(yi | xu,i)
T−nu∏
j=1

(∑
tk

pc(ynu+j | tk)Q(tk)

)

= Pu

nu∏
i=1

pc(yi | xu,i)
T−nu∏
j=1

P0(ynu+j). (2.8)

Thus, P0() is the probability measure on the channel output alphabet when the probability
distribution on the channel input is Q() as above. Now, given y, the optimal decoding rule
(optimal in the sense that the rule minimizes the probability of an erroneous decision) is to
choose the message û that maximizes Pr{u,y }, which is equivalent to maximizing

Pr{u,y }∏T
i=1 P0(yi)

,

since the denominator does not depend on the message u. Taking logarithms, and using
(2.7) and (2.8), we obtain the log-likelihood ratio

L(u,y) = log

[
Pr{u,y }/

T∏
i=1

P0(yi)

]

= log

[
Pu

nu∏
i=1

pc(yi | xu,i)
P0(yi)

]

= log(Pu) +
nu∑
i=1

[
log

pc(yi | xu,i)
P0(yi)

]

=
nu∑
i=1

[
log

pc(yi | xu,i)
P0(yi)

+
1
nu

logPu

]
.

The probability Pr{u,y } can equally well be written as

Pr{u,y } = C(y) · exp(Λu) = C(y) · exp(
nu∑
j=1

λu,j), (2.9)
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where C is a constant that only depends on the received word y, and the metric increment
λu,j for each received symbol is

λu,j = log
pc(yj | xu,j)

Pr(yj)
+

1
nu

log Pr{u }, (2.10)

where Pr{u }(= Pu) is the (a-priori) probability of the message u (the constant C is of course
just

∏T
i=1 P0(yi)). As will be shown in section 2.3.3, in the common case of equiprobable

information words, the equation (2.10) defines the well-known Fano metric. This metric is
used for sequential decoding of convolutional codes, e.g. in the Fano algorithm. Taking log-
arithms does not alter the results of maximization since the logarithm is a strictly increasing
function. As an additional benefit, the fact that we take logarithms gives us better numer-
ical stability—in the original BCJR algorithm [BCJR74] and in the algorithm described in
the earlier sections, we wind up with multi-factor products of probabilities, and those prod-
ucts quickly become small, which can cause numerical instability. Logarithms convert these
products to sums, thereby avoiding having to deal with very small numbers.

2.3.2 Path Reliability for Variable-Length Codes

Given the entire received sequence y and a subpath x(0:t] representing an estimate of a trans-
mitted codeword, we want to calculate the reliability of the subpath. We begin by defining
a subset U(x(0:t]) of the information words U as U(x(0:t]) = {u′ ∈ U | ∀0<τ≤t xu′,τ = xτ}.
We then define a corresponding subset S(x(0:t]) of the codewords S as S(x(0:t]) = {xu′ ∈ S |
u′ ∈ U(x(0:t])}. The reliability of the subpath x(0:t] can now be written as

Ry,U (x(0:t]) =

∑
x′∈S(x(0:t])

Pr(x′,y)∑
x′∈S Pr(x′,y)

=

∑
u′∈U(x(0:t])

Pr(u′,y)∑
u′∈U Pr(u′,y)

.

Using (2.9) and simplifying we get

Ry,U (x(0:t]) =

∑
u′∈U(x(0:t])

Pr(u′,y)∑
u′∈U Pr(u′,y)

= [insert (2.9)]

=

∑
u′∈U(x(0:t])

C(y) · exp(
∑nu′

j=1 λu′,j)∑
u′∈U C(y) · exp(

∑nu′
j=1 λu′,j)

= [use the definition of U(x(0:t]) i.e. common subpath]

= exp(
t∑

j=1

λu,j)︸ ︷︷ ︸
common subpath

·

∑
u′∈U(x(0:t])

exp(
∑nu′

j=t+1 λu′,j)∑
u′∈U exp(

∑nu′
j=1 λu′,j)

. (2.11)

Equation (2.11) can be used to calculate the reliability of any decoded path x̂(0:û]. If we
let t vary between 1 and nû, we get a vector of reliabilities of subpaths of the decoded path:

Ry,U (û) = Ry,U (x̂) = {Ry,U (x̂(0:1]), Ry,U (x̂(0:2]), . . . , Ry,U (x̂(0:nû])}.
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2.3.3 Using the Theory for Variable-Length Codes to Calculate the Path Reli-
ability of Sequential Decoding

If a sequential decoder, for example a Fano decoder, has to stop before it is finished (e.g. due
to timing constraints), usually the partially decoded frame has to be discarded. Instead, we
will make use of the partially decoded data using the theory developed in [WSH01].

The connection to the theory for variable-length codes is essentially this important ob-
servation: When the decoder has to stop before it is finished, we have a partially explored code
tree that can be viewed as a fully explored code tree for a code with variable-length codewords! A
codeword corresponding to an information word u is denoted by by xu, and we have

xu = xu(0:nu] = {(x(1)
u,1, . . . , x

(n)
u,1), . . . , (x

(1)
u,nu , . . . , x

(n)
u,nu)},

where n denotes the number of codeword bits per information word symbol, e.g.
(x(1)

u,4, . . . , x
(n)
u,4) is the n bits in xu corresponding to the fourth symbol u4 in the informa-

tion word u = u(0:nu] = (u1, . . . , u4, . . . , unu). We denote the set of information words
corresponding to the partially explored code tree by U . The joint probability of the received
sequence y and a path xu can be written as an expression of the same form as (2.9):

Pr{xu,y } = Pr{u,y } = C(y) · exp(Λu)

= C(y) · exp
[ nu∑

j=1

λt

(
s(u(0:t−1]), s(u(0:t])

)]
,

where s(u(0:t]) is the state of the encoder after encoding the information sequence u(0:t].
In the case where one information word symbol is one bit, assuming that the information

bits are independent and equally likely to be zeros or ones, the a priori probability that the
decoder followed the path u is

Pr{u } = 2−nu . (2.12)

Using (2.12), (2.10) becomes

λu,j = log
pc(yj | xu,j)

Pr(yj)
− 1.

(Observe that the notation λu,j means the same as λj

(
s(u(0:j−1]), s(u(0:j])

)
).

In the derivation above, there was one codeword symbol for each information word sym-
bol. If we instead let nu denote the number of bits in the codeword and do a “bitwise”
derivation, where the ratio of the number of info bits to the number of code bits equals the
code rate R, we would get

Pr{u } = 2−R nu ,

and the kth step “bit metric” would be

λu,k = log
r(yk | xu,k)

Pr(yk)
−R. (2.13)

with r(· | ·) the “bit transition probability” for the channel, e.g. see (2.6). This “bit metric” is
the well-known Fano metric for sequential decoding.
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It is important to note that the theory developed so far is not restricted to a DMC—
it could equally well have been developed for a fading channel. In that case, the metric
increment becomes

λt(m,m′) = n log(2)−
n∑

i=1

log
(
1 + exp(−ψ(i)

t x
(i)
t )
)

− log(1 + exp(−L(ut) · ut)),

where, if a(i)
t denotes the fading amplitude and Es

N0
the SNR, ψ(i)

t = 4a(i)
t

Es
N0
y

(j)
t . The inter-

ested reader is referred to [WSH01] for details.
To sum up, we have finally arrived at the expression for calculating the path reliability

in our convolutional decoder:

Ry,U (u(0:t]) =

common subpath︷ ︸︸ ︷
exp

( t∑
j=1

λj(s(u(0:j−1]), s(u(0:j]))
)

·

∑
u′∈U(u(0:t])

exp
[∑nu′

j=t+1 λj

(
s(u′(0:j−1]), s(u′(0:j])

)]∑
u′∈U exp

[∑nu′
j=1 λj

(
s(u′(0:j−1]), s(u′(0:j])

)] .

This rather unwieldy expression can be understood better as

Ry,U (u(0:t]) = weight of u(0:t]-path

·
∑

weight of all subpaths stemming from u(0:t]-path∑
weight of all paths in part. expl. code tree

,

where “weight” simply means the metric of the subpath, i.e. the accumulated Fano metric.
This brings us back to our goal—a FEED-capable decoder. Suppose that the decoder

receives a time-out before finishing, i.e. before reaching a leaf node of the code tree. We then
have a partially explored code tree and an estimate û of (part of) the transmitted sequence.
The decoder then computes the subpath reliabilities of all subpaths of û (that begin at the
root node). When a large drop in the path reliability occurs, this is an indication that an
uncorrected error exists, and FEED delivers the path estimate, up to this first uncorrected
error, as its partially decoded frame. Here, we can also see the reason for the name FEED,
“Far End Error Decoder”—the decoder attempts to decode as long towards the far end of the
frame as possible, and then (given timing constraints etc.) delivers only the error-free part
of the decoded frame; note that when we say “error-free” in this and similar contexts, we of
course mean that the likelihood of error is comparatively small.
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Chapter 3

Implementation of FEED; a
FEED-Capable Fano Decoder

This chapter is intended to give an overview of our FEED implementation. For example,
we hope that a programmer wanting to modify or extend the decoder can read this chapter
before delving into the actual code—we highlight some of the more important classes and
explain important aspects of the code. This approach is the one recommended in [Fow00]—
large, comprehensive specifications that cover everything in a system tend to shine only in
a few places and their sheer size makes it difficult to keep them up-to-date and correct. It
is much better to highlight portions of the system that are important and/or complicated
to understand just by looking at the code. Also, by focusing on a smaller subset of the
system, the programmer can use more time and energy to improve the quality of the smaller
specification, instead of diluting his efforts.

The system description here is done using version 1.4 of the OMG UML standard as
described in [Fow00]. UML stands for Unified Modeling Language. UML was created by
three of the most prominent experts in the OO industry (OO=object oriented analysis, design
and programming), Grady Booch, Ivar Jacobson and James Rumbaugh, and it has become
the de-facto standard for describing object-oriented systems.

We begin by listing a few facts about the implementation.

• Language for describing analysis, design and implementation: UML

• Implementation language: ISO/ANSI C++

• Compiler: gcc (the GNU C/C++ compiler), version 2.96. The code has been compiled
and run on both the Sparc architecture (SUN Solaris as OS) and on the Intel X86 archi-
tecture (Linux as OS).

• Secondary compiler: icc (Intel C/C++ compiler for Linux), see remark below

Remark: The Intel C++ compiler was not used extensively for testing/verification, but it is
often useful to try compiling software with different compilers from different manufacturers
and on different hardware platforms to check standards compliance, compare compiler error
messages and warnings, check endianness dependence etc.

The decoder is originally based on an efficient open source Fano decoder written in C by
Phil Karn at Qualcomm. At the time of writing, Phil Karn’s homepage is located at

15



Chapter 3 Implementation of FEED; a FEED-Capable Fano Decoder

http://people.qualcomm.com/karn/

Phil Karn’s FEC software is located at

http://people.qualcomm.com/karn/code/fec/

and the his original Fano decoder can be downloaded from

http://people.qualcomm.com/karn/code/fec/fano1.1.tar.gz

Karn’s decoder is rate 1/2 and the encoder has 31 bit memory, due to the fact that the
Intel Pentium (X86) processor line has a word length of 4 bytes, i.e. 32 bits. The reason
that the memory is 31 and not 32 bits is that one bit is required for holding the “current”
bit, i.e. the most recent bit in the information sequence. We moved this decoder to C++,
extended the memory to 95 bits (+”current” bit), added an interface to the Ericsson BC-lib
(Baseline Codec library) and, most importantly, added the FEED functionality for predicting
path reliabilities, so that the decoder can determine where in the frame the first uncorrected
error occured.

3.1 How to Build The Decoder and Test Program

All the code except the BC-lib interface is built by invoking “make” on the command line.
The BC-lib interface (i.e. feedconvdec.*) is built by invoking “make bcwrapper” on the
command line. See also the README file in the bc_src subdirectory on how to build an ap-
propriate BC-lib archive for compilation and testing.

3.2 Simulation and Test Environment; Command Line Syntax, List
of Options etc.

Phil Karn’s original open source encoder/decoder package also contains a test program,
seqtest. This program has been modified to work with the FEED-capable decoder and
report FEED performance data. The test program invokes the encoder to encode a frame
(default frame length 1152 bits, including the “tail” of zeros needed to return the encoder to
the zero state), calls a channel simulator (DMC, AWGN) to add noise to the frame, and then
invokes the FEED-capable decoder. This process is repeated for a user-specified number of
frames, decoding progress is reported continuously, and finally the test program writes a
report of decoder performance (see the screen dumps below that demonstrate a typical test
session).

Before showing an example of a typical test session, it is appropriate to give a description
of the command line options. If we invoke seqtest without options from the command line
(i.e. the UNIX shell) as follows, we get

~/feed> seqtest
Usage: seqtest [options] output_file
Option&default meaning
-a 100 signal amplitude in units
-e 5.0 Signal Eb/N0 in dB (also sets -m)
-m 5.0 Eb/N0 in dB for metric table calc
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3.2 Simulation and Test Environment; Command Line Syntax, List of Options etc.

-n 1152 Number of bits per frame
-N 10 Number of frames to simulate
-d 17 Decoder threshold (delta)
-l 10000 Decoder timeout, fwd motions per bit
-s [cur time] seed for random number generator

-q select quiet mode (default off)
-t select timetest mode (default off)

Most of the options are self-explanatory, but some require a short description. The -n pa-
rameter sets the frame length, i.e. the number of information bits in a frame, including the
all-zero tail. The -d parameter is the Fano decoder ∆ threshold increment. In the section on
the Fano algorithm in [LJ83], there is an enlightening discussion on how the ∆ parameter
affects decoder performance. The timeout parameter -l sets the number of forward motions
per bit, i.e. the average number of repeats of the main loop in the Fano algorithm (see Fig.
3.1) per bit. In the example below, we set l to 200 and have a frame length of 1152 bits. This
means that the decoder can at most use up 1152 · 200 cycles (i.e. repeats of the main loop)
before a time-out occurs. The random seed parameter should be changed to achieve varied
results, or held constant to reproduce bugs, errors etc. For avoiding output during simula-
tion, the quiet mode can be selected. If the user wants to time the decoder, for instance to
do profiling, the timetest mode should be chosen in order to run the simulation in a tight
loop. Note also that the Eb/N0 for the metric table calculation can be set independently of
the channel simulation Eb/N0. For instance, this could be used to test how sensitive the
decoding process is to using metric tables calculated for an incorrect Eb/N0.

For more information on how to build the encoder/decoder, test program and interface
to BC-lib, see the README file in the same directory as the FEED C++ source files and section
3.1.

We conclude with an example run of the decoder.

~/feed> seqtest -l 200 -N 100 -e 1.5 outfile

Seed 1028243710 Amplitude 100 units, Eb/N0 = 1.5 dB metric table Eb/N0 = 1.5 dB

Frame length = 1152 bits, delta = 17, cycle limit = 200, #frames = 100, coderate

= 1/2

Decoding errors: 0 (including 23 timeouts)

Average N: 73.582448

Average reliable path len: 898.890000

Average length of timed-out frames salvaged by FEED: 51.521739

Percentage of mis-predictions by FEED: 0.000000

N >= count fraction

1 100 1

2 100 1

4 99 0.99

6 93 0.93

8 88 0.88

10 84 0.84

20 66 0.66

40 45 0.45

60 36 0.36

80 30 0.3

100 27 0.27

200 23 0.23
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3.3 Overview of decoder operation

Since the FEED decoder is based on an existing Fano algorithm convolutional decoder writ-
ten in C, the decoder design is not purely object-oriented. The central part of the decoder is
just a function fano(...) which calls methods in the various helper classes that implement
the FEED functionality.

Let us begin by looking at the interface to the fano() function:

fano (
unsigned long ∗ metric , / / F i n a l pa t h m e t r i c ( r e t u r n e d v a l u e )
unsigned long ∗ cyc les , / / C y c l e count ( r e t u r n e d v a l u e )
unsigned char ∗ data , / / Decoded o u t pu t d a t a
unsigned char ∗ symbols , / / Raw d e i n t e r l e a v e d i n p u t symbo l s
unsigned i n t nbi ts , / / Length o f uncoded b i t s t r i n g
i n t metTab [ 2 ] [ 2 5 6 ] , / / Met r i c t a b l e , [ s e n t sym ] [ rx symbol ]
i n t del ta , / / T h r e s h o l d a d j u s t p a r a m e t e r
unsigned long maxCycles , / / Decoding t i m e o u t in c y c l e s p e r b i t
i n t ∗ rlbPathLen ) / / FEED i n f o : l e n g t h o f r e l i a b l e d e c o d e d

/ / pa t h ( r e t u r n e d v a l u e )

The most important of the arguments above is of course the unsigned character ar-
ray symbols—the received data is deinterleaved and delivered to the fano function as the
symbols array. Recall that the channel model we are using is a 2-input, 256-output DMC
with additive white Gaussian noise. A C/C++ variable of data type char on most CPU ar-
chitectures (including the Intel X86) is 8 bits, which is exactly what we need to represent the
256 possible output values of the DMC. The maximal value 255, i.e. hex FF, would indicate
that a binary 1 was most probably transmitted, and a value of 0 would indicate a probable
0. A value close to 128 would indicate that the transmitted bit was highly distorted during
transmission. For more details on the conversion of binary symbols into individual 8-bit
channel symbols with specified noise and gain see the sim.cc module.

The fano function can logically be divided in two parts. The first part is the classical
Fano decoding, with some added bookkeeping to be able to do the second part that does the
FEED reliability calculation. For easy reference, Fig. 3.1 is a flowchart for the classical Fano
algorithm. For more information on the operation of the Fano algorithm see [LJ83].

The Fano algorithm as depicted in Fig. 3.1 maps directly to the first part (i.e. the “classical
Fano” part) of the decoding process, so we need only describe the second part (i.e. the FEED
part) and the bookkeeping of FEED data added to the first part.

To understand the bookkeeping and the FEED implementation, assume that the decoder
has received a time-out before reaching a leaf node of the code tree and consider the partially
explored code tree as depicted in Fig. 3.2. If the Fano decoder’s “best guess”, i.e. its current
path estimate when the timeout occurs, is the path leading to node B in the tree, the FEED
algorithm will be used to calculate the subpath reliabilities for all subpaths of the B-path
that begin at the root of the tree. For example, if we use the notation from section 2.3.3 and
assume that the path estimate u(0:t] corresponds to the subpath leading to from the root to
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Figure 3.1: Flowchart of the Fano algorithm
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A

B

Figure 3.2: Partially explored code tree

node A in Fig 3.2, the path reliability can be calculated as

Ry,U (u(0:t]) =

common subpath︷ ︸︸ ︷
exp

( t∑
j=1

λj(s(u(0:j−1]), s(u(0:j]))
)

·

∑
u′∈U(u(0:t])

exp
[∑nu′

j=t+1 λj

(
s(u′(0:j−1]), s(u′(0:j])

)]∑
u′∈U exp

[∑nu′
j=1 λj

(
s(u′(0:j−1]), s(u′(0:j])

)] .

Recall that this rather unwieldy expression can be understood better as

R(A) = weight of A-path

·
∑

weight of all subpaths stemming from A∑
weight of all paths in part. expl. code tree

,

where “weight” simply means the metric of the subpath, i.e. the accumulated Fano metric.
Consequently, to be able to do the FEED path reliability calculation, the decoder needs to

keep track of the partially explored code tree. Since one of the benefits of the Fano algorithm,
compared to the Stack algorithm (se [LJ83]) is that only the current path estimate, and not
the entire partially explored code tree, needs to be stored, this means that implementing the
FEED functionality will somewhat “pollute” the basic Fano decoder. However, the Fano
algorithm has other advantages over the Stack algorithm, e.g. no stack reordering has to be
done. Also, the availability of a highly efficient, debugged Fano decoder implemented in C
strenghtened our decision to go with the Fano algorithm.

Thus, the Fano part of the decoder needed to be augmented with some “bookkeeping”,
i.e. the decoder needs to continuously store and update the partially explored code tree as
it loops through the Fano decoding cycle. To accomplish this, we use two data structures:
cT is an instance of the C++ class CodeTree that keeps track of the partially explored code
tree, and cA is an instance of the class CodeArr that holds the current path estimate. While
reading this, the reader can refer to section 3.5 for UML class diagrams that describe our
CodeArr and CodeTree classes, the services they provide, class hierarchies etc.

The decoder keeps working its way through the code tree until one of two things occur:

1. The decoder reaches a leaf node. The decoding is complete and the decoder delivers
the contents of the CodeArr object cA as its estimate of the transmitted sequence.

2. The decoder receives a time-out before reaching a leaf node of the code tree. The FEED
functionality then has to be invoked to recover parts of the timed-out frame. This is
described in section 3.3.1 below.
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3.3 Overview of decoder operation

3.3.1 Part Two of the Decoding - the Actual FEED Calculation

When the proper Fano decoding part of the fano() function is finished (either because of a
time-out or after complete decoding), we enter the second part of the FEED decoding pro-
cess. We describe this second part by looking at excerpts of the code in the fano() function,
adding comments and explanations as we go. Note that algorithms and classes from the
ISO/ANSI C++ standard are used extensively. For more information on the C++ standard
library, see [Jos99]. Before delving into the code, recall how the path reliability for the path
leading from the root of the tree to node A is computed:

R(A) = weight of A-path

·
∑

weight of all subpaths stemming from A∑
weight of all paths in part. expl. code tree

.

Thus, we need to compute the “weight” of the whole tree, i.e. the sum of all Fano path
metrics in the entire partially explored code tree, and then, for each subpath of the path
estimate û, the path metric leading to the end node of the subpath (i.e. A in Fig. 3.2), and
the sum of all subpath metrics for the subpaths rooted in the end node of the subpath (i.e.
rooted in A). (For implementation reasons, the path reliability is actually computed in an
equivalent way that is slightly different but more efficient, more on that below). Here is the
first code excerpt:

std : : vector<double> pathRlb ( cA . t a i l ( ) − cA . begin ( ) + 1 ) ;
/ / a r r a y o f s u b p a t h r e l i a b i l i t i e s , no t c a l c u l a t e d f o r t a i l

∗metr ic = cA . p()−>gamma ; / / Return f i n a l pa th m e t r i c

const double r lbThreshold = 0 . 9 9 9 9 9 ; / / r e l i a b i l i t y t h r e s h o l d

i f ( i >= maxCycles ) / / d e c o d e r t imed out
{

The main loop variable of the Fano algorithm, i, is greater than or equal to maxCycles, which
means that we have received a time-out and have a partially explored code tree, stored in the
CodeTree object cT and an estimate of the transmitted sequence, stored in the CodeArr object
cA. Note also that the threshold for the path reliability rlbThreshold is very close to 1. When
a subpath reliability drops below the threshold, FEED will recognize this as an uncorrected
error. We move on:

std : : vector<long double> a l l M e t r i c s ; / / m e t r i c s f o r a l l o f t h e
/ / p a r t i a l l y e x p l o r e d c o d e t r e e

std : : vector<long double> pathMetrics ; / / m e t r i c s f o r p a t h s in U( ( 0 , t ] )

double whole ; / / ” we igh t ” o f whole p a r t i a l c o d e t r e e ,
/ / sum ( exp ( a l l M e t r i c s ) )

double subTree ; / / ” we igh t ” o f s u b t r e e U( ( 0 , t ] ) ,
/ / sum ( exp ( m e t r i c s o f a l l p a t h s in U( 0 , t ) ) )

while ( cA . p ( ) > cA . t a i l ( ) ) cA . moveBack ( ) ; / / no need t o c a l c u l a t e pa th
/ / r e l i a b i l i t y o f t h e a l l −z e r o t a i l
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cT . g e t A l l M e t r i c s (& a l l M e t r i c s ) ;
transform (

a l l M e t r i c s . begin ( ) , a l l M e t r i c s . end ( ) , a l l M e t r i c s . begin ( ) , s c a l e ) ;
transform (

a l l M e t r i c s . begin ( ) , a l l M e t r i c s . end ( ) , a l l M e t r i c s . begin ( ) , exp ) ;
whole = accumulate ( a l l M e t r i c s . begin ( ) , a l l M e t r i c s . end ( ) , 0 . 0 ) ;

All the path metrics are retreived from the partially explored code tree. Then, the
transform() algorithm from the C++ standard library is used to scale the metrics (simply
a heuristic to avoid arithmetic overflow, does not affect the probability calculations), and to
exponentiate the metrics. The exponentiation is done since the metrics are logarithms of the
actual probabilities. Finally, the standard library algorithm accumulate() is used to com-
pute the “weight” of the entire partially explored code tree. Before moving on, have a look
at Fig. 3.2 again—since a leaf node of a partially explored code tree contains the path metric
of the path leading from the root to the leaf, the reliability R(B) of the path leading to node
B can be computed as

R(B) =
weight of subtree B

weight of whole partially explored tree
,

where “subtree B” means the subtree that consists of all paths that begin at the root and go
through node B, and the weight of this subtree can be computed by simply summing the
path metrics of all its leaf nodes. Next, the reliability of the path leading to node A can be
computed if we have the weight of subtree A. This weight is computed by taking the weight
of subtree B and adding the path metrics of the leafs in subtree A that are not also in subtree
B. If we begin at node B and work our way towards the root of the partially explored code
tree, we obtain the path reliabilities of all the subpaths of the B-path. This is exactly what is
done in the code below:

BTree : : Node∗ prevNode = 0 ;
for (

subTree = 0 ;
cA . p ( ) − cA . begin ( ) >= 0 ;
prevNode = c o n s t c a s t<BTree : : Node∗>(cT . getCurPos ( ) ) , cA . moveBack ( ) )

{
cT . getNewSubTreeMetrics(& pathMetrics , prevNode ) ;
transform (

pathMetrics . begin ( ) , pathMetrics . end ( ) , pathMetr ics . begin ( ) , s c a l e ) ;
transform (

pathMetrics . begin ( ) , pathMetrics . end ( ) , pathMetr ics . begin ( ) , exp ) ;
subTree = accumulate ( pathMetrics . begin ( ) , pathMetrics . end ( ) ,

subTree ) ;
pathRlb [ cA . p ( ) − cA . begin ( ) ] = subTree/whole ;

}

Thus, the above code obtains all the subpath reliabilities. All that is left to do is to loop
through all the subpath reliabilities, beginning with the subpath that is only 1 symbol long,
and find the longest subpath with a path reliability above the threshold. This subpath is then
the sequence that FEED has salvaged from the timed-out frame. The code is straightforward
and is not shown here.
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3.4 Physical System Decomposition—List and Description of Files

The naming convention (.cc, .hh) for C++ files follows Ericsson (BC-lib) standard.

FILE NAME DESCRIPTION

bc_src/ Used for testing only (bc-lib files)
btree.cc
btree.hh
codearr.cc
codearr.hh
codetree.cc
codetree.hh
delay.cc
delay.hh
fano1.1.tar.gz Original tar-ball for the Karn Fano decoder
fano.cc The actual FEED-capable Fano decoder
fano.hh
feedconvdec.cc See feedconvdec.hh
feedconvdec.hh The BC-lib interface class
Makefile See section 3.1
metrics.cc
metrics.hh
README
seqtest.cc The test program, run without args for option list
sim.cc Channel simulation
sim.hh
tab.cc
tab.hh
uint96.cc Class for holding and manipulating 96-bit fields
uint96.hh

3.5 Highlights of Important Classes and Their Interdependence

3.5.1 The CodeArr and CodeTree Classes

The Fano convolutional decoder uses a CodeArr object to hold the decoder’s estimate of the
transmitted path. The CodeArr class is used in conjunction with the CodeTree class, and
the forward/backward moves of the decoder are made through the interface of this class.
This way, the partially explored code tree is kept in sync with the CodeArr object. Full
information hiding is not used, for two reasons; backward compatibility with the Karn Fano
decoder and performance. Fig. 3.3 is an overview of the classes with their more important
attributes (i.e. C++ member data) and methods(i.e. C++ member functions).
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Fano (function)

fano(...)
{{

}}

CodeArr

begin()
size()
tail()
p()
moveForward()
moveBack()

sz
pos
nodeArr
codeTree

BTree

root : Node*
curPos : Node* 

addNode()
replaceNode()
moveBack()
traverse()

CodeTree

addNode()
getAllMetrics()
getNewSubTreeMetrics()

11

11

11

11

Figure 3.3: UML Class Diagram of CodeArr and CodeTree classes
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Chapter 4

FEED With Optimal Non-Uniform
Symbol Energy Distribution

4.1 Background

Recall that channel coding with FEED is based on a new paradigm—when transmitting data
from progressively encoded sources, try to maximize the error-free length instead of min-
imizing the symbol error probability (note that the terms error-free length and recovered
frame length are used synonymously).

In [HSWD00], puncturing is used as a means to maximize the error-free length, i.e. allo-
cate less redundancy to the information symbols in the frame as they become less important.
The physical effect of the puncturing/regressive redundancy, when looked at from a mod-
ulation/transmission viewpoint, is that less important information symbols get less total
transmitter power, while more important symbols get more. Thus, an interesting alternative
to puncturing suggests itself: Use a non-uniform symbol energy distribution over a frame to
protect information symbols according to their importance and to maximize the error-free
length. In [SL02], this idea is investigated in the case of no channel coding, i.e. given a frame
of information symbols from a progressively encoded source, try to optimize the symbol
energy distribution to maximize error-free length when no channel coding is applied (with
no coding, each information symbol is simply one bit). Since virtually any practical system
for wireless transmission benefits from channel coding, it is quite natural to ask if similar
conclusions as in [SL02] hold if variable bit energy is combined with channel coding. The
present chapter describes our investigations along these lines. Also, the author has made
simulations combining FEED with variable bit energy, and the results of those simulations
are described in [AL02].

4.2 Model

4.2.1 Channel

In this chapter, the channel model will be an AWGN channel with slow fading, where the
noise level is assumed to be constant over each frame. This is a channel that is easy to work
with in our optimization setting and the modelling is reasonable since modern methods that
make a multi-path fading channel look like an AWGN [Vit95, Bin90] exist.
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4.2.2 Notation and Formulation of the Basic Model Problem

Let N be the frame length in (code) symbols. The energy assigned to (code) symbol n in the
frame is denoted by Es(n) for n = 1, . . . , N . In other words, Es denotes the symbol energy
distribution (over n) we want to optimize, and Es can be represented as a vector in RN . As
in the uncoded investigation [SL02] we then have

Es(n) ≥ 0, n = 1, . . . , N (4.1a)
N∑

n=1

Es(n) = N, (4.1b)

where the second constraint ensures that a constant total energy is assigned to each frame.
Let pn denote the probability of an uncorrected error in code symbol n. Assume for the

moment that for each n (n = 1, . . . , N) we have a functional pn = p(Es) relating the symbol
energy distribution Es to pn; i.e. if X ⊂ Rn is the space of eligible energy distributions
satisfying (4.1), for any n (n = 1, . . . , N) we can write

pn : X 3 Es 7→ pn ∈ [0, 1],

so pn denotes both the functional and its value at Es. This notation is somewhat unstrict
but practical, and the meaning should be clear from the context. The functional dependence
is actually one of the main difficulties—for the uncoded case with the memoryless channel
model described in 4.2.1, pn will only depend on Es(n), i.e. the energy assigned to the nth

code symbol, but with channel coding using a convolutional code with long memory, pn

will be influenced by the energy assigned to many neighboring code symbols as well. This
question will be dealt with in section 4.3.2. As stated above, the symbol energy distribution
over a frame, Es, is a vector in RN (so X ⊂ RN ), but N is so large (N ∼ 1000) that it
is sometimes helpful to (somewhat incorrectly) think of Es = Es(·) as a smooth function
curve, with n on the horizontal axis.

The error-free length l is defined to be the position of the first symbol error minus one.
Assuming independent symbol errors gives

Pr{ l = n } = pn+1

n∏
m=1

(1− pm), (4.2)

and the expected error-free length L can be written

L = E{l} =
N−1∑
n=0

nPr{ l = n }+N
N∏

m=1

(1− pm)

=
N−1∑
n=1

nPr{ l = n }+N
N∏

m=1

(1− pm). (4.3)

Inserting (4.2) into (4.3) gives

L = E{l} =
N−1∑
n=1

[
n pn+1

n∏
m=1

(1− pm)

]
+N

N∏
m=1

(1− pm). (4.4)
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4.2 Model

The assumption of independent errors is somewhat problematic. A way to compensate for
this deficiency is discussed in section 4.3.2.

With L denoting the function that relates the expected error-free length to the symbol
energy distribution Es, we can phrase our optimization problem as

maximize
Es∈X

L(Es)

or

maximize
Es∈Rn

L(Es)

subject to Es(n) ≥ 0, n = 1, . . . , N

and
N∑

n=1

Es(n) = N. (4.5)

As mentioned above, using channel coding implies that even for a memoryless channel,
changing Es(n) for any n will in general affect the symbol error probability pi not only for
the code symbol at frame pos. i = n but for nearby code symbols as well. We digress
briefly here to point out the important distinction between channel errors and uncorrected
channel errors. The convolutional decoder observes the channel coder, which we regard as a
Markov source, through a noisy channel (the reader might want to refer to fig 2.1). Based on
the observation, i.e. received sequence of code symbols, y, the decoder creates an estimate
x̂ of the transmitted sequence x. The goal of the energy optimization is to use an energy
profile that makes L, the expected error-free length (i.e. L is the expected position of the first
symbol error in x̂ minus one), as large as possible. Thus, the symbol error probabilities in y
are independent if the channel is memoryless, and changing the energy of one code symbol
only affects the probability of error of that symbol in y, but the change in energy affects the
error probability of many symbols in x̂ if the convolutional channel coder has long memory.
As a first crude approximation, we will disregard this and optimize as if pi only depended
on Es(n) for n = i. This crude simplification will then be refined to obtain more realistic
results in section 4.3.2. As will be shown below, even the basic model (i.e. the model using
the simplification) gives rise to rather unwieldy matematical formulas and expressions—a
small indication of the complexity of the problem.
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4.3 Optimization of the Non-Uniform Symbol Energy Distribution

4.3.1 Optimization Using the Basic Model

Recall that our objective function L represents the expected error-free length E{l}. With the
simplification discussed above, we can use (4.4) to write the optimization problem (4.5) as

maximize
Es∈Rn

L(Es) = E{l}

=
N−1∑
n=1

[
n pn+1[Es(n+ 1)]

n∏
m=1

(1− pm[Es(m)])

]
(4.6a)

+N

N∏
m=1

(1− pm[Es(m)])

subject to Es(n) ≥ 0, n = 1, . . . , N (4.6b)

and
N∑

n=1

Es(n) = N. (4.6c)

Using a 1 × N matrix A = [1, 1, . . . , 1] to rewrite the equality constraint (4.6c), and writing
pi[Es(i)] as p[Es(i)], (4.6) becomes

maximize
Es∈Rn

L(Es) = E{l}

=
N−1∑
n=1

[
n p[Es(n+ 1)]

n∏
m=1

(1− p[Es(m)])

]

+N

N∏
m=1

(1− p[Es(m)])

subject to Es(n) ≥ 0, n = 1, . . . , N
and AEs = N.

To do the optimization, an expression for p[Es(n)] is required. An expression for the
burst error probability PB from page 215 of [JZ99] is used,

PB < 2−(R0+o(1))mc for R < R0, (4.8)

where R = b/c is the code rate, encoder memory is m and R0 denotes the computational
cutoff rate. For our purposes, m and b/c will be held fixed, since we are interested in how
the error probability depends on the symbol energy. This dependence arises from R0, which
is governed by the SNR, which in turn is affected by the symbol energy. Note that bounds
such as (4.8) demonstrate Shannon’s noisy channel coding theorem (the error probability
can be made arbitrarily small and decreases exponentially with constraint length, i.e. with
coder memory)—thus, such bounds are not primarily intended to be used to relate error
probability to SNR (i.e. to bit energy if the noise is fixed) and are in general far from tight
for all SNRs. With this “disclaimer” duly noted, we proceed. For a bandlimited AWGN
channel with ideal signaling and an average input energy constraint Es, the cutoff rate R0 is
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governed by the energy as [WC95]

R0(Es) = (log2 e)

1 +
Es

2N0
−

√
1 +

(
Es

2N0

)2


+ log2

1
2

1 +

√
1 +

(
Es

2N0

)2
 bit/T, (4.9)

where N0 = 2σ2 is the single sided noise power spectral density per two dimensions.

Assuming constant memory m and rate b/c, equation (4.8) can be rewritten as

PB < 2−(R0+o(1))mc = 2−R0mc−o(1)mc = 2−R0mc 2−o(1)mc

= 2−o(1)mc (2mc)−R0 = C1C
−R0
2 = C1C

−R0(Es)
2 , (4.10)

which, using (4.9), gives a connection between symbol energy and the probability of an un-
corrected symbol error. In FEED, a memory of 95 bits, rates between 1/2 and 1/7 and frame
lengths on the order of a thousand bits are used. For practical reasons (i.e. to reduce compu-
tational complexity, increase numerical stability etc.) a frame length of 100 bits was used in
the optimization. Also, in the refined model (see below), a convolution with a window func-
tion with length (i.e. support) on the order of 10 bits was used, corresponding to a memory
of around 10 bits. The memory length was chosen to be approximately 1/10 of the frame
length, as in the real problem. Of course, the constants above were also changed. Thus,
our analysis will be qualitative, but there is no reason why the qualitative results would be
different in the “scaled down” version of the problem. See also the conclusions, section 4.4.

Equation (4.9) holds for code rates R below the cutoff R0. In our case, R is held fixed at
1
2 and the cutoff R0 decreases with SNR. For SNRs that are so low that R0 becomes lower
than 1

2 , (4.9) is replaced by an estimation based on interpolation. The interpolation emulates
the actual behavior of FEED observed in simulations, i.e. if the SNR is lowered beneath a
threshold, the error probability and the time for decoding a frame increases dramatically.

For the optimization, the gradient of the objective function L is needed. The gradient
will involve the derivative dPB

dEs
which is calculated below.

dPB

dEs
=

d

dEs
C1C

−R0(Es)
2 = −C1 lnC2R

′
0(Es)C

−R0(Es)
2 , (4.11)
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with

R′0(Es) =
d

dEs

(
(log2 e)

1 +
Es

2N0
−

√
1 +

(
Es

2N0

)2


+ log2

1
2

1 +

√
1 +

(
Es

2N0

)2
 )

= (log2 e)

 1
2N0

− 1

2

√
1 +

(
Es
2N0

)2

Es

2N2
0



+
1

ln 2

[
1
2

(
1 +

√
1 +

(
Es
2N0

)2
)] 1

2

 1

2

√
1 +

(
Es
2N0

)2

Es

2N2
0



= (log2 e)

 1
2N0

− Es

4N2
0

√
1 +

(
Es
2N0

)2


+

Es

4N2
0 ln 2

(
1 +

√
1 +

(
Es
2N0

)2
)√

1 +
(

Es
2N0

)2
.

The gradient ∇L depends on the vector of probabilites [ p1, . . . , pN ], which in turn depends
on the symbol energy vector Es = [Es(1), . . . , Es(N) ]. In the general case

L = L(p1, . . . , pN ) = L
(
p1(Es(1), . . . , Es(N)) , . . . , pN (Es(1), . . . , Es(N))

)
,

so in general, the nth component of the gradient vector is

∂L

∂Es(n)
=
∂L

∂p1

∂p1

∂Es(n)
+ · · ·+ ∂L

∂pN

∂pN

∂Es(n)
.

With the basic model (i.e. with the crude initial approximation that pn, the probability of an
uncorrected error in symbol n, only depends on Es(n)), the expression above simplifies to

∂L

∂Es(n)
=

∂L

∂pn

∂pn

∂Es(n)
.

Using (4.10) and (4.11) gives

∂L

∂Es(n)
=

∂L

∂pn

∂pn

∂Es(n)

=
∂L

∂pn

∂

∂Es(n)
C1C

−R0(Es(n))
2

= −C1 lnC2R
′
0(Es(n))C−R0(Es(n))

2

∂L

∂pn
.
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Figure 4.1: Optimal energy profiles for the basic model (i.e. without conv). Subfigure a)–d) shows
symbol energy versus frame length for 20, 40, 60 and 80 percent of unit energy per symbol,
respectively. The frame length is 100 symbols—normally, frame lengths in FEED are on
the order of 1000 symbols, but the problem has been scaled down to avoid impractically
long calculations in Matlab. Note: The narrow peak in (c) is not significant (it represents very
little energy) and is a result of finite-precision arithmetic.

Furthermore,

∂L

∂pn
=

∂

∂pn

(
N−1∑
k=1

[
k pk+1

k∏
m=1

(1− pm)

]
+N

N∏
m=1

(1− pm)

)

= (n− 1)Πn−1 −
N−1∑
k=n

kpk+1
Πk

1− pn
−N

ΠN

1− pn
,

with the compact notation Πn =
∏n

m=1(1− pm).

For the actual optimization calculations, we used the fmincon algorithm in Matlab. This
algorithm is a very powerful and flexible general-purpose tool for constrained optimization.
For more information on fmincon, we refer the interested reader to the Matlab documenta-
tion. Using the basic model in the optimization gives the symbol energy distributions shown
in Fig. 4.1. Note that the energy distributions that maximize the objective function of the ba-
sic model can be approximated very well by a simple truncation, i.e. the optimal approach
is to send only part of the frame. Further conclusions are postponed to section 4.4, where we
compare with results for a more realistic model from section 4.3.2 and earlier experimental
and theoretical results.
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4.3.2 Optimization Using a Refined Model

It is obvious that in general, changing the energy of (code) symbol n affects the probability
of an uncorrected error not only for symbol n but for other symbols in the frame as well.
This also has to be taken into account when optimizing for maximum error-free length. As
mentioned above, in general, the nth component of ∇L is ∂L

∂Es(n) =
∑N

k=1
∂L
∂pk

∂pk
∂Es(n) . The

“spreading” of the energy is modeled using a weight function w(k), centered around n by
translation. Assuming that w(k) is even, the spreading can be written as a convolution:

∂L

∂Es(n)
=

N∑
k=1

∂L

∂pk

∂pk

∂Es(n)

≈
N∑

k=1

∂L

∂pk
wk−n

∂pn

∂Es(n)

=
∂pn

∂Es(n)

N∑
k=1

∂L

∂pk
wn−k

=
∂pn

∂Es(n)

(
∂L

∂p
∗ w
)

(n),

(4.12)

where ∂L
∂p = [ ∂L

∂p1
, . . . , ∂L

∂pN
], and w(k) = wk is used for notational coherence. The reader may

also refer to section 4.5 for a few practical remarks concerning convolution and its use in this
context.

Here, it is appropriate to elaborate a bit on the modelling. The fundamental idea in error-
correcting codes is to add redundancy in a controlled fashion to protect against channel er-
rors. Since the encoding process in a convolutional encoder achieves this by convolving the
input symbols with earlier symbols, it is quite natural to model this in our optimization by
“spreading” or “smoothing” the error probabilities by convolving with a weight function.
Since the exact form of this weight function must be chosen somewhat arbitrarily, it is im-
portant to check if the conclusions from the optimization are sensitive to the chosen shape
of the function. This has been done, and the optima remain essentially unchanged when
varying the shape of the weight function.

The objective function L also needs to be modified. The same weight function w is used
to obtain a smoother, more realistic vector of probabilities p = [ p1, . . . , pN ]. This is accom-
plished by calculating the individual pn, (n = 1, . . . , N) as before and then convolving
with w. If the modified probabilities are denoted p̃, this can be written

p̃n = (p ∗ w)(n) =
∑

k

pkwn−k, (4.13)

where the sum is over all k that give valid indices for the factors (again, refer to section 4.5).
Fig. 4.2 shows an example of a Gaussian-shaped weight function, and Fig. 4.3 shows the
smoothing effect of convolution.

As mentioned in the derivation of equation (4.2), the assumption of independent errors
is problematic—remember that the entire discussion is based on probabilities of uncorrected
channel errors, and for a convolutional decoder, such errors are in general not independent
(if the decoder chooses the wrong path through the trellis, several symbols will be erroneous
before it returns to the correct path). Thus, the derivation of the expression for Pr{ l = n }
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Figure 4.2: A weight function w and a translated version of the same function.
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Figure 4.3: Error probabilities before and after convolution with w.

is somewhat simplified. Due to the complexity of the problem, it is difficult to modify (4.2)
to account for dependent errors, but the refined model at least partly compensates for this—
since the vector of error probabilities is smoothed out by convolution, the error probabilities
become dependent in the sense that changing the error probability for one n also changes
the probabilities for “neighboring” n.

Using the refined model in the optimization gives the optima shown in Fig. 4.4. Thus,
using a more realistic model still leads to the conclusion that the optimal energy distribution
can be approximated very well by a truncation.

4.3.3 Does There Exist a Global Optimum, and Have We Found It?

A very important verification is of course to check that the optima we found are indeed
global optima. This was done by putting in a large set of random energy distributions as
start values for the optimization, and checking that the final output remained the same. This
“health check” worked out perfectly—an example of this is shown in Fig 4.5.

4.3.4 Discussion of the Shape of the Optimal Symbol Energy Distribution

[SL02] shows that in the uncoded case, the optimal symbol energy distribution is not ex-
actly a truncation but a continuous curve that can be approximated rather accurately by a
truncation (the truncation performs within a few percent of the actual optimum). Adding
error-correcting coding to a digital transmission system often has the effect of sharpening
thresholds, e.g. with the noise level on one side of a threshold the transmission is nearly
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Figure 4.4: Optimal energy profiles with the refined model, (i.e. with convolution). Subfigure a)–d)
shows symbol energy versus frame length for 20, 40, 60 and 80 percent of unit energy per
symbol, respectively.

error-free, and when the noise increases just beyound the threshold, the error rate increases
rapidly. With this in mind, one would expect that the optimal symbol energy distribution for
the coded case should be more “thresholded” than the optimal distribution for the uncoded
case. More precisely, beyond a certain frame position (that depends on the total amount
of energy available for transmitting the frame), the enery used for the remaining symbols
should drop off rapidly to zero, and this is exactly what we observe from our model.

As mentioned before, interpolation is used for bounding the error probabilities when the
code rateR is larger than the computational cutoff rateR0, but this interpolation corresponds
well to the actual computational behavior of a sequential decoder at high noise levels—the
interpolation emulates the actual behavior of FEED observed in simulations, i.e. if the SNR
is lowered beneath a certain threshold, the error probability and the time for decoding a
frame increases dramatically.

We want to answer the question of why the optimal energy distribution is very nearly a
truncation. To simplify the discussion, we consider the basic model (i.e. the model where no
convolution is used to “smooth out” the error probabilities). Also, the discussion is not tied
specifically to FEED—on the contrary, it will apply to any system that shares the following
properties with FEED:

• The system is capable of detecting the first uncorrected error in a frame.

• The system has a thresholding effect, i.e. for symbol energies down to a threshold, the
probability of an uncorrected symbol error is small, and below the threshold the sym-
bol error probability increases rapidly (towards the final value 0.5, corresponding to
zero symbol energy, i.e. corresponding to guessing the symbol value at the decoder).
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Figure 4.5: Stochastic verification of global optimum; In this example, 12 random energy distribu-
tions with average 0.4 (i.e 40%) of unit energy per symbol were used as start values, and
in each case, the optimization converged to the same global optimum. The figures show
the initial energy distrubutions as dotted curves with circles at the 100 discrete symbols,
and the optimum as a continuous curve.
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Figure 4.6: Bit error probability versus bit energy

This thresholding effect is an intrinsic property of many systems that utilize error-
correcting codes. In an example using sequential decoding of convolutional codes (see
Fig. 12.13a) p. 372 of [LJ83]) we see that the bit error probability drops from approx. 10−2

at Eb/N0 = 4 dB to approx. 10−6 at Eb/N0 = 5 dB. In other words, a difference in symbol
energy of approx. 26% (the quotient of the Eb/N0 values at 5 dB and 4 dB is 101/10 ≈ 1.26)
gives a difference in error probability of a factor 10000! Our model behaves in the same way
as this example—to see this, consider Fig 4.6.

Recall that the purpose of the optimization was to find the energy distribution that
maximizes the error-free length. Our reasoning leads us to a formal statement, that will be
tested below.

CONJECTURE: Any system that has the two properties listed above will have an
optimal energy distribution very close to a truncation.

The key is to see that the main factor that governs the expected error-free length for a given
energy distribution is the frame index K where the symbol energy drops below a threshold. The
conjecture must of course be tested against our actual optimization results. Again consider
Fig 4.6. If our conjecture holds, then the following test should work out correctly: Find
the theshold in P (Es), i.e. the symbol energy Es where the symbol error probability
increases dramatically. For a given total energy in a frame, set the symbol energy value
just above the threshold and calculate how many symbols K of the frame can be sent with
this energy—this value K should be equal to the value obtained from the optimization, i.e.
equal to the frame position where the “truncation” is located. Equivalently, we may just
check if the symbol energy obtained from the optimizations is equal to the symbol energy
threshold.

Comparing Fig 4.1 and Fig 4.4 to Fig 4.6, we see that this test works out very well—in
each case, the symbol energy threshold where the error probability increases dramatically is
equal to the symbol energy of the truncated frame obtained from the optimization.
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4.4 Conclusions

The main conclusion is that using a truncated symbol energy profile seems (see below) to be
optimal in conjunction with FEED. Thus, under heavy noise, the frame should be truncated
and all transmitter energy should be spent (equally) on the more important symbols in the
beginning of the frame. Since the optimum is truncation instead of a more general symbol
energy profile, the effects can be described by a simple example: Assume that the current
channel SNR is 1.0 dB. At such a low SNR, the probability of a time-out (i.e. that the convo-
lutional decoder in FEED has to stop before processing the whole code tree corresponding
to the received frame) is very high, and FEED will (on average) only be able to recover a few
percent of the frame. By instead truncating at 50%, i.e by spending all the energy at the first
half of the frame, the effective SNR will increase by 3 dB. With a 3 dB increase in SNR, FEED
will (on average) be able to recover everything that is sent, i.e. 50% of the frame. This simple
argument is also validated by simulations using FEED, and the reader is referred to [AL02]
for a much more extensive discussion/presentation. As a sidenote, the benefits of doubling
the energy of the symbols in the truncated frame can, and should, be improved even further
by instead using more redundancy. For example, if we send only half as many symbols, we
can change the code rate from 1

2 to 1
4 , i.e. use a more powerful code instead of just transmit-

ting with doubled energy on the (non-truncated) symbols. The optimization merely tells us
that at a fixed code rate, it is optimal to truncate and “shout” with doubled energy.

As with all mathematical models, the validity of predictions from the model depends
on how closely the model resembles reality. Finding the optimal symbol energy distribu-
tion for a FEED-capable convolutional encoder is a very complex problem, and the present
model (“smoothing” the error probabilities with convolution) is merely one way of attacking
the problem. Also, the conclusions are qualitative, not quantitative. This is due to several
reasons. For example, the expressions used for the probability of an uncorrected error are
bounds, and the bounds are in general not tight. Furthermore, as mentioned before, the
problem had to be scaled down to shorten the time required for optimization runs in Mat-
lab, i.e. we simulate a convolutional coder of memory/constraint length∼ 10 bits, and frame
lengths ∼ 100 bits, instead of the actual FEED situation with memory ∼ 100 bits and frame
lengths often ∼ 1000 bits. Also, the model contains constants that have to be estimated and
set in the actual Matlab code. The value of these constants are also scaled when the problem
is scaled down as above.

With the above in mind, a few observations which indicate that the model is reasonable
are listed:

• The conclusions (which are all qualitative, as stated above) do not rely on a very special
choice of the constants in the model. However, choosing too small constants had to be
avoided because of numerical stability issues.

• The results for the scaled-down problem are analogous to the results for the actual
problem—as mentioned before, the reduction of problem size was done to avoid too
lengthy calculations on the computer. However, we have made some full-scale runs
and compared with the corresponding scaled-down problem, and in all cases, the con-
clusions were identical.

• Even though the choice of w, the “convolution window”, is rather arbitrary in the
model, different window shapes give the same optimum.
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• As mentioned before, interpolation is used for bounding the error probabilities when
the code rate R is larger than the computational cutoff rate R0, but this interpolation
corresponds well to the actual computational behavior of a sequential decoder at high
noise levels—the interpolation emulates the actual behavior of FEED observed in sim-
ulations, i.e. if the SNR is lowered beneath a certain threshold, the error probability
and the time for decoding a frame increases dramatically.

4.5 A Few Remarks on Discrete Convolution

The purpose of this section is to describe a few practical and notational matters concerning
convolution and its use in the refined optimization model.

If f and g are bi-infinite sequences (i.e. f = [. . . , f−2, f−1, f0, f1, . . .] and similarly for g),
their convolution h = f ∗ g is defined by hk = (f ∗ g)k =

∑
n fngk−n, where the sum is over

all n that contribute with nonzero terms. The notations (f ∗ g)k and (f ∗ g)(k) are used inter-
changeably, depending on the context. Algorithmically, discrete convolution is a straightfor-
ward operation. However, different programming languages or different software packages
require different indexing etc.—for example, normal C/C++ arrays are indexed from 0, and
in Matlab, vectors are indexed from 1.

A couple of remarks on equations (4.12) and (4.13); Note that if the support of w has
length m, the convolution in the equations will have length N + m − 1 and be defined for
values of n larger than N , but we will not use those values since they are not needed in
the gradient. The other remark is on implementation—Matlab uses the a slightly different
definition of convolution, wk =

∑
k ujvk+1−j . This is due to the fact that in Matlab, the first

component in a vector has index 1, instead of 0.
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Chapter 5

Explanations of Some Concepts and
Terminology Used in this Paper (in
alphabetical order)

ARQ, Automatic Repeat Request Correcting errors by detecting errors at the receiver and
requesting retransmission of the erroneous data.

AWGN channel Additive White Gaussian Noise channel.

BSC, Binary Symmetric Channel Special case of a DMC with binary input, binary output
and symmetric transition probabilities, i.e. the probability of a 1 being distorted into
a 0 is the same as the probability of the opposite. Note that a DMC is by definition
memoryless, so the same applies for a BSC.

DHMS, Discrete Hidden Markov Source See Markov chain below.

DMC, Discrete Memoryless Channel A channel with no intersymbol interference and dis-
crete outputs. If the number of outputs exceed 2, then we say that the channel is soft-
decision.

FEC, Forward Error Correction Employing error-correcting codes that automatically cor-
rect errors detected at the receiver. If there is a communication link from the receiver
back to the transmitter, an ARQ scheme may be used instead, see ARQ.

Markov chain A Markov process where the samples take on values from a discrete and
countable set ΩΨ. Often, ΩΨ is the integers or some suitable subset thereof. Markov
chains are very useful because they can model a very common phenomenon in tech-
nology and science; the finite state machine, e.g. a convolutional encoder is a finite
state machine.

(discrete-time) Markov process A random process that satisfies

p(Ψk+1 | Ψk, Ψk−1, . . .) = p(Ψk+1 | Ψk), (5.1)

(definition from [LM94]). This means that a Markov process is a random process where
the sample Ψk+1 is independent of previous samples Ψk−1, . . . if the most recent sam-
ple Ψk is known.
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alphabetical order)

Shannon’s noisy channel coding theorem Every channel has a channel capacity C, and for
any code rate k

n = R < C ∃ codes of rate R that, with maximum likelihood decoding,
have an arbitrarily small decoding error probability P (E). In particular, ∃ convolu-
tional codes of memory order m such that

P (E) ≤ 2−(m+1) n Ec(R) = 2−nA Ec(R), (5.2)

where nA, as defined in equation (5.2), is called the constraint length. Ec(R) is a posi-
tive function of R for R < C and is completely determined by the channel characteris-
tics.
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ABSTRACT

The efficient useof FEED, a new type of sequentialdecoder
well suited for transmission of progressively encodedmulti-
media sources,is investigated.The pricincipal feature of the
FEED decoderis that it is capableof detectingthe position of
the first uncorrectedchannelerror, thus impr oving e.g. im-
age quality by enabling the source decoder to use only the
error-fr eepart of the transmitted frame. The simulations in
this article show that in the caseof heavy noise,the perfor-
manceof FEED can be substantially impr oved by a simple
truncation scheme—byconcentratingthe available transmit-
ter power to a truncated subframe, the averagelength of the
error-fr eepart of the received frame increasesradically.

1. INTR ODUCTION

Modernsourcecompressionschemesfor multimedia(sound,still
images,video etc.) may be progressive. To explain this term,
considerthecompressionof anaudiosignalusingsomesuitable
transformsuchas the FFT or a wavelet transform. An audio
frameis convertedinto a setof coefficients,which aresortedin
decreasingsizeorder. The onesthat arebelow a given thresh-
old aretruncated,thusacheiving thecompression.Considerthe
transmissionof theremainingcoefficients(in decreasingsizeor-
der) over a noisy communicationchannelandreconstructionof
theaudiosignalat thereceiver end,with thefollowing observa-
tions:� One can reconstructa reasonableapproximationof the

signal if the most important(i.e. largest)coefficients in
theframehave beenreceivedcorrectly.� Moving further into the frame, the reconstructedsignal
quality increaseswith the numberof correctly received
coefficients.� Dueto variablerun-lengthencoding,if onecoefficienthas
beencorruptedby noise,thefollowing coefficientsin the
framecanactuallydegradethereconstructedquality [2].

The completecommunicationssystemshouldbe designed
to accomodatemultimediasignalscompressedwith progressive
sourcecoding schemes.One way of doing this can briefly be
describedasfollows:

1. UseFEED[6], anew sequentialdecoderfor convolutional
codesthatcanlocatetheframepositionof thefirst uncor-
rectederror.

Partially supportedby EricssonErisoft, theSwedishIT InstituteIn-
ternet3programandEU Mål 1. Also, specialthanksto Drs. Stockham-
merandWeissfrom Prof. Hagenauer’s groupat Munich Univ. of Tech.
for their supportonFEEDquestions,sharingprepub. papersetc.

2. CombineFEED with regressive redundancy, i.e. protect
thebits (representingthecoefficients)with regressive re-
dundancy accordingto their importance.

This regressive redundancy is usuallyachieved by punctur-
ing. This paperpresentsa modificationof the approachin [6].
Hereintheregressive redundancy partacheivedby puncturingis
replacedwith atransmitterthatspendsmoretransmissionenergy
onmoreimportantbits in a frame.

2. DESCRIPTION OF THE FEED CONCEPT

Shannon’s noisy channelcoding theoremstatesthat when the
transmissionrateis below thechannelcapacity, arbitrarily small
errorprobabilitiescanbeobtainedbyusinganencoderwith large
enoughmemory. However, to decodelong-memoryconvolu-
tional codesonecannotusetheViterbi maximumlikelihoodal-
gorithm,sinceits complexity grows exponentiallywith thecon-
straintlength(whichis proportionalto theencodermemory).An
alternativeis thento usesequentialdecoding[3], sincesequential
decodingcomplexity is essentiallyindependentof encodermem-
ory. However, in practicesequentialdecodersmay sometimes
takeavery longtimeto decodenoisyframes,whichcanresultin
a time-outbeforethewhole frameis decoded.Thestandardso-
lution to this hasbeento declareanerasureandpossiblyrequest
a resend.Theideawith FEEDis to avoid theseerasuresandtry
to salvagetheusefulportionof thepartially decodedframe.

To understandhow this is done,recallinga few factsabout
sequentialdecodersis necessary. Whenanalyzingsequentialde-
codersof convolutional codes,it is usefulto view thecodeasa
codetree. For example,arate1/2convolutionalcodeandaframe
lengthof 1152informationbitscorrespondsto a full binarycode
treeof height1152with 21152 leaf nodes(in practice,thenum-
berof leaf nodeswill besomewhat lower, sincethe“tail” of any
transmittedframeis a sequenceof zerosthat forcesthe convo-
lutional encoderbackto its zerostate). Thesequentialdecoder
startsat the root nodeandcomparesdifferentpathsthroughthe
codetreeby lookingatthereceivedsequenceandcomputingpath
metricsin the tree,usuallyusingtheFanometric [3], [4]. If the
decodingprocessis stoppedbeforethedecoderis finishedwith a
frame,onehasa partially exploredcodetree, asdepictedin Fig.
1. In this example,the currentpathestimatecould be the path
leadingfrom the root to nodeB, andthe intent is to determine
the reliability of this path,andall its subpathsbeginning at the
root.

Theheartof theFEEDconceptis this pathreliability calcu-
lation,whichhasrootsin [4] and[1]. Thealgorithmis described
by the inventorsof FEED in [6]. In AppendixA a full deriva-
tion of thepathreliability calculationis given. Theappendixis
providedfor theconvenienceof interestedreadersandessentially
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Figure1: Partially exploredcodetree

consistsof acombinationof therelevantpartsof [4] and[6], with
a coherentnotationetc. For the readerwho wantsa brief, intu-
itive explanationof thepathreliability calculation,an overview
follows here.

In consideringFig. 1, let R
�
A� denotethepathreliability for

theA-path,i.e. thesubpathgoingfrom theroot to nodeA. R
�
A�

is calculatedas

R
�
A��� weightof A-path� ∑weightof all subpathsstemmingfrom A

∑weightof all pathsin part.expl. codetree� (1)

where“weight” simply meansthe Fanopathmetric. That this
is a goodreliability measurecanbeunderstoodintuitively from
how a Fanodecoderoperates.If the pathsthat have theA-path
in commonconstitutea considerableportionof thepartially ex-
ploredcodetree,this meansthat the decoderhasspenta lot of
time in the subtreestemmingfrom nodeA, indicating that the
A-pathis reliable. Performingthis reliability calculationfor all
subpathsthat lead to nodeB andnoting whena significantre-
liability drop occurs,oneobtainsan estimateof wherethe first
uncorrectederroroccured.In our simulations,this estimatehas
beenverified to be very accurate,allowing to salvagecorrectly
decodedpartsof timed-outframes.

3. OUTLINE OF THE METHOD

The ideaof this paperis to combineFEED with the useof re-
gressive bit energy insteadof regressive redundancy. Regressive
redundancy is often accomplishedby puncturing,which means
thatfinding theoptimalregressive redundancy maybeviewedas
optimizationover a discretespace. Furthermoreif, as is com-
mon,puncturingis donein hardware,this might furtherlimit the
flexibility which is desirableas channelSNR fluctuatesover a
broadrange.In contrast,a regressive bit energy profile mayal-
low a moremalleablesolution. Seealso[5]. Also notethat the
two methods(puncturingandadjustablebit energy) maybeused
in concert.

4. RESULTS

For thesimulations,a FEEDimplementationthatwasdeveloped
by thefirst authorfor EricssonErisoft is used.A systematicODP
(OptimumDistanceProfile)convolutional codeof rateR � 1� 2
with 96bit memory(in effect,95 bitsplus“currentbit”, in order
to alignwith 32-bitwordboundariesonthetargetCPUs),aframe
lengthof 1152informationbitsandBPSKonanAWGN discrete,
memorylesschannel(DMC) areused.TheDMC is binary-input,
256-output(implementationnote: the256outputscorrespondto
an unsigned char in C/C++ for most CPU architectures).
The sequentialdecoderusesthe Fano algorithm for the actual
decodingpart,with someaddedbookkeepingto beableto dothe
FEEDpathreliability calculationasa post-processingstep.The
systemis depictedin Fig. 2.
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Figure2: Systemblockdiagram
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4.1. Initial attempt—linearly regressive bit energy

For simplicity, a linearly regressive energy perbit Eb
�
n� is used.

Let nsymsdenotethenumberof (code)bits in a frame,andlet n
denotethebit index. Eb canthenbewrittenEb

�
n�*�+( βn� nsyms,

c, wheretheparameterβ governstheslopeof theEb linesandc
is aconstantchosensothatthetotalbit energy in aframeis inde-
pendentof β, seeFig. 3. Notethatwe do not considera linearly
regressive profile to beoptimal, it is just a simplemodelfor ex-
perimentation. Seealso [5] wheredifferent Eb

�
n� profiles are

investigated.
Fig. 4 shows averagerecoveredframe lengthversusβ for

five differentSNRs(recall thatsmallβ valuescorrespondto al-
mostflat Eb

�
n� profiles,andlargerβ correspondto moreregres-

sive Eb
�
n� ). In this figure,andin all otherfiguresin this paper,

the SNR valuesarein dB. Eachdatapoint is an averageof 30
independentrunsof thedecoderwith fixedaverageSNRandβ,
andeachrun is a simulationof 20 frames.As maybeexpected,
for low SNRs,it is bestto usea higly regressive power profile
placingmostof the energy in theearlypart of the frame,while
for high SNRs,a flat power profile givesthe longestrecovered
framelengths. Sincethe transitionfrom regressive to flat opti-
mumoccursfor anSNRbetween1.5and2.0dB,amoredetailed
plot of this transitionis includedin Fig. 5.
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A complementaryview of the datais shown in Fig. 6. For
eachSNR, the β that gave the longestrecoveredframe length
waschosenfor theregressivecurve in thefigure.Thetwo curves
demonstatethat the regressive Eb profilesgive much larger re-
coveredframelengthsfor low SNRs(between1 and1.5dB), but
for higherSNRs,thereis nobenefitfrom usinga linearly regres-
sive bit energy.

4.2. Truncation insteadof linearly regressive bit energy

For low SNRs,it is reasonableto assumethata betterapproach
thana linearly regressive bit energy would beto usetruncation,
i.e. concentrateall theavailabletransmitterpower to a subframe
to enablelonger recovered frame lengths. This assumptionis
furthersupportedby a theoreticalinvestigationin thecaseof no
channelcoding—in [5], it is shown that for progressively en-
codedsourcesandlow SNRs,theoptimalbit energy distribution
goesto zerobeforethe endof the frame. It is alsoshown that
usinga hardtruncationinsteadof theoptimalbit enerydistribu-
tion causesessentiallynoperformanceloss(thedifferenceto the
optimalcaseis only a few percent).

Thetheoreticaldiscussionaboveisaffirmedbysimulations—
Fig. 7 demonstratesthatevenat anSNRof 1 dB, almost800of
1152bits can(on average)be recoveredby truncatingat 70%,
i.e. by concentratingall transmitterpower to thefirst 70%of the
frame.Also worthy of mentioningis thefact that truncationnot
only increasesthe average,it alsodecreasesthe “spread”—the
recoveredframelengthof theworst-caseframes,i.e. the timed-
out frames,increasesradically.

Theperformancecouldbeimproveduponfurtherby refining
thetransmissionsystem,e.g:
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Figure7: AveragerecoveredframelengthversusSNRfor differ-
entframetruncationpercentages

� It is well known that sequentialdecoderperformanceis
sensitive to metric table incorrectness,i.e. optimal de-
coderperformanceis contingenton the useof a metric
tablethat correspondsto currentchannelSNR. For sim-
plicity, and to avoid distorting the comparisonwith lin-
early regressive bit energy, the metric table of the de-
coderwhas not modified when concentratingall trans-
mitter power to a subframe,eventhoughthis power con-
centrationincreasestheeffective SNRfor thetransmitted
symbols.� The truncationof courseimplies that fewer symbolsare
actuallytransmittedoverthechannel.Thisimpliesalower
bitrate,so it couldbefeasibleto decreasetheusedband-
width, therebydecreasingthe channelnoisepower and
gettinganadditionalSNRincrease.

5. CONCLUSION

The simulationsdemonstratethat for the lowestSNRs,it is ad-
vantageousto truncate,i.e. to spendall of the transmitter’s en-
ergy budget in the beginning of the frame, sincesucha trun-
catedEb

�
n� profilecansignificantlyincreasetherecoveredframe

lengthfor noisy frames. For example,if a transmissionsystem
detectsthatit is in a low SNRsituation,it couldtruncateearlyin
theframe,therebyincreasingthecorrectlyreceivedframelength.
Whenthe systemdetectsincreasingSNR, the truncationwould
be adjustedto occurlater in the frame,allowing the decoderto
recover largerpartsof theframe.

A schemesuchas the oneabove requiresthat the receiver
somehow detectsthecurrentSNRandreportsit backto thetrans-
mitter, i.e. a low bit-ratereturnlink from receiver to transmitter
would benecessary. Also, thequestionis how FEEDshouldob-
tain thecurrentSNR.Oneway is providedby thecurve for the
flat Eb

�
n� profile in Fig. 6—the inverseof the function corre-

spondingto the curve is a function that mapsrecoveredframe
lengthsto currentSNRs,andsucha functioncould for instance
bestoredasa lookuptablein thedecoder.

Asasidenote,it shouldbepointedoutthattheFEEDdecoder
alsois inherentlyadaptive to varyingnoise—forfixedEb

�
n� pro-

file, the averagerecovered frame length for timed-out frames
increasesradically when the SNR increases.This of courseis
dueto the fact that with increasedSNR,the sequentialdecoder
needsfewerdecodercyclesto work itswaythroughthecodetree.
Therefore,in a giventime, thedecodermanagesto move further
into thetreein caseof high SNR,soif a time-outoccurs,there-
liability calculationthenallows FEEDto recover a largerpartof
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theframe,seealso[2].

A. DERIVATION OF THE PATH RELIABILITY
FORMULA

A.1. A ConnectionBetweenVariable-Length Codesand the
FanoMetric

Considerthetransmissionsystemshown in Fig. 8 for a variable-
lengthcode.Let - bea setof M messages(informationwords).
To eachinformationword u ./- correspondsa codewordxu

xu �10 xu 2 1 � xu 2 2 �4353535� xu 2 nu 6
of length nu. The codesymbolsxu 2 j � j � 1 �5353735� nu belongto
somealphabet8 , e.g. if we have a rate1/2 binaryconvolutional
codeeachbit (in this case,with one input to the encoder, an
informationword symbol is onebit) in an informationword u
wouldcorrespondto atwo-bit codewordsymbolxu 2 j .98 . Now,
let : denotetheset : �<; xu = u .>-@? 3
Then,: is ourvariable-lengthcode,andwecansendcodewords
from : througha DMC. Thegoalof thevariablelengthdecoder
is to estimatethetransmittedvariable-lengthcodeword. Theesti-
mateis basedonthereceivedoutputsequencey � y A 0:T B , andthe
goal is to minimize the (a posteriori) error probability. There-
fore, (sincey is fixed,i.e. it is anobservationthatcanbeviewed
asa fixedquantityfor theanalysishere),theestimateû is taken
asthemessageword u ./- thatmaximizesPr; u � y ? .To calculatethemaximizingestimate,we usethetheoryde-
scribedin [4]. Considerthe abstracttransmissionsystemde-
picted in Fig. 8. Denotethe maximal codeword length by T.
Themessageu of probabilityPu selectsthecodeword

xu �10 xu 2 1 � xu 2 2 �7353535� xu 2 nu 6 �
to which is addeda “randomtail”

tu �C0 tu 2 1 � tu 2 2 �5353535� tu 2 T D nu 6 �
andthemessageplustherandomtail togetherform afixed-length
input sequence

z �10 z1 � z2 �5353537� zT 6 �C0 xu � tu 6 3
This sequencez is thentransmittedover theDMC. Therandom
tail tu is assumedto beselectedstatisticallyindependentlyof xu,
andwealsoassumethatthedigits in tu arechosenindependently

accordingto a probability measureQ
� � over the channelinput

alphabet,i.e,

Pr; tu = xu ? � Pr; tu ? � T D nu

∏
k E 1

Q
�
tk � 3

The introductionof therandomtail tu might confusethe reader
at first, but its usewill becomeclearerbelow. It sufficesto think
of tu aseitheraconvenientdevice for normalizingthenumberof
receiveddigits thatmustbeconsideredin thedecodingprocess,
or as the digits resultingfrom subsequentencodingsof further
messagesin a randomlyselectedcode.

Let y �)0 y1 � y2 �5353537� yT 6 denotethereceivedword. By thedef-
inition of a DMC wehave

Pr; y = z? � nu

∏
t E 1

pc
�
yi = xu 2 i � T D nu

∏
j E 1

pc
�
ynu F j = t j � �

wherepc
� � = � � denotesthetransitionstructureof thechannel.

The joint probability of sendingthe messageu, addingthe
randomtail tu andreceiving y canthenbewritten

Pr; u � tu � y ? � Pu Pr; tu = xu ? Pr; y = 0 xutu 6 ?� Pu

nu

∏
i E 1

pc
�
yi = xu 2 i � T D nu

∏
k E 1

Q
�
tk � T D nu

∏
j E 1

pc
�
ynu F j = t j � 3

If wereplacethe“dummy” index k onthelastline of theprevious
equationby j , weget

Pr; u � tu � y ? � Pu

nu

∏
i E 1

pc
�
yi = xu 2 i � T D nu

∏
j E 1

pc
�
ynu F j = t j � Q � t j � 3

Summingover all possiblerandomtails andsetting

P0
�
yi ��� ∑

tk

pc
�
yi = tk � Q � tk � � (2)

gives

Pr; u � y ? � Pu

nu

∏
i E 1

pc
�
yi = xu 2 i � T D nu

∏
j E 1

G
∑
tk

pc
�
ynu F j = tk � Q � tk �IH

� Pu

nu

∏
i E 1

pc
�
yi = xu 2 i � T D nu

∏
j E 1

P0
�
ynu F j � 3 (3)

Thus,P0
� � is the probability measureon the channeloutputal-

phabetwhentheprobabilitydistribution on thechannelinput is
Q
� � as above. Now, given y, the optimal decodingrule (opti-

mal in the sensethat the rule minimizesthe probability of an
erroneousdecision)is to choosethe messagêu that maximizes
Pr; u � y ? , which is equivalentto maximizing

Pr; u � y ?
∏T

i E 1 P0
�
yi � �

sincethedenominatordoesnotdependonthemessageu. Taking
logarithms,andusing(2) and(3), we obtain the log-likelihood
ratio

L
�
u � y �J� log K Pr; u � y ? � T

∏
i E 1

P0
�
yi �ML

� log K Pu

nu

∏
i E 1

pc
�
yi = xu 2 i �

P0
�
yi � L

� log
�
Pu � , nu

∑
i E 1 N log

pc
�
yi = xu 2 i �

P0
�
yi �PO� nu

∑
i E 1 N log

pc
�
yi = xu 2 i �

P0
�
yi � , 1

nu
logPu O 3



TheprobabilityPr; u � y ? canequallywell bewritten as

Pr; u � y ? � C
�
y � � exp

�
Λu �� C

�
y � � exp

� nu

∑
j E 1

λu 2 j � � (4)

whereC is a constantthatonly dependson thereceivedword y,
andthemetricincrementλu 2 j for eachreceivedsymbolis

λu 2 j � log
pc
�
y j = xu 2 j �
Pr
�
y j � , 1

nu
logPr; u ? � (5)

wherePr; u ? � � Pu � is the(a-priori) probabilityof themessageu
(theconstantC is of coursejust ∏T

i E 1 P0
�
yi � ). As will beshown

in sectionA.3, in thecommoncaseof equiprobableinformation
words,equation(5) definesthe well-known Fano metric. This
metric is usedfor sequentialdecodingof convolutional codes,
e.g. in theFanoalgorithm. Taking logarithmsdoesnot alter the
resultsof maximizationsincethe logarithmis a strictly increas-
ing function.As anadditionalbenefit,thefactthatwe take loga-
rithmsgivesusbetternumericalstability—in theoriginal BCJR
algorithm[1] andin the algorithmdescribedin the earliersec-
tions,wewind upwith multi-factorproductsof probabilities,and
thoseproductsquickly becomesmall,whichcancausenumerical
instability. Logarithmsconvert theseproductsto sums,thereby
avoiding having to dealwith verysmallnumbers.

A.2. Path Reliability for Variable-Length Codes

Given theentirereceivedsequencey anda subpathx A 0:t B repre-
sentingan estimateof a transmittedcodeword, we want to cal-
culatethereliability of thesubpath.We begin by defininga sub-
set - � x A 0:t B � of the informationwords - as - � x A 0:t B �Q�R; u S .- =UT 0 V τ W t xu X 2 τ � xτ ? . We then definea correspondingsub-
set : � x A 0:t B � of the codewords : as : � x A 0:t B �Y�R; xu X .Z: = u S[.- � x A 0:t B � ? . Thereliability of thesubpathx A 0:t B cannow bewrit-
tenas

Ry 2 \ � x A 0:t B �J� ∑x X ]_^ A x ` 0:t a b Pr
�
x S � y �

∑x X ]_^ Pr
�
x S � y �� ∑u Xc] \ A x ` 0:t a b Pr
�
u S � y �

∑u X ] \ Pr
�
u S � y � 3

Using(4) andsimplifying we get

Ry 2 \ � x A 0:t B �� ∑u X ] \ A x ` 0:t a b Pr
�
u S � y �

∑u X ] \ Pr
�
u S � y �� [insert(4)]� ∑u X ] \ A x ` 0:t a b C � y � � exp

�
∑nu X

j E 1 λu X 2 j �
∑u X ] \ C

�
y � � exp

�
∑nu X

j E 1 λu X 2 j �� [usethedefinitionof - � x A 0:t B � i.e. commonsubpath]

� exp
� t

∑
j E 1

λu 2 j �d egf h
commonsubpath

� ∑u X ] \ A x ` 0:t a b exp
�
∑nu X

j E t F 1 λu X 2 j �
∑u Xc] \ exp

�
∑nu X

j E 1 λu X 2 j � 3 (6)

Equation(6) canbe usedto calculatethe reliability of any
decodedpathx̂ A 0:û B . If we let t vary between1 andnû, we geta

vectorof reliabilitiesof subpathsof thedecodedpath:

Ry 2 \ � û �� Ry 2 \ � x̂ �� ; Ry 2 \ � x̂ A 0:1B � � Ry 2 \ � x̂ A 0:2B � �5353735� Ry 2 \ � x̂ A 0:nû B � ? 3
A.3. Using the Theory for Variable-Length Codesto Calcu-
late the Path Reliability of SequentialDecoding

If a sequentialdecoder, for examplea Fanodecoder, hasto stop
beforeit is finished(e.g. dueto timing constraints),usuallythe
partially decodedframe hasto be discarded. Instead,we will
make useof the partially decodeddatausing the theorydevel-
opedin [6].

The connectiontho the theory for variable-lengthcodesis
essentiallythis importantobservation: Whenthedecoderhasto
stopbeforeit is finished,wehavea partially exploredcodetree
that canbeviewedasa fully exploredcodetreefor a codewith
variable-lengthcodewords! A codeword correspondingto anin-
formationword u is denotedby by xu, andwe have

xu � xu A 0:nu B �)0 � xA 1bu 2 1 �5353535� xA nbu 2 1 � �5353537� � x A 1bu 2 nu �5353535� xA nbu 2 nu � 6 �
wheren denotesthe numberof codeword bits per information

word symbol,e.g.
�
x
A 1b
u 2 4 �7353535� xA nbu 2 4 � is then bits in xu correspond-

ing to thefourthsymbolu4 in theinformationwordu � u A 0:nu B �0 u1 �5373535� u4 �5353735� unu 6 . Wedenotethesetof informationwordscor-
respondingto the partially exploredcodetreeby - . The joint
probabilityof thereceivedsequencey andapathxu canbewrit-
tenasanexpressionof thesameform as(4):

Pr; xu � y ? � Pr; u � y ? � C
�
y � � exp

�
Λu �� C

�
y � � exp i nu

∑
j E 1

λt j s� u A 0:t D 1B � � s� u A 0:t B �7kgl �
wheres

�
u A 0:t B � is thestateof theencoderafter encodingthe in-

formationsequenceu A 0:t B . Observe thatthenotation

λ j j s� u A 0: j D 1B � � s� u A 0: j B �7k
of coursemeansthesameasλu 2 j .

In the casewhereoneinformationword symbol is onebit,
assumingthat the informationbits areindependentandequally
likely to bezerosor ones,thea priori probabilitythatthedecoder
followedthepathu is

Pr; u ? � 2D nu 3 (7)

Using(7), (5) becomes

λu 2 j � log
pc
�
y j = xu 2 j �
Pr
�
y j � ( 1 3

In thederivationabove, therewasonecodeword symbolfor
eachinformationword symbol. If we insteadlet nu denotethe
numberof bits in the codeword anddo a “bitwise” derivation,
wheretheratio of thenumberof info bits to thenumberof code
bits equalsthecoderateR, wewould get

Pr; u ? � 2D Rnu �
andthekth step“bit metric” would be

λu 2 k � log
r
�
yk = xu 2 k �
Pr
�
yk � ( R3



with r
� � = � � the“bit transitionprobability” for thechannel.This

“bit metric” is thewell-known Fanometricfor sequentialdecod-
ing.

It is importantto notethatthetheorydevelopedsofar is not
restrictedto a DMC—it couldequallywell have beendeveloped
for a fadingchannel.In thatcase,themetricincrementbecomes

λt
�
m� mS �J� nlog

�
2�*( n

∑
i E 1

log j 1 , exp
� ( ψ

A i b
t x
A i b
t �7k( log

�
1 , exp

� ( L
�
ut � � ut �7� �

where, if a
A i b
t denotesthe fading amplitudeand Es

N0
the SNR,

ψ
A i b
t � 4a

A i b
t

Es
N0

y
A j b
t . The interestedreaderis referredto [6] for

details.
To sumup,we have finally arrivedat theexpressionfor cal-

culatingthepathreliability in our convolutionaldecoder:

Ry 2 \ � u A 0:t B �
�

commonsubpathf h_d e
exp j t

∑
j E 1

λ j
�
s
�
u A 0: j D 1B � � s� u A 0: j B �7� k

� ∑
u X ] \ A u ` 0:t a b exp i ∑nu X

j E t F 1 λ j j sA u X ` 0: j m 1a b 2 sA u X ` 0: j a b knl
∑

u X ] \ exp i ∑nu X
j E 1 λ j j sA u X ` 0: j m 1a b 2 sA u X ` 0: j a b k_l � (8)

compare(8) with (1). This bringsusbackto ourgoal—aFEED-
capabledecoder. Supposethat the decoderreceivesa time-out
beforefinishing,i.e. beforereachinga leafnodeof thecodetree.
We thenhave a partially exploredcodetreeandanestimateû of
(part of) the transmittedsequence.The decoderthencomputes
the subpathreliabilities of all subpathsof û (that begin at the
root node).Whena largedropin thepathreliability occurs,this
is an indicationthat an uncorrectederror exists, andFEED de-
livers the pathestimate,up to this first uncorrectederror, as its
partiallydecodedframe.Here,wecanalsoseethereasonfor the
nameFEED,“FarEndErrorDecoder”—thedecoderattemptsto
decodeaslong towardsthefar endof theframeaspossible,and
then(given timing constraintsetc.) deliversonly the error-free
partof thedecodedframe.
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