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Abstract

An article on the foundations of geometry from 1890 by the Swedish mathe-
matician Torsten Brodén (1857-1931) is considered. His philosophical view
on the nature of geometry is discussed and his thoughts on how to build
up an axiomatic system are described. Thereafter his axiomatic system
for Euclidean geometry is considered in detail and compared with his later
work on the foundations of geometry. The two continuity axioms given are
compared to and proven to imply Hilbert’s two continuity axioms of 1903.
A few of the criteria given for an axiomatic system to fulfill are considered
in detail. Finally, possible influences upon Brodén are discussed.
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Chapter 1

Introduction

1.1 Historical Background

The most important event in the development of geometry, as we know it
today, was Euclid’s systematic treatment of the subject in the form of a
uniform axiomatic-deductive system. His work entitled Elements,! written
in Alexandria about 300 BC, still maintains its importance as one of the
most valuable scientific books of all time. Influenced by the work of Aris-
totle, Euclid set himself the task of presenting geometry in the form of a
logical system based on a number of definitions, postulates and common
notions. It was believed that, in establishing this system, he was creating
a sufficient foundation for the construction of geometry.

However, Euclid’s Elements received a lot of criticism. One of the
main issues concerned logical gaps in the proofs, where at some points
assumptions that were not stated were used. This happened already in the
proof of the first proposition, where an equilateral triangle is constructed.?
To do this two circles are drawn through each others’ centers. The corners
of the triangle will now be in the centers of the two circles and in one of the
points of intersection of the two circles. However, it does not follow from the
postulates and common notions that such a point of intersection actually
exists. If we, for example, consider the rational plane Q?, instead of the
real plane R?, it is easily realised that there are no points of intersection in
this case. Thus we could say that Euclid in the Elements assumed, without
stating so, a continuity of the two circles, and in the same way a continuity
of the straight line is assumed.

1For a complete treatement of the Elements, see Heath (1956). An overview of the
history of geometry can be found in Eves (1990) and Kline (1972).
2Eves (1990) p. 38.



Another tacit assumption in the Elements is that the straight line has an
infinite extent.? Tt is postulated that the line may be produced indefinitely,
but this only implies that the line is endless, not that it is infinite in extent.
For example a great circle on a sphere, i.e., a line in a spherical geometry,
is endless but not infinite.

These defects are subtle ones, since we are not assuming something
contrary to our experience. The tacit assumptions are so evident that there
do not appear to be any assumptions. These gaps in Euclid’s Elements were
probably not considered to be of a very serious kind, since intuition could
fill them in. Of particular interest was instead the problem whether or
not Euclid’s Fifth Postulate, also called the Parallel Axiom, is necessary
for the construction of geometry, i.e., whether or not the Parallel Axiom is
independent from the other postulates and common notions. The Parallel
Axiom is formulated in the following way:*

That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side on
which are the angles less than the two right angles.

In the efforts to eliminate the doubts about the Parallel Axiom two
approaches were followed. One was to replace it with a more self-evident
statement. The other was to prove that it is a logical consequence of the
remaining postulates, and that it therefore may be omitted without loss to
the theory.

In spite of considerable efforts by several mathematicians for about
two millenia, no one was able to do this. This is no wonder, since, as
was eventually found out, the Parallel Axiom is independent of and thus
cannot be derived from the other postulates and common notions, and also
cannot be omitted. This observation was probably first made by Gauss,
who claimed that he already in 1792, at the age of 15, had grasped the

3Ibid. p. 39.

4Heath (1956) p. 202. An equivalent formulation of the Parallel Axiom is Playfair’s
Axiom: “Through a given point only one parallel can be drawn to a given straight line.”
Ibid. p. 220.



idea that there could be a logical geometry in which the Parallel Axiom
did not hold, i.e., a non-Euclidean geometry.> However, he never published
anything of his work on the Parallel Axiom and non-Euclidean geometry.®

Generally credited with the creation of non-Euclidean geometry are
Nikolai Ivanovich Lobatchevsky (1793-1856) and Janos Bolyai (1802-1860).
Lobatchevsky published a first article on non-Euclidean geometry in 1829-
1830 in the Kasan Bulletin.” Bolyai’s article on non-Euclidean geometry
was published in 1832.

The realization that the Parallel Axiom could not be deduced from
the other assumptions, and thus could be exchanged with a contradictory
axiom, implied that Euclidean geometry was no longer the only possible
geometry. Thus Euclidean geometry is not necessarily the geometry of
physical space. The discovery of non-Euclidean geometry made mathe-
maticians realize that the deficiencies in Euclid’s Elements were a serious
problem, and a reconstruction of the foundations of Euclidean geometry
had to be made.’

The development of non-Euclidean geometry remained unknown to the
general public until the 1860s.1° Instead, because of its beauty and simplic-
ity, projective geometry, which may be regarded as a non-metric geometry,
since it ignores distances and sizes, received more attention.!! In 1873 Felix
Klein (1849-1925) proved that projective geometry is independent of the
Parallel Axiom, and hence is valid in both Euclidean and non-Euclidean
geometries.!? Thus projective geometry can be considered to be more fun-
damental than these.

In 1882 Moritz Pasch (1843-1930) managed to develop a complete ax-
iomatic system for projective geometry.'® He explicitly formulated all prim-
itive notions and axioms, and he understod the importance of a logical de-
duction of all the geometrical theorems from them. However, he did not
manage to combine this position with his view of geometry as an empirical
science.!*

5Gauss made this claim in letters to friends and colleagues, for example in a letter
to Taurinus of November 8, 1824, and in a letter to Schumacher of November 28, 1846.
For details, see Gauss (1973).

6Kline (1972) p. 871.

"Eves (1990) p. 62.

8The article was published as an abstract to his father Wolfgang Bolyai’s book Ten-
tamen. A translation into German can be found in J. Bolyai and W. Bolyai (1913).

9Kline (1972) p. 1007.

10Tbid. p. 879.

U Torretti (1978) p. 110.

12Klein (1873).

13Pasch (1882). The work can also be found in Pasch (1976), together with an appenix
by Max Dehn. The axiomatic system is investigated in detail by Contro (1976).

14 Contro (1970) p. 3.



Contro argues for two lines of development for research into the foun-
dations of geometry after Pasch, one in Italy and another in Germany that
was completed with the work of David Hilbert (1862-1943).1°

The most complete of the Italian geometers is probably Mario Pieri
(1860-1913), who focused on metamathematical issues while characterizing
the nature of an axiomatic theory.'® But his work was only the result
of an Italian school that had been there for decades. Other important
mathematicians who contributed to the field of geometry were Federigo
Enriques (1871-1946), Gino Fano (1871-1952), Giuseppe Peano (1858-1932)
and Giuseppe Veronese (1854-1917).

In Italy the formal and logical point of view regarding an axiomatic
theory was mainly considered.!” It seems like a complete and rigorous
organisation of the foundations of geometry was achieved in Italy already in
the 1890s. However, the inportance of question of foundations had a direct
connection to issues arising from teaching, which obstructed the recognition
of the subject as part of advanced mathematical research.'® As a result,
their work did not receive the attention abroad which it deserved, and
became overshadowed by the work of Hilbert.

The axiomatic system of Euclidean geometry that gained most favour is
due to Hilbert, who apparently did not know of the work of the Italians.!?
He published his first edition of Grundlagen der Geometrie?® in 1899, but
revised his system several times.?2! Compared to Pasch, Hilbert moves on
a metageometrical level. His system is built up from undefined concepts,
which he calles ‘points’, ‘lines’ and ‘planes’, but he does not assign an
explicit meaning to them. The properties of the undefined concepts are
specified by the axioms, which are independent of physical reality.?? The
axioms are no longer evident truths, and there is no sense in asking about
their veracity anymore.??

15Contro (1976) p. 291.

16Marchisotto (1993) p. 288.

17Contro (1976) p. 292.

18 Avellone, Brigaglia and Zappulla (2002) p. 365.

19Kline (1972) p. 1010. However, Toepell disagrees with this remark, and claims that
Hilbert know of Peano’s and Veronese’s work on the foundations of geometry. Toepell
(1986) p. 57.

20 A facsimile of the first edition of Grundlagen der Geometrie can be found in Sjostedt
(1968). A transcript can also be found in Hallett and Majer (2004).

21Hilbert published in all seven editions of Grundlagen der Geometrie. The last ap-
peared in 1930. The eighth edition, revised by P. Bernays, appeared in 1956.

22Kline (1972) p. 1013.

23Freudenthal (1957) p. 111.



1.2 Main Questions

During the last couple of decades of the 19th century it seems like a very
interesting discussion on the foundations of geometry took place in Ger-
many and Italy. The mathematicians in Sweden do not seem to have taken
part in this discussion. One exception, however, is Torsten Brodén. He
wrote two articles on the foundations of geometry, one was published in
1890 and the other was presented at the second Scandinavian Mathemati-
cal Congress in 1911.24 In the 1890 article he develops an axiomatic system
for Euclidean geometry and in the Congress article he presents his earlier
system again, but in a slightly revised form.

In this thesis I will consider the 1890 article and the Congress article in
detail, with emphasis on the earlier one. With this as a starting point, I
shall investigate what Brodén thought in general about science and math-
ematics. In particular I want to investigate his thoughts on geometry and
its nature and what consequences his view has for how he proceeds in de-
veloping the axiomatic system. Further I want to examine what relation
Brodén had to the age in which he lived, which mathematical texts he read,
and who he was influenced by. What did he know about the development
of the axiomatics of geometry that had taken place on the continent?

There was a gap of more than two decades between the appearence of
Brodén’s two articles. During this time much had happened in the founda-
tional work on Euclidean geometry. Had Brodén’s view on the foundations
of geometry changed over this time? In particular the question of how to
deal with the problem of continuity was not solved when Brodén’s earlier
article appeared, but the later article appeared after Hilbert had formu-
lated the Completeness Axiom. Did this affect Brodén’s axiomatic system
in any way?

Finally, Brodén’s 1890 article appears in a somewhat peculiar context.
It is published in a pedagogical journal, and Brodén claims that his main
motivation for the article is a pedagogical one. It would be interesting
to look closer into Brodén’s pedagogical view. However, in this thesis my
emphasis is on Brodén’s geometrical work.

One could question why one should research such an unknown math-
ematician as Brodén, whose work did not draw much attention from the
wider mathematical community. I believe that it gives a better sense of the
spirit of the mathematical society of the time to look into the work of one
of the less known mathematicians.

24Brodén (1890); Brodén (1912).






Chapter 2

Torsten Brodén and His
Work

2.1 Biography

Torsten Brodén' was born on the 16th of December 1857 in Skara, Sweden.
He began his studies at the University of Uppsala in 1877, but transferred
two years later to the University of Lund. There he presented, in the
spring of 1886, his Ph.D. thesis with the title Om rotationsytors deforma-
tion till nya rotationsytor med sdrskildt afseende pd algebraiska ytor (‘On
the Deformation of Surfaces of Rotation to New Surfaces of Rotation with
Special Attention to Algebraic Surfaces’).? He continued teaching at the
Mathematical Seminar in Lund and at secondary school before he in 1906
succeeded C.F.E. Bjorling (1839-1910) as a Professor of mathematics at the
University of Lund. He retired as Professor Emeritus in 1922.

Brodén’s mathematical activity was unusually many-faceted. He worked
in such diverse fields as algebraic geometry, elliptic functions, Fuchsian dif-
ferential equations, set theory and the logical foundations of mathematics.?
Among Swedish mathematicians of his time he had an exceptional position
because of his pronounced philosophical interest.* A characteristic of his
work was his desire always to obtain full clarity regarding basic mathemati-
cal notions.> One of the first examples of this we can see in his 1890 article

1Biographical notes on Torsten Brodén can be found in Svenskt Biografiskt Lexikon
(1925).

2Brodén (1886).

3Garding (1994) p. 216.

4Zeilon (1931) p. 59*.

5Svenskt Biografiskt Lexikon (1925).



Om geometriens principer ("On the Principles of Geometry’)® where he,
several years before Hilbert’s first attempt, develops an axiomatic system
for Euclidean geometry.

Of great importance for his future career seems to be when Brodén in
1891 got a travelling scholarship, Riksstatens mindre resestipendium, and
traveled to Germany and Austria for six months.” The purpose of this
trip was, on the one hand, to study how mathematics was taught at the
universities on the continent, and, on the other hand, to study mathematics
and to do research. Brodén visited several universities, among others in
Berlin, Heidelberg, Miinchen and Vienna. He stayed several months in
Berlin, where he followed two courses given by Leopold Kronecker, (1823-
1891), Theorie der elliptischen Functionen zweier Paare reeler Argumente
and Allgemeine Arithmetik, erster Theil, and a course given by Lazarus
Fuchs, (1833-1902), FEinleitung in die Theorie der Differentialgleichungen.
Brodén claims that he got ideas for further research in private conversations
with Kronecker, but unfortunately Kronecker suddenly died at the end of
the year.

Brodén died on the 6th of July, 1931. When his wife, Fanny Kallenberg,
whom he had married in 1896, died in 1952, their effects were donated to
the society Kungliga Fysiografiska Sdllskapet i Lund, to establish a fund for
their memory, Torsten och Fanny Brodéns fond.® Brodén had been elected
a member of the society, whose main purpose was to support research, in
1894.° The fund still exists today, and pays out scholarships annually for
young researchers at the university of Lund.

6Brodén (1890).

"Details about Brodén’s journey can be found in Brodén (1892).
8F. Brodén (1950).

9Zeilon (1931) p. 59*.



Not much is known about Brodén’s personality. Nils Zeilon described
him as being amiably sarcastic, but added that under this exterior a pecu-
liar idealist was hidden.'?

During the 1890s Brodén associated with a circle around August Strind-
berg. They often met in the pub Age Hans, where Brodén played classical
music on the piano.!! In a letter Strindberg claims that it was Brodén’s
interpretation of Beethoven’s piano sonata number 17 in D minor that in-
spired him to write the play Brott och Brott (‘Crime and Crime’).!2

2.2 Literature on Brodén

Torsten Brodén is today a relative unknown mathematician. Little is known
of his life and not very much is written on his professional activity. However,
he is not totally forgotten.

In his book on mathematics and mathematicians in Sweden,'® Lars
Gérding writes very briefly about Brodén. He mainly considers Brodén’s
work on Fuchsian differential equations and does not mention Brodén’s
philosophical work or pedagogical interest.

Dennis Hesseling mentiones Brodén in his book on the foundational cri-
sis in mathematics.!* This crisis had unfolded in the 1920s as a reaction to
Brouwer’s intuitionism. Brodén criticized the intuitionists as being primar-
ily motivated by their fear of antinomies, and claimed these could instead
be resolved in a different way.'®> However, nobody ever responded to his
criticism.

In an article about the evolution of the function concept, N. Luzin claims
that Brodén was one of the first to state his dissatisfaction with Dirichlet’s
definition of a function.'®

In his book on the development of modern probability,!” Jan von Plato
discusses a debate between Brodén and his collegue Anders Wiman. von
Plato claims that Brodén in his study of Gyldén’s problem, i.e., the question
of limiting distribution of integers in a continued fraction, was the first to
apply measure theory to probabilistic purposes.'®

Concerning Brodén’s work on the axiomatization of geometry, it has
attracted some earlier attention. In 1985 Walter Contro wrote a relatively

10Tbid. p. 61*.

1 Garding (1994) p. 217.
12gtrindbergsséllskapets skrifter (1972) p. 248.
13Garding (1994).

14Hesseling (2003).

15Tbid. p. 175.

16T uzin (1998) p. 265.

7yon Plato (1994).

181bid. p. 31.



brief but clear-sighted article!® for the Festschrift fiir Helmut Gericke where
he discusses and criticizes Brodén’s axiomatic system. As a starting point
Contro mentions Freudenthal’s assertion that during the latter part of the
1880s all parts of geometrical axiomatics were treated and only had to be
combined to a unit so that the modern axiomatic could arise. Contro claims
that it is already well-known that this happened in Germany via Hilbert
and in Italy via Peano and his school, and that Brodén’s 1890 article shows
that this also happened in Scandinavia.

Unfortunately, instead of studying Brodén’s 1890 axiomatic system,
Contro chooses to study Brodén’s more clearly formulated axiomatic sys-
tem from 1911. Contro is aware of and mentions some of the differences
between the systems, but not all of them. Thus a revision of Contro’s
investigation has to be made.

19Contro (1985).

10



Chapter 3

Brodén’s 1890 Axiomatic
System

3.1 Brodén’s Aim and Motivation

Brodén’s first article on the axiomatization of geometry was published in
Pedagogisk Tidskrift, a journal for Swedish secondary school teachers, in
1890.! In the article Brodén gives a philosophical and pedagogical discourse
on geometry and develops an axiomatic system for Euclidean geometry. It
seems that the article did not get a lot of attention, even though Brodén
wrote a summary of the mathematical part of his work for the Jahrbuch
iber die Fortschritte der Mathematik.2 A reason for this might be his choice
of a pedagogical journal instead of a mathematical journal. Furthermore,
the Swedish language was an obstacle for the international public.

Brodén’s aim with his 1890 article appears to be to take part in an
ongoing pedagogical debate on the problems in Swedish schools.? He points
out that there are faults and defects in the teaching of geometry, but does
not further discuss what these are and how to do something about them.
His aim, he claims, is not to call for any major reforms in the immediate
future. As a reason for this he refers to, among other things, the difficult
nature of geometry and that a thorough judgement of the scientific aspect
of geometry demands considerations of deep and disputed questions.

In the beginning of the article, Brodén discusses the often heard state-
ment, that the value of geometry as a school subject lies in the possibility

1Brodén (1890).
2Brodén (1893).
3Brodén (1890) p. 217.

11



for it to be treated in a strictly ‘scientific’ way.* To decide if this statement
is true, he seeks to investigate, on the one hand, what a strictly scientific
geometry should look like, on the other hand, if such a scientific character
is possible or suitable at the school level. He treats these two aspects in his
article. His axiomatic system is the result of his investigation into what a
scientific geometry should look like. His conclusion after carrying out this
investigation is that a strictly scientific geometry should not be present
undiluted in the school setting.® It is a difficult balancing act, he claims,
between, on the one hand, keeping a scientific direction in the education
and, on the other, taking into consideration the students’ ability. Even
though the value of geometry, as a school subject, is considered to lie in
its’ ability to be treated in a strictly scientific way, Brodén is of the opinion
that understanding and simplicity should have priority.> He continues that
it is a practical, rather than a scientific, teaching that should be aimed at,
but at the same time, education in geometry should prepare the students
for possibly more rigorous studies.”

In his remarks on the ontological status of geometry, one clearly sees the
influence on Brodén of the ideas of Hermann von Helmholtz (1821-1894).
Brodén claims that:®

Geometry, if it should have some application to the objects of
nature, has to be looked upon as a natural science, an empirical,
inductive science.

But he does not consider geometry to be like any other science. Quot-
ing Helmholtz, he states that geometry is “die erste und vollendetste der
Naturwissenschaften”.?

Despite the fact that Brodén considers geometry to be a natural sci-
ence, he considers natural science to presuppose geometry'® (that is why
geometry is 'die erste’). He states the reason for this to be that natural
science endeavours to reduce different phenomena to ‘motion’, but to com-
prehend motion we need the ‘empty, stationary space’ as a background. In
this sense one may say that motion presupposes geometry.

Even though Brodén considers geometry to be an empirical science, he
claims that it deals with ideal objects that are not revealed by the immedi-

4Tbid. p. 218.

5Tbid. p. 263.

8Ibid. p. 264.

7Ibid. p. 265.

8«Geometrien #r, for s& vidt den skall hafva nigon anviindning pa naturféremalen,
sjalf att betrakta som en naturvetenskap, en empirisk, induktiv vetenskap”. Ibid. p. 218.

91bid. p. 218. This quote comes from Helmholtz’ article Uber den Ursprung und Sinn
der geometrischen Sdtze (1882) p. 642.

10Brodén (1890) p. 218.

12



ate external experience.!! This might seem odd at first, but illustrates an
attitude which is typical of the last couple of decades of the 19th century,
between Pasch and Hilbert. Brodén stands with one foot in the old Aris-
totelian approach that geometry is founded on empirical grounds, but at
the same time he has a more modern approach towards its foundations. He
does not consider these two opinions to be in conflict and draws parallels
to attempts to systematize chemistry and physics, where the ideal objects
correspond to ‘atoms’ and ‘ether vibrations’ respectively.'? The empirical
comprehension, he claims, should only be considered as a starting point,
and experience can hardly lead to logical contradictions.

In spite of the starting point that it is to be considered as a natural
science, Brodén wants to point out that geometry, as a logical possibility,
can be independent of space and time. He maintains this since, referring
to Cantor, arithmetic can be considered as a logical system independent of
space and time, and:'?

[...] geometry is nothing but arithmetic, or can at least be totally
dressed in an arithmetic costume.

In this way, Brodén claims, Euclidean geometry becomes an a priori
possible logical form among many other geometries. Its’ special importance,
he continues, it first gains through reality.'*

In this context Broodén also mentiones Immanuel Kant (1724-1804).
Without going into any details, he claims that his view on the nature of
geometry could be considered as a development of Kant’s theories.!®

Brodén wants to gain support for his views by carrying out a detailed
examination of the foundations of geometry. He does this by first con-
sidering a few criteria which the basic notions and axioms for a scientific
geometry should fulfill. Thereafter he explains how he picks out the basic
notions and he carries out the axiomatization. Finally he gives a proof that
his axioms are sufficient for establishing Euclidean geometry. I will, in this
chapter, explain in detail how Brodén proceeds.

Brodén does not state his axioms in an immediately clear way. One can
extract them from the text, but they are not written down explicitly. I try
to adhere as closely as possible to Brodén’s formulations, but of course I still
rely on my own interpretation of them. But comparing his slightly different
formulations in the 1890 article, the Congress article and the summary

11Tbid. p. 218.

121hid. p. 218 and p. 259.

134[...] geometrien [...] ir ingenting annat &n aritmetik, eller kan tminstone fullstindigt
klddas i aritmetisk drdkt”. Ibid. p. 219.

147bid. p. 219.

157bid. p. 220.

13



in Jahrbuch uber die Fortschritte der Mathematik, I think I do justice to
Brodén’s 1890 axiomatization of geometry.

It is also worth noting that Brodén in 1890 never uses the word ‘ax-
iom’. Instead he uses the Swedish word ‘fundamentalsats’ or shorter ‘sats’,
which is probably a direct translation from the German word ‘Fundamen-
talsatz’ or ‘Grundsatz’. In Jahrbuch iber die Fortschritte der Mathematik
he translates it into just ‘Satz’, and in the Congress article he uses the
word ‘axiom’. Since this is the word used today, I decided to translate into
‘axiom’.

3.2 The Criteria

Brodén considers the goal of science to be to get a clear insight into the
‘nature of objects’. To do this he wants to describe the inner structure of
the concepts in a clear way.'® To attain this goal, he claims, a scientific
system should be built up from a number of undefined ‘basic notions’ and
a number of unproven ‘axioms’. He gives a number of criteria which these
basic notions and axioms for a scientific geometry should fulfill:'”

1. The notions should be reduced to the smallest possible
number of undefined basic notions.

2. All theorems should be proven from a smallest possible
number of unproven axioms.

3. The axioms should be stated in a clear way.

4. There should be the greatest possible degree of empirical
evidence for the axioms.

5. The axioms should form a homogeneous system.

6. The sufficiency of the axioms for arranging geometry under
certain logical forms, should be clear.

7. The axioms should be independent of one another.

8. The axioms should be as easy as possible to handle.

The seventh criterion considers the independence of the axioms. How-
ever, the meaning of the axioms in Brodén’s system depends upon the pre-
ceeding ones. This suggests that he considers an axiom to be independent
if it cannot be deduced from those previously stated.

The method for systematically studying the mutual independence of
axioms is the method of contructing models: the model is shown to disagree

161bid. p. 258.
17Tbid. p. 220-221.

14



with one and to satisfy all the other axioms, and hence the one cannot be a
consequence of the others. However, Brodén might not have been aware of
this method. On a few occasions he carries out a proof of independence by
the construction of a model, but to me it seems that he does this only to
motivate each axiom in turn, not to prove its’ independence of the previous
ones. Brodén also adds that one must have moderate pretensions when it
comes to guaranteeing independence of the axioms, since it might be hard
to combine this with the other criteria.!®

Considering the sixth criterion, Brodén does not specify what he means
with ‘sufficiency’ or ‘logical forms’. Probably he alludes to sufficiency in an
intuitive sense; the axioms are sufficient if we through deduction from them
will obtain what we consider to be Euclidean geometry. I will consider this
criterion further in Section 3.5 and 5.2.

With the fifth criterion Brodén probably alludes to a homogenous on-
tology in the axiomatic system, i.e., a scientific system should be built
up of similar components and one should only use objects from the same
category. This criterion also seems to be mainly of aesthetic character.

In the fourth criterion the empirical view Brodén has of geometry shines
through; it should be evident from the axioms that geometry after all is a
natural science. Since, according to Brodén, our experience cannot lead to
logical contradictions,'? this criterion may imply some kind of consistency.
I will discuss this further in Section 5.2. Brodén notes that, even if the
axioms form the logical foundations for all the theorems, they don’t have
to exceed them in the degree of evidence.?? He does not believe that it
is possible to formulate such an axiomatic system, since “evidence is one
thing, the logical relation is a different matter”.2!

With the third criterion Brodén probably wants to say that the axioms
should be stated in such a way that they cannot be misinterpreted, and
with the eighth criterion he probably wants to say that the axioms should
be formulated in such a way that we can use them without difficulty.

With the first and second criteria Brodén probably wants to emphasize
that the basic notions and axioms must be chosen in an ‘intelligent’ way,
i.e., we should try to choose them in such a way that we need as few of
them as possible. He claims that “a reduction to the smallest possible is
the goal of science”.22 We see that a balance in the choice of axioms has
to be maintained so that the second and fourth criteria are fulfilled; at the
same time as the axioms are chosen in an ‘intelligent’ way, the empirical
evidence should still be clear.

18Tbid. p. 261.
19Tbid. p. 218.
20Tbid. p. 260.
21¢[_.] evidens &r en sak for sig, det logiska sammanhanget en annan”. Ibid. p. 261
224[...] en reduktion till det minsta mdjliga &r vetenskapens uppgift”. Ibid. p. 260.
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Contro interprets the second criterion to be the same as the seventh,
i.e., he considers the reduction to the smallest possible number of axioms to
be the same as an independence criterion.?> However, I do not believe this
is what Brodén meant with the second criterion, since then there would be
no point in stating both these criteria.

3.3 The Basic Notions

The first thing Brodén has to do in establishing an axiomatic system for
geometry is to determine the basic notions, i.e., to determine the undefined
notions that are needed to formulate the axioms and to give further defini-
tions. In doing this he continues to discuss motion in order to characterize
it. Since he considers geometry to be a natural science and maintains that
natural science endeavours to reduce all phenomena to motion, it follows
that geometry must also endeavour to do so. This may seem contradictory,
since he maintains that motion presupposes geometry.

Motion, Brodén claims, is a change in certain relations between objects,
i.e., motion has to do with a collection of objects and a collection of rela-
tions between them.?* Brodén reduces the concept ‘collection of objects’
to simple ‘undivisible objects’ that he calls ‘points’. Motion is then con-
sidered to be a change in certain relations between points. But to be able
to apprehend this motion a system of stationary points is required, i.e., an
empty motionless space that forms the background for our comprehension
of motion.??

The points in a rigid body are mutually at rest, Brodén continues, also
when the body moves.?6 If two points A and B in a body coincide, at
a given moment, with two points C' and D in the stationary background
space, and at another moment coincide with C' and D’, we can say that
the distance between C' and D is equal to the distance between C' and D',
i.e., CD = C'D’'. This notion of equal distance he reduces further to the
notion of ‘equal distance from the same point’, or ‘immediate equality of
distance’, i.e., AP = BP.>"

Brodén chooses to use these two notions, ‘point’ and ‘immediate equality
of distance’, as basic notions in his system. He never discusses if his choice
of basic notions fulfills the first criterion he considers a scientific system
should fulfill. Contro claims that Brodén’s choice gives a minimal set of

23Contro (1985) p. 627.
24Brodén (1890) p. 221.
25Ibid. p. 221.
261bid. p. 222.
27Tbid. p. 223.
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basic notions that cannot be reduced further.?® Thus the criterion should
be fulfilled.

3.4 The Axioms

After establishing the two basic notions ‘point’ and ‘immediate equality of
distance’, Brodén continues to establish the axioms from which Euclidean
geometry should be built up. His system consists of 16 axioms, and with
the help of these he can define notions like ‘straight line’, ‘plane’; ‘between’,
‘bigger than’, ‘smaller than’ et cetera. Here I will give a complete descrip-
tion of his system.2’

In establishing the axiomatic system, Brodén wants first to completely
determine the notion of a straight line, before he proceeds to introduce the
plane. To do this he needs to establish a more general notion of equality of
distance than the basic notion ‘immediate equality of distance’. As a first
axiom he introduces an axiom of transitivity of equal distances:

Axiom I Those distances (from the same point) which equal

one and the same distance, are equal to each other, i.e., if AP =
BP and CP = BP then AP = CP.

To be able to define the straight line Brodén now discusses the motion
that is still possible in space when two of its points are fixed. Next to these
two points also other points are fixed, and the collection of all these fixed
points must form a straight line. But Brodén is not satisfied with defining
the line in this way. He introduces, referring to Wolfgang Bolyai, the notion
of ‘Einziges’.?® A point P is Einziges to two points A and B if P does not
have the same distances to A and B as any other point P'. With the help
of this concept Brodén now states the axiom he needs to define the straight
line:

Axiom II Two arbitrary points unambiguously determine a
system of points, which, with respect to any two points in the
system, arbitrarily chosen, form the summary of all Einziges
belonging to them.

28Contro (1985) p. 632.

29The axioms can be found in Brodén (1890) pp. 223-230, 236.

30Brodén probably read W. Bolyai’s Kurzer Grundriss eines Versuchs (1851), where
the foundations of geometry are considered and ‘Einziges’ is defined. W. Bolyai gives
the same discussion in Tentamen, from 1832, where his son wrote the better known
appendix on non-Euclidean geometry. Brodén probably didn’t read Tentamen since it
was written in Latin and not translated into German until 1913. The translation can be
found in J. Bolyai and W. Bolyai (1913).
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Definition Such a system of points is called a line.

With this, Brodén claims, the straight line is completely defined in the
sense that no other system of points in the space has the same character-
istics. However, this is not enough to completely characterize the straight
line, since its remaining characteristics do not logically follow from the
axioms mentioned so far. Axiom II gives some kind of symmetry on the
straight line; for two arbitrarily chosen points on the line every other point
on the line is the only point with given distances to the two chosen points.
But Brodén also wants an inner symmetry on the line. To obtain this he
formulates the following two axioms:

Axiom III Every point P on a line defines an unambiguously
symmetric correspondence between the points of the line, where
the distances from two corresponding points to the point P are
equal, the distances from non-corresponding points to P are not
equal, and P is the only point corresponding to itself.

Axiom IV Two arbitrarily chosen points define one and only
one correspondence of that kind, such that they correspond to
each other.

With Axiom III, a reflection in an arbitrarily chosen point is established
on the line, and Axiom IV forces two arbitrarily chosen points to unambigu-
ously determine such a reflection where these two points will correspond
to each other. In this symmetrical reflection one and only one point will
correspond to itself, and Brodén now can give the following definition:

Definition The point corresponding to itself in the correspon-
dence determined by two other points is called the midpoint of
the two points.

With this definition, Brodén still cannot say anything about a point ly-
ing ‘between’ two other points, or a distance being ‘bigger than’ or ‘smaller
than’ another distance. To do this he has to introduce an ‘ordering axiom’,
but before he can do this he characterizes the notion of ‘equal distance’ on
the line further. He gives a definition of equal distance, and a more general
axiom on equality of distance:

Definition The distance (on a line) between A and B equals
the distance between A’ and B’ if there is a symmetric corre-
spondence where A corresponds to A’ and B corresponds to B’
(or A corresponds to B’ and B corresponds to A').
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Axiom V The distances (on a line), which equal one and the
same distance, equal each other.

With this axiom Brodén can now compare arbitrary distances on the
straight line in the sense of deciding whether they are equal or not, but he
still cannot say anything about the distance between points not on the same
line. Furthermore, the axioms stated so far do not suffice to characterize
the inner structure of the line in Euclidean space. For example, there is still
the possibility of finite geometries. Brodén gives a model (however he does
not use the word ‘model’) of a finite geometry that fulfils all the axioms he
has stated so far. A straight line in this geometry consists of the vertices
of a regular polygon with an odd number of edges. It is easily checked that
the first five axioms are fulfilled in this geometry.

To exclude finite geometries from his system of axioms, Brodén has to
include further axioms to completely determine the line. But before he
does this he first wants to show that, with the help of the axioms given so
far, he can ‘push the line’ or give a ‘transformation of the line upon itself’,
i.e., an unambigous and asymmetric correpondence in which corresponding
distances are everywhere equal (AB = A'B’) and the distance between two
corresponding points is constant (AA’ = BB'). This means that we can
push a line so that A ends up in A’, B in B’ and so on. I will discuss the
construction he performs in Section 3.5.

This transformation of the line is not really needed in Brodén’s con-
struction of the axiomatic system. However, he needs it later, when he
constructs a coordinate system and gives a proof that his axioms are suf-
ficient for establishing Euclidean geometry. He also uses the notion of
transformation of the line in the discussion that leads him to Axiom VI,
which is an axiom which gives an ordering of certain points on the line.

To exclude finite geometries, Brodén has to include axioms which, to-
gether with the axioms already stated, imply that the line is an infinite
continuum, i.e., that after the choice of a ‘zero-point’ (4) and a ‘one-point’
(B) the line will unambiguously correspond to the real numbers R. The
first obstacle in doing this is to determine points on the line corresponding
to the natural numbers.

Brodén maintains that on the line there has to be a system of points with
the characteristics that, if M is the midpoint of the point B and an arbitrary
point P in the system, and if the point ) corresponds symmetrically to the
point A with respect to M, then @ also belongs to the system, and each
point in the system has the same relation to some other point in the system
as @ has to P. Brodén calls () the point ‘immediately following’ P, and
P is the point ‘immediately preceding’ (). With this construction Brodén
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can successively traverse a distance AB on the line, and he can now give
the following axiom which excludes all finite geometries.

A B M P Q
—@ L 2 L 4 L 4 *—

Axiom VI On the straight line there is a system of points
such that every point in the system has points in the system
immediately following and immediately preceding it, with the
single exception that the point A does not have a preceding
point.

This axiom could be interpreted thus: if a length AB is successively
traversed on the line, one does not come back to the starting point. With
this axiom Brodén can characterize points on the line which correspond to
the natural numbers. If the point A is the zero-point and B is the one-
point, he can now successively traverse the distance one without coming
back to the beginning and thus obtain all the natural numbers. By means
of a symmetric correspondence with respect to the zero-point, he can also
characterize the negative integers. Thus, with this axiom Brodén achieves
an ordering of certain points on the line.

Now Brodén can define the notions ‘between’, ‘bigger than’ and ‘smaller
than’, at least regarding the points in the system mentioned in Axiom VI.
Brodén does not show how to do this; he just states that this can now
eagsily be done.

However, Axiom VI is not enough to gain an unambiguous correspon-
dence between all the points on the line and the real numbers, i.e., to get a
continuous line. Brodén shows this by considering the two points P and @,
where () is the point immediately following P, and N is the midpoint of @
and P. He claims that he can show, without difficulty, that N belongs to
a system of positive integers, where A is chosen as zero-point and the mid-
point between A and B is chosen as one-point, and P and () are the points
immediate preceding respective following N. It is clear, he further claims,
that NV cannot coincide with A, since then P should immediately precede
A, which contradicts the properties of the system of positive integers.

A B P N Q
*—o—© o—0—o¢

This method, Brodén continues, can easily be generalized so that the
midpoint between two arbitrary consecutive points in the original system
of positive integers can not coincide with any point in this system. By
everywhere taking midpoints of consecutive points, he maintains, nothing
but new points are obtained, and together with the original points they form
a new system of positive integers. By successively taking new midpoints
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new systems of positive integers are obtained. This leads, he continues, to
a system of points that unambiguously is represented by all positive and
negative integers and fractions with the denominator being a power of two.
However, as Brodén also points out, if one takes two different starting
points A and B, for example the zero-point and the three-point instead of
the zero-point and the one-point, then the new set of points obtained by
successively taking midpoints does not contain all the points in the original
set of points. So, if he does not want to impose further restrictions, Brodén
continues, he has to allow ‘different relations’ among the points of the line.
But since our experience does not give any indication of such a difference,
Brodén realizes that he has to include a further axiom regarding the inner
structure of the points of the line. With this axiom he wants to achieve a
correspondence between every point on the line and the real numbers, i.e.,
he wants to obtain a continuity of the line. The idea behind the axiom is
to successively take midpoints of smaller and smaller intervals and go to
the limit. With a construction like this Brodén gets a bijection between
the line and the real numbers. To be able to express this in an easier way
he introduces the so-called c-system.
With the number system 5 (a, n integers), i.e., the number system
corresponding to the points of the line obtained by taking the midpoint a
finite number of times, as basis, Brodén claims that all real numbers can be
represented. He proceeds with the statement that, if n assumes all possible
positive integer values, then

represents a system of points with the relation to the one-point that there
are points in the system whose distance to it is smaller than any given
distance, i.e., the one-point is a ‘limit point’ for the system. He claims that
this in fact is the only limit point of the system, and that the one-point
cannot be a limit point for any other infinite system

N e S A
0T Tz T T T gn

where cq is an integer or zero and ¢;, ¢ > 1, are equal to zero or one, but

not all equal to zero after some given i. A system like this he refers to

as a c-system in reduced form.>! He now notices that not every c-system
a

has a limit point in the system 5%. So to expand the point system on the

line, Brodén simply wants every c-system to have a limit point. But he has

31Brodén notes that every infinite system bo -+ 921 + g% + %g— + ..+ g—ﬁ where b; equals
0, +1 or -1, through the merging of the negative terms with the previous positive term,
can be reduced to a c-system.
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to express this in a different manner, since, if he goes outside the system
5+ the notions of ‘bigger than’ and ‘smaller than’ still does not have any
meaning and thus the notion of ‘limit point’ cannot be used. To get around
this problem he expresses the axiom in the following way:

Axiom VII Between c-systems and the points of a line, a mu-
tually unambiguous correspondence can be established so that
to two arbitrary c-systems

c1 Co C3 Cn
C0+E+2_2+2_3+"'+2_n

and
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there correspond two points, whose distance to each other equals

the distance from the zero-point to the point corresponding to
the set

cl—c’1+cz—c’2+03—c’3 cn —C,

2 22 23 o 2n

!
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or its reduced set, and the one-point corresponds to the set

1 1 1 1
2—{—22 —1—23 +...+2n .

With this axiom Brodén directly obtains a bijection between the real
numbers and the points on the line. Thus the geometry of the straight line
is completely determined, and Brodén continues to determine the geometry
of the plane. He does this in a very similar way as with the straight line,
by considering symmetries. But first he wants to introduce an axiom which
helps him to further determine the notion of equality of distance.

Axiom VIII On every straight line through an arbitrary point
P there exist points, whose distances from P equal the distance
to P from an arbitrary point in space.

From previous axioms it follows that there exist two such points on the
line whose distances from a point P on the line equal the distance from P
to an arbitrary point in space.

Now Brodén can give a definition which helps him to compare two
arbitrary distances.
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Definition The distances AB and C'D are equal if, on the
straight line AC, the distances from A and C, which equal AB
respectively C'D, are also equal to each other.

With this Brodén can now add an axiom which gives a general notion
of equality of distance.

Axiom IX Without exception it holds good that the distances
that are equal to one and the same are equal to each other.

Definition Two systems of points are equivalent if an unam-
biguous mutual correspondence can be established, for which
all corresponding distances are equal.

With the following axiom, Brodén wants to introduce the plane by the
construction of a system of points. If there is such a system, he claims,
it has to be generated by a straight line that rotates around a fixed point
following a straight line. Our experience, he continues, tells us that a system
of this kind arises, but for the sake of simplicity he chooses to formulate
the axiom in the following way:

Axiom X There is a system of points, such that a straight line
through two arbitrarily chosen points in the system completely
belongs to the system, without filling the complete space.

Definition Such a system of points is called a plane.

After introducing the plane, it is now plausible for Brodén to seek analo-
gies between the fundamental properties of the plane and of the straight
line. He does this in the following three axioms, which correspond to Axiom
IIT and Axiom IV. With these axioms he obtains a ‘symmetrical equiva-
lence’ in the plane, which can be considered as a reflection of the plane in
a straight line in the plane.

Axiom XI Every straight line in the plane unambiguously de-
fines a symmetric equivalence, where every point on the line but
no other point is self-corresponding.

Axiom XII Two arbitrarily chosen points unambiguously de-
fine such an equivalence, where they correspond to each other.

Axiom XIII The self-corresponding line is the complete locus
for equal distance from two corresponding points.

Definition The self-corresponding line in a symmetrical equiv-
alence is called the axis of symmetry.
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However, these axioms are still not sufficient for the establishment of
Euclidean geometry. Brodén points out that a so called ‘pseudo-spherical’
geometry, i.e., a hyperbolic geometry with constant negative curvature, is
still possible. To exclude this he has to add an axiom, which is a version
of the Parallel Axiom.

Axiom XTIV The complete locus for symmetrically correspond-
ing points with the same mutual distance as two given points,
forms two straight lines.

With the axioms stated so far, Brodén claims, Euclidean plane geometry
appears. He gives a proof of sufficiency of his axioms, which I will discuss
in the next section.

Now that the inner structure of the plane has been taken care of, Brodén
proceeds to space and adds the final two axioms:

Axiom XV Through three arbitrarily chosen points in space
there goes a plane, and if the points are not in a straight line,
there is only one such plane.

Axiom XVI Two planes cannot have only one point in com-
mon.

The last axiom, Brodén claims, excludes a fourth dimension.3? Thus, he
continues, he now has all the requirements needed for establishing Eu-
clidean three-dimensional geometry.

3.5 Brodén’s Proof of Sufficiency

After presenting the axioms, Brodén wants to prove that they are sufficient
to establish Euclidean geometry. He gives an explicit proof for the suffi-
ciency of Axiom I to Axiom XIV for establishing plane Euclidean geometry,
and, after adding Axiom XV and XVI, he claims that in a similar man-
ner he can prove sufficiency for establishing three-dimensional Euclidean
geometry. In this section I will present and explain Brodén’s proof.3?
However, it is a bit hard to grasp Brodén’s proof of sufficiency, since it is
quite long and he makes no effort to give an overview of his ideas. The entire
proof is written as one long account without any explanatory pictures. To
make Brodén’s argumentation easier to read, I dissected it into several
propositions with shorter proofs and also included some illustrations. In

32 Axiom XVI and the problem of dimension will be discussed further in Section 5.3.
33The proof is found in Brodén (1890) pp. 230-236.
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the proofs of the propositions I follow Brodén very closely. In between I
try to give a more general overview of what he is doing. The reader can,
without losing track of Brodén’s main idea, skip the details in the proofs.

Brodén does not make it clear what axioms he uses in his proof. A rea-
son for this might be the fact that his axioms are originally not numbered.
However, throughout this section, symmetrical correspondence (Axiom III
and IV) and symmetrical equivalence (Axiom XI, XII and XIII) play a
decisive part.

The main idea in Brodén’s proof is, with the help of his axioms, to con-
struct a coordinate system in which he can denote a straight line through
two arbitrary points by an equation. With this he can deduce the formula
for calculating the distance between these two points. In the distance for-
mula, Brodén claims, the whole plane Euclidean geometry lies embedded.
This claim originates from his view that geometry is nothing but arithmetic.

To construct the coordinate system, Brodén first discusses perpendicu-
lar lines and shows that perpendicularity is a symmetrical relation (Propo-
sition 1) and that through a given point there is one and only one line
perpendicular to a given line (Proposition 2). Two lines perpendicular to
each other will form the z- and y-axes in the coordinate system. Thereafter
he proves that the position of a point in the plane can be unambiguously
determined with coordinates (Proposition 3). He continues to discuss how
to transform3* a line (Proposition 4) to be able to do a coordinate transfor-
mation. With this he can easily determine the equation of the straight line.
Finally, by rotating the line by performing two symmetrical equivalences,
he can deduce the distance formula.

Brodén starts his discussion by claiming that, in a symmetrical equiv-
alence in the plane, a straight line will correspond to another straight line
(he does not prove this claim), and if a line goes through two points that
correspond symmetrically to each other, then the straight line must corre-
spond to itself. He now gives the definition of a line being ‘perpendicular’
to another line.

Definition The self-corresponding line in a symmetric equivalence is per-
pendicular to the axis of symmetry.

Brodén further claims (again without giving a proof) that, through a
point not on a given line, there goes one and only one straight line perpen-
dicular to the line. If the point lies on a line there is also one and only one

34When Brodén uses the word ‘transformation’ it is obvious that he means what we
today would call ‘translation’.
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straight line through the point perpendicular to the given line. This last
statement Brodén proves explicitly, but to be able to do this he first has
to show that the notion of a line being perpendicular to another line is a
symmetric relation.

Proposition 1 If a straight line B is perpendicular to another straight line
A then A is perpendicular to B.

Proof Suppose the straight line B is perpendicular to the straight line A,
i.e., B is a self-corresponding line in the symmetric equivalence where A is
the axis of symmetry. The two lines A and B have a common point (‘point
of intersection’) namely the midpoint of two points on B that correspond to
each other in the symmetric equivalence where A is the axis of symmetry.
Let this point be O. Let P and P’ be two arbitrary points on B that
correspond symmetrically to each other, and let R and S be two points on
A whose distance from O is equal to the distance OP (and consequently
also equal to OP").

oP

oP

The points P and R determine a symmetric equivalence where the axis
of symmetry goes through O. In the same way S and P determine a
symmetric equivalence where the axis of symmetry goes through O. In
the former equivalence, P and R correspond to each other, and, since O
corresponds to itself, the line B and the line A correspond to each other,
and the points P’ and S correspond to each other. In the latter equivalence,
the points S and P respectively R and P’ correspond to each other.

If now the two equivalences are combined, an equivalence is obtained in
which the lines A and B each correspond to themselves, but the point O
is the only point corresponding to itself, and R and S correspond to each
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other. Thus two corresponding points on each line lie symmetrically to O.

B A B B
P R P P
— — —_—
S R P P R S R S
A B A A
P s P P

If we now put this equivalence together with the original (the symmetric
equivalence that had the line A as axis of symmetry) we get an equivalence
in which every point on the line B corresponds to itself, and the line A con-
nects points that correspond to each other. Thus A is a self-corresponding
line in the symmetric equivalence where the line B is the axis of symmetry,
i.e., the line A is perpendicular to the line B. O

Now that Brodén has proven that the notion ‘perpendicular’ is a sym-
metrical relation, he claims that it is easy to see that through every point
on a straight line passes just one perpendicular line. He gives the following
proof of this:

Proposition 2 Through every point O on a straight line A goes one
line B perpendicular to A.

Proof Choose two arbitrary points on the line A that symmetrically cor-
respond to each other with respect to the point O. The symmetrical axis
to A with respect to these two points goes through O. The line A is per-
pendicular to the line B, and thus the line B is perpendicular to the line
A. But through O there can only be one line perpendicular to A, since, if
there were more, A would be perpendicular to all of them, and then two
symmetrical points on the line A would correspond to several different axes
of symmetry. Thus there can only be one line B through O perpendicular
to A. O

Brodén maintains that he can now, without any difficulty, unambigu-
ously determine the position of a point in the plane. This he does by
constructing a coordinate system where the position of each point is de-
scribed by its coordinates. To construct this coordinate system Brodén
chooses two arbitrary lines A and B that are perpendicular to each other
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and have the intersection point O. On each of the lines he chooses a ‘one-
point’, both of which have the same distance from O, which in turn he
chooses as the ‘zero-point’ of the two lines. The points of the lines are now
(according to Axiom VII) unambiguously determined by real numbers.

To determine an arbitrarily chosen point P in the plane, Brodén puts
two lines through this point, perpendicular to the lines A and B, and
intersecting these lines in the points X and Y. The two points X and
Y are represented by the real numbers x and y. He assignes these two
numbers to the point P.

Y P=(x, y)

Brodén now maintains that, because of the Parallel Axiom, i.e., Axiom
XIV, every pair of values of z and y will determine one and only one point
in the plane. He proves this explicitly:

Proposition 3 Every pair of values of x and y corresponds to one and
only one point in the plane.

Proof Consider two straight lines L and L' that, with respect to the line A
(the z-axis) as axis of symmetry, form a locus of symmetric points with the
same mutual distance. These lines must intersect the line B (the y-axis),
since on this line there are two points, symmetric with respect to O, with
the same mutual distance as two arbitrarily given points.

B

It is possible to arbitrarily choose two symmetrical points since, ac-
cording to the assumptions about the straight line, all straight lines are
‘equivalent systems’.
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The lines L and L' must be perpendicular to the y-axis, since their
relation to the z-axis cannot change through some equivalence in which
the z-axis corresponds to itself. Therefore, in such an equivalence, L and
L' must either correspond to each other or correspond to themselves. The
latter is valid, in particular, for the symmetry with the y-axis as axis of
symmetry. Since L and L' intersect the axis of symmetry in different points,
and in this symmetry cannot correspond to each other, L and L' must each
correspond to themselves, i.e., be perpendicular to the y-axis. But the y-
axis is an arbitrary line perpendicular to the z-axis. Thus it must hold
that if two lines, with respect to a third (A) as axis of symmetry, form a
‘locus for corresponding points with the same mutual distance’, then these
two lines must be perpendicular to every line that is perpendicular to A.

Conversely, it also holds that if a line (L) is perpendicular to another
line (B) and this in turn is perpendicular to a third line (A), then the first
line (L) together with its, with respect to A, symmetrically corresponding
line (L"), forms a ‘locus etc’ in relation to A. This is so easily realized that
a proof of it need not be written out.

Since, as just pointed out, a line that belongs to such a locus, must inter-
sect every line that is perpendicular to the axis of symmetry, it holds that
two straight lines, each of which is perpendicular to one of two mutually
perpendicular lines, have one (and of course only one) point in common.
From this it follows that, to every pair of values of z and y, there corre-
sponds one and only one point in the plane. O

Now Brodén gives the definition of two lines beeing parallel to each
other:

Definition Two lines, which are perpendicular to the same line, are paral-
lel.

It remains for Brodén to determine the mutual position between points
whose z- and y-values are given. For this he needs to be able to do a coor-
dinate transformation. To do so he first defines the notion of ‘transforming
an object along a line’, or ‘pushing an object along a straight line’. This
notion connects very closely to the notion ‘pushing a straight line along it-
self’, so Brodén only refers to the account of the latter. The only difference
is that, instead of keeping to the points of the line as in the latter case, he
in the former case has to consider the lines perpendicular to the line the
object is pushed along.
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With the notion ‘pushing a straight line along itself’, Brodén means the
possibility of an unambiguous and asymmetric correspondence in which all
corresponding distances are equal (i.e., if A corresponds to A’ and B to B’
then AB = A'B') and the distance between two corresponding points is
constant (i.e., AA’ = BB'). To characterize the notion of pushing a line
along itself, Brodén only has to use Axioms I to V, and in fact he did this
already after stating Axiom V. He does it like this:

Proposition 4 There is an unambiguous and asymmetric correspondence
on the line at which corresponding distances on the line are everywhere
equal and the distance between two corresponding points is constant.

Proof Suppose we want to establish such a correspondence in which a given
point A corresponds to another given point A’. First perform the symmetric
correspondence in which A corresponds to A’, and thereafter correspond
symmetrically with respect to A’.

AN A

The result will be an asymmetric transformation that leaves all distances
unchanged. That the distance between two corresponding, but otherwise
arbitrarily chosen, points B and B’ will equal the distance AA’ is realized
in the following way:

Let B" correspond symmetrically to B with respect to the midpoint M
of A and A', so that M B"”" = M B. Then B" and B’ lie symmetrically with
respect to A’ (i.e., B"A" = B'A"). The midpoint N of B and A’ cannot
coincide with M. Take N as the center of symmetry. Then A’ corresponds
to B, and since AB = A'B" = A'B’' the point A must correspond to
either B" or B'.3®> But A and B cannot correspond to each other, i.e., N
cannot be their midpoint, since this midpoint must, when M is the center
of symmetry, correspond to the midpoint of B and A’, i.e., N, and thus

35Brodén here writes “B" or B” instead of “B' or B'”, but this must be a misprint.
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cannot coincide with N.

TN
B A M A N B B
B B N A M A B

Thus, when N is the center of symmetry, A must correspond symmet-
rically to B'. Thus, BB' = AA'. O

Brodén maintains that the transformation of an object along a line
does not presuppose the Parallel Axiom (Axiom XIV). But, he continues,
if the Parallel Axiom holds, the transformation becomes simpler than would
otherwise be the case, since then not only the line L along which the trans-
formation is performed will correspond to itself, but every line parallel to
L will do so.

Furthermore, he continues, every line M perpendicular to L, and conse-
quently perpendicular to every line parallel to L, will correspond to another
line parallel to M. From this it follows that, since the ‘perpendicular dis-
tance’, i.e., the shortest distance, between two parallel lines is constant,
along each line parallel to L the same transformation will be performed as
along L.

Brodén claims that he can now easily show that an arbitrary transforma-
tion of an object in the plane, through the composition of transformations
along two mutually perpendicular lines, is possible. From this it follows,
he points out, that two straight lines are perpendicular to each other if
they are each perpendicular to one of two mutually perpendicular lines.
With this he can let every substitution x = 21 + h, y = y1 + k represent a
‘coordinate transformation’.

Now Brodén has constructed a coordinate system and he has shown
how he can transform an object in this system. He proceeds to seek the
arithmetic relation between the z- and y-values for points on a straight
line. Brodén first remarks that the points (z1,¥;) and (—z1,—y1) are on
the same straight line through O, and that this is independent of the Par-
allel Axiom. He shows this in the following way:

Proposition 5 The two points (z1,y1) and (—z1,—y1) are in a straight
line with O.
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Proof The two points P = (x1,y;) and P' = (x1,—y;) are symmetrical
with respect to the z-axis. Hence the lines through O and either P or P’
will be symmetric with respect to the z-axis. Let the two points R and R’
on these lines be symmetric to P respectively P’, with respect to O (that
OR = OP = OP' = OR'). Then R and R’ also have to be symmetric to

the z-axis.

R P

But P and R/, respectively P’ and R, also correspond symmetrically
to each other with respect to a line through O, different from the z-axis,
as axis of symmetry. With respect to this line the midpoints to P and P’,
respectively R’ and R, also form a symmetric pair. But these midpoints
belong to the z-axis. Thus the z-axis must be perpendicular to the afore-
mentioned axis of symmetry, which hence must coincide with the y-axis.
Thus the points R and R’ are (—z1,—y1) and (—z1,y1). In other words,
(z1,y1) and (—z1, —y1) are in a straight line with O. O

Now Brodén can present an equation for the straight line. To do this
he once again considers the line ROP, and P = (z1,y1), R = (—z1,—11),
where P is in the first quadrant (i.e., 21 > 0, y1 > 0). He performs the
coordinate transformation such that the point R is transformed to the point
0. The coordinates for O then become (x1,y1) and for P, (21, 2y;).

Brodén maintains that the coordinates of those two points are in the
same proportion. He further claims that, by a simple reasoning, he can
show that the same holds for all the points on the line whose abscissas (-
values) have the form a/2" (a and n integers),3® i.e., the relation between
y and z is constant for all the points on the line. He further asserts that,
as long as he keeps to the mentioned abscissas, the equation of the line
through O and P = (z1,y1) becomes

U
= —x.
x1

Y

He proceeds that, when he returns to the original origin O, the equation of
the line keeps the same form, and it can be proven that the same equation

361t doesn’t seem clear to me why he restricts himself to z-values of the form =%-.

27I.
Because of Axiom VII this should not be neccessary.

32



holds for all the points on the line. But for simplicity he ignores this proof,
and only states that the equation for a line not passing through the origin
is obtained through a coordinate transformation.

What now remains for Brodén to do is to determine the constant relation
between the distance from a point on the line to the origin and the abscissa.
To do this he considers the rotation of a line around a point. He determines
the rotation around a point O as being the composition of two symmetric
equivalences, whose axis of symmetry passes through O.

To obtain a rotation for which the positive part of the z-axis is trans-
ferred into that part of the line through O under consideration, which lies
in the first quadrant, or as Brodén also expresses it, that the positive di-
rection of the z-axis is transformed into the direction from O to P, he
takes the symmetric equivalence in which these two directions correspond
to each other, and thereafter takes the symmetric equivalence in where the
new direction of the z-axis is the axis of symmetry. The result is a rotation
of the coordinate system around the origin.

Y

Brodén now supposes that in this rotation the direction QY is trans-
ferred into the direction OQ. In the same way as in the case of transform-
ing a line along itself, he states that he can now show that an asymmetric
equivalence can be established in which OX corresponds to OY and OP to
0Q), i.e., he can establish a 90-degree rotation of the line. He then asserts
that from this it follows that the equation for the line O@Q) must be either
z =%y or z = —Ly. To decide which equation is valid, he considers the
symmetric equivalence in which the directions OX and OY correspond to
each other, and where the lines x = x; and y = y; correspond to ¥y = x;
and = y; respectively, i.e., the point P = (x1,y1) corresponds to the

x

point (y1,z1) and the line OP (i.e., y = £2) to the line y = .

(A vm

Y

X
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But the line y = z—ix cannot coincide with the line O@), and thus the
line OQ must have t%e equation y = —Z—Ix. Thus, Brodén claims, the
line through the origin perpendicular to the line y = J';’ll:v must be the line
y=—Zg.

It i?él now easy for Brodén to determine the distance OP. He considers
the line through P perpendicular to OP, which intersects the z-axis in
the point T. After a coordinate transformation, Brodén states that the
equation for this line is

Z1

-y =—(@—x1) .
Yy—1h yl( 1)

P=(X3 )
3

Brodén now lets y = 0 and obtaines the abscissa for the point T':

2 2
_ Tty
T1

or

He further considers the symmetric equivalence that interchanges the di-
rections OP and OX. With this equivalence, he says, P must correspond
to a point P’ on OX, and T to a point T on OP. He claims that, since
TP is perpendicular to OP, also T'P' must be perpendicular to OX, and
further OP = OP' and OT = OT".

Now Brodén claims that this, together with the fact that

opr _OT'

@ OP"’
implies that

orP OT

z;  OP’
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and thus
OP? =z, -0OT =23 +y? .

Letting OP = r and doing a coordinate transformation, Brodén now
obtaines the formula for calculating the distance between two arbitrarily
chosen points (x1,y1) and (z2,y2), which is:

r=+/(z2 — 1)’ + (y2 — 11)?

In this formula, Brodén claims, the Euclidean plane geometry lies em-
bedded. Thus he asserts that he has proven that his first 14 axioms are
sufficient for establishing plane Euclidean geometry. I will discuss suffi-
ciency further in Section 5.2.

Upon adding Axioms XV and XVI, Brodén claims that every point can
be unambiguously represented with the coordinates (z,y,z). In a similar
manner as in the two-dimensional case, he claims that he can prove the
sufficiency of the 16 axioms for establishing Euclidean three-dimensional
geometry, by deducing the distance formula

r=v(zs —21)2 + (Y2 —y1)% + (22 — 21)% .

However, he does not carry out the proof.
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Chapter 4

Brodén’s Later Work on the
Axiomatization of
Geometry

4.1 The Scandinavian Congress

After the publication of the 1890 article, it seems that Brodén changed
his field of interest. It was not untill 1911, when he went to the second
Scandinavian Mathematical Congress in Copenhagen, that he resumed his
work on the foundations of geometry.

During the end of the 19th century mathematics had gradually improved
its’ position in Scandinavia.! Of special importance during this period was
the founding of Acta Mathematica by Gosta Mittag-Leffler in 1882, which
from the outset became one of the leading international journals. As a
result of the mathematical development in Scandinavia, Mittag-Leffler took
the initiative to launch a Scandinavian Mathematical Congress. The first
congress took place in Stockholm in 1909 and became a monument to the
mathematical development that had been achieved.

The second Scandinavian Mathematical Congress was held from August
28 to 31, 1911. In all 93 mathematicians from Denmark, Norway and Swe-
den took part, and 23 lectures were given. Proceedings were printed the
following year.? Two talks were given on the foundations of geometry. Jo-
hannes Hjelmslev (1873-1950), professor at the university of Copenhagen,
gave a talk with the title Nye Undersggelser over Geometriens Grundlag

! Nielsen (1912) p. XII.
2Tbid.

37



(‘New Investigations on the Foundations of Geometry’), and Brodén’s talk
was entitled Ett aziomsystem for den euklidiska geometrien (‘An Axiomatic
System for Euclidean Geometry’). Throughout this chapter I will consider
the axiomatic system in Brodén’s Congress article and highlight the differ-
ences between this and the 1890 system.

4.2 The Revised Axiomatic System

The most striking difference between Brodén’s 1890 and Congress articles
is that the latter is considerable clearer and briefer in its presentation.
Brodén is now distinct in formulating the axioms, but unfortunately some-
thing goes missing in this more concise format. He does not give any aim,
or motivation as to why he wants to give an axiomatic system for Euclidean
geometry, but considering the context in which this article was presented
this might not have been necessary. In 1911 Hilbert’s work was well known
and most certainly no mathematician at the Scandinavian congress would
question research on the foundations of geometry and it must have been of
special interest since Brodén claimed the system to have been constructed
already in 1890. But the lack of background discussion results in that
Brodén’s way of proceeding in creating his axiomatic system becomes un-
clear. For example he does not say anything about why he chooses ‘point’
and ‘immediate equality of distance’ as the two basic notions, and the whole
idea of geometry as a science that wants to reduce different phenomena to
motion is absent. This results in that it is unclear why he chooses the
axioms he does.

Brodén also gives a very meager discussion on how a scientific axiomatic
system should be built up, i.e., what criteria the basic notions and axioms
should fulfill. He just mentions that, to the greatest extent possible, the
axioms should be empirically evident, and the whole system of axioms
should be simple, natural and homogeneous.? With simple and natural he
probably means that the axioms should be formulated in such a way that
they are easy to understand and can be used without difficulty. At the
end of the article he also brings up the sufficiency of the axioms and he
discusses their necessity, i.e., their independence from each other.* With
these latter additions, the criteria for an axiomatic system are basically the
same in the two articles. However it is not as clearly discussed in the later
one.

After the brief comment on the criteria for an axiomatic system, Brodén
proceeds with stating the axioms. Here one immediately sees the influence

3Brodén (1912) p. 123.
4Tbid. p. 133.
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of Hilbert. Brodén, just as Hilbert did in 1899, chooses to sort the axioms
in different groups. He does not say anything about why he chooses to
do this, but he probably wants to indicate similarities between his and
Hilbert’s systems, similarities that are not very prominent when one looks
closer at the axioms.

Here follows a translation of Brodén’s 1911 axiomatic system:>

I. Fundamental axiom

Axiom 1 If AP = BP and CP = BP then AP = CP, or,
in words: with respect to immediate equality of distance, those
distances which are equal to one and the same distance, are
equal to one another.

I1. Axioms that make the general concept of
equality of distance possible

Axiom 2 The locus of a point P such that PA = PB, where
A and B are two given points, consists of more than one point.

Definition This locus is called a plane.

Axiom 3 A corresponding set within a plane consists of more
than one point.

Definition This set of points is called a straight line.

Axiom 4 The corresponding set within a straight line consists
of a single point which is distinct from both A and B.

Definition This point is called the midpoint for A and B.

Definition On a straight line, AB = CD if the pairs A, D and
B, C or A, C and B, D have the same midpoint.

Axiom 5 On a straight line those distances are equal that equal
one and the same distance.

Axiom 6 Through two arbitrarily chosen points there is always
at least one straight line (and hence also at least one plane).

Axiom 7 If P is a point on a straight line and A is a point
outside the line, then there is at least one point B on the line
such that BP = AP.

Definition Let two pairs of points, A, B and C, D, be given
and let a point in the first pair be connected with a point in the

5Tbid. pp. 124-128.
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second pair (for example A and C) by a straight line. Take two
points H and K on the line such that HA = BA and KC=DC.
If HA=KC then also AB=CD.

Axiom 8 Without exception it holds good that distances that
are equal to one and the same are equal to each other.

ITI. Axioms for characterising a straight line
and a plane

Axiom 9 Through two (different) points there is never more
than one straight line.

Axiom 10 The straight line that goes through two points in a
plane lies completely in the plane.

Axiom 11 Through three points not on a line there is always
one and only one plane.

IV. Axioms of symmetry

Axiom 12 Each point M on a straight line uniquely determines
a symmetric correspondence in which corresponding distances
are equal and M is the only point corresponding to itself.

Axiom 13 Every straight line in a plane uniquely determines
a symmetric correspondence of points in which corresponding
distances are equal and every point on the line but no other
point is self-corresponding.

V. Axioms of continuity

Axiom 14 By means of successive traversal of equally long
segments, one never returns to the point of departure.

Axiom 15 Completeness Axiom.
VI. Parallel axiom

Axiom 16 By means of the symmetric equivalence in the plane
equidistant symmetric pairs form two straight lines.

The main difference between Brodén’s two axiomatic systems is that
in the version of the Congress article the concept of symmetry is not as
striking as in the 1890 version. In the 1890 system, symmetry was used to
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characterize the straight line and the plane and, with the help of symmetry,
Brodén could extend the notion of immediate equality of distance. In the
Congress article the concept of symmetry is not used to the same extent.
The group of axioms concerning symmetry includes only two axioms, and
they are introduced quite late, just before the two continuity axioms and the
Parallel Axiom. In 1890 five axioms had a direct connection to symmetry
(Axioms III, IV, XI, XIT and XIII). In the Congress article Brodén, with
Axioms 12 and 13, only retains Axiom IIT and a slightly stronger version
of Axiom XI.

The reason for not having to use symmetry to the same extent is
Brodén’s choice to introduce the line and the plane in a different man-
ner. In 1890 he introduces the line with the help of two points on it, and
characterizes it completely before he introduces the plane. In the Congress
article he claims that he uses Leibniz’ definitions and introduces the line
with the help of the concept of the plane. He does not explain why he
relinquishes his former idea to build up the geometry from point to line to
plane.

However, it seems that Brodén has not thought through this idea com-
pletely. As Contro remarks,® there will be a problem later in the system
when Brodén introduces Axiom 10, saying that the line through two points
in a plane completely lies in the plane. Since the line and the plane have al-
ready been introduced, this axiom should be proven from the other axioms,
or at least reduced to a simpler form.

Axiom XVI from 1890, saying that two planes cannot have only one
point in common, is not retained in the Congress article. As discussed
further in Section 5.3, it seems to me like this axiom is not independent of
the others. Probably Brodén realized that it can be derived from the other
axioms, and thus removes it in the Congress article.

Axiom 14 is formulated in a different manner but has the same meaning
as Axiom VI from 1890. In the Congress article Brodén refers to this
axiom as an Archimedean Axiom. However, Axiom 14 is weaker than the
Archimedean Axiom and should only be considered as an axiom of ordering.
This is discussed more precisely in Section 5.1.

To obtain continuity of the straight line, Brodén does not go through the
complicated construction using c-systems to establish a bijection between
the real numbers and the points of the line, as he did in 1890. Instead he
just states “Completeness Axiom”, referring to Hilbert. He mentions that
he already gave a formulation in 1890, but Hilbert only gave it in his second
edition of Grundlagen der Geometrie in 1903.” It seems that Brodén wants
to indicate that he was far in advance of Hilbert in realising the necessity of

6Contro (1985) p. 632.
"Brodén (1912) p. 128.
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a Completeness Axiom, and at the same time he wants to pretend that he
had succeeded in formulating this axiom at the same abstract level, which
was not the case. The Completeness Axiom is discussed further in Section
5.1, in connection with the Archimedean Axiom.

4.3 Sufficiency and Necessity

After stating the axioms, Brodén gives a proof of sufficiency by deriving
the distance formula. He carries through this proof in exactly the same
way as in 1890, with the only exception being that he does not perform the
construction of the transformation of the line along itself. It is notable that
even if symmetry plays a far less important role in the axiomatic system
than in 1890, it still has the same significance in the construction of the
coordinate system.

After proving sufficiency of the axioms, Brodén discusses their neces-
sity, i.e., if they are independent from each other. This is, he claims, an
incomparably more complicated question than proving the sufficiency of
the axioms.® He does not carry out a proof of independence of all the
axioms, but only considers the special question whether the two axioms of
continuity, Axioms 14 and 15, are independent from the others. He proves
this explicitly by formulating a model in which the remaining axioms are
fulfilled, but Axioms 14 and 15 are not. Since his model is plane he leaves
out the axioms considering the space.

The model is a finite geometry consisting of nine points. When arranged
in a 3x3 matrix and letting the distance be a between two points in the
same row or column and b if not, three points will form a line if in the
same row, column or element of the determinant. In this model Brodén
can easily check that all the axioms, except Axioms 14 and 15, are fulfilled.

Brodén also briefly discusses some differences between Hilbert’s ax-
iomatic system and his own.? He asks whether his model would satisfy all
of Hilbert’s axioms, except the Archimedean and Completeness Axioms.
This is not the case, he concludes, since Hilbert’s axioms already have as a
consequence that a line has infinitely many points. The reason for this is
that, in Hilbert’s system, the notion ‘between’ plays the role of a basic no-
tion. In Brodén’s system the notion ‘between’ cannot be defined until after
Axiom 14 has been introduced. Thus, at least as long as we stay within the
plane, Hilbert’s axioms, excluding the two concerning continuity, contain
something more than Brodén’s corresponding axioms.

8Ibid. p. 133.
91bid. p. 134.
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Chapter 5

Discussion

5.1 The Axioms of Continuity

One of the most intricate questions regarding the axiomatization of Eu-
clidean geometry concerns the principle of continuity. As mentioned in
Section 1.1, one of the main defects in Euclid’s Elements was that continu-
ity of the line was assumed intuitively and not postulated. This problem
was eventually solved by Hilbert, who included two continuity axioms, the
Archimedean Axiom and the Completeness Axiom, in his second edition of
Grundlagen der Geometrie from 1903.

In the Congress article Brodén gives two continuity axioms, Axioms 15
and 16.2 In the 1890 article he gives two axioms, Axioms VI and VIL?
which are basically the same as the two axioms in the Congress article, at
least for Brodén. In this section I will discuss Brodén’s two versions of these
axioms in relation to Hilbert’s continuity axioms and related principles.

In his first edition of the Grundlagen der Geometrie, Hilbert gives only
one continuity axiom. This is the so-called Archimedean Axiom,* which he
formulates in the following manner:5

!Hilbert (1903) p. 16.

2See Section 4.2.

3See Section 3.4.

40tto Stoltz (1842-1905) was probably the first to refer to this axiom as the
Archimedean Axiom. Stoltz (1883) p. 504. Archimedes explicitly formulated an ax-
iom that agrees with this, but it was probably used even earlier.

5«Es sei A; ein beliebiger Punkt auf einer Geraden zwischen den beliebig gegebenen
Punkten A und B; man construire dann die Punkte A2, As, A4,..., S0 dass A1 zwischen
A und Ay, ferner As zwischen A; und Ag, ferner A3 zwischen A und A4 u. s. w. liegt
und iiberdies die Strecken AA1, A1 Az, A2 A3, A3A4,... einander gleich sind: dann giebt
es in der Reihe der Punkte Az, A3, A4,... stets einen solchen Punkt A, , dass B zwischen
A und A, liegt”. Quoted from Sjdstedt (1968) p. 884.
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Let A; be an arbitrarily chosen point on a line between the
arbitrarily chosen points A and B; if then the points As, As,
Ay,... are constructed, such that A; lies between A and A,, As
lies between A; and As, As lies between As and A4 and so on,
and the segments

AAI) A1A27 A2A33 A3A43

are equal to each other then, in the sequence A,, Asz, Ag,...,
there is a point A,, such then B lies between A and A,,.

A A1l Ao A3 A4 An-1 B Ay

This axiom corresponds to the process of estimating the distance be-
tween two points on a line by using a measuring stick. If we start at one
point and successively traverse equal distances along the line towards the
second point, the axiom guarantees that we will eventually pass the second
point. Euclid’s theory of proportion and the entire theory of measurements
depend on this axiom.b

In all editions of the Grundlagen der Geometrie Hilbert includes the
Archimedean Axiom. He slightly changes the formulation in later editions,
however, they are all equivalent.

In the Congress article Brodén claims that, with Axiom 15, which is
equivalent to his 1890 Axiom VI, he has a version of the Archimedean
Axiom.” However, this statement is not true. Brodén’s axiom gives an
ordering of certain points of the line, in the sense that he stepwise can walk
along the line, or successively traverse equally long segments along the line,
without coming back to the point of departure. The axiom implies that
the line can be extended indefinitely and consists of at least countably
many points. But it does not imply that it is always possible to pass
an arbitrarily chosen point on the line, and thus it does not imply the
Archimedean Axiom.

One could say that Brodén’s Axiom VI bounds the line from below, in
the sense that it forces the line to consist of at least countably many points
and to be extended to infinity. On the other hand, the Archimedean Axiom
in some sense bounds the line from above, forcing every point of the line
to be reachable.

The axioms Hilbert gave in 1899 are not enough to guarantee the con-
tinuity of the line, i.e., that the line is homeomophic to the real numbers

6Eves (1990) p. 86.
"Brodén (1912) p. 127.
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R. To complete the line he includes in the second edition of the Grundla-
gen der Geometrie? from 1903, a second axiom of continuity, the so-called
Completeness Axiom,? which was formulated in the following manner:'°

The elements (points, lines, planes) of geometry constitute a
system of objects which, if we assume the foregoing axioms,
does not admit any extension.

With this is meant that a proper extension in which all the axioms
remain true is not possible. If a point, before the extension, lies between
two other points, it should still do so afterwards, and congruent lines and
angles should stay congruent.!’ This axiom, together with the axioms it
depends on, immediately implies that the set of all points lying on a given
line is homeomorphic to the real numbers R, the set of all points of a plane
is homeomorphic to R?, and the set of all points in space is homeomorphic
to R3.

In the seventh edition of the Grundlagen der Geometrie,'? from 1930,
Hilbert gives a weaker version of the Completeness Axiom, since he realized
that it is enough to determine the continuity of the line with an axiom to
be able to prove the original Completeness Axiom:'?

The system of points on a straight line, with its relationships of
order and congruence, cannot be extended in such a way that
the relationship between these elements and also the character-
istics of the Axioms I-III of linear order and congruence, and of
Axiom V1,'* remain preserved.

Richard Baldus refers to the Completeness Axiom as Hilbert’s most original
achievement in the development of axiomatics.!> The character of the
Completeness Axiom differs from those of the other axioms, in that it

8Hilbert (1903).

9The ‘Completeness Axiom’ should not be confused with a ‘complete axiomatic sys-
tem’. This is just an unfortunate choice of words.

10«Dje Elemente (Punkte, Geraden, Ebenen) der Geometrie bilden ein System von
Dingen, welches bei Aufrechterhaltung sdmtlicher genannten Axiome keiner Erweiterung
mehr fihig ist”. Hilbert (1903) p. 16.

1 Hilbert (1909) p. 22.

12Hilbert (1930).

13«Das System der Punkte einer Geraden mit seinen Anordnungs- und Kongruenz-
beziehungen ist keiner solchen Erweiterung fihig, bei welcher die zwischen den vorigen
Elementen bestehenden Beziehungen sowie auch die aus den Axiomen I-IIT folgenden
Grundeigenschaften der linearen Anordnung und Kongruenz, und V1 erhalten bleiben”.
Ibid. p. 22.

14 Axioms I-III refers to the groups of axioms concerned with connection, order and
congruence, and Axiom V1 refers to the Archimedean Axiom.

15Baldus (1928) p. 322.
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does not state new relations between the basic notions, but says something
about the relation between the axiomatic system and the objects which
may conceivably satisfy it. The Completeness Axiom is a metatheoretical
statement, though in a peculiar sense, since the theory with which it is
concerned includes the axiom itself.'® However, the axiom can be expressed
in a different and more transparent manner. In 1930 Baldus showed that
the Cantorean Axiom!7 gives the full import of the Completeness Axiom:'®

If, on a straight line, there is an infinite sequence of segments
A, B, such that each of these segments has its endpoints within
the previous one and such that there is no segment on the line
inside all the segments A, B,, then there is a point within all
the segments A, B,,.

With Axiom VII, Brodén already had some type of Completeness Ax-
iom in 1890. Here he makes a construction to obtain a one-to-one corre-
spondence between all real numbers and the points on the straight line.
However, Brodén’s axiom does not have the metatheoretical character of
Hilbert’s version. Instead it involves a messy construction of the points of
the line, and assumes the existence of the points constructed in an infinite
process.

We can easily realize that Axiom VII implies Baldus’ version of the
Cantorean Axiom, and thus Hilbert’s Completeness Axiom. But the Can-
torean Axiom does not imply Brodén’s Axiom VII. We can see this since
Brodén’s axiom immediately implies a correspondence between every point
of the line and every real number, but the Cantorean Axiom does not
neccessarily imply that every point on the line has a corresponding real
number.?

16Torretti (1978) p. 234.
17The Cantorean Axiom is usually refered to as the Nested Intervals Theorem. Cantor
uses the principle in his first proof of the nondenumerability of the reals. Cantor (1874).
184Ljegt in einer Geraden eine unendliche Folge von Strecken A, B, derart, daf jede
dieser Strecken ihre Endpunkte innerhalb der vorhergehenden hat und dag es keine
Strecke auf der Geraden gibt, die innerhalb aller Strecken A, B, liegt, dann gibt es
einen Punkt, der innerhalb aller Strecken A, B, liegt”. Baldus (1930) p. 12.
19Veronese gives the following model of a non-Archimedean geometry, where
the Cantorean Axiom is fulfilled: In the Euclidean plane there is an infinite
sequence of equidistant parallel lines. If we assume
that every Euclidean line is run through from the left —
to the right, and the sequence of Euclidean lines is T

run through from bottom to top, we can consider the
collection of Euclidean lines to form a line in the new
geometry. If we compare the segment AB with the
segment AA; according to the illustration, we see that
the Archimedean Axiom is not fulfilled. It is easily seen that the Cantorean Axiom is
fulfilled, but Brodén’s Axiom VII is obviously not. This example also shows that the
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Brodén needs Axiom VI to be able to to construct the points of the
line corresponding to the integers. These are neccesary for him in order
to formulate Axiom VII. With Axiom VII the line corresponds to the real
numbers, and the Archimedean Axiom can be proven. However, Brodén
does not do this, and may not even be aware of the importance of the
Archimedean Axiom.

In the Congress article Brodén does not formulate a Completeness Ax-
iom, but only states:2°

Axiom 16: Completeness Axiom.

He is probably referring to Hilbert’s formulation of the axiom in the second
or third edition of the Grundlagen der Geometrie.?' This is a mistake
that leads to the most serious defect in the Congress article. Hilbert’s
Completeness Axiom is weaker than Brodén’s original formulation in Axiom
VII of 1890. When Brodén, in the Congress article, chooses to use Hilbert’s
Completeness Axiom instead of his own version and at the same time does
not give a stronger formulation of Axiom 15, the Archimedean Axiom can
no longer be proven and a non-Archimedean geometry is still possible.
Thus Brodén’s axiomatic system in the Congress article is not complete.
Brodén probably does not realize this in his eager efforts to point out
the similarities between his and Hilbert’s axiomatic systems, and thus by
mistake introduces this defect.

5.2 The Proof of Sufficiency

One of the criteria Brodén gives which a scientific system of geometry
should fulfill, is that the sufficiency of the axioms for arranging geometry
under certain logical forms should be clear. Since Brodén does not specify
what he means with ‘sufficiency’ or ‘logical forms’, it is difficult to inter-
pret this criterion in a reliable manner. As already mentioned in Section
3.2, I believe that Brodén considers his axioms to be sufficient if, through
deduction from them, he will obtain what we consider to be Euclidean
geometry.

In both of his articles Brodén, in the two-dimensional case, carries out
what he calls a ‘proof of sufficiency’. I considered the proof in detail in
Section 3.5. Considering this proof it is possible to further investigate the
meaning of the sufficiency criterion.

Archimedean Axiom is independent of the Cantorean Axiom. Veronese (1894) p. 184.
See also Baldus (1930) p. 5 and Enriques (1907) p. 37.

20Brodén (1912) p. 128.

2! filbert (1903) p. 16; Hilbert (1909) p. 22.
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In the proof Brodén, with the help of his axioms, constructs a coordinate
system and derives the equation for a straight line through two arbitrarily
chosen points. Thereafter he deduces the formula for computing the dis-
tance between these two arbitrary points. In this formula, Brodén claims,
the entire plane Euclidean geometry lies embedded, in the sense that ‘ev-
erything’ can be derived from this formula, after the required notions have
been defined in a suitable way.

By ‘everything can be derived’ Brodén probably implies that every
statement we intuitively consider to be a true statement of Euclidean ge-
ometry, can be derived from the axioms. This would give support to my
interpretation of the sufficiency criterion.

Brodén’s statement that Euclidean geometry lies embedded in the dis-
tance formula probably originates from his view on geometry. According
to him geometry, like any other science, seeks to reduce all phenomena to
motion, and motion is just a change in certain relations between objects.
With the distance formula all the changes in the relations between the ob-
jects can be described. In this sense it should be enough to deduce the
distance formula to be able to describe the entire Euclidean geometry, or
in Brodén’s words, to derive everything.

If the axioms are chosen in such a way that every statement we in-
tuitively consider should be true in Euclidean geometry actually can be
proven to be true, we could also consider the sufficiency of the axioms to
imply some type of completeness requirement. It could be compared to
what we today would call ‘completeness of an axiomatic system’, i.e., that
every statement that can be formulated within the system can be proven
either true or false. Thus, in this sense, it seems like Brodén, already in
1890, had some kind of intuitive feeling for the need of a completeness
requirement for an axiomatic system.

Contro claims that Brodén implicitly proves consistency in the 1890
article, but he does not develop this statement further.?? In fact, Brodén
never, not even in the Congress article, discusses consistency. But from our
point of view, Brodén’s proof of sufficiency could possibly be interpreted
as some kind of consistency proof, as I will try to explain:

Since Brodén has an empirical view of geometry and claims that expe-
rience cannot lead to logical contradictions, he must consider his system to
be without contradictions. Thus we could consider his system to be consis-
tent. In the proof of sufficiency of the axioms he has implicity shown that
from them he can construct a coordinate system, i.e., Cartesian geometry.
But, since his system is consistent and Cartesian geometry can be deduced
from it, he has proven consistency of Cartesian geometry.

However, I do not believe that Brodén had a general concept of consis-

22Contro (1985) p. 632.
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tency, for instance the concept later developed by Hilbert. Hilbert wanted
to change the concept of truth in mathematics, so that the notion that an
object exists is the same thing as saying that it is consistent with the rest
of the system, i.e., that there are no logical contradictions.?

In 1890, when Brodén wrote his paper, empiricist views were not uncom-
mon, in that mathematical truth was established by reference to ‘reality’.
There were no contradictions in a theory conforming to reality, because
this has no inherent contradictions. However it was difficult to have both
this concept of truth and also a view of mathematics as free, in the sense
that there are a lot of logically possible geometries.2* What about the con-
sistency of these other possibilities? Could there be contradictions? This
is a tension building up toward the end of the 19th century, and Hilbert’s
main object is to try to resolve it.

Hilbert’s school in the foundations of mathematics is called formal-
ism, but there is an older tradition of formalists from the 19th century:
Erdmann, Heine (who wrote Die Elemente der Functionslehre), Hankel,
Baumann, Grassmann (who wrote Lehrbuch der Mathematik fiir Hoheren
Lehranstalten) and Schroder (who wrote Algebra der Logik). It would be
interesting to examine their connection with the ideas of Brodén in a future
study.

5.3 The Problem of Dimension

In his 1890 article, Brodén claims that he has to introduce Axiom XVI,
saying that two planes cannot have only one point in common, to exclude
the fourth dimension.2? Later he makes a brief comment that it is not
the task of mathematics to investigate why space should have three dimen-
sions.26 These are the only times he mentions the concept of dimension in
the article.

To me it seems that Brodén has to introduce Axiom XVI since he does
not presuppose the space to have three dimensions. But he probably thinks
of the plane as being two-dimensional. This, and the fact that Axiom XVI
does not appear in the Congress article, made me think further about
the problem of dimension, i.e., whether Brodén’s system actually forces
geometry to be three-dimensional and whether Axiom XVT is necessary.

In 1890 Brodén introduces, with Axiom II, the line with the help of the
concept of Einziges.2” If the geometry should in any sense be Euclidean,

23yon Wright (1993)

24Compare to the discussion in Brodén (1890) pp. 218-220.
25Brodén (1890) p. 236.

26Tbid. p. 260.

27Tbid. p. 224.
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this forces the line to be of dimension one. However, in Axiom X, Brodén
introduces the plane to be a system of points, such that a straight line
through two of its points completely belongs to the system, without filling it
entirely. With this axiom the plane could be a hyperplane of any dimension
greater than or equal to two.

If, for example, we think of the plane as the hyperplane of dimension
three, there will not be a problem when we introduce Axioms XI, XII and
XIII, concerning symmetric equivalence. We could think of the symmetric
equivalence as a 180-degree rotation of the hyperplane around the line
determined by the two points in question.

However, there will be a problem in introducing Axiom XIV, the Parallel
Axiom, if the plane is a hyperplane of dimension three or greater. This
axiom is crucial, since the complete locus of symmetrically corresponding
points with the same mutual distance as the distance between two given
points must form two lines. This is not the case in the hyperplane version. If
the plane would be of three dimensions, then the complete locus would form
a cylinder instead. This implies that the plane must be of two dimensions.

Still, it might be possible that the entire space is of dimension four
or higher. But, if this were the case, and we chose three arbitrary points
in space, then there would be infinitely many planes through these three
points, also when they are not in a straight line, and hence Axiom XV would
not be fulfilled. Thus the plane must be two-dimensional and embedded in
a three-dimensional space, just as we would wish.

So, the first 15 axioms in the 1890 article force space to be of three
dimensions, and hence it is unnecessary to introduce Axiom XVI to exclude
a fourth dimension. The axioms already given will imply that two planes,
of dimension two and imbedded in three dimensions, cannot have only one
point in common, since they are complete. Thus Axiom XVI is dependent
on the previous axioms, and should be excluded.

In the Congress article Brodén removed Axiom XVI. However, this does
not necessarily mean that he realized that the axiom was superfluous in the
1890 axiomatic system, since in the Congress article the problem of dimen-
sion does not depend on the Parallel Axiom. Brodén chooses to introduce
the plane and the line in a different way, so the problem of dimension does
not arise.

If we assume space is of dimension n, and introduce the plane with
Axiom 2, then the plane must necessarily be of dimension n — 1. Axiom 3
introduces the line in such a way that it necessarily must be of dimension
n—2 and, in a similar manner, Axiom 4 introduces the midpoint that must
be of dimension n — 3. But Axiom 4 also states that the midpoint must,
obviously, consist of only one point, and thus be of dimension 0. Hence the
space is of dimension three, and Brodén does not have to worry about the
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dimension anymore. Thus, he does not have to include Axiom XVI in the
Congress article.

5.4 Influences Upon Brodén

In both his articles Brodén refers to a number of works by other mathemati-
cians and philosophers. In this section I will discuss some of the references
Brodén gives, and by whom he might have been influenced.

In the 1890 article, most of the references are given in the beginning,
where Brodén treats philosophical questions regarding the nature of ge-
ometry. In his view on the status of geometry as a natural science, it
seems that Brodén is influenced by Helmholtz. He refers, in particular,
to two of Helmholtz’ articles: Uber den Ursprung und die Bedeutung der
Geometrischen Aziome, from 1876, and Uber den Ursprung und Sinn der
geometrischen Sitze, from 1882.2%8 With these two articles Helmholtz took
part in a debate with Kantian philosophers about the epistemological status
of non-Euclidean geometry. He argued that, in general, geometry derives
from physical measurements, rather than from a priori features of our spa-
tial intuition.?? This implies that Euclidean geometry only represents one
possible outcome of our spatial measurements, and therefore it is an em-
pirical choice between it and various non-Euclidean geometries. Helmholtz
understood geometry to be an empirical science, but he also recognized
its’ status as a formal deductive structure that stands independently of its’
intutive or sensory content.?°

We can recognize this view when we read Brodén’s 1890 article. Brodén
names empirical evidence as one of the criteria for how his system should
be built up.3! When it comes to the choice between Euclidean and non-
Euclidean geometry, Brodén talks about the ‘approximative’ validity of the
Parallel Axiom, Axiom XIV.32 It is not impossible, he claims, that this
axiom is not true. If it is not true, a ‘pseudo-spheric’, i.e., hyperbolic,
geometry is obtained, where there are infinitely many lines through a given
point outside a given line, that do not meet this line. Again referring
to Helmholtz, Brodén questions whether Euclidean geometry is the only
possible geometry in which we live, but until further notice he admits the
validity of Euclidean geometry, since no measurements have so far been
able to demonstrate something else.>® These statements on the nature of

28 Helmholtz (1876); Helmholtz (1882).
29DiSalle (1993) p. 498.

301bid. p. 500.

31Brodén (1890) p. 220.

32Tbid. p. 257.

33Tbid. p. 258.
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geometry suggest that Brodén had read and was influenced by Helmholtz.

In addition to the references made to Helmholtz, Brodén also refers to
Richard Dedekind (1831-1916) and Georg Cantor (1845-1918).3* Specif-
ically, he refers to Dedekind’s article Stetigkeit und irrationale Zahlen,*
where the theory of Dedekind cuts for defining the real numbers is devel-
oped. Another article referred to is Was sind und was sollen die Zahlen.3®
Here Dedekind, by using set-theoretic ideas, gives a theory of the inte-
gers. Furthermore, Brodén mentiones two articles by Cantor, Uber die ver-
schiedenen Standpunkte in bezug auf das aktuale Unendliche and Beitrige
zur Lehre vom Transfiniten.®” Regarding the latter, he probably gave the
wrong title and actually meant Mitteilungen zur Lehre vom Transfiniten.
Both these articles present discussions of philosophical questions concern-
ing the infinite. It is not immediately clear why Bodén chooses to refer to
them.

Brodén refers to Cantor when he claims that arithmetic is independent
of space and time.?® In the same discussion Brodén claims that geome-
try can be expressed by arithmetic. This idea he probably attributes to
Dedekind. Brodén’s conclusion is that geometry is independent of space
and time, and thus becomes a possible logical form among many others,
whose special importance is gained through reality.

In this discussion, Brodén takes Cantor as an authority to criticize
Kant’s view of geometry as being the result of pure intuition of space and
time. Cantor is a platonist who considers mathematical truths to exist a
priori, independent of us.?® But at the same time, Brodén considers his
own view on the nature of geometry to be a development of Kant’s theories.
This shows perhaps a lack of deeper thought behind Brodén’s philosoph-
ical discussion. On the one hand, he is clearly influenced by Helmholtz’
empirical view of geometry, and, on the other, he appeals to Cantor who
does not consider geometry to be an empirical science.

Brodén is influenced by ideas about how geometry and arithmetic can
be detached from space and time, and that there are several geometries that
are logically possible. But the problem with his formalism’ (recall the end
of Section 5.2) is that he also appeals to reality in a highly eclectic move:
Reality is free from contradictions and this is the basis for determining
whether his axiomatization is correct.

When we consider the mathematical part of Brodén’s 1890 article, we
see further traces of possible influence from Cantor. If we compare Brodén’s

34Tbid. (1890) p. 220.

35Dedekind (1872).

36Dedekind (1888).

37These articles can be found in Cantor (1932).

38Brodén (1890) p. 219. See also Section 3.1 for a further discussion on this.
39Dauben (1979) p. 83.
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Axiom VII, where he gets, through a construction, a one-to-one correspon-
dence between the real numbers and the points of the line, to Cantors’
theory of the real numbers, we can see some similarities. Cantor constructs
the real numbers from the rationals by considering Cauchy sequences of
rational numbers, i.e., sequences with the property that for any given ¢, all
the members of the sequence except a finite number differ from each other
by less than €. Each such sequence is a real number. Brodén transfers
this idea to the straight line, where he considers a sequence of binary frac-
tions corresponding to bisected distances. However, he does not give any
specific references to Cantor regarding this.

Brodén begins his Congress article by claiming that his 1890 axiomatic
system exhibits similarities with those of Hilbert, Veronese and Pieri, among
others. The interesting thing is that they published their work on the foun-
dations of geometry after 1890, and thus Brodén cannot, at least in his 1890
work, have been influenced by them. However, it is also unlikely that they
have been influenced by Brodén. Hilbert and Pieri might, of course, have
read the summary of Brodén’s 1890 article in Jahrbuch iber die Fortschritte
der Mathematik,*' where he gives the basic mathematical ideas behind his
system, but they most certainly did not read the whole article, since it was
published in Swedish.

Brodén does not refer to any specific articles, but concerning Hilbert it
is obvious that he is referring to the second or third edition of Grundlagen
der Geometrie,*? considering that the first edition did not include a Com-
pleteness Axiom. With this reference, Brodén probably wants to point out
the importance of his work and stress, in particular, the early appearance
of his first article. This is a very intriguing comment, since, in the 1890
article, he claims that his attempt to axiomatize geometry should in no
way be considered original.*3

Furthermore, the similarities between Brodén’s 1890 axiomatic system
and that of Hilbert are not as prominent upon closer inspection as one might
first think. Hilbert’s system is at a more abstract level. He conceives three
different sets of things, that might be called ‘points’, ‘lines’ and ‘planes’,
but he does not assign an explicit meaning to them. They stand in certain
mutual relations whose exact description is given by the axioms, which
are independent of physical reality.** This differs from Brodén’s way of
proceeding. He has not, even in the Congress article, freed himself from
the empirical view of geometry.*5

40Kline (1972) p. 984.

“1Brodén (1893).

“2Hilbert (1903); Hilbert (1909).
43Brodén (1890) p. 217.

44Kline (1972) p. 1013.
45Brodén (1912) p. 123.
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Brodén mentions Veronese and Pieri at the end of the Congress article
in a short discussion on the choice to reduce the notions to the two ba-
sic notions ‘point’ and ‘immediate equality of distance’.#®¢ He claims that
Veronese and Pieri have expressed the possibility of constructing an ax-
iomatic system for Euclidean geometry with these two basic notions, but
that they, as far as he knows, have not carried through this thought. Contro
claims that this statement shows that Brodén did not know of Pieri’s La ge-
ometria elementare istituita sulle nozioni di punta e sfera from 1908, where
he does exactly this.*” Probably Brodén read of Pieri’s work in Enriques’
article in Enzyklopidie der Mathematischen Wissenschaften,*® which was
written the year before Pieri’s article, and thus only refers to his earlier
work. Considering Veronese, Brodén probably refers to Grundziige der Ge-
ometrie, from 1894, which was a translation of his 1891 book in Italian. It
is not possible that Brodén and Veronese were influenced by each other;
Veronese’s Italian edition appeared after Brodén’s 1890 article, which he
most certainly did not know of, but before Brodén’s summary in Jahrbuch
iber die Fortschritte der Mathematik appeared. Thus it seems like Brodén
was unaware of the development in Italy when he wrote his 1890 article.

It is remarkable that Brodén in neither of his articles refers to Pasch,
whom he should have known of if he was seriously working on the foun-
dations of geometry. Of course it does not necessarily follow that Brodén
did not know of Pasch, just because he did not refer to him. But Brodén’s
way of building up his axiomatic system renders unlikely any knowledge of
Pasch’s work, or at least any influence of his work upon Brodén. For Pasch,
the concept ‘between’ was of great importance in building up projective ge-
ometry. Brodén cannot define ‘between’ until after Axiom VI, and he does
not have to use the concept at all throughout his system.

Characterizing Brodén’s axiomatic system is his use of symmetries, the
symmetric correspondence in the line and the symmetric equivalence in the
plane. I have not found any traces of by whom Brodén might thus have
been influenced. Since Brodén, in 1890, gives careful references concerning
his discussion on the more philosophical questions regarding the nature of
geometry, but does not give any references concerning his axiomatic system,
and in particular his use of symmetries, this suggests that the latter was
his own idea. The fact that, in the Congress article, he does not give any
references to material that preceeded his earlier work further supports this
claim.

46Brodén (1912) p. 134.
47Contro (1985) p. 634.
48Enriques (1907).
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Chapter 6

Conclusions

In this thesis I have studied an article written by Torsten Brodén and
published in Pedagogisk Tidskrift in 1890. In the article Brodén considers
the foundations of geometry from a pedagogical and philosophical point of
view. I have analysed the article in detail with respect to the philosophical
and mathematical content and considered it in connection with Brodén’s
later work on the foundations of geometry and with respect to the time in
which he lived.

To motivate his axiomatic system, Brodén gives a philosophical discus-
sion on the nature of geometry. I found that, in many aspects, there are
similarities between the conceptions of Brodén and Helmholtz. Brodén has
an empirical view of geometry, and wants to obtain a theoretical basis for
the fact that the external reality as described by Euclidean geometry cor-
responds to experience. This idea agrees with Helmholtz’ understanding of
Euclidean geometry as representing the only possible outcome of our spa-
tial measurements. But, at the same time, appealing to Cantor, Brodén
considers geometry to be an a priori possible logical form. Brodén’s dis-
course shows him to be an eclectic philosopher; he borrows points of view
from various schools of thought.

Brodéns aim is probably a pedagogical, rather than a mathematical or
philosophical one. He claims that there is nothing new in his work from
a mathematical point of view. Rather, he asserts that he wants to give
a clear axiomatization of Euclidean geometry. But he seems to have too
much trouble giving a philosophical justification for his axiomatization,
which perhaps blurs his aims a little. He wants to claim that his system is
correct by referring to the inherent consistency of reality. At the same time
he declares that there can be many possible geometries. It is a little difficult
for the reader to understand what status his particular axiomatization has
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among these many other possibilities.

Brodén gives a number of criteria which a scientific system of geometry
should fulfill. Among other things, he gives a criterion of independence of
the axioms from one another. However, the meaning of each his axioms
depends in turn upon preceeding ones. This suggests that Brodén considers
an axiom to be independent if it cannot be deduced from those previously
stated. Implicity he performs a proof of independence of a subset of his
axioms by constructing a model of a finite geometry.

Brodén also gives a criterion of empirical evidence for the axioms, which
further suggests the influence of Helmholtz. Since Brodén considers expe-
rience not to lead to logical contradictions, this could in a weak sense be
considered as some type of consistency requirement, as later developed by
Hilbert, even though Brodén does not have such a concept.

Another criterion given is that of sufficiency of the axioms. Considering
the proof of sufficiency, which Brodén performs in the latter part of the
article, I interprete this criterion to assert the possibility of proving every
statement one intuitively considers as belonging to the geometry. From
our point of view one could possibly claim that this implies some kind of
completeness requirement.

Brodén’s view of geometry as being a science that seeks to reduce dif-
ferent relations to motion, guides him in his choice to reduce the notions
of geometry to ‘point’ and ‘immediate equality of distance’. With these he
obtains a minimal set of basic notions that cannot be reduced further. A
similar choice of basic notions was made by Pieri in 1908, but I have not
found any trace of influence from him, or anyone else, on Brodén regarding
this matter.

With the help of the basic notions, Brodén develops the system of ax-
ioms. Characterizing the system is the use of symmetries on the line and in
the plane. Brodén does not give any indications of by whom he may have
been influenced in this use of symmetries, which helps him in a beautiful
way to develop his system.

In addition to the axioms of symmetry, Brodén gives two continuity
axioms. Here we can see the further influence of Cantor upon Brodén.
Brodén tranfers Cantor’s theory of the real numbers to the line, where a
Cauchy sequence of rational numbers correponds to a successive bisection of
a segment. From this he obtains a bijection between the real numbers and
the points of the line, which has been one of the main obstacles throughout
the history of the axiomatization of geometry. Furthermore, these two
axioms imply Hilbert’s two continuity axioms, the so-called Archimedean
and Completeness Axioms.

To conclude, it could be said that, even though Brodén is eclectic in
his philosophy of geometry and did not possess the general concepts of a
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formal system that would later appear with Hilbert, he still manages to
present an axiomatic system of Euclidean geometry that is in many ways
remarkable.

57



58



References

Avellone, M., Brigaglia, A., Zappulla, C. (2002). The Foundations of Pro-
jective Geometry in Italy from De Paolis to Pieri. Archive for History of
Ezact Sciences, 56, pp. 363-425.

Baldus, R. (1928). Zur Axiomatik der Geometrie. I. Ueber Hilberts Voll-
standigkeitsaxiom. Mathematische Annalen, 100, pp. 321-333.

Baldus, R. (1930). Zur Axiomatik der Geometrie. III. Ueber das Archime-
dische und das Cantorsche Axiom. Sitzungsberichte der Heidelberger Aka-
demie der Wissenschaften, Mathem.-naturwiss. Klasse, Jahrgang 1930, 5.
Abhandlung.

Bolyai, W. (1851). Kurzer Grundriss eines Versuchs. Maros Vasarhely.

Bolyai, W., Bolyai, J. (1913). Geometrische Untersuchungen. Translated
by P. Stackel. Leipzig: Druck und Verlag von B. G. Teubner.

Brodén, F. (1950). Testamente. Kungliga Fysiografiska Sallskapet i Lund.
Lund.

Brodén, T. (1886). Om rotationsytors deformation till nya rotationsytor
med sarskildt afseende pd algebraiska ytor. Akademisk afhandling. Lund:

Lunds universitet.

Brodén, T. (1890). Om geometriens principer. Pedagogisk Tidskrift, 26,
pp. 217-236, 255-271.

Brodén, T. (1892). Reseberdttelse. Handskriftsavdelningen, Lunds univer-
sitetsbibliotek. Lund.

59



Brodén, T. (1893). Om geometriens principer. Jahrbuch iber die Fort-
schritte der Mathematik, Jahrgang 1890, pp. 540-541.

Brodén, T. (1912). Ett axiomsystem fér den euklidiska geometrien. Beret-
ning om den anden Skandinaviske Matematikerkongres i Kjgbenhavn 1911.
Kjgbenhavn: Nordisk forlag.

Cantor, G. (1874). Ueber eine Eigenschaft des Inbegriffes aller reellen alge-
braischen Zahlen. Journal fiir die reine und angewandte Mathematik, 77,
pp. 258-262.

Cantor, G. (1932). Gesammelte Abhandlungen mathematischen und philoso-
phischen Inhalts. Berlin: Springer-Verlag.

Contro, W. (1970). Die Entwicklung der Geometrie zum hypotetisch-deduk-
tiven System. Fin Beitrag zur Geschichte der Grundlagen der Geometrie.
Inaugural-Dissertation. Frankfurt am Main: Johann Wolfgang Goethe-
Universitéit.

Contro, W. (1976). Von Pasch zu Hilbert. Archive for History of Ezact
Sciences, 15, pp. 283-295.

Contro, W. (1985). Eine schwedische Axiomatik der Geometrie vor Hilbert.
Torsten Brodéns ‘Om geometriens principer’ von 1890. Festschrift fiir Hel-
mut Gericke, Band 12, pp. 625—636. Stuttgart: Franz Steiner Verlag Wies-
baden GmbH.

Dauben, J. W. (1979). Georg Cantor. His Mathematics and Philosophy of
the Infinite. Cambridge: Harvard University Press.

Dedekind, R. (1872). Stetigkeit und Irrationale Zahlen. Braunschweig: F.
Vieweg & Sohn.

Dedekind, R. (1888). Was sind und was sollen die Zahlen. Braunschweig:
F. Vieweg & Sohn.

DiSalle, R. (1993). Helmholtz’s Empiricist Philosophy of Mathematics. Be-
tween Laws of Perception and Laws of Nature. In: Hermann von Helmholtz
and the Foundations of Nineteenth-Century Science. Cahan, D. ed., pp.
498-521. Berkeley: University of California Press.

60



Enriques, F. (1907). Prinzipien der Geometrie. Encyklopidie der Mathema-
tischen Wissenschaften mit Einschluss IThrer Anwendungen, Dritter Band:
Geometrie, pp. 1-129. Leipzig: Druck und Verlag von B. G. Teubner.

Eves, H. (1990). Foundations and Fundamental Concepts of Mathematics.
Third edition. Boston: PWS-Kent Publishing Company.

Freudenthal, H. (1957). Zur Geschichte der Grundlagen der Geometrie.
Zugleich eine Besprechung der 8. Aufl. von Hilberts “Grundlagen der Ge-
ometrie”. Niew Archief voor Wiskunde, 4, pp. 105-142.

Gauss, C. F. (1973). Werke. Achter Band. Hildesheim: G. Olms Verlag.

Garding, L. (1994). Matematik och matematiker. Matematiken i Sverige
fore 1950. Lund: Lund University Press.

Hallett, M., Majer, U. eds. (2004). David Hilbert’s Lectures on the Foun-
dations of Geometry 1891-1902. Berlin: Springer-Verlag.

Heath, T. (1956). Euclid’s Elements. New York: Dover Publications.

Helmholtz, H. (1876). Uber den Ursprung und Bedeutung der geometri-
schen Axiome. Vortrag, gehalten im Docentverein zu Heidelberg im Jahre
1870. Populire Wissenschaftliche Vortrige. Drittes Heft. Braunschweig:
Druck und Verlag von Vieweg und Sohn.

Helmholtz, H. (1882). Uber den Ursprung und Sinn der geometrischen
Satze; Antwort gegen Herrn Professor Land. Wissenschaftliche Abhand-
lungen, zweiter Band, pp. 640-660. Leipzig.

Hesseling, D. (2003). Gnomes in the Fog. The Reception of Brouwer’s In-
tuitionism in the 1920s. Basel: Birkhauser Verlag.

Hilbert, D. (1903). Grundlagen der Geometrie. Zweite Auflage. Leipzig:
Druck und Verlag von B. G. Teubner.

Hilbert, D. (1909). Grundlagen der Geometrie. Dritte Auflage. Leipzig:
Druck und Verlag von B. G. Teubner.

Hilbert, D. (1930). Grundlagen der Geometrie. Siebte Auflage. Stuttgart:
B. G. Teubner Verlagsgesellschaft.

61



Klein, F. (1873). Ueber die sogenannte Nicht-Euklidische Geometrie. Math-
ematische Annalen, 6, pp. 112-145.

Kline, M. (1972). Mathematical Thought from Ancient to Modern Times.
New York: Oxford University Press.

Luzin, N. (1998). Function II. American Mathematical Monthly, 105, pp.
59-67.

Marchisotto, E. A. (1993). Mario Pieri and His Contributions to Geometry
and Foundations of Mathematics. Historia Mathematica, 20, pp. 285-303.

Nielsen, N. ed. (1912). Beretning om den anden Skandinaviske Mate-
matikerkongres i Kjsbenhavn 1911. Kjgbenhavn: Nordisk forlag.

Pasch, M. (1882). Vorlesungen iber neuere Geometrie. Leipzig: Druck und
Verlag von B. G. Teubner.

Pasch, M. (1976). Vorlesungen iber neuere Geometrie. Zweite Auflage, mit
einem Anhang: Die Grundlagen der Geometrie in historischer Entwicklung
von M. Dehn. Berlin: Springer-Verlag.

von Plato, J. (1994). Creating Modern Probability. Its Mathematics, Phy-
sics and Philosophy in Historical Perspective. Cambridge: Cambridge Uni-
versity Press.

Sjostedt, C. E. (1968). Le axiome de paralléles de Fuclides a Hilbert. Stock-
holm: Natur och Kultur.

Stoltz, O. (1883). Zur Geometrie der Alten, insbesondere iiber ein Axiom
des Archimedes. Mathematische Annalen, 22, pp. 504-519.

Strindbergsséllskapets skrifter (1972). August Strindbergs brev XIII. Sep-
tember 1898—december 1900. Stockholm: Bonniers.

Svenskt Biografiskt Lexikon, Band 6 (1925). Stockholm: Norstedts Tryck-
eri.

Toepell, M.-M. (1986). Uber die Entstehung von David Hilberts "Grundla-
gen der Geometrie”. Gottingen: Vandenhoeck & Ruprecht.

62



Torretti, R. (1978). Philosophy of Geometry from Riemann to Poincaré.
Dordrecht: D. Reidel Publishing Company.

Veronese, G. (1894). Grundziige der Geometrie von mehreren Dimensionen
und mehreren Arten gradliniger Einheiten in elementarer Form entwickelt.
Leipzig: Druck und Verlag von B. G. Teubner.

von Wright, G. (1993). Logik, filosofi och sprik. Nora: Nya Doxa.

Zeilon, N. (1931). Torsten Brodén. Kungliga Fysiografiska Sdllskapets i
Lund Forhandlingar, pp. 59*—61*. Lund.

63



