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RESIDUE CURRENTS OF HOLOMORPHIC
MORPHISMS

MATS ANDERSSON

ABSTRACT. Given a generically surjective holomorphic vector bun-
dle morphism f: E — @, E and () Hermitian bundles, we con-
struct a current R/ with values in Hom (Q, H), where H is a cer-
tain derived bundle, and with support on the set Z where f is not
surjective. The main property is that if ¢ is a holomorphic sec-
tion of @, and Rf¢ = 0, then locally f¢» = ¢ has a holomorphic
solution #. In the generic case also the converse holds. This gives
a generalization of the corresponding theorem for a complete in-
tersection, due to Dickenstein-Sessa and Passare. We also present
results for polynomial mappings, related to M Noether’s theorem
and the effective Nullstellensatz. The construction of the current
is based on a generalization of the Koszul complex. By means of
this complex one can also obtain new global estimates of solutions
to fi = ¢, and as an example we give new results related to the
HP-corona problem.

1. INTRODUCTION

Let F and @ be holomorphic Hermitian vector bundles of ranks m
and r, respectively, over the n-dimensional complex manifold X, and let
f: E — @ be a generically surjective holomorphic morphism. Given a
holomorphic section ¢ of () we are interested in holomorphic solutions
to fip = ¢. The basic results in this area are the existence theorems due
to Skoda in [21] and [22], which are based on L?>-methods and complex
geometry. They provide existence of global holomorphic solutions to
the equation fi) = ¢ with L?-estimates under appropriate geometric
conditions provided f is pointwise surjective. However, applying these
results to E restricted to X \ Z, where

Z ={z; f(z) is not surjective},
also highly non-trivial local results at Z are obtained by these methods.
In this paper we introduce a complex of bundles

o= By > Ey - F—Q—0,
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2 MATS ANDERSSON

and define a global residue current
R'=R[+---+R/

with support on Z, p = codim Z and g = min(n,m — r + 1), where
R/ is a (0, k)-current with values in Hom (Q, Ej). Tt is not hard to see
(e.g., by using Gauss elimination) that p < m — r + 1 with equality
in the generic case; in this case, thus R = R, ,y1. Our first result
concerns existence of local holomorphic solutions of fi) = ¢.

Theorem 1.1. Let E and Q) be holomorphic Hermitian vector bundles
over a complex manifold X, let f: E — @ be a holomorphic generically
surjective morphism, and let R’ be the corresponding residue current.
If ¢ is a holomorphic section of Q such that R'¢ = 0, then locally
f1 = ¢ has a holomorphic solution .

We have the following partial converse.

Theorem 1.2. Ifp = m—r+1 and f1 = ¢ has a holomorphic solution,
then RI'¢ = 0.

If p=m —r+1 thus f© = ¢ has holomorphic solutions if and only
if Rf¢ = 0. If r = 1 and p = m, it turns out that if f =) fje; in
a local holomorphic frame e;, then R = R,, is equal to the classical
Coleft-Herrera current

=1 =1
T= |05 A .04
8fl " afm
times a non-vanishing section of (det F) ® Q*, see [4]. In this case
therefore we get back the Dickenstein-Sessa-Passare theorem, [12] and
[19], stating that ¢ belongs to the ideal (fi, ..., fn,) if and only if ¢T =
0.

Instead of the usual norm |@| of a section ¢ of @ it is natural, e.g.,
in view of the results in [22], to introduce the stronger pointwise norm

Iol1? = det(£F)|F*(FF*) 0% = (F ¢, 9),

where f f* = det(ff*)(ff*)~" is the smooth endomorphism on @ whose
matrix is the transpose of the comatrix of ff*. By analyzing the sin-
gularity of R/ we obtain the following sufficient size condition on ¢ for
annihilating the residue.

Proposition 1.3. Let f: E — @ be a holomorphic generically surjec-
tive morphism. If ¢ is a holomorphic section of Q) such that

(1.1) 6]|* < C det(f fr)mntmm=—rth),
then R'¢ = 0.

As an immediate consequence we get the following generalization of
the Briancon-Skoda theorem.
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Theorem 1.4. If ¢ is a holomorphic section of Q such that (1.1) holds,
then locally f1) = ¢ has a holomorphic solution .

In the case when 7 = 1, (1.1) means precisely that |¢| < C|f[min(m)
and the conclusion is then that ¢ is locally in the ideal (f) generated by
[ (i.e., the ideal generated by f; if f =) f;e; in some local holomor-
phic frame e;). This immediately implies the classical Briangon-Skoda
theorem, [9], which states that ¢™™") belongs to (f) if |¢| < C|f].
For m —r +1 < n, Theorem 1.3 also follows directly from Skoda’s L?2-
estimate, [22], but when m —r +1 > n, the L?-estimate only gives the
conclusion if the power of the right hand side of (1.1) is n+ 1. By an
additional argument in the case when m > n, the classical Briangon-
Skoda theorem follows from the L?-estimate; the case when m > n and
r > 1 can be reduced to the classical result by means of the Fuhrmann
trick, see Section 7.

Demailly has extended Skoda’s L?-theorems to 0-closed sections, see

[10] and [11]. Our method also admits such an extension of the local
result.

Theorem 1.5. Assume that ¢ is a smooth 0-closed (0, q)-section of Q.
If RT¢ = 0, then locally f1» = ¢ has O-closed (current) solutions 1.

For degree reasons we see that Rf¢ = 0 if ¢ > n — p. Thus we get

Corollary 1.6. If ¢ is any smooth 0-closed (0, q)-form with values in
Q, and ¢ > n —p = dim Z, then locally f1 = ¢ has 0-closed current
solutions.

In analogy with Theorems 1.3 and (1.4) we also have

Theorem 1.7. If ¢ is a smooth 0-closed (0, q)-form with values in Q
such that

(1.2) |9]|? < C det(f f*)mintn—am=14r),

then R'¢ = 0, and locally there are integrable 0-closed solutions v to
fo=0¢.

We can also obtain global results and first we turn our attention
to polynomial ideals and generalize the approach in [5]. Let [z] =
[20, - - -, 2n] be homogeneous coordinates on P", and let 2’ = (21, 2, .. ., 2,)
be the standard coordinates in the standard affinization C* ~ {[z], zo #
0}. Let P be a polynomial mapping C* — Hom (C™, C") with columns
P7 such that degP? < dj, j = 1,...,m. If f is the matrix whose
columns are the dj-homogenized forms f7(z) = 2& PI(2'/z) in C*',
then f defines a morphism

f Po(-d;) - .

1



4 MATS ANDERSSON

Let Z be the algebraic variety in P” where f is not surjective, and let
Rf be the associated residue current with respect to the natural metric.

Theorem 1.8. Assume that P is a polynomial mapping as above, and
let ® be a r-column of polynomials of degrees < p. Moreover, assume

that
n—+r

(1.3) m<n+r—1 or pEZdj—n,
j=1

where dy > dy > ... > dp,. If R'¢ = 0, then there are polynomials Q;
such that Y 1" PIQ; = ®, and deg P1Q; < p.

Corollary 1.9. Assume that Z is empty. Then we can find a matrix
Q of polynomials with rows Qg such that PQ = Y. P*Qy = I,, and
deg P*Qy < 37717 dj —n.

This is a generalization of a classical theorem of Macaulay, [17].
Corollary 1.10. Let ® be a column of polynomials, deg® < p, and let
@ be its p-homogenization. If

||¢||2 < Cdet(ff*)min(n,mfr—kl)

inP", and (1.3) is fulfilled, then PQ = ® has a solution with deg P*Qy <
p.

Assume that P is pointwise surjective in C*, and let P/ = (P/, ..., P9)’.
By the local Lojasiewicz inequality there is a constant M such that
! I;
det(P,’(2'))[? 1
w LU G

)T T

where the sum is over increasing multiindices.

Corollary 1.11. Assume that P: C* — Hom (C™,C") is surjective
in C*, degP < d and that (1.4) holds. Then there is a matriz Q) of
polynomials such that PQ = I, and deg P’Q; < M min(n,m —r + 1).

From Kollar’s famous theorem, [16], we can get an estimate of M.
For simplicity we assume d; = d for all j.

Proposition 1.12. If d; = d for all j, then the inequality (1.4) holds
with

bl

M = (rd)mintmt/(m=r)irt)
provided that rd > 3.
It should be pointed out that the bound
deg @+ d < min(n,m —r+1)M

we obtain in this way for a solution to PQ) = I, (even) is not optimal
when r = 1. It is proved in [16] that one actually have degQ +d < M
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when r = 1. We do not know if it is possible to modify Kollar’s proof
as to include the case r > 1 directly and get a sharper bound.

Now assume that p = m — r + 1 = n and that Z is contained in
C™; thus a discrete set. Moreover, assume that ® = P( is solvable
in C*. Then it follows from Theorem 1.2 that Rf¢ = 0 in C*, and
hence R/¢ = 0 in P", and since (1.3) is fulfilled we can take p = deg ®.
Therefore there is a solution to PQ = ® such that deg P/Q; < deg ®.
When r = 1 this is a classical theorem due to Max Noether, [18]. We
have the following generalization that appeared in [5] in the case r = 1;
however we suspect that this case could be proved algebraically, e.g.,
by the methods in [15].

Theorem 1.13. Assume that P: C* — Hom (C™,C") and that p =
m — 1+ 1 and that Z has no irreducible component contained in the
hyperplane at infinity. Moreover, assume that ® = PQ is solvable in
C". Then there is a solution Q such that deg P1Q; < deg®.

We can also obtain new global results in open bounded domains
even when f is pointwise surjective, and as an example we present
in Section 7 new sharpened estimates of solutions to the HP-corona
problem in a strictly pseudoconvex domain.
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2. A GENERALIZED KOSZUL COMPLEX

Let f: E — @ be a holomorphic morphism as above. Assume that
we have a complex

(2.1) o> By Ey—-EFE—Q—0.

of vector bundles where all the morphisms, which we denote by 9§, are
holomorphic. Let Ey = ), E1 = E, and let

H = é Ey.
k=0
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We will also consider (0, x)-form-valued sections of H, i.e., sections of
T5,(X) ® H. We denote this space of sections by & .(X, H). Notice
that it is a module over the ring (algebra) & .(X). We extend the
action of § to sections of 75, (X) ® H by requiring that

(2.2) SE@w = (—1)*8¢ @ dw

if ¢ is a differential form. Then §0 = —04.

Now suppose that we have (0, k—1)-forms, or currents, vy with values
in Fy, k > 1, such that

(2.3) (6= 0)(v1 +va4--+) =9,
ie.,
(2.4) SVpi1 = 0, k> 1, dvi(= for) = &.

For degree reasons, Ovy, = 0 if k is large enough, and if there are no
obstructions for solving 0, we can successively find (0,k — 2)-forms
(currents) wy, with values in Ej, such that

(25) gwk = v + 5wk+1, k Z 2.
Then finally
(26) ’lﬁ = + 511]2

is a holomorphic solution to fi» = ¢. Since the O-equations always are
solvable locally we have

Lemma 2.1. Suppose that we have a current solution v = vi +vy+...
to (2.3). Then locally there are holomorphic solutions to fip = ¢.

If f is surjective, then obviously there are local holomorphic solutions
to f1 = ¢ so the interesting case is when f is just generically surjective.
In view of the argument in the proof, one also gets a global holomorphic
solution provided all the 0-equations have global solutions. Before we
proceed with our construction let us consider some examples.

Ezample 1. If the complex (2.1) is exact (in particular f is surjective),
then we can always find such a solution to (2.3). In fact, given a
holomorphic section ¢ of ), let v; be any pointwise solution to dv = ¢.
Then Ov; is §-exact and hence there is a v such that vy, = Ovy etc. O

Ezample 2. If r = 1, i.e., () is a line bundle, then one can take E; =
A*E ® Q* and 6 as interior multiplication with f. One then gets the
usual Koszul complex

27 o MNERQ)23INERQSELQo0,

which is exact if (and only if) f is non-vanishing. In fact, if we chose
any section of Hom (Q, F) ~ E ® Q* fo = Ig (if E has a Hermitian
metric we can, e.g., chose the section with pointwise minimal norm),
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then there is an induced mapping o: AFE ® (Q*)F~! — AFE® (Q*)F
such that and 0 o0 + 0 06 = I, and thus (2.7) is exact. O

Ezample 3. Provided that f is surjective, a simple way to find an exact
complex (2.1) is by taking Fy = Ker f and Ey = 0 for £ > 2. However,
Ej is usually not trivial in a neighborhood of a singular point, i.e., Es
usually cannot be extended as a vector bundle across the set Z where
f is not surjective. To carry out the scheme in the proof of Lemma 2.1,
one therefore has to solve a d-equation in the bundle E, = Ker f over
X \ Z. This is only possible under certain geometric conditions; this is
precisely what is investigated and explained in [22]. O

Let us now describe our generalized Koszul complex. Notice that
our holomorphic morphism f: E — @ is a holomorphic section of the
bundle Hom (E, ()), which we identify with E* ® Q. If ¢; is a local
holomorphic frame for ), then

F=> fi®,

where f; are sections of E*. If n is a section of E, then fn=7>"] d5,€5,
where 7, denotes interior multiplication with f;. We can associate to
f the section

F=f1/\f2.../\fT®61/\.../\er

of A"E*®det Q*. It is independent of the particular choice of frame, and
will be called the determinant section of f. Notice that f is surjective
at a point if and only of F' is non-vanishing at that point. There is an
induced mapping
Sp: NTME®detQ* — F
defined by
Sr(E@ETN...N€) =0y - -0pE,

which is also easily seen to be independent of the particular local frame
€; for @); here €; denotes the dual frame for @)*. Moreover, it is also
clear that

(2.8) fobp=0.

In order to proceed with the construction of our complex we have to
recall some facts about symmetric tensors. Let S¢Q* be the subbundle
of @ Q* consisting of symmetric ¢-tensors of Q*. If u,v € Q* then
U@V = 4 ® v + v ® u, etc. This extends to a commutative mapping
SQ* x SQ* — SQ*. If q is a section of (), then it induces the usual
interior multiplication on ) Q* (say from the left), and, in particular,
if uP = u®- - - ®u, then §,uP = puP~'(q - u).

We now define

E,=AN"1E® S 20" @ det Q*, k> 2.



8 MATS ANDERSSON

Given the local frame ¢;, a section £ of Ej can be written
£= ) £oe¢ecd,
|a|=k—2
where ) )
p _ ()T ()™

a —

ol oyl
and € = € A... A¢:. For k > 2 we have mappings 6: Exy3 — Ej
defined by

ERT®E Y 0@, @,
j=1
which are also independent of the specific choice of local frame €;. Since
0, anti-commute and J., commute, it follows that > = 0. Moreover,
if the section & of Ej is in the image of §, i.e., £ = 0n =) dn; ® €,
then clearly 6p = 0. In view of (2.8) we thus have a complex

(2.9) o SESBSBEL Q50

In the sequel, we will often denote all the mappings in (2.9) by é.
Observe that if 7 = 1, then (2.9) is just the Koszul complex (2.7).

If we let £ above take values in A(T*(X )o@ E) rather than just AE,
then we get an extension of all the mappings 6 and dr to forms and
currents with values in Ey. The mappings 6: Ex, 1 — E, k£ > 2, will
automatically satisfy (2.2) so that 60 = —d3, but we should have to
insert the factor (—1)+Y in the definition of 6z, when it acts on é ®w,
and ¢ is a (0, ¢)-form. However, we will not do that, and therefore we
have instead that 90r = (—1)"0r0. This means that the final solution
Y in (2.6) is ¥ = v + (—1) " dw,.

3. SURJECTIVE MORPHISMS

Now we assume that f is surjective and that E and () are equipped
with Hermitian metrics. Let o be the section of Hom (Q, F) = E® Q*
with pointwise minimal norm (i.e., such that Imo is orthogonal to
Ker f) such that f oo = I,. If €; denotes the dual frame for @*, then

. . *
o= E aj®ej,

where o; are the sections of F with minimal norms such that f; - o, =
d;k- Moreover,
O=0AN...No, Q€] N...N€
is a well-defined section of AE™ ® det @*, and it induces a mapping
E — Ey, = A" E ® det Q* defined by
EmONE=01A...NO, ANEQEN...NE.

Now, 6rO¢ = & provided that 07,6 = 0 for all j, i.e., £ is in Ker f.
Thus (2.9) is exact at E if f is surjective. We also have
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Lemma 3.1. If f is surjective, then (2.9) is exact up to Es.

Proof. Tt remains to check the exactness at F,. Suppose that £ ® €* is
a section of E, such that 0 = §p€ ® €*. Thus € is a section of A"T!E,
such that dy, ---0,& = 0. By the surjectivity of f, o; are linearly
independent and therefore they form a part of a basis o4,...,0,, for
E. With respect to this basis we can write

E=oAN...No, NE+ ¢,

where " does not contain all the o, j = 1,...,7. It follows that ' =0
and hence £ = Y| &;, where &; does not contain o;. Therefore

E@€ =) b4(0;NE) Q€ =5(D ;AR D),
1 1

and thus (2.9) is exact at Ej. O

In order to find a solution to (2.3) it is natural to start with v; =
op =Y, pjoj, and vy = T A O0op. We can just as well suppress ¢
and define u; with values in Hom (Q, E}) such that ug¢ satisfies (2.3).
Notice that Hom (Q, E1) ~ E ® Q* and

Hom (QaEk) ~ Ar+k71E ® Sk:fQQ* ® det, Q* ® Q*, k Z 9

Definition 1. We define the (0, k—1)-forms uy, with values in Hom (Q, E})
as

(3.1) u =0, u=00°*"YR0®0ds, k>2

Notice that (9o)®®~2) is indeed a symmetric tensor, and that the
definition of wu; is invariant. Moreover,

o , s r 50_ ® € R(k—2) = o .
(Zaag(@se)@( ) — Qo (;_2‘33 = Z (00)* ®¢€
1 ' la|=k—2

where

(00)* = (0a1)* A ... A (0o,).
Since 0o; have degree 2 in A(T5,(X) @ E) and therefore commute, we
thus have that

(3.2) U,1=0'=ZO']'®6;,
J
ug =01 N... Nop A Z Z(éa)a/\gaj®ez®e*®e;—, k> 2.
la|=k-2 J

Proposition 3.2. Assume that f is surjective. If u is defined by (3.1),
then

(5—8)(U1+UQ+)=IQ
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Proof. We have already seen that du; = fo = Ig and 0r0 ® oo =
0o = Ouq, so we have to verify that dug,1 = Ouy for k£ > 2. Now,

Upy1 = 0L A ... Aoy A (igog ® 6}5)®(k_1) ® € ® 0o.
1
Recalling that 6 = ) d;, ® d;, and that J, acts from the left, we get
T eréfj (LA ... ANoy) Aoy A (i doy ® €)%F 2 @ ¢ ® do.
=1 1
On the ot;ler hand,
Oup =0(o1 A...ANoy) A (i doy ® €;)°* 2 ® ¢ ® do.
1

It is now clear that dug,; = Ouy. O

It follows that if ¢ = > ¢;¢; is a holomorphic section of () and
v = ug®, then v = u¢ satisfies (2.3). For later purpose we rewrite the
expression for u¢ so that it only “depends” on g¢p =) ; 9505 In fact,

applying 0 to the equality 0 = O ®0 we get 0 = O ®Jo+(—1)"00 ®0.
Therefore,
(3.3) upp = (=1)"(00)8* D @ 00 @ 0, k > 2,

or more explicitly (the possible minus sign cancels out)
Upp =
O o) Ad(ai A AN D (00) @€ @€ =
J

la|=k—2

pio )AL A ... Ao ) A Do ®€)2FD e, k> 2.
(Z i05) 1
J 1

4. ANALYSIS OF SINGULARITIES

We now consider an f that is not necessarily surjective everywhere.
Then we can define u as above in X \ Z, where Z is the set where f is
not surjective, which is equal to the zero set of the holomorphic section
F' and hence an analytic subvariety of X. To analyze the singularities
of u at Z we will use the following lemma.

Lemma 4.1. (i) Let s be the section of Hom (Q, E) ~ E ® Q* with
pointuise minimal norm such that
fs=|FPlq,

and let S be the section of A"E ® det Q* with pointwise minimal norm
such that
FS=1.
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Then s and S are smooth across Z, and
s=|Fo, S=|FP0 inX\Z.

(ii) If in addition F' = FyF' for some holomorphic function Fy and
non-vanishing holomorphic section F', then
SI:F()O', SI:F()O-
are smooth across Z.
Given a section 7 of E*, let n* denote the dual section with respect
to the Hermitian metric, i.e., (§,n*) = n - & for sections £ of E. The

mapping 7 — n* is conjugate-linear and extends to a conjugate-linear
mapping AE* — AFE by

MA ... AN =N A AN

Proof. Assume that ¢; is a local frame for () as before, let €] be its dual
frame, and assume f = )" f; @ ¢;. Now,

S=la A AGPFIAANFFREN...NE

is a section of A" E ® det Q* that is independent of the particular choice
of frame. This is checked by considering a change of frame ¢ = eg,
where ¢ is an invertible r X r-matrix. Notice that

(4.1) FS=|aA... NP Ifin...Af]?P=|F
We can choose the frame ¢; such that f; are orthogonal at any given
point outside Z. Thus f; = aje}, j = 1,...,r for some ON-frame e€;

of E* and f/ = aye;, and it is then easy to see that S is in fact the
section with minimal norm such that F'S = 1. In particular this means
that S is the dual section of F'. Moreover, at this point, o; = (1/«;)e;,
j=1,...,r, and thus
etN...Ne
O=""""Q€N...N€.
al DT aT
Therefore,
FPO=laA..ANelar-aerA...ANe,@EEAN... Nt = 8.

Now assume that F' = FyF”’. Since S is the dual section of F' it follows
that S = FyS”, where S" is the dual section of F’, and thus S” is smooth
even across Z. Therefore Fy0 = FyS/|F|*> = S§”/|F’|? is smooth across
7 as well.

Now, define

s= (D0, ®8,)" Sfri=
1

T

ler AL A e,|22(—1)¢+15fr o Bp0p SR (T AL AR ®E

1
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Clearly,

J

fS:Z5fj ®€j8: |€1/\.../\€T|2‘f1/\.../\fr‘QZCj(ge;: |F‘21Q
1

Moreover, it is readily checked that s is orthogonal to Ker f so that s
is the minimal section such that fs = |F|?Ig. One can also check this
by choosing a frame as above such that that f; are orthogonal. Thus,
s/|f|? = o. Finally, if Fy0 is smooth across Z it follows that

F()O' = (Zéf] ® 5€j)7‘_1F00-
1

is smooth as well. O

Remark 1. Assume that @) as well as E are trivial and equipped with
the trivial metrics, and e; and ¢; are ON-frames. If

!
F=Y F®e,

|IT|=r

(suppressing the factor €; A ... A€ and its dual), we have that

!
S = ZE®€].

|I|=r
O

Since 0 ® 0 = 0 we have, for any scalar function &, that

(42) (9(€0))*" P @ €0 ® d(¢0) =
(=1)™(9(£0))** ) ® (¢0) ® £o = EFuy.
In view of Lemma 4.1 we have in particular that
s
4. = —
( 3) Uy |F‘2’
(05)2¢2 @ S ® s 1(05)°¢ D@ 9S® s
" I - EEEEE

Lemma 4.2. If f*: Q — FE 1is the adjoint morphism with respect to
the Hermitian structures on ) and E, then

(4.4) |[FI? = det(ff").

Proof. Since both sides of (4.4) are invariant pointwise statements, we
can assume that ¢; is a ON-frame. Let  be any section of E. Then

fer &= (f5 - Oejreey = (f& €0y = (&, frer)

J
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which means that f* =3} f; ® €;. It follows that

FI= (i fo)ei @ es = (fs, fde; @ €
Thus
det(ff*) =det(f;, fx) = |fi A A fo]?
which implies the statement since |e; A ... Ae.| =1, cf., (4.1). O

Since (ff*)"! = ff*/det(ff*) and s/|F|> = ¢ = f*(ff*)" we can
conclude that -
s=[f'fr

Moreover, if F' = FyF" as in Lemma 4.1 above, then by (4.4),
(4.5)  [s'g| = |oo||Fo| = [f* ()T lIFI/IF'] = [|6]l/1F"].

5. THE RESIDUE CURRENT OF A GENERICALLY SURJECTIVE
HOLOMORPHIC MORPHISM

We say that f is generically surjective if Z has positive codimension.
Let u be the section of Hom (@), H) over X \ Z defined by (3.2). Fol-
lowing [4] we shall now extend it to a current U across Z and define
the corresponding residue current.

Theorem 5.1. Assume that f: E — @ is a generically surjective holo-
morphic morphism and let u be the associated section defined in X \ Z.
The function X — |F|2u is holomorphic for Re XA > —¢ and

U = |F|*u|x=0
1s a current extension of u across Z. Moreover,
(6 —0)U =1y — R,
where
R = 0|F)** A uly—o.
The current RY has support on Z and
R' =R/ +---+R],

where p = codim Z and pp = min(n,m —r + 1), and R,J: is a current of
bidegree (0, k) with values in E.

Proof. The proof is more or less identical to the proof of Theorem 1.1 in
[4], so we only sketch it. After an appropriate resolution of singularities
we may assume that F' = FyF’, where Fy is a holomorphic function
and F' is a non-vanishing section of (the pullback of) A" E* ® det Q.
According to Lemma 4.1 (ii), then s’ = Fyo and S’ = Fy0 are smooth
across the singularity, and hence by (4.2),

s’ 31 (08)°¢ 2D @05 @

- 2 = (=1 > 2.
FO’ Uk ( ) Féc ) k =

U
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It is now easy to see that the analytic continuations of |F|* u,, exist,

and in this resolution the values at A = 0 are just the principal value
currents

Uy = [Fio} s, [%} (0s)** 2 205" ® 5.
0

Precisely as in [4], by the way following [7] and [20], one can show that
Rl =0|F|* Auy|,_, =0

if K < p=codim Z. Thus Theorem 5.1 is proved. O

Proof of Theorem 1.2. If

T

¢=fp=> (6r,9)e;,

1
then

U rp10 = (Z $j00)) AL A ... Ao, A(00)BMm T D @ e =
1

(Z 50 ANOoj) Aoy A... Aoy A (00)®mD @ ¢ =
7j=1

YA 6 (o1 AL Aop) Aoy A (00)P TN @ et =

j=1
5(7/} Aoy A... Aoy A (Do) @ e*) = 0(u'y),

where we have used that the form has maximal degree m in AE. If we
define

Ry = 0| f[** A Ap|rzo,
it follows that
Ry ri1(f0) = 5(RI¢)-
However, since codimZ = m — r + 1 it follows as in the proof of

Theorem 5.1 above that R't), being a (0, m — r)-current, vanishes for
degree reasons. Thus the theorem is proved. (|

Proof of Proposition 1.3. Let £ by a test form with support contained
in neighborhood where we have the resolution of singularities. In view
of (4.2) we see that R} - & is a sum of terms like

(05")2*2) © 9S' @ 5'¢
F¥ A=0

where p is a cut-off function, and v is a smooth strictly positive func-
tion. By the hypothesis, (4.5), and (4.2),

[s'0l ~ |6l S [Fmniem=ri) < | Ry,

5|F0|2)\U)\ VAN
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since £ < min(n,m — r + 1). Thus we must check that

8| Fy [0 A L
JELGE
vanishes at A = 0 if v is a test form that is O(|Fy|*). However, we

may as well assume that F{, is a monomial in the local coordinates, and
therefore this statement follows from the corresponding one-variable

statement; that
/5|T‘2)‘UA/\ U(T)dT
T TZ

vanishes at A = 0 if n = O(|7[%). If we write

5|T|2)\ — /\‘T|2’\dTT
7

this follows by dominated convergence. O

Proofs of Theorems 1.5 and 1.7. These theorems are proved in much
the same way as the corresponding results for holomorphic functions.
In fact, if ¢ is a O-closed smooth form with values in @, then (§ —
O)VWep=¢— R ¢pso (§—0)Up=¢if RFp =0. Following an apparent
modification of the procedure in (2.5) we get a 0-closed current 1 with
values in F such that fi = ¢. However, if (1.2) holds, then it is not
hard to verify that U¢ is locally integrable; in fact in a resolution as
above U¢ is then bounded, in particular it is locally integrable, and
therefore U¢ is locally integrable in X. Therefore, we can get a locally
integrable solution ). (|

For further reference we state the following proposition that shows
that the principal term R/ of the current R/ (where p = codim Z) is
robust in certain sense. It is proved precisely as Theorem 2.1 in [5].

Proposition 5.2. Let f be a generically surjective morphism, let RS
be the associated residue current, and let p = codim Z. Assume that h
is a holomorphic section of some line bundle such that {h = 0}NZ has
codimension p+ 1. If ¢ is a holomorphic section such that RI’;¢ =01in

X\ {h =0}, then RI¢p =0 in X.

6. POLYNOMIAL MAPPINGS

Let L* = O(s) be the line bundle over P" whose sections are repre-
sented by s-homogenoues functions in z = (2o, ..., z,). If ¢ is a section
of L? its natural norm is

lo(z)) = 22

|2°
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Let Ej, j = 1,..., m, be trivial line bundles over P" with basis elements
ej. If f7 are the d;-homogenizations of the columns of polynomials P’
as in Theorem 1.8, then f, = > 71" fie} are sections of

EF*=FE@L"®---@ E, L™
Observe that the section F' = f;... A f. of A"E* can be written

!
F =Y Fre; A... A€},

[|=r
where F; = det(f’). Thus
>t [Fr(2)?

F(2)|? = -
IFEI ==

If we write this expression in the affine coordinates z’ we get precisely
the left hand side of (1.4). Let @ be the trivial bundle C" — P". Then
f defines a morphism f: EF — () such that

V= (1, tm) Y I
1

where f7 are the homogenizations of the given (columns) of polynomials
P; of degrees d;. We can now prove Theorem 1.8.

Proof of Theorem 1.8. Let
o= By E—>C —0.

be the induced complex defined in Section 2. We can take tensor prod-
ucts with L” and get the complex

o B > EQL - C L —0.

Let U and R’ be the corresponding currents from Section 5 with respect
to the natural Hermitian metrics of £ and (). If ¢ is a section of Q®Q L”,
and R/¢ = 0, then v = U¢ solves the equations

(0 = 0)(v1 +v2 4+ + Umin(nt1,m—r+1)) = .
In order to get a holomorphic solution 1 to fi = ¢ we have to solve all
the equations Qwy, = vy — dv41. Notice that v, — dvgyq is a (0,k — 1)-
current with values in Ey ® L?. Tt is well-known that H%(P" L*) =0
for all v if 1 < k < n — 1, whereas H*"(P", L") = 0 (if and only) if
v>—n. If m—r+1<n there is therefore no problems at all, and

the only possible obstruction may appear when £ = n+ 1. Notice that
vps1 takes values in

E,p1@LP =ANT""E@S"'IQ*® Q" ® L.
Since (@ is trivial, E, is a direct sum of line bundles
Lpf(djl +'"+d1r+n)
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where I is an increasing multiindex. Therefore the crucial 9-equation
is solvable if p— (di ++ - - +dy4r) > —n. Finally we express the relation
> f29; = f1p = ¢ in affine coordinates and get the desired polynomials

Q; as Q;(z") = ;(1,2"). O
Proof of Proposition 1.12. If we have m’ polynomials P, of degrees at
most d’ with no common zeros in C", then it is proved in [16] that
B, (") 1
I+ [z~ (1 + [
where M = (d')™™™™) provided that d’ > 3. We have m!/(m — r)!r!

polynomials P; = det (PI’j) of degrees d’ = rd and hence the proposition
follows. O

Proof of Theorem 1.13. Since ¢ = f1 is solvable in C* and p = m —
r+1, R'¢ = 0 in C* by Theorem 1.2. If we take the section h = z
of O(1), then since assumption Z has no irreducible component in the
plane at infinity, codim ZN{zy = 0} = m—r-+2. By Proposition 5.2 we
therefore have that R/¢ = 0 in P". Since (1.3) is fulfilled, the desired
solution is given by Theorem 1.8. O

7. ESTIMATES FOR A POINTWISE SURJECTIVE MORPHISM

In this section we indicate that our method can be used to get new
quite sharp estimates even when f is pointwise surjective. Let us as-
sume that £ ~ C™ and @Q ~ C" are trivial bundles over a smoothly
bounded domain D = {p < 0} in C", and equipped with the trivial
metrics. Then a morphism f: E — @ is just a matrix of holomorphic
functions in D. We assume that f € H*(D,Hom (E,Q)), and that
moreover

[fih o A fe| 26> 0;

this means that f is uniformly surjective. Notice that since @ is trivial,
det Q* is just the trivial line bundle, so F' = fi A... A f.. Let

I =sup [ lo(2)Pas, 0<p<o
€0 Jp=—c¢

It was proved in [2] and [3] that if D admits a plursubharmonic defining
function p, and p < 2, then for any ¢ € HP(D, Q) there is a ¢y € HP(F)
such that fi) = ¢. Morerover, the norm of ¢ is bounded by a constant
times log(1/6)/6'™#, where y = min(n,m — r). To be precise, this
sharp estimate is only explicitly given in the case r = 1, but it follows
(hopefully) in the general case as well with a similar argument. This
result is proved by a combination of the L2-methods in [22], the refined
L? estimate for 0, introduced in [8], and Wolff type estimates.

The case p > 2 and r = 1 has been studied by several authors in
strictly pseudoconvex domains, e.g., [1] and [6], and a generalization to
r > 1is made in [14]. These works are based on integral representation
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and harmonic analysis. There are also similar results for other spaces
of functions, see, e.g., the references in [6]. To show how the ideas in
this paper can be applied in a situation like this we present the new
result Theorem 7.1 below. It is clear that other known results that
are proved by means of the Koszul complex in the case » = 1 can be
generalized to the case r > 1 in an analogous way.

Theorem 7.1. Let D be a strictly pseudoconvexr domain with rea-
sonably smooth (C® is enough) boundary and p < oo. For any ¢ €
H?(D, Q) there is a v € HP(D, E) such that f1) = ¢ and

(7.1) 9] ze < Csl|B]| o,

where
Cs < C(log(1/6))*2/s1**  if p=min(n,m —r) > 1

and
Cs < Clog(1/6)/6* if min(n,m —r) = 1.

and Cs = 1/6 if min(n,m —r) =0, i.e., m =r, and C is a constant
that is independent of m.

In the case r = 1 this coincides with the result in [6]. Since the proof
of this generalization follows the proof in [6] quite closely we just give
a sketch and indicate the necessary modifications.

Sketch of proof. With the notation as before we have that v = ug,
where u = u; + ---uy4, and

upr1 = (00)** V@ 0 ® do.

Since () is trivial and ¢; is a ON-frame we have, cf., Remark 1, that
S =Y'"Fre; ® ¢ of F = Y. Fre} ® ¢, so the coefficients in S are
anti-holomorphic. Moreover, 0 = S/|F|?* and

o= () _0;®0,)0/k!
so that
0o = +(> 6, ®6.,)00 k.

The norm of forms will be taken with respect to the non-isotropic metric
Q = —piddlog(1/—p)); we assume that p is a strictly plurisubharmonic
defining function. For £ > 2 we can estimate the Carleson norm of
(—p)k%|uk+1| precisely as in the proof of Proposition 5.2 in [6], with
F' instead of g and O instead of 7, and obtain the same estimate
Co*1(log(1/8))*/2.

The necessary estimate of u, is of Wolff type and involves Luy, where
L is a smooth (1, 0)-vector field. More precisely we need to know that
the Carleson norm of |uy|? is bounded by C? and the Carleson norm of
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V/—p|Lus| is bounded by C, where C = 621og(1/6). It is easily seen
that

|OF | e |OF |

[FIP = 8 |F]P

and the desired Carleson estimate of |uy|? now follows form Proposi-
tion 5.2 in [6]. For any holomorphic function ¢ we have that \/—p|L)| <
||partialiy|. When we compute Luy we get either derivatives on the fac-
tor 1/|F|* or on the functions f; in (3 dy, ® ;)" '. Therefore we have
that

lus| S

Oh||oF| |OF? _ 1 |9F|?
/= < <
p|£u2‘ ~ |F|3 |F|4 ~ 52 |F|4 Y

where h is a holomorphic and bounded. It now follows from Proposi-
tion 5.2 in [6] that the Carleson norm is < 6 2log(1/4) as wanted. [

Remark 2. If we just assume that ¢ is in H? with respect to the stronger
pointwise norm ||¢|| instead of |$|, the same proof would give a solution
in H? provided that we could say that the maximal function of ||¢|| is
in LP(0D). However, we do not know if this is true. O

As mentioned above, a similar result has previously been obtained by
Hergoualch, [14], using an idea of Fuhrmann, [13], to reduce to the case
r = 1. However, by this method one has some loss of precision in the
dependence of §. To see this let us describe this method. Assume that
¢ =) ¢ isin H?(D,Q). Now F = fiA...Af, € H®(D,A"E*) and
|F| > 4§, so by the corresponding result for » = 1, for each ¢; we can
find a section H’ of H?(D,A"E) such that F'- H' = ¢, j =1,...,r,
with ||H?||g» < C§||¢||m». Since the rank of A"E* is m!/(m — r)!r!, we
get
(log(1/4))* /2

if 4/ > 1. Since fi A...A f, - H? = ¢;, we also have that f; - ¢; = ¢; if
%‘ = (_1)j+15fr ot '6fj+15fj—1 o '5f1Hj'

Now ¢ = ¢ + --- + 1, solves f;ip = ¢; for each j, ie., f1) = ¢ as
wanted, and since f; are bounded, we get the same estimate

¢l < C3l|6]] -

However, p' > p as soon as m — r < n as in this case it is strictly
weaker than (7.1).

C<C

p' = min(n, m!/(m — r)lr!),

Remark 3. 1t is actually possible to solve the equation F'¥ = ¢ above
with a sharper estimate, by means of the complex

— ANPE® S%Q* @ det QF —
ANTEQQ* ®@detQ* = A"E®@detQ* - C — 0
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with the same mappings as before. Combined with the Fuhrmann trick
one can then obtain Theorem 7.1. This complex, and the correspond-
ing residues that appear when f is only generically surjective, will be
studied in a forthcoming paper. O
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