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Abstract: This thesis deals with the asymptotic behavior of Lévy processes. More
precisely, the probability tails of suprema over compact intervals are studied.
Lévy processes are divided into a handfull of classes, depending on the weight of
the tails of their univariate marginal distributions. Different methods are used
for the different classes. The methods we use include generalizations of known
techniques, as well as completely new techniques, developed by us. The result
is a quite complete treatment of the mentioned asymptotic problem. Several of
the processes, the asymptotics of which are studied here for the first time, have
recently become important in the field of mathematical finance. This means that

our results could have impact on, for example, the assesments of financial risk.
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Part 1

Introduction






Chapter 1

Introduction to Lévy Processes

As this thesis deals with the asymptotic behavior of Lévy processes, we will here

review some of the theory for such processes.

1.1 Lévy Processes

1.1.1 Basic Definitions and Fundamental Theorems

Definition 1.1 (E.c. SATO0[26], DEFINITION 1.6). An adapted stoch-
astic process & = {£(t)}i>0, defined on a filtered probability space (Q,F,
{Fi}i>0, P) is called a Lévy process if the following conditions hold:

1. & has independent increments, that is, for any 0 < s < t, £(t) — &(s) is

independent of F;;
2.£(0)=0 a.s.;

3. L(E(s+t) —&(s)), the distribution of £(s +t) — &(s), does not depend

on s;

4. & is stochastically continuous, that is, lim;_,o P{|{(s+t)—£(s)| > e} =0
fore > 0;

5. & is cadlag, that is, right-continuous with left limits.
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Definition 1.2. A stopping time, is a random variable, T € [0,00], such

that {T < t} is Fy-measurable for t > 0.

Theorem 1.3 (The strong Markov property. E.G. APPLEBAUM [5]
THEOREM 2.2.11). If {£(t)}i>0 s a Lévy process and T a stopping time,
then the process ér = {&r(t) hiso, defined by Er(t) = E(T +t) — &(T), is an
{Frii}iso-adapted Lévy process, independent of Fr, and with the same law

as €.

As will be seen in subsequent chapters, the strong Markov property is essential

for our analysis of the asymptotic behaviour of Lévy processes.

1.1.2 Infinite Divisibility

Definition 1.4 (E.G. SATO[26], DEFINITION 7.1). A probability measure
u on R is infinitely divisible if, for all positive integers n, there exist a
probability measure (i, a so called convolution root of u, such that p is the

n-fold convolution of .

A random variable £ is infinitely divisible if, for all positive integers n, there
exists an i.i.d. sequence &1, ..., &, of random variables, such that & 4 G+ -+
A characteristic function is infinite divisible if it can be expressed as an n-fold

product of characteristic functions, for any n.

Theorem 1.5 (E.G. SATO[26], THEOREM 7.10). For a Lévy process
{&€(t) }i>0, (1) is infinitely divisible, and L(&(t)) = w;, where py is the prob-
ability measure with characteristic function 1, (0) = ¥,(0)'. Conversely, if
i 1s an infinitely divisible probability measure, then there exists a unique in

law Lévy process {&}i>0 such that L(£(1)) = p.

In order to identify Lévy processes and infinitely divisible distributions, the

following representation is fundametal:.



1.1.

LEVY PROCESSES

Theorem 1.6 (Lévy-Khintchine representation. E.G. SATO[26],
THEOREM 8.1). If the probability measure p is infinitely divisible, then it

has characteristic function
‘ 62 s*
¥,.(0) = exp {i@m +/ (" — 1 — ifk(z)) dv(z) — T} for 0 € R,
R
where k(z) = x/(1V |z|) for z € R, while m € R and s* > 0 are constants,
and v is a measure such that v({0}) = 0 and [, 1 A 2*dv(z) < oo. This

so called characteristic triple (v, m, s?) determines the law of a Lévy process

{€(t) }1>0, through the relation e (0) = 1, ()"

1.1.3 Examples of Lévy Processes

Example 1.7 (Brownian motion). Browninan motion is a Lévy process,
{B(t)}+>0, with charachteristic triple (0, 0, s*). The increments of Browninan

motion B(t) — B(s) are normal N(0,t — s) distributed.

Example 1.8 (Poisson process). A Poisson process with intensity A > 0
is a Lévy process, {N(t)}i>0, with charachteristic triple (Ad1,0,0), where §;
is an atom at location 1 with mass 1. The increments of a Poisson process

N(t) — N(s) are Poisson Po(\(t — s)) distributed.

Example 1.9 (Compound Poisson process). A compound Poisson pro-
cess, is a Lévy process, { X (t) };>0, with charachteristic triple (Ao, 0, 0), where
A > 0 and o is a probability measure on R such that o({0}) = 0. The char-

acteristic function is given by

Vx(0) = exp{t/\/ (ewx -1 do(m)}.
R
Taking o = ¢, this gives a Poisson process.
Example 1.10 (a-stable Lévy motion. E.G. SAMORODNITSKY AND

TAQQU [25]). An a-stable Lévy motion is a Lévy process, {A(t) }+>0, with

characteristic triple (v, m,0), where
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dv(z) = 0® (c11(0,00) (%) + 21 (_o0,0)(2)) |2]| " *d.

Here ¢; > 0, ¢ > 0, and o, ¢; + ¢ > 0. It follows that

Yaq)(0) = exp{—0a|9|" (1 — i3 sign (6 )tan%) + zm@} if a#1,

and

Yaq)(0) = exp{—a|0| (1 + iﬁg sign(0) ln\e\) + im&} if =1,
7r

where = (c; —¢)/(c1+¢2) is a skewness parameter. Moreover, o = 2 gives

a normal N(m, 2s?) distribution.

1.2 Some Lévy Processes of Recent Interest

Lately, some of the processes featured below have been introduced, for example,
to model log returns of financial asset prices. This is due to the fact that these
processes can provide models more true the stylized features, such as heavy or

semi-heavy tails and skewness, displayed by then log returns of asset prices.

1.2.1 Generalized Hyperbolic Process

Definition 1.11 (The generalized hyperbolic process. E.G. BARN-
DORFF-NIELSEN AND HALGREEN [6] AND SCHOUTENS [27]). The gener-
alized hyperbolic GH(w, /3,0, , i) process, {£(t) }i>0, is defined by the char-

acteristic function

B o? — B2 7/2 6\/0,/2 (B +i0)2) -

Ve (0) = <a2 — (5_,_7;9)2) K, (6v/a2 - 57) e
where K., is the modified Bessel function of the third kind. The parameters
satisfy v, u € R, together with § > 0 and |8] < a ifv> 0,0 >0 and |f| < «
if y=0, while 6 >0 and |B| < a if v < 0.

The class of GH processes was introduced in the late seventies by Ole Barndorftf-
Nielsen in order to model wind blown sands. This class contains many interesting

special cases.
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Example 1.12 (The hyperbolic process. E.G. SCHOUTENS [27]). The
hyperbolic H(w, 8,6, 1) process, {£(t)}i>0, is defined by the characteristic

function

B a? — (3?2 12 Ki(6y/a® — (B + i0)2)ewu
ve(6) = (oﬂ - (B+ i9)2> K, (5v/a? — B?) '

We see that H(a, 8,0, u)=GH(c, 8,0, 1, ).

Example 1.13 (The normal inverse Gaussian process. E.c.
SCHOUTENS [27]). The normal inverse Gaussian NIG(a, 3,0, 1) process,

{&(t) }+>0, is defined by its characteristic function

Ve (0) = exp{—6(v/a? — (8 +1i6)2) — /a2 — 52 +ibu}.

In a later section we will see that the NIG process can be viewed as time

changed Brownian motion.

1.2.2 The Generalized z Processes

Definition 1.14 (The generalized z process. E.G. GRIGELIONIS[18]).
The generalized z GZ (o, 1, B2, 0, 1) process, {£(t) }i>o is defined by the char-

acteristic function

o= ()

where B is the beta function. For the parameters, we have that o, By, B2, >

0, and p € R.

The generalized z process was introduced by Grigelionis in 2000. The most

well-known special case of the generalized z process is the Meixner procss:

Example 1.15 (The Meixner process. FE.G. SCHOUTENS AND
TEUGELS [28]). The Meizner(a, 3,6, i) process, {£(t)}i>o, is defined by

its characteristic function

8
e ®) = — 2L o

cosh (22
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1.2.3 The Carr Geman Madan Yor Process

This process is named after its inventors Peter Carr, Helyette Geman, Dilip Madan
and Marc Yor.
Definition 1.16 (The Carr Geman Madan Yor process. [13] AND
[14]). The Carr Geman Madan Yor CGMY(C_,C,,G,M,Y_,Y,) process,
is defined by the characteristic triple (v,m,0), where

dv(z) = (C_|z| e L oo (z) + Cilz| e ML 00 (2)) du,

and m = [, k(x)dv(z). The parameters satisfy C_,C+,G,M > 0 and
Y Y, <2

The above definition is a generalization of the CGMY(C, G, M,Y’) process in-
troduced in by Carr, Geman, Madan and Yor [13], for which C_ = C, = C and
Y_+Y, =Y. Due to the appearance of the Lévy measure, the CGMY process is
also called an exponentially damped c-stable process. Still another name is KoBolL
process, after Koponen [19] and Boyarchenko and Levendorskii [12].

An important special case of the CGMY class is the variance gamma process.

This process if the difference between two gamma processes:

Example 1.17 (Variance Gamma process. E.G. SCHOUTENS
[27]). A wariance gamma VG(C,G,M) process is the special case of the
CGMY(C, G, M,Y) process where Y = 0.



Chapter 2

Introduction to Extremes

2.1 Elements of Classical Extreme Value Theory

Let &, ...,&, be a sequence of i.i.d. random variables. In classical extreme value
theory, the issue of concern is to study the asymptotic behaviour of maxima
M, = max(&,...,&,), as n — oo. Pioneers in this area were Fréchet [16], Fisher
and Tippet [15], and Gnedenko [17]. These people worked on finding normalizing

constants a, > 0 and b, € R, such that
P{a,(M, —b,) <z} % G(x), (2.1)

where GG is a non-degenerate limit distribution.
It turns out that, see for example Leadbetter, Lindgren and Rootzén [20],
that there are three types of possible limit distribution functions G(x), namely

(normalizations of)

Type I: G(z) =exp{—e™"}, for —oo <z < o0
4
exp {—2~ %}, for some o >0 andifz >0
Type II : G(z) =<
0, ifz <0

\
4
exp {—(—xz)?}, forsome a>0andifz <0
Type I : G(z) = 4

1, if x > 0.

\

This is known as the Extremal Types Theorem, and the possible limit distributions

are also called the Gumbel, Fréchet and Weibull distributions, respectively. One
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says that a random variable belongs to the Type I (Type II/Type III) domain
of attraction of extremes, if (2.1) holds with the Type I (Type II/Type III) limit
distribution.

The account on criteria and theorems for verifying that a certain distribution
belongs to one of the three domains of attraction is quite extensive, see Leadbetter,

Lindgren and Rootzén [20].

2.2 Extremes for dependent sequences

As sequences of random variables in many situations are dependent, efforts have
been made, see for example Leadbetter, Lindgren and Rootzén [20], to determine
normalizing sequences and possible limit distribution functions in such a setting.

This is of course more intricate and requires extra assumptions.

Condition D(u,). Let {7,},>1 be a sequence of (dependent) random variables,
and {u,}n>1 a sequence of real numbers. For any integers 1 < i3 < --- < i, <

J1 < -+- < jg <nsuch that j; — i, > m, it holds that

‘P{é{ﬂik < un}aé{% < Un}} - P{zé{mk < un}}P{é{% < U'n}}‘

< a(n,m),
where

lim «a(n,m,) =0 for some sequence m, = o(n).
n—o0

If Condition D(u,,) holds, or some suitable version there off, for u,, = a,z + b,
where z € R and

maxiy<g<n Mk — by
Gy

d
— G as n— o0,

then the Extremal Types Theorem holds, with the same possible limit distribu-

tions G as in the classical setting.
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2.3 Extremes for Stochastic Processes in continuous time

Pioneers on the topic extreme value theory for stochastic processes were, for ex-
ample, Kac, Rice, Slepian, Volkonskii and Rozanov. Later people like Belyaev,
Berman, Cramér, Pickands and Watanabe made major contributions to the area.
In the last two decades work on extremes for more general types of processes has
been done by Leadbetter, Lindgren and Rootzén [20], Berman [7], [8], Piterbarg
[23] and Albin [1]-[4]. Many of the papers of the above authors deal with Gaussian
Processes. For such processes a lot nice tools are available, like, for example, the
double sum method (see Piterbarg [23]).

Given a stochastic process {£(t)}i>0, the principal aim is to determine the

asymptotic behavior of

P{ sup &(t) > u}

0<t<T
Here asymptotic behaviour could mean either that 7' — oo or u — oo.

In the case when T" — oo, for a stationary Gaussian process, {£(t)}+>0, with
zero mean, unit variance and covariance function r such that

r(0)7

r(r) =1+ +o(r?) as 7 — 0,

and

r(t)In(t) - 0 as t — oo,

it holds that, see for example Leadbetter, Lindgren and Rootzén [20]
P{ sup &(t) < il —|—bT} RN exp{—e *} as T — o0,
0<t<T ar

where

—r(0)/(2r))

In <
=sqrt2In(T) and by =+/2In(T)+
ar = sqrt2In(T) an e n(7) T (T

In the case when u — oo, J. Pickands IIT [22], showed that if, for some o > 0
r(r)=1—|7|*+ o(|7]*) as T — 0,
and r(t) < 1 for all ¢ > 0, then it holds that

P{Oi%g(t) > u} — H,Tu°P{N(0,1) > u}(1+ 0o(1)) as u— oo, (2.2)
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where

H, = lim Eexp{ sup n(t)},
T—oo 0<t<T
where {7(t)}+>o is a fractional Brownian motion with Hurst parameter /2 and

drift —|¢].

2.4 On the Extreme value Theory dealt with in this Thesis

As indicated by (2.2), the problem of concern in extreme value theory for stochas-

tic processes, {£(t) }1>0, is to establish relations, like for example

P{ sup &(t) > u} = CP{&(h) > u} as u— oo, (2.3)

0<t<h
for a suitable some constant C' > 1.

The most well-known result along the lines of (2.3) is probably the following:

Example 2.1 (E.G. PROTTER [24] THEOREM 33). For Brownian motion
{B(t)}+>0, it holds that C' = 2. In this case no limiting procedure is nec-
essary: There is equality between the left-hand side and right-hand side in
(2.3) for all u > 0.

In order to make statements like (2.3) valid in more general setting, such as for
exampele Lévy processes, it seems that one has to take different routes, depend-
ing on the tail behaviour of the processes: For processes with heavy tails, such as
regularly varying ones and sub-exponential ones, “everything” has been covered
by people like Berman [7], Braverman [9], [10], Braverman and Samorodnitsky
[11], Marcus [46] and Willekens [60]. What we are dealing with in this thesis are
processes with lighter tails, and asymptotics for suprema of such Lévy processes
have not yet been documented in the literature to any greater extent. In partic-
ular, this includes many of the Lévy processes of recent interest, that has been
described above.

Since for many of the examples of Lévy processes presented earlier, the distri-
bution function is not known, and it is rather the Lévy measure that is available,
one typically to use employ Tauberian techniques, that relate the probability tails

to the behaviour of the Laplace transform at the left end-point of its doamin.
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As existing Tauberian techniques were quite insufficient for our needs, we had to
develop new ones.

When deriving statements like (2.3) for a class of processes with tails in a
certain class, we will use discrete approximations in the style of the great John
Martin Patrik Albin. It should be observed that these techniques have been used
very little on Lévy processes before, and we had to make substantial modifications
of them, to make them work as desired.

As special cases, we do recover all results of pervious authors in the area. In
some cases, although much more general, our proofs are only a fractions of those
in the literature in terms of length.

We do also provide some new converses to results in the literature, as well as
to our own new results. That is, we derive necessary consequences of (2.3). These

converse can be surprisingly useful, for example to prove that C' > 1 in (2.3).
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Part 11

On the Asymptotic Behaviour of Levy
Processes






Chapter 1

Concepts of Exponentiality

For the convenience of the reader, in this chapter we review the many classes of

exponential and related distributions, that will feature in the following chapters.

1.1 Subexponential Distributions

Definition 1.1. A probability distribution function F on the real line, with
right end-point sup{z : F(z) < 1} = oo, is said to belong to the class of
long-tailed distributions L, if

1—-F
lim - F+2)

B =1 forzekR (1.1)

For the class £, we will need the following lemma, the proof of which is ele-

mentary:

Lemma 1.2. We have F € L if

lim inf M
U—00 1— F(u)

>1 for some x > 0.
Embrechts and Goldie [31], p. 245, made the following very natural conjecture:

Conjecture 1.3. L is closed under convolution roots.

The truth of this conjecture is still unknown.
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Definition 1.4. A probability distribution function F on the real line, with
right end-point sup{z : F(z) < 1} = oo, is said to belong to the class of
subexponential distributions S, if

1-FxF
hm—*(u)

= 2.
u—oo 1 —F(u)

It is known that S C L (see Athreya and Ney [5], p. 148. This inclusion is
strict, as Embrechts and Goldie [31], Section 3, give an example of a distribution

that is in £, but not in S.

Remark 1.5. It was argued convincingly by Pitman [47], p. 338, that, rather
than the class &, it is the class £ that should be called subexponential. As
Pitman’s argument is the same as that which makes us call certain processes
exponential, and others superexponential, we found it natural to use subex-
ponential in the label of this section, rather than long-tailed. However, it is

really £ we are concerned with here, rather than the more narrow class S.

Most natural examples of distributions in £ and & come from one of the fol-
lowing two classes of distributions (cf. Bingham, Goldie and Teugels [19], p. 18
and p. 65):

Definition 1.6. A probability distribution function F' on the real line, with
right end-point sup{z : F(z) < 1} = oo, is said to belong to the class of
regularly varying distributions with index o < 0, R(«), if

1 — F(ux)
lim ————
usoo 1— F(u)

=z% for x> 0.

Definition 1.7. A probability distribution function F on the real line, with
right end-point sup{z : F(z) < 1} = oo, is said to belong to the class of
extended regularly varying distributions ER, if

1-F 1—F
lim lim inf ﬂ = limlim sup w

= 1.
ztl u—oo 1 — F(U,) ol yoeo 1 — F(u)

It is trivial that R(a) C ER for a < 0, and elementary that ER C S.
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Within the class of infinitely divisible distributions, the canonical examples of
regularly varying distributions, and thus of distributions in & and L, are alpha-

stable distributions:

Example 1.8. An a-stable S, (o, 8, 1) random variable £ has characteristic
function (cf. e.g., Samorodnitsky and Taqqu [53], Eq. 1.1.6)
exp {—|0|*0® (1 — iBsign(0) tan(%2)) + iuf} if a#1

exp {—[0|o (1 — i2Bsign(0) In(|6])) +ipd} if a=1
(1.2)

E{ci%) =

for # € R. Here a € (0,2], 8 € [-1,1], 0 > 0 and p € R are parameters.

Notice that Sy (0, 3, p)-distributions are, in fact, normal N (u, 20?)-distri-
butions.

Now, for @« < 2 and 8 > —1, an S,(0, 8, u)-distributed random variable
¢ has the right probability tail (see e.g., Samorodnitsky and Taqqu [53], Eq.
1.2.8)

(1-a)(1 + 90"
2I'(2 — a) cos(5})

(1+B)o -
T

uw® if a#1
as u — 0.
if a=1

P{{>u} ~
Hence £ € R(—a) CER C S C L.

1.2 Exponential Distributions

Guided by the notation OR and OII of Bingham, Goldie and Teugels [19], p. 65
and p. 128, for O-regularly varying functions and O-de Haan classes, respectively,

we make the following definition:

Definition 1.9. A probability distribution function F' on the real line, with
right end-point sup{z : F(x) < 1} = o0, is said to belong to the class OL, if

0< liminf1 —Fluta) < limsupw

—_— R.
At T o o < oo forxe€

For the class OL, we have the following lemma, corresponding to Lemma 1.2

for the class £, the proof of which is again elementary:



26 CHAPTER 1. CONCEPTS OF EXPONENTIALITY

Lemma 1.10. We have F € OL if

1—F
liminfﬂ

et LR o >0 for some x > 0.

Consider a distribution function F' such that the limit

t(2) = tim L= E £

B exists with /(z) € (0,00) for z € R (1.3)

It is easy to see that (1.3) implies that

. 1—F(u+x)
————~ = ¥ f R 1.4
Jim = () e or z € R, (1.4)

for some a > 0:

Definition 1.11. A probability distribution function F' on the real line, with
right end-point sup{z : F(z) < 1} = oo, is said to belong to the class L(c)
if (1.4) holds, for some o > 0.

Notice that £(0) = £, and the trivial inclusion £(a) C OL for o > 0.

Definition 1.12. A probability distribution function F' on the real line, with
right end-point sup{z : F(z) < 1} = o0, is said to belong to the exponential
class S(«) of distributions, if F € L(a) and

f = Tim 1—FxF(u)

R exists with £y < 00. (1.5)

Notice that S(0) = S, and the trivial inclusion S(a) C L(«) for a > 0.

Within S§(0), one must have ¢, = 2. (This highly non-trivial result is due to
Chover, Ney and Wainger [25], Theorem 3. See also Embrechts and Goldie [32],
Section 2.) But as it is known that (1.5) with £, = 2 implies F' € L (see Athreya
and Ney [5], p. 148), it is more convenient to define S by this requirement alone.

The following proposition, which extends to S(«) a similar result of Embrechts,
Goldie and Veraverbeke [33], Theorem 1 for the class S, was given by Samorodnit-
sky and Braverman [22], Equation 3.37. However, Samorodnitsky and Braverman
noted that, although not recorded in the literature, their result was undoubtly

known to Embrechts and Goldie [32], and added little in essence to Theorem 4.2
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ii of theirs. As Samorodnitsky and Braverman only sketch the proof, which is in

fact rather advanced, we have chosen to give it in complete detail here.

Proposition 1.13 (EMBRECHTS AND GOLDIE [32], THEOREM 4.2 I,
SAMORODNITSKY AND BRAVERMAN [22], EQUATION 3.37). Let {£(t) }1>0
be a Lévy process, starting at £(0) = 0, such that, for h > 0 a constant, £(h)

has Lévy measure v. If

W € S(a) for some a >0, (1.6)
then

£(t) € S(a) and lim P{E®) > u} =

t
Z E{ex®) t>0.
()

Proof. Assume that (1.6) holds. Suppose for simplicity that h = 1. Let £ have
characteristic triple (v, m, s®), and pick an ¢ > 0. As the Lévy measure v(-) =

v((0,1] N -) trivially satisfies
/ e“dvi(r) < oo for ceR,
|z|>1

an infinitely divisible random variable & with characteristic triple (tv,tm, ts?)
will have

E{e“} <oo for ceR (1.7)

(see e.g., Sato [54], Theorem 25.17). Further, letting & be an infinitely divisible
random variable, independent of &;, and with characteristic triple (tv((1,00) N
*),0,0), we have & € S(«), by Embrechts and Goldie [32], Theorem 4.2 ii, together
with (1.6), because (with obvious notation) the compound Poisson distribution

ef'/((l’oo)) zoo: (tV((lu oo)))n (1/((1’ OO) N 37) )*n

n! v((1,00))

n=0
has the same characteristic function

exp{w((l, 50)) /R (6% _ 1) d”“igé‘?@;“”}

as &;. As this gives

lim et P{¢&, > u} =00 for € >0,

U—00
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by Embrechts and Goldie [32], Lemma 2.4 i, we may now use (1.7) together with
Chebysjev’s inequality, to conclude that

_ P{&>u) E{elet9t)
1 — - - <1 =
el P{& > u} = o’ e P{E, > u}

(1.8)

However, by Cline [26], Corollary 2.7, for {&; € S(«) and & such that

. P{& > u}
1mm ——

exists and is finite
u—oo P{& > u} ’

we have & + & € S(a). And so £(t) £ & + & € S(). Moreover, again by Cline
[26], Corollary 2.7, in the presence of (1.8), we have

P{{@t) >u} =P{& + & >ul ~E{e® }P{& > u) as u— oo,
where, by Embrechts and Goldie [32], Theorem 4.2 ii,
P{& > u} ~ E {*} tu((u, 00)).

Since E{e*¢!}E{e*®?} = E{e®®}  this gives the asymptotic relation for P{£(¢)
> u} desired, when h = 1. O

Many authors in the field of mathematical finance argue that distributions to
model log increments of asset prices, such as, for example, stock prices, should have
semi-heavy tails, that is, the probability density function f of such a distribution

should satisfy

f(u) ~CuPe™ as u— o0 (1.9)

for some constants C;n > 0 and p € R. See Schoutens [56], p. 36 and Section 5.3,
for an overview.

Albeit the label “semi-heavy” tails was coined as late as 1998 by Barndorff-
Nielsen [13], Section 3, the interest for such tails goes back at least to 1977, with
Barndorff-Nielsen [10].

Example 1.14. For a semi-heavy tailed distribution F', with density func-

tion satisfying (1.9), we have, as u — oo,
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2 [;° e f(x) dx for p<—1
1—FxF(u)
T-Fu) 2C In(u) for p=-1

CB(p+1,p+1)urtt for p>—1
(where B is the Beta function). So albeit all semi-heavy tailed distributions
belongs to £(n), and thus to OL, theay are in S(n) only when p < —1.

The exponential distribution itself is semi-heavy tailed with p = 0. Hence
the exponential distribution is not exponential! This, quite convincingly,
shows that it is really the classes L£(«), rather than the classes S(«), that
should be called exponential. Also, recall Remark 1.5.

For semi-heavy tails that are in £(a) \ S(«), rather than S(«), there exists

a result corresponding to Proposition 1.13. However, the analysis is now much

more difficult, and requires a the Theorem 1.16, that is presented below.

Remark 1.15. According to the Tauberian result by Barndorff-Nielsen,
Kent and Sgrensen [15], Theorem 5.2, if for a probability distribution func-

tion F, the function
Fy(u) = / t*e®dF (u), u >0,
0

has an ultimately monotone derivative for some k£ € N, such that its moment

generating function
o(s) = [ eir(a)
R

has a k:th derivative that satisfies
B (a+s)~C(=s)P* as s10, (1.10)

for some constants C' > 0 and p < k, then F' has a probability density
function f that satisfies
Cu—p—le—au
U) ~ ————— as u — o0.
f(u) L(k+1+p)
But if only the moment generating function ¢ is known, then it seems quite

impossible to check that Fj has an ultimately monotone derivative. If, on

the other hand, that information on f is available, then the Tauberian result
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should typically not be needed anyway. Moreover, Abelian theory only give
information about the asymptotics of the moment generating function, while
Theorems 1.16 and 1.17 below indicate that rather it is the asymptotics of
the Lévy measure that is the right tool.

For example, Grigelionis [41], p. 242, use the Tauberian result by Barn-
dorff-Nielsen, Kent and Sgrensen, to establish semi-heavyness of GZ distri-
butions (see Example 5.7 below), with only the information (1.10) readily
available, but the details about how it is shown that F} has an ultimately
monotone derivative omitted, as being standard calculations: We do not

belive in this!!!

The distribution of an infinitely divisible random variable Z is characterized

by its characteristic triple (v, m, s?), given by

2.2
E{eiQZ} — eXp{ng +/ (eiel‘ —1— ZQI{(J;)) dy(x) — HTS} for 0 < R.
R

Here k(z) = z/(1 V |z]) for z € R, while m € R and s* > 0 are constants, and v

is the (Borel) Lévy measure on R, satisfying
V({0 =0 and / 1A o 2du(z) < oo.
R

The finite dimensional distributions of a Lévy process {£(t)}:>o are determined

by its characteristic triple (v, m, s?) of the process, given by

i0€(t) . i0z . 102>
E{e™®} = expithm +t [ (' — 1 —ifk(z)) dv(z) — 5
R

for # € R and ¢t > 0.

Although absolute continuity is a time-dependent property for a Lévy process,
the set {t > 0 : £(¢) is not absolutely continuous} is a interval of the type [0, a)
or [0,a], where possibly a = oo (see e.g., Sato [54], Remark 25.22). Of course,
for most Lévy processes encountered in practice, that interval is [0,0] = {0}, as
such processes are non-degenerate selfdecomposable, which implies that marginal
distributions are absolutely continuous (see e.g., Sato [54], Theorem 27.13)

Recall that the upper end-point sup{z : P{{(¢) < z} < 1} is infinite for some
t > 0 if and only if it is infinite for all £ > 0 (see e.g., Sato [54], Theorem 24.10).
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The following Theorems 1.16 and 1.17 are very important for our treatment of
exponential Lévy processes. See the introduction to our superexponential Taube-

rian result Theorem 1.21 below, for bibliographic information.

Theorem 1.16. Let {{(t)}i>0 be a Lévy process with characteristic triple
(v,m, s?). Suppose that v is absolutely continuous with a density function

that has semi-heavy tails

dv(a)

y ~Cufe™™ as u— oo, (1.11)
u

for some constants C;a > 0 and p > —1. If £(t) is absolutely continuous
for ant > 0, then we have £(t) € L(a) \ S(o). Moreover, we have

e(h) € L)\ S(a) with lim 2o >}

Proof. We start with some preparations: By Sato [54], Theorem 24.7, £ has infinite
upper endpoint

sup{z : P{{(t) <z} <1} =00 for t >0,
Consider the Laplace transform
$i(\) = B{e X0} = (B{e M)’ for A € (—a,0] and t > 0, (1.13)

which is finite for A € (—a, 0] (see e.g., Sato [54], Theorem 25.17). Denote

p(A) = _HO) = /R (ze ™ — k(z)) dv(z) + m — As®

91} (1.14)
o\ = —p'()\) = /xQe_)"”du(:U) + 5
R
for A € (=, 0]. Observe that, by (1.11),
00 2
2, T —(a+A)z ~ F(3 + p) i
o(A) /0 SO e dx CERT — o0 as A —a, (1.15)
which in turn gives
2 e’} 24+p
lim sup/ x_2 e dy(z) = lim sup/ ° 5 e (@Nz gy
M—a Jz|>ec(r) O (A) M—a Jeo(n) O A) 116
o0 y2—|—p y ( : )
:limsup/ ———e Ydy=0
M-a Jeo((atr (3 +p)

for € > 0. By arguing as for (1.15), we further get
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u(A) —m = /_ — (k(z) — e Mx) dv(z) + /000 (e Mz — k(z)) dv(z) + (—A)s®
> /_ (1+e ) dv(z) + /000 (e™z — 1)) dv()

L2+ p)
~ W — 00 as A J, —Q.
(1.17)
Moreover, we have
. Ox . ( Ox o _
)}il_% R(m - sm(m)) e Mdv(z)=0 for § € R (1.18)
This is so because (1.16) gives
Ox Oz
lim sup/ —_ —sin{ —— | [eMdv(z)
M—a Jigjseay| T(A) (U()\))

2|6 >
< Mlim sup/ x—Qe_)‘zdu(x) =0 for e >0,
|z|>e0 () U()‘)

while, by Taylor expansion, given any § > 0, for ¢ = £() > 0 sufficiently small,

€ Al—a

Ox Ox
lim sup/ — —sin( —= ) |e dv(z
Moa Jiai<eon] 9 (A) (U(A)> (@)
0?z* )
S(Slimsup/ ——e dv(x) < 66°.
M—a  J|z|<ea(N) a(A)? (@)

As a final preparation we show that

Jim_tim sup /9|>K exp{—t VR (1 _ cos(%)) e du(z) + 2?2(12)2] }de — 0:
(1.19)

To that end it is clearly enough to prove (1.19) for s> = 0. Now, since 1—cos(z) >
1x? for |z| < 1, (1.11) together with (1.15) show that, for some constant A >0,

Or A02 1/(a+A) x2+pe—(a+/\);c
1— -/ Az > z -
/R( cos(g()\)>)e dv(z) > 1 /0 PONE dx

A(92 1
> 3+,0 *wd
_8F(3+P)/0x ©

for |0] < (a+ A)o(\) and X € (—a, 0] sufficiently small. This immediately gives

_ Ox
lim lim exp{—t/ (1—cos )e_)‘zdl/ x }d@ =0. (1.20
K=ooM=a [k <|g|<(a+A)o(N) R (0(/\)) @) (1.20)
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For the case when |0 > (a + A)o(A), we pick a constant B > 1 such that,

1+p Bl+p 1 P QT
b 0—2 > 2, 1 ¢ In(2) > 2ln(B)+§ and dl:i(x) > Cm2e for z > B.
x

Also, notice that, since 1 — cos(z) < 1z? for |z| < 1, we have

B —(a+N)z Blo/o(M)| 1 _ 1y _
/ (1 — cos( b )) ¢ dr < / 7cos(x)dx + / 7(:08(36) dz
0 o(A) z 1 z

V(B|8/o (X
/ —d:c / —dzx
1

< 1n<1 \Y% ‘0(0/\) D +1In(B) + 6 for A € (—a, 0].

IN

(1.21)

Hence Erdélyi, Magnus, Oberhettinger and Tricomi [36], Equation 4.7.59 gives

()i n ) -
> Bl;pc /: (1 - cos(ae(i)>> e_(c;ﬂ)zdx —In (1 v
2 [ )

1
)~ =

B'trC 6? 6 1
_ B ) —2m®B) - -
ro (14 ) ~ 20 (v [ ) - e 5
2
> 21n<1 + m) for |#| > (o + A)o(A) and A > —a small enough.

(1.22)

On the other hand, Erdélyi, Magnus, Oberhettinger and Tricomi [36], Equation
4.7.58 together with (1.21) readily show that, for some constant € > 0,

i
[ (1= eos(555) Jore et +m(1v | 25 )
/000 (1 — Cos (%) ) pPe— (@t Nz g,

sl () (e ()

Ce
= > .
ot ) for 0] > (a+ AN)o(N)

(1.23)
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Putting (1.22) and (1.23) together, and using (1.15), we get

_ Ox
lim exp{—t/(l —cos| ——= )e)“”du x }dﬁ
Al—a |0\>(a+)\)a(/\) R (O'(A)) ( )

— [ (a+ N)20(N)? Ce
< lim 2 —_ ——— > df = 0.
~ Aa /(a—f—)\)a()\) 62 R WTCEVE ’

From this in turn, together with (1.20), we get (1.19).

Let Z; be a random variable with probability density function

_ e fe (2)
th’A (@) = B:(N)

where f¢() is the probability density function of £(¢). Notice that, writing

for x € R and \ € (—a,0], (1.24)

e

Mey = t(m— /R k(2)(1 — e ) du(z) — /\s2>

\ dua(z) = te 2dy(x) ’

2 — 2
[ Sia = ts

the random variable Z; , has characteristic function

E {ewz"*}

oli0-NED L\ !
-(%em ) t
_ <¢lt)\) exp{(iQ— )\)m+/R (e(w*/\)w_ 1— (i0 — N)k(z)) dv(z) — W})

; 0282
= exp{igmt,)\ + / (elez - ]. - ’LHK/(.'L')) dl/t,)\(x) — 2t’)\}
R

for 8 € R and A € (—a,0]. Hence Z;, is infinitely divisible with characteristic
triple (4,5, My, s75). Since E{Z;,} = tu()), this gives (see e.g., Sato [54], p. 39)

. , 0252
E {7} = exp{i@t,u()\) +/ (e — 1 — i) duy(z) — ;t”\ }
R

Hence the characteristic function gy of (Z;x — tu(A))/o(A) is given by

gi(0) = <exp{— /R (1—(;05(%)) e M dy(z)
-+ (o) oo i)

for # € R and A € (—,0]. And so (1.16) and (1.18), together with a Taylor

(1.25)
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expansion, readily give
lim g;5(0) = e /2 for # e R.
Al—a

Using this together with (1.19), in turn, it follows that

1 g2
f(Zt,/\*ut(/\))/a()\) (-T) — \/2—7-(75 e~ e /(2t)

lim sup sup
R

AM—a ze€
< lim sup/ aA(0) — e=°/2| dp
Al—a R
< lim sup lim sup/ g (0) — e=°/2| dp (1.26)
K—oo Al—a |0|<K

+ lim sup lim sup/ (\gt,A(0)| + e,t02/2> do
|0|>K

K—oo Al—a
=0.
Now observe that

MW+ £, (tu(\) + o(N)z) o (A
ftur-winson (@) = = f“zt((/;)( ) +oNz)o(Y) (1.27)

for z € R and ) € (—«, 0]. Hence (1.15) together with (1.26) show that

o JZr—tu) /o) (@] (AT (X)) XV gy (X)
a(N)

few () +z/X) = e

()
~e V2rto(A)

From this in turn, together with another application of (1.26) and , we get
L aPLEW > ) —y/A) _ | (CAPLEW) > () ~u/A)

(1.28)
as Al —a.

Ma feou) —z/A) A Je(tu(h) —a/N)
_ ot i COPLED) > () —y/ A}
M—a fey (t(N))
a7 fe (p(N) — 2/
—° /\liH}l/y Jey(tu(N)) e
e [ Sz e0) (—2/(Aa(A)))
i - fzus—tu) 101 (0) +

=e"Y for z,y e R
(1.29)
Observing that
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is a probability density function, (1.29) together with the theorem of Scheffé [55]
show that
o PAEO > O =2/} _ o) = u/)
Moo P{E(t) > tu(N)} Moo fp =AP{E(t) > tu(A)}
= /00 e Ydy=e"* for z>0.

(1.30)

From this in turn, together with (1.28) and (1.29), we readily obtain

i PIEO > 00 =) _
TP s ey o ezl

And so we get

P{E(t) > tu(A) + z/a} P{¢(t) > tu(A) — (z —€)/A}

WS B e > ()} PP TR @) > ()
:e_x
and

lim inf PLE®) > tu(A) + 2/} < liminflim inf P{E®) > tp(A) — (@ +e)/A}
M—a P{&(t) > tu(N)} £l0 Al-a P{E(t) > tu(N)}

so that
L PLEW) > ) + o
AP > tu(V}

From this it is a straightforward matter to see that this equation holds for all

for x > 0.

z € R, which in turn means that £(t) € L(«).
To prove (1.12), we notice that £(h) € L(«) follows from what has been proven
already (remembering that £(h) is absolutely continuous when £(t) is). For the

second part of (1.12), we notice that

Au(A) + In(é1(A))

= /;oo (1—e 1+ Az)) dv(z) + /OOO (e ((=Nz — 1)+ 1) dv(z) + /\TS
—+ —00 as A| —o.
(1.31)

By application of (1.28) and (1.28), together with (1.15), (1.17) and the continuity
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of p, we therefore get the second part of (1.12) in the following way:

(
)

u-oo P{E(R) > u} M—a P{f(h) > tu(A)}
) (T (X))
= 1S G (o () ff(m(hu(A))

= i supex (5= 1) () + Inn (0} = 0.

Al—a

From the second part of (1.12), in turn, we get that £(¢),£(h) € L(a) \ S(a), as
apparently (1.5) is not satisfied. O

The case when p = —1 in (1.11) requires special care, as can be easily seen that
(1.16) and (1.18)-(1.19) all fail in that case. In fact, p = —1 implies a qualitatively
different type of behaviour of the Laplace transform (Esscher transform), that is
employed in the proof, which results in a local limit theorem with a different limit
distribution than the Gaussian one in Theorem 1.17. It turns out that important
classes of Levy processes are of this type, for example, the class of generalized
Z-processes.

Notice that, by Proposition 1.13 and Theorem 1.16, one is on the rim between
S(a) and L(«) \ S(a) when p = —1 in (1.11). And we now from Example 1.14

that this rim is special.

Theorem 1.17. Let {£(t)}i>0 be a Lévy process with characteristic triple
(v,m, s?). Suppose that v is absolutely continuous with a density function
that has semi-heavy tails

dv(u) Ce ™
du U

as u — 09, (1.32)

for some constants C,a0 > 0. If £(t) is absolutely continuous for an t > 0,

then we have £(t) € L(a) \ S(a). Moreover, we have

£(h) € L(o)\ S(a) with lim —Asd) >}

Am e )>u}:O for t <h. (1.33)

Proof. As in the proof of Theorem 1.16, £ has infinite upper endpoint, with a
finite Laplace transform ¢;(\) for A € (—a,0]. Keeping the notation (1.13), we
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have, by (1.15) and (1.17),

and o(\)? ~

p(A) ~ as A —a. (1.34)

a+ A (ar+ A)?

However, instead of (1.18), we have, by (1.32) and (1.34), together with Erdélyi,
Magnus, Oberhettinger and Tricomi [36], Equations 4.2.1 and 4.7.82,

A(% - sin(%)) ef’\wdy(x)
vo [ (ot - na))
co C 20 02
= m — §arctan[m/<1 — m)}

— Cf — %arctan( ) =(C0— Carctan(d) as A ] —a for § € R.

(1.35)

1—02
Moreover, instead of (1.16), we have, by (1.32) and (1.15) together with Erdélyi,
Magnus, Oberhettinger and Tricomi [36], Equation 4.7.59,

/R(l - cos(%)> e du(z) ~ C /Ooo (1 _ COS((f(f\))) e‘(:i—)\)m L

C 0
- 51“(1 * (a+)\)20()\)2) (1.36)

_>§ln(1+02) as M| —a for # € R

Keeping also the notation (1.24) and g; ) from the proof of Theorem 1.16, (1.25)
together with (1.35) and (1.36) give

)}ir_r; g (0) = exp{—Ct {M +i(0 — arctan(@))] } = g,(f) for f € R
(1.37)
Let Y; be a random variable with the above charactersitic function g. As (1.19) is
not available, to be able to get a version of the crucial uniform convergence (1.26),
we employ an auxiliary random variable X, that is independent of Z, ) and Y,

with probability density function

fx(z) = 3z + 131(1 —7) for x € (—1,1),

and characteristic function

oy (0) = 2500) ;330 st per (1.38)
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Taking a 6 > 0, the charactersitic function of 60X + (Z; — tu(A))/o(A) satisfies

Vsx+(Zon—tu(3)joN) () = Vx (0)gin(0) — ¥x(0)g:(0) for 6 € R.

And so it is obvious from an inspection of (1.26), together with elementary argu-
ments, that we have the uniform convergence desired
lim sup sup ‘f(;XjL(Zt,A_w(,\))/a(,\) (x) = fox+v (x)‘ =0. (1.39)
Al—a zeR

Now observe that, because of (1.27), we have

e AONTHEO) fr ey (((N) 4+ o(N)z) o (N)

f5X+(Zt,A_tH()‘))/U()‘) (z) = ¢i(A)

for z € R and A € (—«, 0]. Hence (1.34) together with (1.39) show that

eXr) o1 (A)tf(SX-FYt (0)
o(A)

Joxtey(tp(X) +z/A) ~ e” as A} —a for z € R (1.40)

And so the arguments from the proof of Theorem 1.16 carry over with only trivial
modifications, to show that §X + £(¢) € L£(a), and that

X +£(h) € L(a) with Tim LA0X+EWD) > u}

—0 for t <h.
L PX 4 e(h)su) O oS

From this in turn, sending § | 0, it now follows from an elementary argument,
that also £(t),&(h) € L(a), and that the second part of (1.33) holds. And so we
get £(¢),&(h) € L(a) \ S(a) as in the proof of Theorem 1.16. O

1.3 Superexponential Infinitely Divisible Distributions

We have previously encountered subexponential and exponential distributions,

and now it is time to consider supererponential distributions:
Definition 1.18. A Lévy process {£(t) }+>0 is superexponential if
E{e*M} <00 for a>0.

It is quite basic (see e.g., Sato [54], Theorem 25.17), that £ is superexponential
if and only if

E{ea.g(t)} _ (E{eas(l)})t <oo for «>0 and ¢ > 0.
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So a Lévy process £ is superexponential if it has a well-defined Laplace transform

$(\) = B{fe M0} = (B{e™1}) <00 for A< 0 and t> 0. (1.41)

Example 1.19. The normal N(u, 0?) distribution is superexponential.

Definition 1.20. A random variable X with infinite upper end-point
sup{z:P{X <z} <1} =00

belongs to the Type I domain of attraction of extremes (also called the Gum-

bel domain or the de Haan class I'), with auxiliary function w(u) > 0, if

. P{X>utazw)} _,
uli)nolo PIX > u] =e for z e R

The auxiliary function w of a Type I attracted can be chosen continuous and
must satsify w(u) = o(u) as u — oo (see e.g., Bingham, Goldie and Teugels [19],
Lemma 3.10.1 and Corollary 3.10.9). Further, it is quite elementary that @ (u) > 0
is another auxiliary function if and only if w(u) ~ w(u) as u — oco.

Feigin and Yashchin, [37], Theorem 2 and 3, gave a scheme to recover the
asymptotic behaviour of the right tail of a probability distribution function or a
probability density funtion, from that of the left tail of its Laplace transform. The
usefulness of this to establish Type I attraction was noted in a particular case by
Davis and Resnick, [27], Section 3. See also Rootzén [49] and [50]. It is this idea

of approach that we used in Theorem 1.16.

A somewhat different line of research, pursued by A.A. Balkema, C. Kliippel-
berg, S.I. Resnick and U. Stadtmiiller, in a series of articles, culminating in
Balkema, Kliippelberg and Resnick [8], is to characterize when the convergence of
Esscher transforms (exponential families), which are the key ingredient of proofs
in this area, take place, and what limits then are possible. See also the earlier con-
tributions in Balkema, Kliippelberg and Resnick [6], Balkema, Kliippelberg and
Stadtmiiller [9], and Balkema, Kliippelberg and Resnick [7]. It should be noted
that they impose conditions on densities that we do not feel comfortable with, in

our infinitely divisible setting, and that it is not the mentioned convergence that
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is our goal to analyze, but to find the actual tail behaviour, and establish Type
I attraction. In fact, we have to deal with random variables, the distribution of
which depend on how far out we are in the tail, that is, an “external parameter”,

which make results in the literature completely non-applicable anyway.

The main result of this section, Theorem 1.21 below, is a considerable devel-
opment, as well as adaption to our particular needs, in the present context of
superexponential Lévy processes [namely (1.49) and (1.80)-(1.82) below], of the
scheme of Albin [4], Section 3, to establish Type I attraction for selfdecomposable
distributions. That scheme of Albin, in turn, were an adpation to the selfdecom-
posable setting, of the scheme of Feigin and Yashchin, with additional input from

Albin [3], Sections 2 and 3.

Here is the main result of this section, which will be very important for our

study of superexponential processes:

Theorem 1.21. Let {£(t) }+>0 be a superexponential Lévy process with £(0) =

0 and characteristic triple (v, m, s%). Let & have infinite upper end-point
sup{z : P{{(t) <z} <1} =00 fort>0, (1.42)

and Laplace transform given by (1.41). Denote

u(A) = _2118; = /]R (ze * — k(z)) dv(z) + m — As?

(1.43)
oA\ = —p'()\) = /er_)‘wdu(x) + s?
R
for A <0. Given an h > 0, assume that the following conditions hold:
lim Mo(A\)? = oo; (1.44)
A——00
2
lim — e Mdy(x) =0 for £>0; (1.45)

A——00 |z|>e0 () 0-()‘)2

Ox 625>
lim lim su / ex {—t [/ (1 —cos| —— )e’\wdu T) + 7} }d@
K—o0 ,\—Hxap 6]>K P R (0()\)) (@) 20(A)?

=0 for t in a neighborhood of h.
(1.46)
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Assume that the following limit exists

Ap(A)

WS EY (1.47)
Let u* denote the inverse of u, and define
1 1
= d = ;
B e 77 B A TP o775y M

If £(t) is absolutely continuous for t in a neighborhood of h, then we have

lim Pig(h = g(w)t) > u+zw(u)} —e " for x €R and t > 0.

e P{E(h) > u} )

Proof. By (1.42), we have (see e.g., Sato [54], Theorem 24.7)

/ (—x)dv(z) =00 or v((0,00))>0 or s>0. (1.50)

-0

For the function p we therefore have (see e.g., Sato [54], p. 39)

p(A) —m = /_ — (k(z) — eMz) dv(z) + /000 (eMz — k(z)) dv(z) + (—)s.

Here all terms on the right-hand side are non-negative, for A\ sufficiently small.
Moreover, the first, second or third term go to co as A — —oo, if the first, second

or third option in (1.50) holds, respectively, so that

lim p(\) = cc. (1.51)
A——00
Also notice that the function
1 N 2252\~
QN = —— = <m/\+/ e —14 Xk(z)) dv(z +—>
N = 100 X (@) dv(z) +
satisfies
Q(A) >0 eventually, with /\lim Q(\) = 0: (1.52)
——00

This follows readily when v((0,00)) > 0 or s> = 0, by observing that

/O (e — 14 Az)dv(z) = o(\?) as A — —o0, (1.53)

-1
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because

/ (e — 1+ Az) dv(z) = [m / dey(y)} : |

2
—1 z -1

- —z 2¢~T _ 9 z/A
_)\2/ xe -1-3:—2 e (/ y2du(y)>da:
0 z -1

0 1 Xre 442077 -2
~ \? 2d - — / d
[1y V(y)<2 0 3 CU)
(1.54)

as A — —oo, since the second integral on the righ-hand side is % Further, when

v((0,00)) = 0 and s* = 0, then (1.52) holds since (1.31) ensures that,
1 0
lim — (e —1+ Ak(z)) dv(z) = oo. (1.55)

—0oQ

As a final preparation, we make the observation that, by the argument (1.18),

lim R(% — sin(%)) e Mdy(r) =0 for § € R (1.56)

A——00

Let Z; be a random variable with probability density function

e " fen-qun ()
xTr) =
th,/\( ) ¢h_Q(,\)t()\)
for A < 0 sufficiently small [recall (1.52)]. Notice that, writing

( mix = (h— QM) <m - /R/f(a:)(l — e dy(z) — )\32>
\ dua(z) = (h— Q(\)t)e*dy(z) )
| 2 = (h—QN)1)s”

the random variable Z; 5 has characteristic function

i E{e(ia—A)gu)} h—Q(N)t
B} = (M)

_ (L exp{(w — Nm+ / (0N — 1 — (10 — \)k(x)) du(x)

¢1(A) R | .
(i —2/\) s })

for z € R and t > 0,

. 0 . 928%/\
= expq 10my 5 +/ (" — 1 —i0k(z)) dygp(z) — 2’
R

for € R and ¢ > 0, for A < 0 sufficiently small. Hence the random variable Z; »

is infinitely divisible with characteristic triple (v, M, s7,). Observing that

E{Zix} = (h = Q1) () = pi
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it follows that (see e.g., Sato [54], p. 39)

. . 6252
E {e’ezw} = exp{w,ut,,\ + / (ew“‘ —-1- i@x) dv () — 2t’)‘ }
R

And so the characteristic function g » of (Z;\ — p,x)/0()) is given by

NS
_ Z/R(% - Sin(ae(:f\))) My (z) — 2(072(§2)2})hQ()\)t

for 6 € R and ¢t > 0, for A < 0 sufficiently small. And so (1.45) and (1.56),

together with (1.52) and a Taylor expansion, readily give
)‘lim a(0) = e ™/2 for § € R and t > 0.
——00

Using this together with (1.46), we get as in (1.26), that

i SupSup | fiz, =y )02 (%) = \/% e ®/CM] =0, (1.57)
Now observe that
AN fe_ ooy (e + o (A)z) o (V)
bn-qe(A)
for x € R and ¢ > 0. Hence (1.51) together with (1.44) and (1.57) show that

f(ZtA —ug,x)/o(X (x/()\a( )))e)‘m’)‘qsh—@()\)t()\)
o(A)

f(Zt,A*Ht,A)/U()\) (l‘) =

feth—ooyn (ex + /X)) =

we)\ﬂt,)\qﬁl(/\)h*Q()‘)t
V2rho(\) (1.58)
g, 0
V2rho(X)

From this in turn, together with another application of (1.44) and (1.57), we get

i —APLE = QWY > piy —y/A}
A——00 fet—ouon (e — z/A)
 lim_ —AP{{(h - Q( )t) > iy — y/A}
f&h Qo (Ke) (1.59)
/ fetn—qoon (Hea — 2/A) s '
fE(h QY (M()\))
—¢® lim f(ZtA —pg )/ o(N) ( Z/()‘U()‘)))
Am-oo Jy Jzix-un) 1o (0)

as A — —oo.

=e

=% lim
A——00

dz=e""Y for z,y € R
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Observing that

—Men—qoon (ke + (Lt —y)/A)
Pe(h- QD) > ua+ L3} V7" o0
is a probability density function, (1.59) and the theorem of Scheffé [55] show that
L PLE = QU)) > g + (Lt = )/A)
Ao—co P{E(h — Q(N)E) > i + Lt/A}
_ fg h—)) (e + (Lt —y)/X) 161
= | G0 e T Y (9

=/ e Ydy=e* for x> 0.

From this in turn, together with (1.58) and (1.59), we readily obtain
P{{(h— Q(N)t) > mex+ (Lt —x)/A} e

li f t>0.
A5 P{E(h) > ua + Lt/A} Bt
As () shows that, given any ¢ > 0,
Lt Lt —
Hex + e < hpu(X) <y + ° for A small enough,

we may conclude from this that

P{{(h— Q1) > hu(A) — zA}

P Ple() > v}
< tmsup PLEC = QOO > o + (L + ~ )2}
[ s P{{(h) > ma + (Lt =€)/}
o PLE = QN > st (Lt —a)/A}  PLE) > g+ L/}
i P{&(h) > pu + Lt/ A} P{{(h) > + (Lt =€)/}
=Xt 507t a5 ¢ ]0.

In a similar fashion

lim inf LA = QWY > hi(N) = A} _ ooy
A——o00 P{&(h) > hu(N)}

so that, in fact,

—e Tt as g0,

PLE(h— Q) > N~ e\,
/\EIPOO PLe(h) > hu(\)} e for z,t > 0. (1.62)

As p is continuous and eventually strictly decreasing [by (1.44)], with u(\) —

oo if and only if A — —o0, we may substitute A = 4 (u) in (1.62), to obtain

. P{&{(h —q(hu)t) > hu + zw(hu)}
uh_)rgo P{e(h) > hul =e for z,t > 0. (1.63)

From this in turn, it is a simple matter to establish (1.49). O
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Remark 1.22. Given 0 < h < h, it is possible, with just a little extra
work, to prove a version of Theorem 1.21, where (1.49) holds uniformly (in
an obvious sense) for t € [0, (h — h)/q(u)], provided that £(¢) is absolutely
continuous for ¢ € [h,h]. As we have no need for this extension, we have

selected not to elaborate on it.

Corollary 1.23. Under the hypothesis of Theorem 1.21, we have

P{{(h) > u} ~ e Mo (u/h)" as u — 0.

V2rho(u(u/h))(=u(u/h))

Proof. This follows by inspection of (1.58) and (1.59). O

Corollary 1.24. Under the hypothesis of Theorem 1.21, we have

im M =
ul—)oo w(u,) 0.

Proof. By inspection of (1.48), it is sufficient to prove that

—A
lim ———— =0.
A——o0 In(¢py(N))
However, this follows from the arguments we used to establish (1.52). 0

To derive sufficient criteria for the conditions in Theorem 1.21, we require the

concepts of regular variation and O-reqular variation at 0:

Definition 1.25. A monotone function f : (—o00,0) — (0,00) is regularly

varying as x 1 0 with index a € R, f € Ry (), if

lim fyz) =y* for y> 0.

z10 f(.T)

Definition 1.26. A monotone function f : (—00,0) — (0, 00) is O-regularly
varying as x T 0, with Matuszewska indices —o0o < a < [ < oo, f €
ORy- (o, B), for some constant xy < 0, to each constant € > 0, there exists

a constant C > 1, such that



1.3. SUPEREXPONENTIAL INFINITELY DIVISIBLE DISTRIBUTIONS 47

ygg < ff(Zf)) < Cy*™*  for x € [x,0) and y € (0,1],

and if o and B are the largest and smallest numbers with that property,

respectively.

By Potter’s theorem (see e.g., Bingham, Goldie and Teugels [19], Theorem
1.5.6), we have Ry- (o) C ORy- (e, ) for a € R.

As the literature is a bit incomplete regarding results for O-regular variation
at 0, and it is not trivial how results for O-regular variation at oo transfer should
be transfered to that at 0, we will prove two lemmas, that are important for us.
However, it should be noticed that these lemma are certainly well-known by any
expert on regular variation. The first lemma is a version at 0 of the Stieltjes
version of Karamata’s theorem for one-sided indices at oo (see e.g., Bingham,

Goldie and Teugels [19], Section 2.6.2).

Lemma 1.27. For a nondecreasing function U € ORy-(a, B) with —2 <
a < B <0, we have

0 0
lim inf 2 <l 2 . (1.64
0< im in xQU(m)/z Yy dU(y) < 1H$1Ts0up$2U(ac)/z y“dU (y) < co. (1.64)
Proof. As
Cx2+afe
lim su xQL <limsup————=0
210 P U(zo) = 210 P zote
and 5
2+4B+e
lim inf 2 Ufz) > lim inf x =0

10 U(.IO) - 10 ng—l—s N

for £ > 0 small enough, we have

limz2U(z) = 0.
10

From this in turn, we get the upper bound, noticing that

10, _ " (=y)U(y)
w0 J, V0 =12 [ Sy

B ' 2U(2)
=-1+ 2/0 () dz

1
< -1+ 2/ Cz*"' " ¢dz < 0o for € > 0 small enough.
0
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Further, as for z € [z, 0),

1 1 _ at2—c¢
lim supz/ Ulyz) dy < lim supz/ Cy* *dy = limsup Clz—z ) =0
210 . Ulz) 210 . 200 a+1l—¢
for € > 0 small enough, Fatou’s Lemma gives
N Y o P (=9U )
hri%nf xQU(x)/w ydU(y) = -1+ 211I£1T(1)nf/$ Wdy
' 2U(22)
= —1+ 2liminf d 1.65
+ im in /0 0(@) z (1.65)

1 1 U(yz)
S .. .
=1t 2/0 (/z i wﬂl)nf U(x) dy) e

As U(yz)/U(xz) > 1 is a nondecreasing function of y € (0,1), the liminf on the
left in (1.64) can be 0 only if

.. Ulyz)
]H?T(l)nf ()

=1 for y€(0,1),

as otherwise the right-hand side of (1.65) is strictly greater than
1/ pl
0 z

.. Ulyx) _ yPte
lim inf >
o U@) - C

the lim inf on the left in (1.64) must be strictly greater than 0. O

However, as

>1 for ¢,y > 0 small enough,

The second lemma is an O-version of the Feller’s Tauberian theorem. For O-
regular variation at oo, this result is the so called de Haan-Stadtmiiller theorem

(see e.g., Bingham, Goldie and Teugels [19], Theorem 2.10.2):
Lemma 1.28. For a nonincreasing function U such that

1
/ e d(=U)(x) < 0o for A small enough

(e}

and U € ORy- (o, B) with 0 < a < 8 < 00, we have

fn 3 1 ° —AT_j(
0<]/{13)11£10fm/_006 d(-U)(x)

1 0
< 1' - —A\T _ .
Stimowp g [ U@ <00
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Proof. As U(—z/A)/U(1/X) <1 with

U(=z/}) U(—z/A) e
W <1 and m <C(—x)*¢<1 for z€[-1,0) (1.66)

and A small enough, we have

CR 1 ° =T J(__ CR 1 ° e—)\x _ P
fm nf 77 / A(=)a) > fmint s / d(—U)(x)

—0o0 1/A
? JU(=a/N)
—e o1 / 2 28 g s
ot |y

[cf. the concluding argument for (1.64) in the proof of Lemma 1.64].
In the other direction, using the easily established fact that
o2
li =
e

we obtain

1 0 -z
oy / e d(—U)(x)

B N LI I R R
=Gamy | mam e wa | 0@

< e"U(—l)+ e??
—U/A) U/

1
/ e M24(~U)(x) - 0 as A = —oco. O

We are now prepared to prove the key Proposition 1.29, for verification of the
conditions of Theorem 1.21. This proposition is of crucial importance for our

applications to superexponential processes.

Proposition 1.29. Let {£(t)}i>0 be a supererponential Lévy process, with
characteristic triple (v, m, s*), and infinite upper end-point (1.42). We have

the following tmplications:
1. If s> > 0, then (1.44) and (1.46) hold;
2. if s> > 0 and v((0,00)) = 0, then (1.44)-(1.47) hold;

3. if v((0,00)) > 0, then (1.44) and (1.47) hold;
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4. if v((0,00)) > 0 and there exists a non-decreasing function G such that
G(x)
T—00 ]n(;{;)

then (1.44), (1.45) and (1.47) hold;

=00 and /100 exp{G(z*)z}dv(z) < o0, (1.67)

5. if
v((—00,-)) € ORo-(o, B) for some —2<a<B<0, (1.68)
then (1.44) holds;
6. if v((0,00)) = 0 and (1.44) holds, then (1.45) holds;

7. if v((0,00)) = 0 and (1.68) holds, then (1.44)-(1.46) hold;

9. if € is selfdecomposable, then (1.44) and (1.45) hold;

10. if v((0,00)) =0 and

dv(z) = klz)dz where k : (—00,0) — [0,00) is non-decreasing,

“ (1.69)

then (1.44)-(1.46) hold;
11. if v((0,00)) = 0 and
v((—00,-)) € Ro-(a) for some —2< a<—1, (1.70)

then (1.44)-(1.47) hold.

Proof. Statement 1 of the proposition is quite immediate.
To prove Statement 2, we notice that

2 1 0
lim sup/ x_2 e dy(z) < limsup —2/ 2™ Mdy(z) =0, (1.71)
|z|>ea () a(})

A—>—00 A——o0 S —0

when s? > 0 and v((0,00)) = 0 [because [ 1Az%dv(z) < oo], so that (1.46) holds.

In view of Statement 1, it remains to prove (1.47). To that end, in turn, it is
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sufficient to show that the limit

AT _ k(x)) dv(z) + mA — )\—82
lim 7111((151()\)): lim /R(e 1+/\())d()+ ' 2 =L+#-1
Ao Ap(A) T Am-ee / (Aze™ — Ak(x)) dv(z) + mA — A2s?
N (1.72)

exists. As it is obvious that

-1

/_ (6= 1+ An(2))du(z) = O())  and /_ Az e~ — \i(2))dv(z) = O(\)

o0 o

as A = —oo, (1.72) in turn, with L= %, will follow provided that we can prove
0 0
/ (e =1+ Az) dv(z) = o(A?) and / (Aze ™ — \z) dv(z) = 0o(\?)
—1 -1
as A — —oo. The first of these asymptotic relations is established in (1.54). The
second asymptotic relation follows in a simlar fashion, noticing that

/ 0 (Ae™ =) dv(z) = [mﬂxﬂ / ) deV(y)} 01

-1 -1

—A —z —z z/A
ze *+e * -1
- /\2/ p </ y2d1/(y)>dx
0 —1
0 o0 -z -z _
~ )\2/ y2dv(y) (—1 — / e +§ 1dm>
-1 0 Xz

as A — —o0, since the second integral on the righ-hand side is —1.

To prove Statement 3, we assume that v((0,00)) > 0. Then (1.53) readily gives
(1.44) holds. Further, by inspection of the proof of Statement 2, (1.47) will follow,
with L = 1, provided that we can show that

/000 (e — 1+ Ak(z)) dv(z)

Alim = =0
o / (Ak(z) — Aze ) dv(z)
0
and
: 1 = —Az S E = — Az _
/\Er_noo e (e =14 Xs(z))dv(z) = )\Er_noo . (Ak(z) — Aze )dv(z) = oo.

However, both these requirements are quite obvious consequences of the elemen-

tary fact that

/0 (A&(z) — Aze ) dy(z) > /0 (e — 1+ Ak(z)) dv(z) > 0.
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To prove Statement 4, assume that (1.67) holds with v((0,00)) > 0. As we

must have v((z, 00)) > 0 for some z > 0, (1.67) gives

2 2 e8]
lim infG(Li)\)) > lim inf i/\ G (52 / x2e_’\”du(x)>

A——00 — A——00 —

1

> lim inf — G(sQfV((L oo))e’@) =oo0 fore>0.
——00 —

From this in turn, we readily obtain, making use of (1.67) again [see also (1.71)],

2
x
lim sup/ e dy(z)
A—=—00 J|z|>e0(N) 0()‘)2
0 1
< lim sup

22e M dv(z) + sup z2e” lim su 7/ o
A——00 0'()\)2 /—oo ( ) z<13 )\—>foop )‘20-()‘)2 |z|>ea(X) ( )

< 0+ sup xQex/ exp{G(2*)z}dv(z)limsup sup exp{—2\z — G(z*)z} =0
1

<0 A—=—00 z>e0(N)

for ¢ > 0. Hence (1.45) holds. The statement now follows from Statement 3.
To prove Statement 5, assume that (1.68) holds. By Lemma 1.27, we have

1

1 0
~ <liminf———— 2d
0< Cy — o J:Qu((—oo,a:))/m ydv(y)

1 0
< li S 2du(y) < Oy <
< HI;TSOUPQ:QU((_OOJ))/E ydv(y) < C1 < o0

(1.73)

for some constant C; > 1. As this shows that also

0
/ y?dv(y) € ORy- (o +2, 3+ 2),

Lemma 1.28 now in turn gives

1 0 -1 20 0
0< = <lim inf(/ yzdy(y)) / e"“d(—/ deV(y))
Cy A—r—00 1/A —00 z
0 -1 70 0
< lim sup (/ yzdu(y)> / e)‘wd<—/ y%lu(y)) <Oy <
A——o00 /A —00 z

for some constant Cy > 1. And so we may deduce (1.44) in the following manner:

A——00 A—>—00

0
lim inf A%0(A)? > lim inf \? / e Mdy(z)

—0oQ

0 0
:]}i\I_I)l_i{.lof/\Q/ e‘”d(—/ yZdl/(y)>

0
> Llim inf)\z/ y’dv(y)
C: 1

G ]ir_r)lj&fy((—oo, 1/X)) = o0

(1.74)
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[using (1.50) for the last step].
To prove Statement 6, we assume that (1.44) holds. As —eo(\) < 1/A for A

small enough, we get (1.45) in the following manner:

—ea(N) 72
lim sup / e dy(x)

A——00 00 0-(A)2
0
< (supa;ze”ﬂ) lim sup eA M/ 2y((—oo0, —50(/\)))/<e1/ $2d1/($)) =0
z<0 A——o0 1/x

for € > 0.

To prove Statement 7, assume that (1.68) holds with v((0,00)) = 0. In view
of Statements 5 and 6, it is enough to prove that (1.46) holds. Notice that, since
v((0,00)) = 0, the arguments that were use to establish (1.74) carry over to show

that

< liminf M < lim sup M

< . .
0102 T A= —0 )\20'(/\)2 T o )\20.()\)2 > 0102 (1 75)

Now, for the proof of (1.46), since 1 — cos(z) > ;z? for |z| < 1, we have, by (1.73)
together with (1.75),

fo-en)

= L/;X{ o (N)/1611/3} wd(e)
mindu((—oc, ~o ()10, L OV
> L {|e| (= _O(A)))’g L

for [#] > 1 and X small enough. As limy,  v((—00, —0()))) = oo [recall (1.50)],
since limy_,_o, o(\) = 0, this establishes (1.46).

To prove Statement 8 we assume that & is selfdecomposable. By Statements 1
and 3, we may assume that v((0,00)) = 0 and s*> = 0. Notice that it is enough to

prove (1.44), as Statement 6 then gives (1.45). By selfdecomposability, we have
dv(z) = —= where k : (—o0,0) — [0, 00) is non-decreasing, (1.76)

(see e.g., Sato, [54], Corollary 15.11). From (1.50), we get in addition that
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limg+o k(z) = co. And so, with obvious notation, we get (1.44) as follows:

lim inf \%0())?

A——00

0
> lim inf/ Na?e ™ dy (z)

A——00 1/)\
1 0
> — liminf N (—z)k(z)dx

0—¢ 0 T
> Liminf A2(= (0 — &)) / E(y)dy + ¢ liminf 3 / ( / k(y)dy)dw
1 1 1

1
> 7e liminfk(1/)) = oo.

e A>—o0

To prove Statement 9 we take v((0,00)) = 0, and assume that (1.69) holds.
By Statement 1, we may assume that s> = 0. Further, as (1.69) implies (1.76), £
is selfdecomposable. Therefore Statement 8 gives (1.45). Notice that

d 1 (%, 1[0, L

—— | yeVdu(y)=— [ e Vk(y)dy + —e k(z)

de —z /, xz? /, x .
Lo (1.77)

- L (—y)diy (e k() dy > 0.

T

It is now an easy matter to finish off the proof: Since 1 —cos(z) > 1z for |z| < 1,

we get (1.46), noticing that (1.77) together with (1.45) give

/R (1 _ cos(ae(i)))e/\wdy(;c) > /_ im/w 43_2(5;2)2 e % du(z)

0 72
> \0\/ ——— e Mdy(z)
_o(n) 40(A)?
10l

B

> for A small enough, for |f| > 1.

To prove Statement 10, assume that v((0,00)) = 0 and that (1.70) holds. In
view of Statement 2, we may further assume that s> = 0. By (1.86) below, we
have

0

/ (e — 14 Ak(z)) dv(z) ~ =L (1 + @)v((—00,1/X)) as A — —oo. (1.78)

Moreover, by (1.85) below, together with Feller’s Tauberian theorem (see e.g.,
Bingham, Goldie and Teugels [19], Theorem 1.7.1’), we have
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/_ io (Aze ™ — An(x)) dv(z)
= [l - + [ e ) i)

0

=M = Dv((—o0, —1)) + / (N2 — N)e™ 4+ X) v((—00, z))dz + O(N)

)
- )\2/(1()\:5 _ 9)e g (/O (/j (=00, 2))dz dy> + o)
+

WA+ aJv((=00, —1/X)) ZAz(l/A)QF(i?

—(a+1)(2+ ) -
= -T2+ a)v((—00,~1/})) as A — —oo0,
(1.79)

because limy_, o, v((—00,1/A))/(=A) = oo, since @ < —1. Now, putting (1.78)
and (1.79) together, we see that (1.72) holds, with L =1 + cv. O

As € is selfdecomposable if and only if (1.76) holds, and taking (1.50) in to
account, it seems fair to expect that most selfdecomposable processes with infinite

upper end-point (1.42), that have v((0,00)) = 0 and s? = 0, should satisfy (1.69).

Proposition 1.30. Let {£(t)}i>0 be a superezponential Lévy process with
characteristic triple (v, m, s?), and infinite upper end-point (1.42). With the

notation (1.48), we have the following implications:

1. If v((0,00)) > 0, then (with obvious notation)
£(ag(u)) 4

w () =0 as u— oq; (1.80)

2. if v((0,00)) = 0 and s* > 0, then
% 4 N(0,2a) as u— oo for a>0; (1.81)

3. if v((0,00)) = 0 and s> =0, and (1.70) holds, then
§(ag(u)) 4

_TN /e
w () —>S_a<(acos( 2)) : 1,0) as u—>o00 for a>0.

(1.82)

Proof. We have weak convergence of £(ag(u))/w(u) to a random variable X as
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u — oo, if and only if we have convergence of the Laplace transform

. _, €lag(w))
JB&E{QXI’[ o) ]}
= Jim 1 (¢/(u))

= 1}520 exp {agq(u) In(¢q(t/w(u)))}

i ex aln(¢y(—=tu=(u/h)))
= Jm exp { —(u/h)p=(u/h) = In(¢1 (= (u/h))) }

_ aln(pi(—tN))
= im0 e

/0 tAz * tAT t2)\282

(e —1—tAk(z)) dV(.’E)+/ (e —1—tAk(x)) dv(z) + mtA +
= lim exp{a—% - > 2252
Ao / (1—e (14 Az)) dv(z) + / (e (=N)z —1) + 1) dv(z) + i
oo 0
=E{e™™} for t € (-1,0)
(1.83)

(see e.g., Hoffmann-Jgrgensen [42], pp. 377-378).

To prove Statement 1, notice that, by arguing as for 1.47) in Statement 3
of Proposition 1.29, the limit in (1.83) is 1 when »((0,00)) > 0, implying weak
convergence to a degenerate random variable X = 0.

To prove Statement 2, notice that, by arguing as for (1.47) in Statement 2
of Proposition 1.29, the limit in (1.83) is e®* when v((0,00)) = 0 and s*> > 0,
implying weak convergence to a normal N(0, 2a) distributed random variable X.

To prove Statement 3, assume that v((0,00)) = 0 and s? = 0. Notice that, by
Karamata’s theorem (see e.g., Bingham, Goldie and Teugels [19], Section 1.5.6),

2?v((—o00, 1))
24+«

0
_ / yu((—o00, y))dy ~ € Ro-(2+a) as 210,

Hence Feller’s Tauberian theorem (see e.g., Bingham, Goldie and Teugels [19],
Theorem 1.7.1'), gives

/O (1—e(1 4 \z)) dv(z) = /_(; Aze‘”d(— /: yv((—o0, y))dy)

—0o0

(1.84)
~T' (24 a)v((—o0,1/X)) as A = —oc.

Moreover, using Karamata’s theorem again, we get

[ ([ sepie)an ARt ereever wato. s
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so that, by Feller’s Tauberian theorem,

/ (e™ — 1 — tAk(z)) dv(z)

—0o0
0

= /_ e dy(z) — e Pv((—o0, —1)) +/ (tA — *tN) v((—o0, z))dz

o] -1

= o(1) + (t\)? /_01 emd(/: (/j v((—oo, z))dz> dy)

N I'(2+ a)v((—o0,—1/(tN)))
—(a+1)

~—(=t)"*T'(1+ a)v((—o0,1/A)) as A — —oc for t € [-1,0).
(1.86)
As limy, o v((—00,1/A))/(=A) = oo, since o < —1, it follows readily that the

limit in (1.83) is e 2(~? “. This is the Laplace transform of the —a-stable distri-
bution at the right-hand side of (1.82) (see e.g., Samorodnitsky and Taqqu [53],
proposition 1.2.12). O

As have been noted in the proof of Proposition 1.29, we must have o < —1 in
(1.68), when v((0,00)) = 0 and s®> = 0, to get an infinite upper end-point (1.42).
The case when o = —1 was not covered in Proposition 1.30, and does in fact turn

out to behave in a qualitatively different way from that with o < —1:

Proposition 1.31. Let {£()}i>0 be a superexponential Lévy process with
characteristic triple (v,m,0), and infinite upper end-point (1.42). Assume

that v((0,00)) = 0, and that

v((—00,-)) € Ro-(—1). (1.87)
Denoting
1 1
Y= m 1 T R G )
we have
. P{&(h—q(u)t) > u+aw(u)} e for x€R and t=0,
umee P{E(h) > u} N 0 for z€R and t>0.

(1.88)

and
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£(aq(u))

%a asu—oo for a>0. (1.89)
w(u)

Proof. Under the hypothesis of the proposition, we still have (1.84), with « = —1.
However, by so called de Haan theory (see e.g., Bingham, Goldie and Teugels [19],
Proposition 1.5.9a), (1.85) changes to

/ 0(/_?((—00,2))(12) Ay € Ro-(1) (1:90)

ly m /:(/_yly((—oo, z))dz) dy = oo. (1.91)

And so, by Feller’s Tauberian theorem, the corresponding modification of (1.86)

with

becomes

/_io (™ — 1+ An(2)) dv(x) = o(1) + AZ/_()le‘Md</zO (/jl/((—oo, z))dz) dy)

N r(z)v/l; (/i Z/((—oo,z))dz) as A — —oo,
(1.92)

which is regularly varying, by (1.90). Since (1.50) shows that

i L ’ A k(x)) dv(z) = oo
Jdim s [ (e - 1 () dvlo) = o,

we now readily get (1.89) in the following manner:

lim E{exp [_t M} } ~ Jim exp {“ln(m(—tww/h)))}

—00

u—00 w(u) u—00 In(¢1(p* (u/h)))
— lm ex aln(gp;(—tA))
—ai p{ (61 (1) }

(0
/ (e — 1 — tAk(z)) dv(z) + mtX

= /\lim exp ¢ a —°
o / (e ™ — 1+ Ai(z)) dv(z) — mA

(—t) /_ (6™ — 1+ Ax(x)) dv(a)

= lim exp<a
A——00

0
/ (e — 1+ \&(z)) dv(z)
=e ™ for t € (-1,0).
Changing the definition of @ to Q(A) = 1/1In(¢1(\)) in the proof of Theorem

(1.21), that proof still goes through, in essence. The only important change is
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that, since

i =) = 6 ()
A——00 1n(¢1 ()\))
by (1.84) together with (1.91) and (1.92) [recall that limy_, . v((—00,1/X))/(=A)

=0,

= 0], (1.58) changes to

RN ., (\)P
Feth—@oun (e(\) +2/X) ~ =)/ -t ATy

V2rho(\)
However, this does not affect the validity of the statements (1.59)-(1.61), while
(1.62) and (1.63) change to
P{&(h — g(hu)t) > hu — zw(hu)} e™ for z€R and t=0,

lim =

e P{E(h) > hu} 0

for z€eR and t>0.

From this in turn, it follows readily that (1.88) holds, as claimed. O






Chapter 2

A General Upper Bound

Throughout this treatment, we will be concerned with statements about the prob-
ability
P{ sup &(t) > u},

t€[0,h]
for a separable Lévy process {£(t) }+>0, and b > 0 a constant. Since the distribution
of sup,epo ) € (t) will be the same for all separable Lévy process, with the same finite
dimensional distributions as {£(t)}+0, it is enough to consider one specific such
separable version. Therefore we can without loss of generality assume, in proofs,
that £ is cadlag.

As for the constant A > 0, it is enough to consider the case when h = 1, since
results for sup,e(o ) §(¢) then will follow from considering sup;c( 1) (ht), using that
{&(ht)} >0 is a separable Lévy process when £ is. However, we have chosen to keep
a general A in our results, as this does not cause any extra labour.

We have the following useful upper bound, for the asymptotic behaviour of
suprema of Lévy processes, the argument for which builds on an argument devel-

oped by Doob [28], p. 106, for symmetric processes.

Theorem 2.1. For a separable Lévy process {£(t) }i>0, starting at £(0) = 0,

that is not supported on (—o0, 0], we have

1 1
D e s w e P 60 > v} S sy (@)

for h >0 and e > 0.
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Proof. As Lévy processes are continuous in probability, any dense subset of [0, A]
is a separator for {£(¢)}tcpo,n (see e.g., Samorodnitsky and Taqqu [53], Exercise
9.3). From this we readily get

P{ sup £(t) > u} ~P{E(h) > u—¢e)

te[0,h]

< P{{ sup £() > u} U{eh) > u— g}} _P{E(h) > u—e)

te[0,h)

—p{{sw 60> u} e <u-c})

te[0,h)

— lim P{U{f )> uh & < u-e

n—oo

gggoZP{ﬂ{f ) < ub 6(E0) > w6 < u-e

<11msupZP{ﬂ{§ ) <ul,€(Eh) > u,&(h) — £(Eh) < —5}

n—oo

- hmsupZP{ﬂ{s ) < ub €(R) > . 6h) ~ €50) > ¢}

_PLER) —€(kh) < <)
P{e(h) — £(5h) > —<)

<hmsupZP{ﬂ{f <u},§(§h)>u,§(h)>u—s}

n—00
k=

(P{s( h) — I(E DEEON 1>
<P{{(h) >u—e} (lnfte(()h P{lg—“( t) > —¢} 1>’

(2.2)

which gives (2.1) after rearrangement. O

Remark 2.2. For Lévy process £ that Theorem 2.1 does not apply to, we
have & supported on (—o0, 0], so that
P{supg(t) > 0} =0.
>0
And so (2.1) does not make sense. However, in this case & nonincreasing

with
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P{ sup &(t) > u} =0 for h,u>0,
te[0,h]

so that there is no need for an upper bound like (2.1).
A weaker version of Theorem 2.1 features in the proof of Theorem 25.18
in Sato [54]: For any z,y > 0:
-1
p{sup e > u+e} < (P{sup 0 < 5}) P> b
te[0,h] t€[0,h] 2
However, in order for this result to be useful for studies of asymptotics, one
must have comparability of the tails of £(h) and |£(h)|
) P{|E(h)| > u
hzri> sogp % < 00.
This in turn never happens for the superexponential Lévy processes that we
will apply inequalities of this type to, except if they are Wiener processes.
This is so because

E{e®h <00 for a >0

if and only if £ has zero Lévy measure (see e.g., Sato [54], Theorem 26.1).

Corollary 2.3. Let {£(t) }i>0 be a separable Lévy process, starting at £(0) =
0, such that

lir?ui)an{g(t) >0} >0 or more generally i(%fh) P{&(t) > 0} > 0. (2.3)
t€(0,
For h > 0 a constant, we have

1
sup—P{ sup &(t >u} < 00.
wek P{E(h) > u} Lo )
Proof. By Theorem 2.1, it is enough to show that the condition to the left in (2.3)
implies the condition to the right. To that, suppose that the left condition holds,
and that the right does not hold. Then there exists a sequence {t,}3, C [0, h]
such that

P{{(t,) >0} — inf P{&(t) >0} =0 as n— oc.
te(0,h)

Picking a convegent subsequence {t }2°, C {t,}52, with lim,_,« t, = %o, we get
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P{&(ty) > 0} < liminf P{E(t;) > 0} <liminf P{E(t,) <0} =0,  (24)

by continuity in probability of £. Hence the left condition in (2.3) ensures that
to > 0. And so, using (2.4) again, £ must be supported on (—o0, 0]. This of course
contradicts the left condition in (2.3). O

Albeit quite fine, in a way, the difference between Theorem 2.1, with ¢ > 0,

and Corollary 2.3 is quite important, as illustrated by the following example:

Example 2.4. Let {N(¢)}+>0 be a Poisson process with rate 1, and {7, }32,

independent Bernoulli distributed random variables
1
P{n =1} =P{mp = -1} = 3 for k> 1.

Quite ingeniously, Braverman [21], Section 4, shows that for the Lévy process

N(t)
Et)y=> m—t for t>0,
k=1
it holds that
1
1= liminf—P{ sup £(t) > u}

u—roo P{E(R) > u} ™ Ligpon
1

< limsume{ sup &(t) > u} = 00.

U—00 te[0,h]
Hence neither Corollary 2.3 or (2.3) hold for this process.

For a Lévy process that does not satisfy (2.3), it is enough to consider

£(t) = N(t) - t.



Chapter 3

Subexponential Lévy Processes

For a Lévy process {£(t)}i>0, starting at £(0) = 0, and a constant A > 0, such
that £(h) has a long-tailed distribution, we have

. 1 ~

The result (3.1) is due to Willekens [60] (see Theorem 3.2 below). But it was
proven earlier, under the stronger assumptions of symmetry and regularly varying

tails, by Berman [16], Theorem 1. See also Marcus [46], Lemma 7.6.

Remark 3.1. Rosiriski and Samorodnitsky [51], Theorem 2.1, gave a version
of (3.1) valid for much more general infinitely divisible process than Lévy
process, and for more general functionals of the sample paths of £ than the
supremum sup;¢(o 1 §(t), but under the more restrictive assumption subex-

ponentiality on the tails.

For completeness, we now give the statement and proof of Willekens’ result,
before turning to establish a converse to that result, which is new. In later chap-
ters, we will extend Willekens’ result to processes with increasingly light tails,
which require increasingly complicated proofs. However, in a way, the very simple
arguments in this chapter remains the point of take off.

A slight difference compared with Willekens theorem, is that we, for consistency
with our other results, as well as with extreme value theory in general, formulate

the result for probabilities > wu, while Willekens considered probabilities > u.
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Theorem 3.2 (BERMAN [16], THEOREM 1, WILLEKENS [60]). For a

separable Lévy process {£(t) }i>o0, starting at £(0) =0, and a constant h > 0,

we have

&(h) € L& sup &(t) € L.
te[0,h]

Moreover, if any of these memberships hold (so that both of them hold), then
(8.1) holds.

Proof. Assume that £(h) € L. By the strong Markov property, we have

P{ sup £(t) > u}

te[0,h]

< Ple(h) > u—K) +P{ sup €(1) > u,£(h) < u— K}

te[0,h]

< P{¢(h) > u— 2K} + P{;ﬁ]w >ufP{ inf £() < ~K}.

This gives
1
limsup—P{ sup &(t) > u}
P BLem) > ap - LY

. 1
< w02

(L0 ) P20

(3.2)

—1 as K — oc.

It follows that (3.1) holds [since the corresponding lower bound for the lim inf of
the probability ratio in (3.1) is trivial]. And so we must have sup,c(y 5 (t) € L.
Assume that supcp 5 §(t) € £. By inspection of (3.2), we have

lim inf PAE(h) > u + 2}
B TPLEm) > u)

> lim inf(P{ sup (1) > u}) 71P{§(h) > u+ 2z}

U= t€[0,h]

> P{ inf ]f(t) > —K} liminf<P{ sup &(t) > u})_lP{ sup £(t) > u+2x+K}

tefo,h u—00 te[0,h] te[0,h]

—1 as K — o0 for z > 0.

(3.3)
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Thus Lemma 1.2 gives £(h) € L, so that the first part of the proof gives (3.1). O

Also for completeness, we provide the canonical application of Willekens result:

Example 3.3. For an a-stable Lévy motion {£(t) }+>0, (o, 8) € (0, 2]x[—1,1]
(giving Brownian motion for oo = 2), £(t) is Sa((t — s)¥/¢, B) distributed (cf.
Example 1.8 together with Samorodnitsky and Taqqu [53], Example 3.1.3).

By Examplel.8, for « < 2 and 8 > —1, we have £(h) € R(—«), so that
&(h) € £, and (3.1) holds by Theorem 3.2.

The discovery that (3.1) holds for a-stable Lévy motion, with o < 2 and
B > —1, is due to Berman [16], Theorem 1, Marcus [46], Lemma 7.6, and
Willekens [60], p. 173.

The following converse to Theorem 3.2 is new:

Theorem 3.4. For a Lévy process {£(t) }1>0, starting at £(0) = 0, such that
(8.1) holds, one of the following conditions must hold:

1. & 1s a subordinator;

2. the following limit cannot ezist and be strictly positive for anyt € (0, h):

_ g PLE@) > u
0= 10 plen > oy

3. &(h) € L.

Proof. Let (3.1) hold, and assume that the limit ¢(¢) > 0 exists for some ¢ € (0, h)

in Condition 2. To show that one of Conditions 1 and 3 must hold, notice that

. 1
0= Jiﬁmp{sz‘[ﬂ]f@ >uj -1

i, PHER) > w} ULE(®) > u}}
= e’ P{¢(h) > u}

) P{¢(h) <u,u<€(t) <u+e}
2 lim sup PLE) > u)

>P{{(h—1) < —6}11&8;@ P{upf{g((}g i Z}“‘ e}

> K(t) P{f(h— t) < —g} ligi)sogp P{U;{g((f)) fz}-ﬁ- 6}

1

(3.4)

for € > 0.
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Now, a subordinated & has the representation £(t) = X (¢) + ut for ¢ > 0, where

# > 0 is a constant and X a subordinator with support
inf{x eR:P{X(t) >z} = 1} =0 for t>0.

Hence, if Condition 1 does not hold, then either £(t) = X (¢) + ut, where X is a

subordinator as above, but p < 0. This gives
P{¢h—t) < ——<}=P{X(h—1t) <(—p)(h—t)—e} >0 for e < (—p)(h—1).

Or else we do not have £(t) = X (t) + ut at all, for any subordinator X, in which
case well-known properties of infinite divisibile distributions gives P{{(h — ) <

—e} > 0 again (see e.g., Sato [54], Theorem 24.7). In either case, (3.4) now yields

P{u < &(t) <u+e} _ 0

W SUP =506 (0) > u)

so that

lim inf P{E(t) > u+ e} =
wmoo P{E(t) > u}

Hence £(t) € £, by Lemma 1.2. But from this in turn, we get {(h) € £ (using

Lemma 1.2 again), as

i PLER) >ut oy L PLE() > ut o} /(1)

B O R N I GO ET O

Assuming closedness of convolution roots (recall Conjecture 1.3), we can prove

a more appealing version of Theorem 3.4:

Corollary 3.5. Consider a Lévy process {£(t) }i>o0, starting at £(0) = 0, such
that (8.1) holds. If all convolution roots of £(t) are in L if £(t) is, for any t,
then Theorem 3.4 holds with the following stronger version of Condition 2:

2. liminf M =

i e ) > ut =0 forte(0,h).

Proof. Assume that (3.1) holds, that Condition 1 of Theorem 3.4 does not hold,
and that the liminf in Condition 2 has value 4(¢) > 0 for some ¢ € (0,h). By
(3.4), we then have
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P{u <{(t) <u+e¢} _0

HOPLER—1) < —e}limsup ——F =

Consequently, using the fact that Condition 1 does not hold, as in the proof of
Theorem 3.4,

lim i P{&(t) > u+ e} _
u=oo P{L(t) > u}

This gives £(t) € £, by Lemma 1.2. Using that convolution roots of £(t) are in
L, together with the fact that £ is closed under convolutions, by Embrechts and
Goldie [31], Theorem 3, it follows that £(k) € £ for £ > h such that k£ = gt for
some positive ¢ € Q. This in turn gives sup,e€(s) € £, by Theorem 3.2. Tt
follows that, for any ¢ > 0,

liminf(P{ sup &(s) > u})_lP{ sup &(s) > u—l—e}

U—00 s€[0,h] s€[0,h]

> P{{f(k —h)> —g} liminf(P{ sup &(s) > u})lP{ sup £(s) > u+ %}

U= s€[0,k] s€[0,k]

:P{§(k—h)>—§}—>1 as k | h.

Hence we have sup,cq,§(s) € £, by Lemma 1.2, so that also {(h) € L, by
Theorem 3.2, so that Condition 3 of Theorem 3.4 holds. O

As of lately, the Normal Inverse Gaussian (NIG) process, introduced by O.E.
Barndorff-Nielsen [11], Section 3, and [12], Section 2, has become very popular
in mathematical finance, mainly as a substitute for Brownian motion in Black-

Scholes models for asset prices. Example 3.6 below shows that, for a NIG process,

lim sup sup £(t) > u (3.5)

1
oL PLe(h) > u) P{te[o,h] f> 1

See Schoutens [56], Section 5.3.8, for more information on NIG processes.

Example 3.6. The Normal Inverse Gaussian (NIG) process is a Lévy pro-
cess {&(t) }i>o with £(t) NIG(a, S, t, ut) distributed, with probability density
function given by (see Barndorff-Nielsen [12], p. 59)

— K /52 AV
faa (5, B, 6, ) a—(se‘s\’a —B*+B@—n) 1o/ + (@ — 1)) for z € R.
T

- 02+ (z — p)?
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Here the parameters «, 3,6, u € R satisfy a > ||, while K, is the modified
Bessel function of the third kind.
Using Erdélyi et al. [35], p. 23, we get
/02— B2 T—
ff(t) (‘T) = fNIG(x; a, ﬂv 6t7 :ut) ~ & o $3/2 oA (36)
as x — o0o. Hence it follows readily that

P{f(t) > u} ~ Jt' o?=p? W e (@ Au=t) a4y — 0.
(3.7)

Consequently, Condition 2 of Theorem 3.4 does not hold, as we have

() = %exp{( Bt dv/a? = B2) (1~ h)} (3.8)

As Conditions 1 and 3 do not hold either, (3.1) does not hold for the NIG
process, by Theorem 3.4.

Remark 3.7. For y negative enough, we have £(t) > ¢(h) for some ¢t € (0, h),
for the NIG process in Example 3.6, so that (3.5) holds trivially. But for
moderately negative values of u, as well as positive ones, there is no such
trivial argument for (3.5).

As we will see later, it follows from Samorodnitsky and Braverman [22],
Theorem 3.1, and Braverman [20], Theorem 2.1, that, for the NIG process,

the limit

1

5 ey s TS0 ) @9

exists. However, we do not belive that it has been recorded before in the
literature, or can be seen from the references mentioned, that the limit is

strictly greater than 1.

Albeit Condition 1 of Theorem 3.4 implies (3.1), trivially, and Condition 3
implies (3.1), by Theorem 3.2, it is not the case that Condition 2 implies (3.1):

The following example gives an important counter example to this implication.
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Example 3.8. Consider totally skewed to the left strictly a-stable Lévy
motion {£(t)}is0, @ € (1,2], where £(¢) has an S, (Y%, —1,0)-distribution
(cf.

Example 1.8). Now £(t) has the right probability tail (see e.g., Samorodnit-
sky and Taqqu [53], Eq. 1.2.11)

(aat/ COS(M))I/@(a—lD cos(®2) u®y\1/(a—1)
P{£(t) > u} ~ mua/@(a—l)) eXPp {_(a_l) (#) }

as u — 0o. Hence we have £(t) = 0, so that Condition 2 of Theorem 3.4

holds. However, by Albin [2], Theorem 1, the limit (3.9) exists, and is strictly

greater than 1. Of course, for Brownian motion (a = 2), the probability ratio

in (3.9) is well-known to be 2, exactly.

In Theorem 5.2 below, we show that for exponential processes, Condition 2 is
sufficient for (3.9).

As we have given an example of a process for which Condition 2 holds but
(3.9) does not, it is suitable to round of this chapter with a “natural” example of

a process that satisfies both Condition 2 and (3.9).

Example 3.9. Consider totally skewed to the left 1-stable Lévy motion
{&(t) }+>0, where £(1) has an S;(7y, —1, 0)-distribution (cf. Example 1.8), v >
0. Now £(¢) has the right probability tail (see e.g., Samorodnitsky and Tagqqu

53], Bq. 1.2.11)
P{&(t) > ul ~ %’yt exp{—%—vtexp [;T—:t—l}} as u — oo. (3.10)

Hence we have £(t) = 0, so that Condition 2 of Theorem 3.4 holds. Further,
(3.9) holds, by Albin [2], Theorem 2.






Chapter 4

O-exponential Lévy Processes

In this chapter, we will extend Willekens’ result Theorem 3.2 to the class OL.
Instead of (3.1), for processes of this type, we have that the tails of £(h) and

SUPeo,n () are comparable, in the sense that

o 1
i gy s o L, 0> o) "
' (4.1)

<limsup ————— P4 sup &(¢) > up < 0.
usoo P{E(R) > u} {te[o,h] (¥ }

[Of course, the liminf of the probability ratio in (4.1) is at least 1, trivially.]

Theorem 4.1. For a separable Lévy process {£(t) }i>0, starting at £(0) = 0,

and a constant h > 0, we have

E(h) € OL < sup &(t) € OL.
te[0,h]

Moreover, if any of these memberships hold (so that both of them hold), then
(4.1) holds.

Proof. For £(h) € OL, (3.2) gives that the limsup in (4.1) is finite. Further, (3.2)
shows that

liminf(P{ sup &(t) > u}) P{ sup &(t) > u+x}

U0 t€[0,h] t€[0,h]

P{¢{(h) > u+z}
> liminf e = {tel%fh g()>—K} >0

for K large enough, so that sup;cp 4 £(t) € L.
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For sup;ep 5 €(t) € L, taking K large enough in (3.3), we get {(h) € OL from
Lemma 1.10. And so we get (4.1) from what has been proven already. U

Remark 4.2. From the literature, it is known that £(h) € S(«) implies
(4.1), and in fact, that the limit
1
lim —P{ sup &(t) > u} = H exists vid value H € [1,00).
M Pem) > o) - L o0
(4.2)
This was proven by Braverman and Samorodnitsky [22], Theorem 3.1, with

some futher input from Braverman [20], Theorem 2.1. See the next chapter

for more information, where we will extend this result to £(c).
Here is a converse to Theorem 4.1, similar to Theorem 3.4 for the class L:

Theorem 4.3. For a Lévy process {£(t) }i>0, starting at £(0) = 0, such that
(4.1) holds, one of the following conditions must hold:

PLE() > u)
S B ey > u)

3. &(h) € OL.

=0 forte(0,h)

Proof. Assume that (4.1) holds, and that the liminf in Condition 2 has value
£(t) > 0, for some t € (0, h). Notice that

1
oo > limsup ——————— P4 sup &(¢) > u
uﬂoop P{¢(h) > u} {te[O,h]f( ) }

2 PLE(—0) 2 lmswp Tt

> L(t)P{E(h — 1) > e} limsup PE&E}S: ;}6}

Now, —& cannot be a subordinator, as this would make the limits in (4.1) make no

for € > 0.

sense. Therefore, we get as in the proof of Theorem 3.4, that P{{(h—1t) > ¢} > 0
for ¢ > 0 small enough. And so £(h) € OL follows from Lemma 1.10. O

Example 4.4. As semi-heavy tailed distributions are in £(«) (see Example
1.14), they are in OL. We will see many examples of Lévy processes with

semi-heavy tails in the next chapter.



Chapter 5

Exponential Lévy Processes

In this chapter we consider Lévy processes such that £(h) € L(«) for some a > 0.

Samorodnitsky and Braverman [22], Theorem 3.1, proved that (4.2) holds for
Lévy processes {£(t)}i>0 with exponential tails £(t) € S(«) for ¢t > 0, for some
a > 0.

Samorodnitsky and Braverman showed the existence of the limit H in (4.2), but
did not really express H in terms of characterstics of the process £&. However, this
was done by Braverman [20], Theorem 2.1, making use of the sojourn approach
to extremes developed by Berman (see Berman, [17]). Still, Braverman’s formula
for H is typically not really useful for explicit computation of H in closed form:

At least Braverman claims so himself in Section 6 of his paper.

Remark 5.1. Braverman [20] Braverman’s completion of the result of
Samorodnitsky and Braverman, with a formula for the constant, mir-
rors what happened earlier for extremes of an a-stable stochastic process

{X(t) }+er, where de Acosta [1], Theorem 4.1, proved that the limit

lim uaP{sup X(t) > u}

u—oo teT
exists (possibly infinite), and where Samorodnitsky, [52], Theorem 4.1, pro-
vided information about the limit expressed in terms of characterstics of
the process X. The calculation of the limit could then completed, with the

appearance of Rosiniski and Samorodnitsky [51], Theorem 2.1.
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As illustrated by Example 1.14, there are important examples of processes
with tails in £(«), that do not have exponential tails [in the sense of belonging to
some S(«)]. In particular, this happens for many of the semi-heavy tailed Lévy
processes are important in applications to mathematical finance, see below.

When we generalize the result (4.2) of Samorodnitsky and Braverman [22] and
Braverman [20] from S(«) to £(«), we cover some important ground, as was the
case with our earlier generalization to OL. In addition, we provide more complete
results, in the fashion of the result of Willekens’ [60], cited in Theorem 3.2, with
a partial converse, in the fashion of Theorem 3.4.

Our proofs are very short and transparent, while proofs in the literature are
more like 10 pages of technically complicated arguments, whcih in turn build on

additional complicated asymptotic theory.

Theorem 5.2. Consider a Lévy process {£(t) }1>0, starting at £(0) = 0, such
that the limit

L(t) = ulggo % ezists for t € (0, h). (5.1)
We have

&(h) € L(a) & sup &(t) € L(a) for a > 0.
te[0,h]

Moreover, if any of these memberships hold (so that both of them holds),

then the following limit exists, with value H € [1,00):

) 1

If, in addition to the above requirements, L(t) = 0 fort € (0, h), then H =1,
so that (3.1) holds.

Proof. Assume that £(h) € L£(«), and notice that, by (5.2), we have
i PLE) > Ik > ) = Jim PR
T PE(R) > u} o

=e * for x>0,

unless L(t) = 0. Letting n denote a exp(«) distributed random variable, indepen-
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dent of £, we thus have the following lower bound

P B e P{sup £)> u}

1
> limsupliminf ————— P max h—ka) > u
T a0 p U—00 P{g(h) > U} {k:O,...,Lh/aj 6( ) }

Lh/a]

L(h—ka) { ° }
= lim sup lim inf (h—ka) > u, (h—ta) <wu
e 2 e e > ) AR }
Lh/aJ
—]1msupz (h—ka)

al0

X limian{ ﬂ {&(h—ta) —&(h—ka) +&(h—ka) —u < 0} ‘ &(h—ka) > u}

U—00
=k—1

[h/a] 0
> lim sup Z L(h—ka)P { () {&((k=0)a) +n < 0}}.

al0 =k—1
(5.4)

For a matching upper bound, notice that, by the strong Markov property,

P{ sup &(t) > u—i—x}
t€[0,h]

< P{ max  &(h—ka) > u} +P{ sup (1) > u}P{ inf £() < —m}

k=0,...,|h/a] t€[0,h] te[0,a]

for z > 0. From this together with (5.2) and (5.3), remembering that £(h) € L(h),
we get in the fashion of (5.4), that

D S ] P{ sup £t > u}

1
= lim sup lim sup sup &£(t) >u+zx
T—>00 U—00 P{ﬁ( ) > U,—}-.Q?} {tEOh] ( ) }

axr

= lim sup lim sup sup £(t) >u+x

e
T—00 U—00 P{f( ) > u} {tEOh} }
-1
< lim sup lim inf <P{ inf £(t) > —m})

Z—00 al0 t€[0,a]

1
X limsup ———— P max h—ka) >u
ol P{&(h) > u} {lc_O,...,Lh/aJ 3 ) }
[h/a) 0

< lim inf L(h — ka) P{
o0

N {s«k—z)a)msm}.

{=k—1

From (5.4) together with (5.5), we have that the following limits exist and
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coincide

H= i =y P 60> o)

Lh/a]

= lim L(h — ka) {ﬂ{gk Oa +n§o}}.
k=0 t=k—1

As H > 1 trivially, and H = 1 if L(t) = 0 for ¢ € (0, h), it only remains to show

that H < co. However, this follows from the following version of (5.5):

. 1
o gy sy T Lo, SO > )
-1
< lim sup (P{t inf £(t) > —x}) (5.6)

1
X limsup——P max h—ka) >u for a > 0.
MSUP B TE () > ) {k:o,...,waj §(h = ka) }

Conversely, assume that supep 5 £(t) € L£(«). Assume in addition that a > 0,

as we are done otherwise, by Theorem 3.2. Consider the function

P{¢(h) > u+ x}
P{¢(h) > u}
As supep ) §(t) € OL, so that £(h) € OL, by Theorem 4.1, we have

g(u,z) = for z € R and u > 0.

0 < liminf g(u,z) < limsupg(u,z) < oo for z € R.

U—00 u—00

Letting {¢;}°, be an enumeration of the members of Q, we can therefore find a

sequence {ug)}ﬁle such that

9(q) = lim g(ug),ql) exists.

And a further subsequence {u } ° | to {un o , such that

g(g2) = lim g(ug),(h) exists ... .
n—r0oQ

(k+1 )

Proceeding in this way, at stage k + 1 we find a subsequence {us °, to

{uP % | such that

(k+1)

9(q+1) = hm g( ,Qk+1) exists.

Diagonalizing, by introducing the sequence u, = u™ for n € N, it follows that

g(q) = lim g(un,q) exists for ¢ € Q. (5.7)

n—oo
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Notice that, since sup,¢jo£(t) € OL, the fact that (4.1) holds, by Theorem 4.1,
gives, writing ¢ for the limit on the right-hand side of (4.1),

P{&(h) > u+x}

lim sup g(¢) < lim sup lim sup

Q3g—00 T—00  uU—00 P{f(h) > u}
-1
< Elimsuplimsup(P{ sup &(t) > u}) P{ sup £(t) > u+x}
T—00  uU—00 t€[0,h] t€[0,h]
=/ lim e™** = 0.
T—00
(5.8)
Turning things upside down, this also shows that
liminf g(q) = occ. (5.9)

Qxg——

Now let M (k) denote the maximum of & independent random variables, dis-

tributed as £(h). Taking

= |tz

(5.7) then gives

lim P{M(n) — u, < ¢} = nh_)rrolo (1 —P{&(h) > u, + q})" = exp{—9g(q)} (5.10)

n—oo

for ¢ € Q. Since g is nondecresing, with the properties (5.8) and (5.9), exp{—g} is
a nondegenerate probability distribution function on R. Hence (5.10) shows that
M (n) — u, converges in distribution to exp{—g}. However, by classical extreme
value theory, this means that exp{—g} must be an extreme value distribution. In
addition, by the characteristics of the normalizing M (n) — u, of M(n), in this
case, exp{—¢g} must be a so called Type I extreme value distribution, that is
g(x) = e=**, for some a > 0: See e.g., Leadbetter, Lindgren and Rootzén, [43],
Chapter 1, on classical extreme value theory.

Now, consider any sequence {u,}>°; such that lim, . u, = oo, and, with
obvious notation, (£(h) — u,|£(h) > u,) converges in distribution to a subproba-
bility measure as n — co. By applying the arguments developed above [thinning
{1, }5° , suitably to get the convergence (5.7)], we conclude that the limit distri-
bution must be nondegenerate and exponentially distributed, say exp(3). Using

that sup,eo 5 §(t) € L(a), together with (5.1), it follows that, by more or less



80 CHAPTER 5. EXPONENTIAL LEVY PROCESSES

repeating the arguments of (5.4) and (5.5),

e W= limsup(P{ sup &(t) > un}>_1P{ sup £(t) > up —|-y}

n—00 te[0,h] t€[0,h]

—1
= limsuplimsup(P{ sup &(t) > un}> P{ sup £(t) > un+x+y}

z0 n—00 te[0,h] te[0,h]

1 -1

— e By i

=e 7Y limsuplim sup(— sup &(t) > uy )
x40 noo \P{&(h) > un} {te [0,h] ) }

1
X B S u gy T ) > oty

-1
<e Py limsup<P{ inf £(¢) > —:E})

CLZLO te [0,(1]

R 1 B
X llraénfhinﬂsogp<WP{k_O??§/aJ E(h — ka) > un})

1
P h— ka) > u,
xP{f( R) > un +z + y} {k_orfl_?f;/ajg( a) > u +x+y}

Lh/a] -1
— o Y lim i <
e hr&(l)nf( E L(h — ka) { ﬂ {&((k—0)a)+n < 0})

k=0 {=k—1

|h/a) 0
x Z (h — ka) { () {&((k—0)a) +n <0} =e P,
L
(5.11)

where 7 denotes an exp() distributed random variable that is independent of
&: Here we made use of the elementary fact that (£(h) — u, — z|€(h) > u, + x)
converges to a exp(/) distribution when (£(h) — u,|E(h) > u,) does. (Or lack of
memory for the exponential distribution, if you like!)

By (5.10), we have § < «. By a symmetric argument, we get o < (3, 80
that 5 = a. Thus we have proven that (£(h) — u,|£(h) > wu,) converges in
distribution to a (proper) exp(«a) distribution, for any sequence {u,}5° ; such that
limy, 00 U, = 00 and (&(h) — u,|E(R) > u,) converges to a subprobability measure
as n — oo. By basic probability theory, this gives that (£(h) — ulé(h) > u)
converges in distribution to an exp(a) distribution, as n — oco. Hence we have

&(h) € L(«). This in turn gives (5.2), from what has been proven already. O

Corollary 5.3 (SAMORODNITSKY AND BRAVERMAN [22], THEOREM 3.1).
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Consider a Lévy process {£(t) }i>0, starting at £(0) = 0, with characteristic-
triple (v, m, s%). If
v((1V -, 00))

v((1,00))

then he limit (5.2) exists, with value H € [1,00), and supcp ) §(t) € S(a).

€ S(a) for some a >0,

Clearly, the semi-heavy tailed Lévy process in Example 1.14 is the canonical
application of Theorem 5.2. It turns out that the main difficulty in doing so, is
to establish (5.1). The reason for this is that one typically only can find specific
information in the literature about the tail of £(1), for a Lévy process &, from
which it typically cannot be deduced what is the tail of £(¢) for ¢ # 1, except for

processes where the distribution remains in the “same class”, for all £ > 0.

For example, for a GH(a, 8,4, v, ) process (see Example 5.4 below), £(1) is
GH(a, 8, 0,7, 1) distributed, and the tail known to be semi-heavy from the liter-
ature [see (5.12) below]. However, unless v = —3 (that is, the GH process is a
NIG process; see Example 5.4 below), £(t) is not GH(«, £, 6, , p) distributed for
t # 1, and so the literature does not help to establish (5.1). It is for this reason
that we rely in a crucial way on Proposition 1.13 and Theorems 1.16 and 1.17, to
establish that (5.1) holds, even if it is known from the beginning that £(h) or £(1)
is in L(«).

We will now give three examples of general classes of semi-heavy tailed Lévy
process, that are of great importance in mathmatical finance: The generalized
hyperbolic (GH) processes, the generalized z-processes (GZ), and the CGMY pro-

cesses.

The class of GH processes, in turn, contains the important classes of NIG
processes (see Example 3.6) and hyperbolic (HYP) processes (see below) as special
cases. The class of GZ processes contains the important class of Meizner processes
(see below) as special cases. The class of CGMY processes contains the important

class of variance gamma (VG) processes (see below) as special cases.

Example 5.4. For a GH(«, 3, 6,7, u) Lévy process {£(t) }+>0, we have (1)
GH(q, 8, 6,7, 1) distributed, with probability density function given by
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Jan(a,p60.m (@)
02 — B2VV/2(82 4 (1 — 1)2)1/2-1/4
for z € R Here the parameters satisfy «, 3,9,7, 4 € R with a > |3, and
K., is the modified Bessel function of the third kind.) By Erdélyi et al. [35],

-1/2 (am)

p- 23, we have (cf. Example 3.6)

(@ =B (ampye-w

fGH(OL,/J’,(;,’Y“u) (./17) ~ 9 a'y—ley((S?\/m)

The Lévy measure v of a GH distribution takes the following unusually

as x — oo. (5.12)

complicated form

efr r*  exp{—|r|\/2y+ a2} yefr—elz

dy + ——— for y>0

dv(z) | lelJo w2y (J,(6v/2)2 +Y,(0v/29)2) |

o 2 ew{-llyra
1l Jo w2y (U, (6v/20) +Y_, (6v/20))

for v <0

(5.13)
Here J, is the Bessel function and Y, the Bessel function of the second kind
(also called the Neumann function).

GH distributions were introduced by Barndorff-Nielsen [10], Appendix,
and Barndorff-Nielsen [11]. Their infinite divisibility were established by
Barndorff-Nielsen and Halgreen [14] and Shanbhag and Sreehari [58], The-
orem 4. GH Lévy processes, and special case there off, as for example NIG
and HYP (see below), have become increasingly important in mathemati-
cal finance: See Eberlein and Prause, [30], together with Schoutens Section
5.3.11, for more information on GH processes.

To show that GH processes have semi-heavy tails, we notice that (see
e.g., Watson [59], Equation 3.1.8)

7
Jy(x) ~ T0) as = | 0 for v > 0.
For the Bessel function of the second kind Y, matters are somewhat more
complicated, mainly due to singularities in the relation between .J, and Y.:

For non-integer v we have, by Watson [59], Equations 3.1.8 and 3.54.1,
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AL il
~sin(my)T(1—7)
For integer v we have, by Watson [59], Equations 3.51.1, 3.52.3 and 3.54.2,

2T (y)z"

Yv(x) ~

as ¢} 0 for v €[0,00) \ Z.

21n(z)

Y, (z) ~ for y e N\ {0} and Yj(z)~ z 0.

For the integrals in (5.13) we therefore readily obtain

o0 exp{—|z|[y/2y + a2} p
2 ( 4
0 Yy

T (63/29)2 + Y_(0+/29)?)
N /000 ex:Q{y—Yaj%T/%;)} dy
[t Ay epteretulelly, g e 0,00
e, e o
( 527[Sin(m)r(;2—22]50” SPITOT} e [0,00)\ Z
_ 527315?5){2;‘“3} for e N\ {0}
| % for  y=0

as r — 00, so that

( 27[si (1 2,.v7—1 xpd — o
st +?J5fya7e pi-(a—fle} for v € (—o0,0]\Z
2727 L exp{—(a — B)z}
dv(x) o 621a7T (—7)? for v € (-N) \ {0}
dz exp{—(a — f)z} _
In(2)x for =0
L 7787(&7&;6 for v>0
’ (5.14)
as T — 0o.

For v > 0, (5.14) together with Theorem 1.17 shows that GH(«, §, 4,
v, 1) € L(a—B)\S(a—p), and that Theorem 5.2 applies with H = 1. Notice
that the results of Braverman and Samorodnitsky [22| and Braverman [20]

(see Corollary 5.3) do not apply here.
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For v < 0, (5.14) together with Proposition 1.13 shows that GH(c,
B,6,7, 1) € S(a — B), and that Corollary 5.3 applies with

L(t) = lim % = %E{e(a_ﬂ)f“)} for ¢ > 0. (5.15)

Further, using Theorem 3.4 in the same way as in Example 3.6, we get that
H > 1in (5.2). Notice that the results of Braverman and Samorodnitsky
[22] and Braverman [20] apply when v < 0, when it has been established

that they are in S(aw — ). However, it does not follow from their results

that H > 1.

Example 5.5. The class of NIG Lévy processes is the special case v = —

N

of the GH processes considered in Example 5.4. And so we have that, for a
NIG process {£(t) }i>0, £(h) € S(a— ), and that (5.2) holds, with the limit
L(t) in (5.1) given by (5.15). Moreover, in (5.2), we have H > 1.

Notice that the results of Braverman and Samorodnitsky [22] and Braver-
man [20] apply to the NIG process, as it is in S(a — ). However, it does
not follow from their results that H > 1.

As for a NIG process, £(t) is NIG(«, 3, 0t, ut) distributed (see Example
3.6), (3.6) directly shows that £(¢) is semi-heavy, and (3.7) directly shows
that (5.1) holds, without using the Tauberian arguments of Example 5.4.
However, NIG processes are the only GH processes that yield to such direct

arguments, as for vy # —% (t) is not GH distributed for ¢ # 1.

Example 5.6. HYP Lévy processes are the special case v = 1 of GH pro-
cesses. HYP processes were introduced by Barndorff-Nielsen [10]. They are
of importance in mathematical finance, where the were introduced by Eber-
lein and Keller [29]. See Schoutens [56], Section 5.3.11 for more information
on HYP processes.

From properties of the GH process, established in Example 5.4, we have
that (5.2) holds with H = 1, for a HYP process. Recall that the results of
Braverman and Samorodnitsky [22] and Braverman [20] do not apply to the
HYP process, by Example 5.4.
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Example 5.7. For a GZ(a,fi, fard, 1) Lévy process {€(0)}o, £(1) is
GZ(a, p1, B2, 0t, ut) distributed, with characteristic triple (v, m,0), where
20

—2nByz/a -2/
“9 . 1—¢ for x>0
dv(z) _ ) nlaf / ) (5.16)
d 26 |
x 20 o2mprz/a / (1 — 62”/0‘) for z <0
T

and

as 27 o e—ﬂ2m _ e—ﬂlz

m=pt SR pEpe——2
T Jo 1—e

This process was introduced by Grigelionis [41], Definition 1, as a very nat-
ural generalization of the so called z processes, introduced by Prentice [48],
Section 1 (see Example 5.9 below). See Schoutens [56], Section 5.3.10, for
more information on GZ processes.

According to Grigelionis, Corollary 1, GZ processes have semi-heavy tails

2 20t 4,201 27 By (u — put)
e () ~ (O‘B(ﬁ1;52)> I'(201) exp{— a } (517)

as u — oo. This means that {(h) € L(2n82/a) \ S(2752/), by Example

1.14). However, as have been explained in Example 1.15, we do not trust
Grigelionis’ proof of (5.17), and therefore provide our own proof of the fact
that £(h) € L(2nfz/a) \ S(27 P/ ).

By (5.16), we may apply Theorem 1.17, to obtain

§(h)€£<27;ﬁ2)\8(27f2) and JH&%:O for ¢ < h.

Hence Theorem 5.2 applies to the GZ process, yielding (5.2) with H = 1.
Notice that the results of Braverman and Samorodnitsky [22] and Braverman

[20] (see Corollary 5.3) do not apply to this process.

Example 5.8. A Meixner(«, £, d, u) Lévy process, is the same thing as a
GZ(w,1/24 B/ (27),1/2 = B/(27), 6, u) Lévy process. Meixner processes are
of great interest in mathematical finance (see e.g., Schoutens [56], Section
(5.3.30), and were introduced by Schoutens and Teugels [57], Eq. 12. See
also Grigelionis [41], Definition 2. The parameter 3 is now restricted to the

interval (—m, ), as it can be seen that other values of the parameter give
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nothing new. See Schoutens [56], Section 5.3.10, for more information on
Meixner processes.
From Example 5.8 we have that (5.2) holds with H = 1, for a Meixner

process.

Example 5.9. The class of z(«, 3,0, u) Lévy processes is the subclass with

= % of the class of GZ processes. The z distributions were introduced
by Prentice [48], Section 1. See Schoutens [56], Section 5.3.10, for more
information on GZ processes.

As z processes simply are linear (deterministic) time changed GZ pro-

cesses, their extreme value theory coincide with that of GZ processes.

Example 5.10. Fora CGMY(C_,C,,G, M,Y_,Y,) Lévy process {£(t) }+>o0,
we have £(1) CGMY(C_,C,G, M,Y_,Y,) distributed, with characteristic

triple (v, m,0), where the Lévy measure v and constant m are given by

C (—z)~ 0¥ )eG2dy for x <0
dv(z) = and m= / k(z) dv(z).
R

Coz 0H¥)e Mgy for >0

The parameter values are restricted to C'_,C,G,M >0and Y _,Y, < 2.
CGMY processes with C, = C_ and Y_ =Y, were introduced by Carr,
Geman, Madan and Yor [23], Section 2.2, and generalized to the above
setting by Carr, Geman, Madan and Yor [24], Section 2.3. There the impor-
tance of CGMY Lévy processes in mathematical finance is also established.
See Schoutens [56], Section 5.3.9, for more information on CGMY processes.

For 0 <Y, < 2, Example 1.14 shows that

v((1V-,00))

v((1,00))

so that £(h) € S(M) by Proposition 1.13. Hence we may apply Corollary

€ S(M),

5.3 to CGMY processes with 0 < Y, < 2. Further, using Theorem 3.4 in
the same way as in Example 3.6, we get that H > 1 in (5.2).
For Y, = 0, we may use Theorem 1.17 to immediately conclude (1.33).

However, as we have used that approach already for GZ processes, we will
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show how difficult a direct calculation is, even in this simple case, when
we have equality in (1.32), rather than asymptotic inequality only: Write
E(t) = €_(t) +&4(t), where - and &, are independent Lévy processes, with

Lévy measures (with obvious notation)

dv_(z)  C_
de  (—xz)H-

For Y. > 0, Theorem 1.21 together with Proposition 1.29 7 show that the

dvy(z) _ Cy
de

e“ I_oo0)(z) and M1 (0,00)-

tail of £ (t) is superexponential. Notice that £ () is selfdecomposable, and
thus absolutely continuous. For Y_ < 0, —£_(t) is a subordinator (see e.g.,
Sato [54], Theorem 24.7), with zero tail. On the other hand, £, isa '(C, M)
process, so that &, (¢) has semi-heavy probability density function

MCJ,.t:CCJ,_t—l "
feo(x) = W e "7 for x>0, (5.18)

As & (t) has lighter tails than £,(t) € L(a), we may use Embrechts and
Goldie [31], Theorem 3 a, to conclude that £(t) € L(«). Moreover, it follows
readily by inspection of Equation 2.9 of the proof of that theorem, that

P{¢(t) >u} ~E {eG@(t)} P{¢(t) >u} ~E {eGgf(t)} uCt—le™Mu (5.19)

as u — oo [see also Cline [26], Corollary 2.7, for a corresponding result for

S(a)]. Now Example 1.14 shows that £(h) € L(M) \ S(M), and it follows

that Theorem 5.2 applies with L(¢) = 0 for ¢ < h, so that H =1 in (5.2).
For Y, < 0, the density of the Lévy measure has semi-heavy tails in

L(M)\ S(M) 2v(a)
dx

Hence Theorem 1.16 shows that £(h) € L(M) \ S(M), and that Theorem
5.2 applies with L(¢) = 0 for ¢t < h, so that H =1 in (5.2).

— C+$_(1+Y+)6_M$.

Notice that the results of Braverman and Samorodnitsky [22] and Braverman

[20] (see Corollary 5.3) do not apply when Y, < 0.

Example 5.11. The class of VG(C, G, M) Lévy processes is the special case
C_=Cy=CandY_ =Y, =0of the CGMY processes considered in Ex-
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ample 5.10. These processes can be represented as the difference between
two gamma processes. VG processes were introduced by Madan and Seneta
[45], Section 1. See Schoutens [56], Section 5.3.7, for more information on
VG processes.

For a VG(C, G, M) process &, using (5.18) together with (5.19), observing
that now —¢_ is a I'(C, G) process, we get

G \Ch
P t) > uy ~P{E(R) > u} ~ Cl-lg=Mu :
{tzﬁ)i]f( ) u} {&(h) > u} (G—}—M) u" e as u — 0o



Chapter 6

Superexponential Lévy Processes

In this chapter we study processes with superexponential tails. The well-known
example of such a Lévy process is, of course, Brownian motion. But, albeit less
well-known, there exist many other Lévy processes of this category. One natural
example is the class of totally skewed to the left a-stable processes, which do in

fact include Brownian motion (the case when a = 2).

Theorem 6.1. Let {£(t) }i>0 be a superezponential Lévy process with £(0) =
0 and infinite upper end-point (1.42). Assume that there exist functions

w >0 and g > 0, with w continuous, such that (with obvious notation)

M—%@ as u— oo for a > 0; (6.1)
w(u)
L(t,z) = 1}1_{20 Pig(h _gg)(%iz;_ rw(u)} exists for t >0 and z € R,

(6.2)
with L(0,x) = ™% (so that £(h) belong to the Type I domain of attraction
of extremes). Further, assume that (, is continuously distributed for a > 0,

or that L(t, ) is a continuous function of x fort > 0. If

1
lim limsup—————P{  su ) >ub=0, 6.3
T—o0 u—>oop P{g(h) > U} {te[O,h—I;“q(u)]g( ) } ( )

then the following limit exists, with value H € [1,00):

) 1
H= uli)rgo WP{ti}éﬂ]f(t) > u} (6.4)
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Proof. Let {(,(7)}$2, be independent random variables distriubted as (,. Notice
that, by repeated use of (6.2),

: £(h—q(u)t) —u o)) >
ulggoP{ w(w) >z | E(h—q(u)t) > }

lim P{&(h—q(u)t) > u+ zw(u)} _ L(t, z)
umoo  P{E(h —q(u)t) > u} L(t,0)

Letting 7, denote a possibly infinite valued random variable, independent of

for x > 0 if L(¢,0) > 0.

{Ca()}32,, with the possibly improper probability distribution function 1 — L(t, z)
/L(t,0), when L(¢,0) > 0, and with 7, = oo when L(¢,0) = 0, (6.1) thus gives the
following lower bound

liﬂi}gfﬁ {sup £(t) > }

te[0,h]

> lim hmsuphmmf—P{ max &(h—kag(u)) > u}
T—>oo a0 u—oo P{E(h) > u} k=0,...,|T/a] ( (u))

|T/a| k—1
:Ylim lim sup Z (ka,0 hmlan{m{f h—{aq(u))
— 00 al0 =0
(6.5)
(= kag(u) + (1 Kag(w) ~ u < 0} €01~ Fag(w) > u}
[T/a) k-1
qul_I)Il hmsupZLkaO {ﬂ{ZQ +7)ka<0}}
k=0

|T/a]

:Yllm hmsup E L(ka,0) {ﬂ{g Ci(a)+77ka§0}},
—00
k=0 =0 =0

by the assumed continuity properties of , and/or L(t, ).

To get a matching upper bound, we make several preparations: First, notice
that, by the strong Markov property,

P{ sup  £(t) >u—|—xw(u)}
t€[h—Tq(u),h]

gp{ max g(h—kaq(u))>u}

k=0,...,|T/a]

+P{ sup  &(t) > u+xw(u)} P{ inf &(t) < —xw(u)} for x > 0.
te[h—Tq(u),h] t€[0,aq(u)]

(6.6)

From the continuity of w, and the fact that w(u) = o(u), as a consequence of the
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fact that £(h) belongs to the Type I domain of attraction, as noted after after
Definition 1.20), v and u + zw(u) range over the same set of values as u — oo,

for any constant x > 0. Hence we have

limsup g(u) = limsup g(u + zw(u)) for z € R for any function ¢g.  (6.7)

u—r00 u—r00
From (6.1) together with basic theory of Lévy processes (see e.g., Sato [54], The-
orem 8.7, together with Fristedt [39], p. 251), we have that {£(tq(u))/w(u)}i>0 4
{¢(t)}+>0 in the space D[0, 1] of cadlag functions equipped with the Skorohod J;
topology, where {((t)}+>¢ is a Lévy process such that {(¢) £ ¢,. From this in turn,

we have

lim inf lim ian{t [inf £(t) > —xw(u)}
€

a0 u-—oo 0,q(u)]

zlimian{ inf C(t)>—g}:1 for x > 0.

al0 t€[0,2a)

(6.8)

Using (6.6)-(6.8) together with (6.2) and (6.1), get in the fashion of (6.5),

. 1

1
= lim li li
Tomo 1n;isoup IHLSOI.}I) P{&(h) > u+zw

o P{ sup &(t) > u-l—xw(u)}

t€[0,h]

ew
= lim limsuplimsup ——————— P3 sup &(¢) > u + zw(u
T—oo 110 U—00 P{f(h) > u} {tE[O,h] ( ) ( )}
-1
< lim limsuplim inflim sup (P{ [inf E(t) > —xw(u)})
te

T—oo g0 al0 U—00 0,aq(u)]

1
X RO P{k:or,].(.l?f;/aj &(h — kag(u)) > u}

1
+ lim imsup———P su t >u}
P B ) > ) {te[ Py

0,h=Tq(u)]
1
SR .
< Jim ligpClimenp e P gna, €60 ko) >

|T/a] 0 k-l
< lim liminf L(ka, O)P{ ﬂ {Zg(a) + Mo < 0}}

T—oo al0 Ny
k=0 {=k—1 ™ i=0

(6.9)

From (6.3) together with (6.5) and (6.9), we have that the following three limits

exist and coincide
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1
H=lm  ———— sup &

I ey L 0 > )
[T/a] 0 -

hm lim sup Z (ka,0) P{ ﬂ {ZQ a) 4+ Nka < O}} (6.10)

T a0 =k—1 .
LT/aJ 0 -
:Th_g}ohr‘i(l)nf 2 L(ka,0) P{ZOI{ZQ + Mo < O}}

It remains to show H < co. However, this follows from applying (6.3) and (6.8)

to the following version of (6.9), with @ > 0 small enough and 7' > 0 large enough,

i 1
s ey = ap T2 €0 > )
-1
<o (P{ gt 0> -3))
. 1
X hiri)soljp TEOED P{k:O{??f’lc“/aJ E(h — kag(u)) > u}

1
i
* Nl P{{(h) > u} { Olszugq(u)]g(t) g u}

—1[T/a]
< lim sup (P{temf ¢(t) > —g}) Z L(ka,0)

zl0 [0,2a

k=0
1
—|—limsup— { sup  &(t >u} for x > 0. O
PP BTEm > u - Lcon

Our tools for verifying (6.1) and (6.2) are Proposition 1.30 and Theorem 1.21,
respectively. To check (6.3), we have two options: If Corollary (2.3) applies, then
it should be used together with (1.49), to prove (6.3). This is how we work in
our examples below. If Corollary (2.3) does not apply, then (6.3) can shown
using Theorem 2.1 and Corollary 1.23, to show that the tail of sup,. 5 £(?) is
asymptotically neglible, for 0 < h < h. Then the tail of sup,c(; 5_rqw) £(¢) can be
dealt with using Remark 1.22 and the following version of (6.6):

P{ sup  &(t) > u}

te[h,h—Tq(u)]
-1
< 2<P{ inf ((t) > —E}) P{ max E(h—kag(u)) > u—xw(u)}
t€[0,2a] 2 k=(T/a},....|(h—h/(aq(u))]

—1 [(h—h/(aq(u))]
§2<P{ inf C(t)>—g}) S P{é(h—kaq(u)) > u—zw(u)}.

te[0,2a] k= [T /al
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Of course, Brownian motion is the cannonical example of a superexponential
Lévy process. As have been noted already (see Remark 2.2), this is the only non-

trivial process which has both lower and upper tails that are superexponential.

Example 6.2. Brownian motion with drift is a superexponential Lévy pro-
cess {&(t) }+>o with characteristic triple (0, m, s*), where m € R and s* > 0.
By Proposition 1.29 2, ¢ satisfies (1.44)-(1.47), so that Theorem 1.21 gives
(6.2). Further, Proposition 1.30 2 gives (6.1) with (, N(0, 2a) distributed.
For m > 0 (6.3) follows readily from Corollary 2.3 together with (1.49).
For m < 0 we cannot use Corollary 2.3 directly, as (2.3) does not hold.
However, a simple trick does the job: Let {&(t)}i>0 be the Lévy process
with characteristic triple (0,0, s?). Then Corollary 2.3 together with (1.49)
give (6.3) in the following way, using that ¢(u) = o(w(u)) by Corollary 1.24:

P{ sup  &(t) > u} < P{ sup  &(t) > u—m(h—Tq(u))}
te[0,h—Tq(u)] t€[0,h—Tq(u)]

< P{ sup  &o(?) >u—mh—w(u)}

te[0,h—Tq(u)]
<2P{&(h—Tq(u)) > u—mh —w(u)}
<2P{&(h—Tq(u)) >u—m(h—Tq(u)) — w(u)}
=2P{{(h—Tq(u)) > v —w(u)}
~ 2" TP{¢(h) > u)} as u — oo.
(6.11)
Notice that, by Proposition 1.29 2 together with Proposition 1.30 2, (6.1)
and (6.2) hold with (, N(0, 2a) distributed, and the functions w and ¢ given
by (1.48), for any Lévy process with characteristic triple (v, m, s*) such that
v((0,00)) = 0 and s* > 0. However, we cannot hope to verify (6.3) as simply
as for Brownian motion. Rather, the second of the strategies for verifying
(6.3) outlined above has to be employed. But if (6.3) holds, then we have

H = 2 in (6.4), independently of v and m, by well-known properties of

Brownian motion without drift!

Example 6.3. A totally skewed to the left a-stable, « € (1,2), Lévy motion
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{&€(t) }i>0, is a Lévy process with charactersitic triple (v,m,0), where

dv (.’L‘) N a,ya e
T ) e ) [ L,

and v > 0 and m € R are constants. As have been mentioned in Example
3.8, Albin [2|, Theorem 1, state that (6.4) holds with H > 1 for m =
Jz(k(z) — z)dv(z) (the strictly stable case). We will now recover Albin’s
result, and extend it to a general m, as a simple application of Theorem 6.1,
and without relying on difficult results from the literature about the tails of
totally skewed a-stable distributions, as did Albin.

By Proposition 1.29 10, ¢ satisfies (1.44)-(1.47), so that Theorem
1.21 gives (6.2).  Further, Proposition 1.30 3 gives (6.1) with (,
Sa((—acos(%2))/e, —1,0) distributed.

For m > 0 (6.3) follows from Corollary 2.3 together with (1.49), since

P{£(t) > 0} > P{(£(t) — mt) > 0} = P {/*(¢(1) — m1) > 0}
=P{(£(1)—ml) >0} >0

by self-similarity. For m < 0 we can use the trick (6.11) in exactly the same
way as in Example 6.2, observing that again ¢(u) = o(w(u)).

Notice that, by Proposition 1.29 3 together with Proposition 1.30 3, (6.1)
and (6.2) hold with (, S,((—acos(%2))"/?, —1,0) distributed, and the func-
tions w and ¢ given by (1.48), for any Lévy process with characteristic triple
(v,m, s?) such that v((0,00)) = 0 and (1.70) holds. However, we cannot
hope to verify (6.3) as simply as for a-stable processes: Rather, the second
of the strategies for verifying (6.3) outlined above has to be employed. But
if (6.3) turns out to hold, then we have H > 1 in (6.4), because H only
depends on «, and was shown to satisfy H > 1 for totally skewed a-stable

processes with m = 0 by Albin [2], Theorem 1.

Example 6.4. A totally skewed to the left 1-stable Lévy motion {£(?)}i>0,

is a Lévy process with charactersitic triple (v, m,0), given by

d 2
v(z) = 7 for x <0, where v>0 and m e R
dx m(—x)?
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As have been mentioned in Example 3.9, Albin [2], Theorem 2, state that
(6.4) holds with H = 1 for m = 0. We will now recover Albin’s result,
and extend it to a general m, as a simple application of Theorem 6.1, and
without relying on difficult results from the literature about the tails of
totally skewed 1-stable distributions, as did Albin.

By Proposition 1.31, (6.1) and (6.2) hold with (, = a. We may derive
(6.3) from Corollary 2.3 together with (1.88), for all values of m, because

2yt In(t
P{£(t) > 0} > P{t§(1) _ ) S0y 1 as £ 0.
™
Notice that, by Proposition 1.29 7 together with Proposition 1.30 4, (6.1)
and (6.2) hold with {, = a and the functions w and ¢ given by (1.48), for any
Lévy process with characteristic triple (v, m, s?) such that v((0,00)) = 0 and

(1.87) holds. In this case, we always have H = 1, by inspection of (6.10).

We mention here that the methodology of Examples 6.2-6.4 readily carry over
to deal with, for example, the sum of two independent totally skewed to the left

stable Lévy processes, with different stability indices.

Example 6.5. An unnamed, but quite famous superexponential Lévy pro-
cess {&(t) }1>0 is defined by Linnik and Ostrovskii [44] pp. 52-53, see also Sato
[54], Exercise 18.19. This process has characteristic triple (v, m,0), where

dv(z) e?
dr  |z|(1 — e®)

for x < 0, for some constants a,b > 0.

The corresponding Laplace transform is

L((b—\)/a)cMe

for A <0,

where ¢ > 0 is a parameter (that does not affect the Lévy measure).

By Proposition 1.31, (6.1) and (6.2) hold with (, = a. We may derive
(6.3) from Corollary 2.3 together with (1.88), because selecting g(t) > 0
so that tIn(1/g(t))/g(t) — 1 as t | 0, we have (see e.g., Erdélyi, Magnus,
Oberhettinger and Tricomi [34], Equation 1.18.2)

$1(Mg(t))'
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() n(Pa0) b a0

— eV a5 ¢10 for A <0,

so that

P{e(t) > 0} = P{(t)/g(t) > 0} = P{1/a >0} =1 as t,0. O
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