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Abstract: Via the Posilicano method Schrédinger operators with singular poten-
tials supported by Brownian paths in the configuration space R?, 1 < d < 5, are
constructed. The essential, absolutely continuous and singular continuous spec-
tra are determined almost surely (with respect to Wiener measure). It is shown,
that the set of positive eigenvalues is discrete and that the wave operators exist
and are asymptotically complete a.s.; if d > 3 then the set of positive eigenvalues
is even empty a.s. A trace formula for the number (counting multiplicities) of
negative eigenvalues is derived.

1 Introduction

In a wide variety of models in quantum field theory one studies a family (H,) of Schrédinger
operators in L%(R*, A\*) (A? being the Lebesgue measure) with potentials supported by a
Brownian path. Here severe mathematical problems arise from the very beginning. Due to
the fact that the c;-capacity of a “typical path of a Brownian particle in R*” equals zero,
Kato’s quadratic form method cannot be used in order to define the operator H, (cf. the
introduction in [Bra] for a detailed discussion of this point).

Instead one has worked with ultraviolett cutoff [Cher| or nonstandard analysis
[AFHL]. The spectral analysis of the operators constructed via these methods is, however,
extremely difficult; actually, virtually nothing is known about their spectra.

Recently A. Posilicano [Pos| presented a new method for the construction of sin-
gularly perturbed selfadjoint operators (cf. also [Bra]). It is the purpose of this note to
show that this method can be applied for the construction of Schrédinger operators with a
singular potential supported by a “typical Brownian path” if the dimension d of R? is less
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than or equal to 5. Moreover we shall provide a detailed spectral analysis of the opera-
tors constructed via the Posilicano method. In particular, we shall determine the essential
spectra, prove existence and completeness of wave operators, absence of singular continuous
spectra and positive eigenvalues and derive a trace formula for the expectation value of the
number (counting multiplicities) of negative eigenvalues.

2 Preliminaries and Notation

2.1 Capacity and quasi continuity

L*(R?) = L*(R?, A\?) denotes the space of (equivalence classes) of functions which are square
integrable w.r.t. the Lebesgue measure \¢ and f the Fourier transform of f. Let s > 0.
H?*(R?) denotes the Sobolev space of all f € L?(R?¢) such that

15 = ([ +x2)8/2\f<x)w<dx>)w <o 21)

The ¢, — capacity of the compact set K C R? is defined by
¢s(K) = inf || f |7,

where the infimum is taken over all f in the space C$°(R?) of smooth functions f with
compact support satisfying f(z) > 1 for all z € K. The ¢; — capacity of an arbitrary Borel
set B is defined by

¢s(B) :=sup ¢s(K), (2.2)

where the supremum is taken over all compact subsets of K.
The function g : R — C is quasi continuous w.r.t. the ¢, — capacity if and only
if for every £ > 0 there exists an open subset O, of R? such that

cs(0e) < €

and the restriction of g to the complement R? \ O, is continuous. Every f € H*(R%) has
a representative f which is quasi continuous w.r.t. the ¢, — capacity. If f and f° are
representatives of f € H*(R?) and quasi continuous w.r.t. the ¢, — capacity then the c, —
capacity of the set {x € R% : f(x) # f°(z)} equals zero. In the present note f denotes any
representative of f € H*(R?) which is quasi continuous w.r.t. the ¢, — capacity; this notation
does not indicate which s is meant, but this will always be clear from the context.

If u(B) = 0 for every Borel set B satisfying c;(B) = 0 and

/ |fI2dp < 00, f e H*(RY), (2.3)
then we can define the mapping Jy, : H*(R?) — L?(R%, p1) by
Jouf = f pae., fe H(RY). (2.4)



2.2 Wiener measure and occupation time measure

Q) denotes the space C(R,,R%) of continuous functions w : R, = [0,00) — R¢ and W the
Wiener measure on €. 0 < T < oo is fixed, the occupation time measure pZ on the Borel
algebra B(R?) of R? is defined via

pl(B) == AN ({t:0<t<T, w(t)e B}), BeBRY. (2.5)
The topological support of the occupation time measure p! equals the set

T ={wlt):0<t<T}. (2.6)

2.3 Singular perturbations

Let s, > 0. We put
Gsa=(-A+a)*and G, =G = (-A +a)! (2.7)

where —A is the selfadjoint operator in L*(R?) defined by

d 92 f
D(-A) = H*RY), —Af:=-) f e H*(R?),
j=1

2,
— 0z}

and derivatives have to be understood in the distributional sense.
An operator H belongs to the set A~ if and only if

H is a selfadjoint operator in L?(R?),
C(R*\IY,)) € D(H),

Hf =-Af, [eCFRI\T]),
H# —A.

(2.8)

If there exists an s < 2 such that ul(B) = 0 for every Borel set B satisfying
¢s(B) =0 and

pr(B) =0, if ¢,(B) = 0, and /|f|2du§ < oo, fe€H'®RY, (2.9)

then we can define the mapping JI : H?(R?) — L*(R¢, uT) by
JLf=f pl-ae ,fe H*RY) (e JL = Jyr) (2.10)

and there exists a unique operator HX € AL such that —«a belongs to the resolvent set of
HY  and

(Hio + )" = Ga+ (J;Ga)* (5 Ga), (2.11)

cf. [Bra], Theorem 9.



2.4 Wave operators and Schatten classes

The wave operators W*(H, —A) exist provided

WE(H,-A)f := tlim el it f
Foo
exist for every f € L?(R?). The wave operators W*(H, —A) are asymptotically complete if

and only if
ran(W*(H, —A)) = ran(W~ (H, -A)) = (H”(H))*

(i.e. every state f can be decomposed into the orthogonal sum of a bound state f, and a state
fs such that the system behaves asymptotically as a free system provided the initial state
equals f,). The wave operators W*(H, —A) are asymptotically complete if and only if the
singular continuous spectrum o (H) is empty and the operators W=*(H, —A) are complete,
ie
ran(W*(H,—A)) =ran(W~(H, —A)) = H*(H).

Here #PP(H) and H*(H) denote the pure point spectral subspace (the closure of the span
of the eigenvectors) of H and the absolutely continuous spectral subspace of H, respectively.

In order to prove existence and completeness of wave operators one often uses
Schatten classes. Let C' : H; — Hs be a compact linear bounded mapping. There exists
an orthonormal basis {e; };c;r of Hy and nonnegative numbers \;, i € I, such that

vCC*ei:)\iei, 1€ 1.
The family {\; }icr is unique up to permutations. We put

1C lls,= (Q_M)"? (S o00), 0<p<oo.

el

C belongs to the Schatten class of order p provided || C ||s,< co. We define || C' ||s,= oo if
C' is not compact.

We shall repeatedly use the following well known facts: Along with C also BiC B,
and the adjoint C* belong to the Schatten class S, for all bounded operators B; and Bo.
Moreover CK € S, provided C € S,, K € S;and 1/p+1/q¢=1/r.

3 Compactness and Schatten norms

Let d < 5. Our first goal is to show that the condition (2.9) is satisfied for W-a.a. w € Q. As
mentioned this guarantees that for W-a.a. w € Q there exists a unique operator HX , € AL
such that —a belongs to the resolvent set of H!  and (2.11) holds. If the dimension d is
larger than 5 then the cy-capacity of the set I'Z (cf. (2.1), (2.2), (2.6)) equals zero W-a.s.
and the set A is empty W-a.s.

We shall prove (2.3) with the aid of Lemma 3.1 below which might be useful in

other contexts, too. Let s,a > 0 and d € N.



There exist rotationally symmetric functions k,, : R? — [0, 00] and g,, : R —
[0, o] satisfying

ko) = 0+ @)% Gua(0) = @* + )%, A - ae, (3.1)

cf. [SW]. We choose k,, and g,, such that they are continuous on R? if possible (i.e. if s > d
resp. s > d/2); otherwise we choose them such that they are continuous on R? \ {0} and
equal to 0o at 0. g, is the convolution kernel of the operator (—A + )~ on L?(R?, \?).

LEMMA 3.1 Let G¥, be the integral operator with kernel gso(x —1y) (cf. (3.1)) in
L2(R?, p). If G, is bounded then the measure y does not charge any set with c, — capacity
zero and

/|17|2du <||G*, || (A + oz)s/2v, (—A+ Q)S/Q’U)[}(Rd,)‘d), v e H*(RY). (3.2)

The estimate (3.2) is sharp.

PROOF. Denote by K*, the integral operator with kernel ks, (z —y) (cf. (3.1))
from L?(R%, p) to L*(R%, \%). Then the adjoint operator K** is the integral operator from
L2(R%, \4) to L*(R%, 1) with the same kernel kyo(z — v).

Let f € L?(R¢, ), f > 0 p— a.e. Then

I [ ksa(z = y) F(9)1(dy) [ ksal@ — 2) f(2) p(d2) A (dx)
T [ [ Esa(® = 9)ksa(z — 2)X(dz) f (y) u(dy) f (2) p(d2)
T 1) [ 9saly — 2) f(2) (dz) pu(dy)

= (fs GEf) L2 we
< | Gl N1 1172 ra < 005

in the second step we have used that

/ksa(ac — Yksa(z — z))\d(dac) = gsal(y — 2).
Thus we arrive at
| Kl [IP<|| G%, |I< oo.

For every f in the Schwartz space of rapidly decreasing smooth functions the func-
tion

o) = / Fual- — 1) (1) X%(dy)

also belongs to Schwartz space S(R?); in particular, v is continuous. Note that v is a
representative of both (—A + a)~*/2f and K** f. Moreover

/ odp = || K2 F o<l K2 121 £ 1o
< G (0 (=D + 00 sty < ¢ [0 g (3.3)

5



for some finite constant ¢ independent of v.
If the ¢; — capacity cs(K) of the compact set K equals zero then there exist v, in
the Schwartz space S(R?) satisfying

vp >1on K and || v, || ge@ey—> 0, as n — oo.

By (3.3), it follows that ¢;(K) = 0. By the inner regularity of the ¢, — capacity and the
measure y, this implies that ¢;(B) = 0 for every Borel set B such that u(B) = 0.

Let v € H*(RY). Take any v,, n € N, in the Schwartz space S(R?) converging to v
in H°(R?) as n tends to infinity. By (3.3), there exists an h € L?(R%, 1) such that

vy —h  asn— oo in L*(R%, p).
Moreover there exists a subsequence {vy;} of {v,} such that
Up; — U Cs —(.€. as n —> 00.

Since the measure p does not charge any set with ¢, — capacity zero it follows that o = h
a.e. with respect to the measure y, that o € L?(R%, 1) and

JERE T

< lim | Gl 1] (0 (— + 0) ) e
= Gl (A + 0)0, (A + 0)0) g pe

Since G, = Jyu (JouGia)® = (JuGih) (JouGil)* = K KE the operator GX, is nonnegative
and selfadjoint and

I G 1= G 117 - (3.4)

s

We choose a sequence {f,} in S(R?) such that || f, ||z2ge0)=1 for every n € N and
|| Kt f,, ||L2(Rd,)\d)—>|| K# ||. We put v, := (—A + a)~*2f,, n € N. Then
(Un, (—A + a)®v,) =1 for every n € N and (3.3) and (3.4) yield

/MWWMWMLMWHm,

i.e the inequality (3.2) is sharp. O

REMARK 3.2 a) With the aid of the above lemma we can immediately rediscover
a well known result on measures in Kato classes. Let 0 < s < d/2. Let u be a measure in
the Kato class w.r.t. the operator (—A)?, i.e

1
lim sup/ ————u(dy) = 0.

€0 zeRre y—z|<e |$ - y|d723

Then the Schur test in combination with the facts that gso(x) tends to zero uniformly on
{z : |z| > ¢} as « tends to infinity and that there exists a finite constant ¢ independent of «
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such that g, (z) < c|z|?*~? for all x € R? yields that the operator norm || G, || of g, tends
to zero as « tends to infinity. Thus (3.2) implies that [ |9|?du is an infinitesimal small form
perturbation of the operator (—A)®.

b) For s < 1 the operator (—A)?® is associated to a Dirichlet form; We refer to
[Amor]| for a partial generalization of the above lemma in the Dirichlet case.

By Lemma 3.1, (2.3) holds provided that the operator G%, is bounded for some
s < 2. Actually, this operator even belongs to the Schatten class of order 4 if s > d/2 — 1:

. et s > —1, >0 and forw € et 35 e the integral operator
LEMMA 3.3 L d/2—1 0 and f Q let GE4 be the i l
in L2(R, uL) with the kernel gso(z —y) defined by (3.1). Then

T
E || G5 lls,< oo,

i.e. the expectation value (w.r.t. to the Wiener measure W) of || G, s, is finite. In
T
particular, W-a.s. the operator G&s belongs to the Schatten class Sy of order 4. Moreover
E||G“ ||§,— 0, o— .

PROQOF. First let u be any positive Radon measure on R?. Then

fo lls, =1 (GE)” g,

- / / [ 910l = gz — y)u(a) Pulde)uty)

- //]/ / 02T = 2)000(2 = ¥) & = @)@ — ) (=) () () ().

If u equals the occupation time measure p” then this implies, by the general transformation
theorem, that

|G |8, = / / / / Gra(6(t) — w(t3))gsa(w(ts) — w(t2))gsa(@(tr) — w(ts))
sa w(t)— (t2))dt1dtsdtsdts. (3.5)

For every element 7 of the symmetric group S, let
M; = {(t15t25t3’t4) € [O’T]4 : tﬂ'(l) < tW(Z) < t”(?’) < t”(4)}

Up to a set with Lebesgue measure zero the domain of integration in (3.5), i.e. the set [0, T]*,
equals the disjoint union of the 24 sets M,, m € S;.
By using gaussian kernels

22
ple) = (2l) % T



we can derive an expression for the expectation value of the integral over the set M, for
every m € S;. For instance, in the case 7(j) = j for j = 1,2,3,4 we get

]E/o<t et et Gsa(W(t1) — w(t3))gsa(w(ts) — w(t2))gsa(w(t) — w(ts))

Jsa (CL) (t4) — W (tg))dtl dtg dt3dt4

= / / / / Pto—t4 (x)pts—tz (y)pt4—t3 (z)gsa (.73 + y)gsa (y)
0<t1<ta<tz<ts<T JRZ JRE JRd
Gsa(T + Y+ 2)gsa(y + 2) AU 2) N (Y) XU (2)dt dtadtsdts. (3.6)

The function g,, tends exponentially fast to zero at infinity. Moreover it is bounded
if 2s > d, has a logarithmic singularity at 0, if 2s = d, and satisfies

gsa(z) < ca|x\2s’d, zeR?, (3.7)

for some finite constant ¢, if 2s < d. limsup, . cqo < 00. Moreover g;,(z) — 0, as
a — oo, for every x € R? \ {0}. In what follows we shall treat the last case, 25 < d; the
other two cases can be treated in an analogous way and are even more simple.
By (3.7), the integrand on the right hand side of (3.6) is, up to constant, bounded
by
Pty—ty (x)pts—h (y)pt4—t3 (Z)|.’l? + y|2$_d|y|28_d|m +y+ Z|25_d|y + z|25_d'

A straighforward but tedious computation shows that
/ / / / Pta—t1 (T)Prs—ts (Y)Pra—t5 (2) [ + 9‘287‘1‘?/‘287‘1 (3.8)
0<ty<ta<t3<t4<T JRI JRI JRd
z 4y + 22 Yy + 2[2 N (2) A (y) A (2)dt ditydtsdty < oo
provided s > d/2 — 1. Thus
E [ 10((12) = (1)) 810 ( (1) — 0(12))g10(0(12) — ()
0<t1<ta<t3<ta<T
gsa(w(t4) — w(tg))dt1dt2dt3dt4 < o
for every a > 0 and
E/ gsa(w(t1) — w(ts))gsalw(ts) — w(tz))gsalw(ts) — w(ts))
0<t1<ta<t3<ta<T
gsa(w(t4) — w(tg))dtldtgdt3dt4 — 0, a —r OQ.

The remaining 23 domains of integration can be treated in a similar manner and
we get that

]E/[‘O - gsa(w(tl) - w(tS))gsa(UJ(tS) - W(tg))gsa(w(tl) _ w(t4))
| gsa(w(t4) - w(tQ))dtldtht3dt4 < 00

8



for every a > 0 and

]E/ gsa(w(t1) = w(t3))gsa(W(ts) = W(t2))gsa(w(ts) — w(ts))
[0,7]*

gsa(w(t4) — w(tg))dtldtgdtgdt4 — 0, o — OQ.

By (3.5), we have proved the Lemma. O

4 Wave operators, continuous spectral subspaces
and positive eigenvalues

In this section we shall present results on the scattering theory for the operators H! and
related results on their spectra. Moreover we shall prove absence of singular continuous
spectra and, for d > 3, also absence of positive eigenvalues.

THEOREM 4.4 Let the dimension d of R? be less than 5 or equal to 5 and o > 0.
For W-a.a. w € Q let HY, be the selfadjoint operator defined by (2.7), (2.10) and (2.11).
Then the following is true for W-a.a. w € €.

(i) The essential spectrum of HL_ equals [0, 00).

(ii) The wave operators W*(HZL  —A) exist and are asymptotically complete.

(iii) The singular continuous spectrum of HZ_ is empty, the set of the positive
eigenvalues of H! is discrete and every positive eigenvalue of H>, (if there is any) has
finite multiplicity.

(iv) The absolutely continuous part of HL is unitarily equivalent to the operator
—A and, in particular, the absolutely continuous spectrum of HY, equals [0, 00).

(v) If d > 3 then the operator H®, has no positive eigenvalue.

PROOF. (i) We have

Gl = JTGY2(JTGY?) = JEGo(JEG,)". (4.9)

2a

Since 2 > d/2 — 1, this equation and Lemma 3.3 imply that
JIG, €Sg for W—aa. weQ. (4.10)
By (2.11) and (4.11),
(HI +a)™ = (mA+a) ' = JIGo(JEGL) €Sy for W—a.a. we . (4.11)

Since every operator in S, is, in particular, compact, and the operators H!, and —A are
selfadjoint, Weyl’s essential spectrum theorem together with (4.11) implies the assertion (i).

(ii) The wave operators exist and are asymptotically complete provided that the
singular continuous spectra are empty and the wave operators exist and are complete. We
shall prove absence of singular continuous spectra below under (iii).



The wave operators exist and are complete provided that there exists an N € N
such that the operator

DZwN = (Hya + O‘)_N - (-A+ O‘)_N

is compact and

(Hoa + @) "D n(-A+a) N €Sy, (4.12)
cf. [Dem)].
It follows immediately from (4.11) and the identity
N-1
Din =Y (Hoa+ )7 (Hoa+ )™ = (~A+0a)7") (A + o)~ V19)
§=0

that the operator DY . is compact for W-a.a. w € €. Thus we need only to prove that

awN

(4.12) is true W-a.s. for some N € N.
For k > d/2 the integral operator JIG¥ has a continuous convolution kernel van-
ishing exponentially fast at infinity. Thus

(JEG)*JEG.GY €Sy, j>d/2 -1,
GU (TG I G, €Sy, 7 >dj2—1. (4.13)
Let N € Nand N > d. Since
(Hypo +0) 7 = (A +a) ™ = (J;Ga)" I, Ga
T : N
- (2.11)); N -
(cf. (2.11)), the operator D} is the sum of 2% — 1 terms where every term has the form
A(JFGL)* JFG LGB or
AG? (JFGL)*JEG,B or
A(JEG ) JEGoB(JEGL) JEG O

for some bounded operators A, B,C and some j > d/2 — 1. By (4.11) and (4.13), each of
these terms belongs to the Hilbert-Schmidt class So. Thus

DT €Sy for W —a.a. weQ (if N> d). (4.14)
We have
(Hjo + ) " Dan(=A + )™ = Dy v Doy + (=A + )"V Dy n(=A + a) 7.

For W-a.a. w € () the first term on the right hand side belongs to the trace class S; since
it is the product of two Hilbert-Schmidt operators. The second term is the sum of 2V~1
operators where every operator has the form

AGN(JPG)*BJTG,.GYC

10



for some bounded operators A, B, C. Applying again (4.13) we get that each of these 2/¥~1
operators is the product of two Hilbert-Schmidt operators and therefore also an operator in
the trace class. Thus (4.12) holds W-a.s. for every N > d.

(iii) Let D := {z € C: Re(z) > 0 or Im(2z) > 0}, and D, := DU{z € C: Re(z) >
0}. It is sufficient to prove that for W-a.a. w € 2 there exists a discrete set C such that for
every f € C°(R?) the mapping

2 (f,(Hyo +2) ' f)
D—C

has an analytic continuation on D,;;. C' may depend on w.
In fact, suppose that such a discrete set C' and such an analytic extension exist.
Let f € C°(R?). Let —oo < a < b < 0 be such that [a,b] N C = (). Then there exists an
€ > 0 such that
{z+iy:a<z<b0<y<e}lnC=0.

Since continuous mappings are bounded on compact sets and the mapping
z = (f,(HL, + z)"'f) has a continuous continuation on a neighbourhood of the compact
set {z+iy:a<z<b0<y<e} weget

sup [(F, (HE, +2)7f)] < o0,
a<z<b,0<y<e
Since the space C{°(R?) is dense in L?(R?) and by the limiting absorption principle ([RS4],
Theorem XIII.19), this implies that

Ose(—Hya) N (a,b) = 0 = 0p(—H,) N (a,h).

Since C is discrete it follows that o, (—H2,) N (—oc,0] is at most countable. This is only
possible if o, (—HZL ) N (—00,0) = . Moreover, by (i) and the fact that o, (—H},) C
0ess(—HL), we also have o,.(—HZ_) N (0,00) = 0.

It remains to prove the existence of the mentioned continuation. By (4.10), JIG,
is compact W-a.s. and therefore J” is also compact W-a.s. Trivially the range of J” is dense
in L2(R%, uL). Thus, by [Bra], Theorem 3, (—oo, —a] belongs to the resolvent set of HZ,
and

(Hl,+B) =G+ (JJGs) (I — (a— B)J]Ga(JGp)) I Gs, B>, W-as.(4.15)

In what follows let w be any element of Q such that JI is compact. Let

1
gz) = ——e V¥ zeR d=1,

2/

resp.

1 |.Z‘| 1-d/2 ]
(2m) /2 <_\/_—Z) Kapa(=Vzlel), ¢ eRI\{0}, d>1.

11



Here we choose the root as follows: /7 exp(i¢) = v/rexp(i¢/2) for r > 0 and —7/2 < ¢ <
3w /2. Then
1

g.(p) = R Re(z) > 0 or Im(z) > 0,
(cf. [SW]) and this definition of g,(x) is in accordance with (3.1). If Re(z) < 0 and Im(z) < 0
then g, is not square-integrable w.r.t. the Lebesgue measure. Note that the function z —
g.(z) is analytic on D, for x # 0 (every z if d = 1).

For z € D we define the operator G, in L?(R%) by G, := (A +2) !. For z € Dy
let G* be the integral operator in L?(R¢, 1) with the kernel g,(z — y). By the preceeding
considerations, we need only to prove that there exists a discrete set C' such that

(@) I —(a— 2)053 is invertible in L?(R?, uL) for every z € Dy and

(B) the mapping z — (f,G.f + (JLG)*[I — (o — 2)G™]-1JG,f) is analytic on
Degi \ C for every f € C°(RY).

A straightforward computation yields analyticity of the mapping z +— G" and ()
and (/) follow from Fredholm’s analytic theorem.

(iv) It is well known that the spectrum o(—A) of —A equals [0,00) and that —A
equals its absolutely continuous part (—A)%. Since the wave operators W*(HZI , —A) exist
and are complete for W-a.a. w € Q this implies, by [RS3], XI.3, Proposition 1, that the
wave operators W*(HZL_, —A) are unitary mappings from L?(R¢, \%) onto the absolutely

continuous spectral subspaces of W*(HZI  —A) and
Hza = Wi(HZai _A)il(_A)Wi(HZ:a7 _A)7 W-a.s.
In particular, the operators HX, and —A have the same absolutely continuous spectrum and

therefore
UaC(HZ;a) = 04e(—A) = 0(=A) = [0, 00).

O

By the last theorem, the set of positive eigenvalues of the operator HZ  is discrete.

In the case when d > 3 the complement of a typical path I'J’ of a Brownian particle in R¢

is connected. Together with a unique continuation theorem this provides a much stronger
statement about positive eigenvalues in the case d > 3:

THEOREM 4.5 Let d > 3. For every w € Q let HY be any selfadjoint operator
in L2(R%, \4) such that the space C° (R \ T'L) is contained in the domain of HL and

Hif=-Af, [eCERI\TY),
Then W-a.s. the operator HL has no positive eigenvalue.

PROOF. Let w € Q be such that I'” has Lebesgue measure zero and its complement
R? \ T'Z is connected. Then the set C3°(R? \ I'T) is dense in L?(R?%, A\4) and the adjoint of
the restriction of —A to this space is an extension of H!,

HY ¢ (-AJCP(RT\TI))* = —AL

w w,max "
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Let E>0and HL f = Ef. Then
[ BF@@an) = (AL pfi) = [ FD-20@N@), g€ CEETD,

By Weyl’s regularity theorem, it follows that f is infinitely differentiable on R? \ I'Z and

d an
HIf(z)=->) o5 =Ef A—g.e. on R*\ T'T. (4.16)

j=1 "3

Let B be any ball containing I'Z. Since — 2?21 2
J

of B and f € L%(R% \%) we have f = 0 A-a.e. on R?\ B (cf., e.g., the proof of [RS4],
Theorem XIIL.56). By [RS4], Theorem XIIL63, and (4.16), it follows that f = 0 A-a.e.
on the connection component of R? \ I'"’ containing B. Since R? \ T'J is connected and the
Lebesgue measure of the compact set ['? equals zero it follows that f = 0 A%-a.e. Thus E is
not an eigenvalue of H?.

Since d > 3 and the two-dimensional Hausdorff-measure of I'L equals zero for W-

a.a. w € ) the Lebesgue measure of I'. equals zero and the complement of I'’ is connected
for W-a.a. w € Q. O

f = Ef M-a.e. on the complement

5 A trace formula for the expectation value of the
number of negative eigenvalues

In this section we shall derive a trace formula for the number of negative eigenvalues of
the operators HL provided 3 < d < 5. By mimicking the reasoning below and using the
Klaus-Newton method (cf. [Kl], [Newt] and the extension in [BEKS]), similar results can be
derived for d = 1,2 as well.
Let
—-A —-A
Ay = ZAFA(ED) (5.17)
o

By Lemma 3.3 and (4.9), for W-a.a. w € Q the operator JI from H?(R?) to L%(R?, ul) (cf.

(2.10)) is compact and for every ¢ > 0 there exists an a(a, e,w) < oo such that

1/2
12 F 3oy < € I A F amaney +a(6,0) || £ [Fagapey, f € HXRY).  (5.18)

Thus W-a.s. the quadratic form £, in L?(R?¢, \%), defined by

aOw
D(gng) = Hz(Rd)a (519)
N (fg) = (AY2f, AY2g) — / Fadil, f.g € H(RY), (5.20)

is lower semibounded and closed. We denote by A,q — p’ the unique lower semibounded

selfadjoint operator in L?(R%, \%) associated to £, .
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Let Ni(w,T) and Ny(w,T) be the number (counting multiplicities) of negative eigen-
values of the operator HX and A,y — pl, respectively. By [Bra], Corollary 8,

N T) = No(, T) Weas. (5.21)
Let
Gaoy = (a0 +7) 7" (5.22)
By [Bra], (28),
(Aao = ey +7) 7" = Gaoy + (I3 Gaoy) " (1 = I3 (T3 Ga0y)*) T 5 Gaoy (5.23)

for every v > 0 such that —y belongs to the resolvent set of A,y — pl. Let

Ky = 11,00 (L (L G ). (5.24)
Modifying the Birman-Schwinger analysis in an obvious way, we can derive from (5.23) that
the number of eigenvalues below —7y of Ay — p)) equals || K7, [|s, W-a.s..

In particular, the number of negative eigenvalues of H_ _ is less than or equal to
| Gaoo |I§,- By the considerations in the proof of Lemma 3.3 (cf., in particular, the formula
(3.8)), the expectation value of the last expression is finite if 3 < d < 5. Thus we have
proved the following theorem.

THEOREM 5.6 Let 3 < d <5 and a > 0. For W-a.a. w € Q let HL_ be the
selfadjoint operator defined by (2.7), (2.10) and (2.11). Then for W-a.a. w € Q) the number,
counting multiplicities, of negative eigenvalues of HY equals the trace norm of the operator
KT o, defined by (5.24). In particular, the expectation value (w.r.t. Wiener measure) for the
number, counting multiplicities, of negative eigenvalues of HL is finite.

REMARK 5.7 In a forthcoming paper we shall derive further results on the neg-
ative eigenvalues. In particular, we shall show that for every N € N the probability that
the number of negative eigenvalues of HZ  is at least N is strictly positive. On the other
hand, these probabilities tend rapidly to zero, as N tends to infinity. In fact, above theorem
implies that the sum over N times the probability that the number of negative eigenvalues
of H!, equals N is finite; here the sum is taken over all positive integers N.
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