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Abstract
Let X, X1, ... be a geometrically ergodic Markov chain with state space X and
stationary distribution 7. It is known that if h : X — R satisfies 7(|h|**¢) < 0
for some £ > 0, then the normalized sums of the X;’s obey a central limit theorem.
Here we show, by means of a counterexample, that the condition 7 (|h>*¢) < oo
cannot be weakened to only assuming a finite second moment, i.e., 7(h%) < oo.

1 Introduction

Let X, X1,... be a Markov chain with state space X, transition kernel P, and a unique
stationary distribution 7, and let h : X — R be some real-valued function of the state
space. This paper is concerned with under what conditions on the Markov chain (i.c.,
on P) and on h the sum Y7, h(X;) is asymptotically normal as n — oo. In other
words, when does a central limit theorem hold?

To state the results, we first need some definitions. For two probability measures
and v on X, define their total variation distance drvy(u,v) as

drv(p,v) = Sl;plxt(A) - v(4)|

where the supremum is taken over all measurable A C X.

We write P"(z, A) for the n-step transition law for the Markov chain, i.e., P"(z, A) =
P(X, € A| Xo = z). If the chain starts in state Xo = z, then the distribution of X,, is
P"(z7 )

Definition 1.1 The Markov chain with transition kernel P and unique stationary dis-
tribution 7 is said to be ergodic if for any x € X we have

"1520 dTV(Pn(xz ~),7I’) =0.
If furthermore there exist C(z) and a p < 1 such that
dry(P*(z,),m) < Clz)p” (D

for every x and every n, then the chain is said to be geometrically ergodic. Finally,
if in (1) we can take C(z) to be a constant (i.e., independent of z), then the chain is
said to be uniformly ergodic.

*Research supported by the Swedish Research Council.

Write N(0,0?) for the Gaussian distribution with mean 0 and variance o?; we allow for
the possibility 02 = 0, in which case N(0,0?) simply is a unit point mass at 0. The
following result goes back to Ibragimov and Linnik [4].

Theorem 1.2 If X(,X1,... is a geometrically ergodic Markov chain with stationary
distribution 7, and if for some € > 0 the function h : X — R satisfies 7(|h|**¢) < oo,
then there exists a o such that the normalized sum

L S ih(x) — n(n))
=1

(3

converges in distribution to a N(0,02) distribution.

It is known under certain additional assumptions that for asymptotic normality, the
condition 7 (|h|?t¢) < oo can be weakened to just a finite second moment: w(h?) < oc.
In particular, this is true if geometric ergodicity is strengthened to uniform ergodicity,
as shown by Cogburn [2], and it is also true if the chain is assumed to be reversible,
as shown by Roberts and Rosenthal [5]. But is it true in gencral? In a recent survey
paper, Roberts and Rosenthal [6] emphasize the importance of this question to Markov
chain Monte Carlo. Here we will show, by means of a counterexample, that the answer
is no:

Theorem 1.3 There exists a geometrically ergodic Markov chain Xy, X1,... with sta-
tionary distribution 7, and a function h : X — R satisfying w(h?) < oo, such that the
following holds. For no choice of o® does

. g[h(xn —x(w)

converge in distribution to a N(0,0%) distribution.

In the example we shall exhibit, we will see that no other way of normalizing sums (as
opposed to the usual ﬁ) will recover the asymptotic normality. It is also worth men-
tioning that no fancy state space is needed; in the example X will in fact be countable.

The rest of the paper is devoted to proving Theorem 1.3. In Section 2 we define
the Markov chain that will be used in the counterexample, and demonstrate that it is
geometrically ergodic. Then, in Section 3, we introduce the function kA and show that
it has the properties needed to serve as a counterexample in Theorem 1.3.

2 The Markov chain

We first define the state space X on which the Markov chain will be living. Let X denote
the set of all integer triples (a, b, c) such that a > 1, b € {1,...,a} and c € {-1,1}, and
let X = {0} UX. For any z € X, define a(z), B(z) and y(z) as

ifz=0
if z = (a,b,c) € X, &)

ifz=0
ifz=(ab,c) eX,




'y(z)={c ;izz(()a,b,c)eé\?. @)

The dynamics of the Markov chain X, X1,... is as follows. It is only at the times
when X; = 0 that there is any actual randomness in the choice of the next state X;;1.
If X; is in state (a,b,¢) € X, then the chain moves with probability 1 to state

0 ifb=1
{ (a,b—1,¢) otherwise. &)
If, on the other hand, X; = 0, then the next state is chosen from X according to

0 with probability %
2-(a+2) jfg=1p (5)
0 otherwise.

Xz+1 =

(a,b,¢) with probability {

The casiest way to think of this Markov chain is as follows. Let ..., Y_;,Yp,Y,... be
a sequence of ii.d. random variables such that P(Y; = 0) = P(Y; = 1) = 1/2. Then
construct ..., X_1, Xo, X1,... by

e if Y; =0, then let X; =0,
o otherwise, let X; = (a,b, ¢), where

— a is the length of the consecutive sequence (run) of I’sin (...,Y 1,Y¥,,Y1,...)
that contains Y;,

— b is the number of 1’s in this run remaining at time 7 (including Y; itself),

— for each run of 1’s in (...,Y 1,Y;,Y3,...), ¢ is taken to be identical in all
corresponding X;’s, taking value —1 or 1 with probability 1/2 each, indepen-
dently for separate runs.

That this indeed produces a Markov chain with the desired transition kernel is imme-
diate from the construction. It is also clear the the chain is irreducible and aperiodic,
and has a stationary distribution 7 given by

7(0)

and, for any (a,b,c) € X,
7((a,b,c)) = 2 (e+3)

In order for this construction to be useful as a counterexample in Theorem 1.3, we need
to prove the following.

Proposition 2.1 The Markov chain with state space X and transition kernel given by
(4) and (5) is geometrically ergodic.

Proof: Pick any state z € X, and let X¢, X1, ... be a Markov chain with the prescribed
transition kernel starting in X¢ = . We will construct this chain together with another
Markov chain X, X1, ... with the same transition kernel, but with X} chosen according
to . Then X} will have distribution 7 for any 4, and it follows by the usual coupling
inequality that for any n we have

dTv(P"(z, ')77’-) < P(Xn 76 X’n) (6)

So in order to prove rapid decay of dpy(P"(z,-),n), the challenge is to produce a
coupling where the two chains coalesce (and stay together) as carly as possible.

For any fixed z € X, there exists a deterministic number & > 0 such that if X = z,
then we know for certain that X will equal 0. Indeed, if z = 0, then we can take k = 0,
while if z = (a, b, ¢), then we can take k£ = b. In both cases, k = B(z); hence 8(X;) may
be interpreted as the waiting time from time ¢ until the chain will hit the state 0.

To produce the coupling, we begin by generating Xg, X1,..., Xy, which is a deter-
ministic sequence. We know that X = 0, and by integrating B with respect to P(0,-)
(i.e., the transition probabilities indicated in (5)), we get that

P(ﬂ(Xk+1) = Z) = 2_(i+1) fori=0,1,2,... (7)

Furthermore, Xl’chl has distribution 7, and integrating S with respect to 7 yields that
B(X},,) has the same distribution (7) as 8(Xgy1). We are thercfore free to pick X4
and X}, in such a way that P(8(Xyy1) = B(X},,)) = 1; let us do that. (For complete-
ness, we also fill in X'(k), X'(k — 1),..., X} backwards in time using the time-reversal
of the transition kernel P.) Then the two chains will continue deterministically until
and including time k + 1 4+ 8(Xk41) when they are both forced to take value 0. From
that time and on, we can gencrate the X, chain and the X], chain by letting them
make identical moves according to P. This defines the coupling, which for any n has
the property that

P(Xn #X;) < P(n<k+1+p8(Xes))
= P(B(Xg41) >n—k—1)
1 forn <k
(%)nik forn >k

. . 1 n—k k(1\" .
which for any 7 is bounded by (5) =2 (5) . Hence, using (6), we get

dry(P(z, ),m) < P(Xn #Xp) < 2 (1)"
= ofl@) (;)"7

2

which means that the chain is geometrically ergodic with p = % and O(z) = 28 ). O

Remark. Readers interested in the subtleties of coupling of Markov chains may note
the following feature of the above coupling. Even though the conditional distribution of
Xk+1 given (Xg, X1,... Xy) is given by (5) as it ought to (otherwise Xy, X1,... would
have the wrong distribution and the coupling would not be correct), we get a different
distribution of Xy, if we condition on the past of both chains, i.c., on (Xg, X1,... X)
and on (Xg, X1,...X}). Indeced, if B(X}) > 0, then X is forced to take a value such
that B(Xx11) = B(X},)—1, which is clearly not in agreccment with (5). In the language of
Rosenthal [7], this means that we are dealing with a non-faithful coupling. Non-faithful
couplings are unusual in applications; see also Haggstrom [3] for an example of the kind
of counterintuitive behavior they may exhibit. O

3 The function h

The choice of the function i : X — R will be made with the specific target of making the
partial sums Y i, X; fit the following lemma, which deals with a situation reminiscent




of Twin Peaks.

Lemma 3.1 Let Z,Zs,... be a sequence of real-valued random variables with the prop-
erty that there exist arbitrarily large n such that for some normalizing constants s, we
have P

P <—1.001 << —0.999) >0.1

Sn

Z,

P (0.999 << 1.001) >0.1.
Sn

Then, for no choice of y1, pa, ... and 01,09, ..., does ZL[;”—" converge in distribution to

N(0,1).

Proof: Obvious. m]

In the construction of h, we will let {A}32, and {B.}32, be two strictly and rapidly
increasing sequences of positive integers — precisely how rapidly will soon be specified.
Recall from (2) and (3) the definitions of a(z) and ~(z), and let
Apt2 .
h(z) = %2 z y(z) if a(z) = Ay, for some k
0 otherwise.

We also define a kind of truncation of h by sctting

A
h = %21#7(99) if a(z) = Ay, for some k < m
m(z) = k ;
otherwise.

Note that under 7, y(z) equals —1 and +1 with equal conditional probabilities given
a(z). Hence, by symmetry, and the fact that h,, is bounded, we get w(hp,) = 0.
Furthermore, by Theorem 1.2, there exists a oy, such that

T2 Y (X ®)

converges in distribution to N(0,02,).

We now go on to specify the sequences {A;}32, and {Bx}2,. First set, somewhat
arbitrarily, Ay = By = 1. This is enough to define the truncated function h;. To define
Ag, Az, ... and By, Bs, ..., we go on inductively as follows.

Suppose that A;,..., A 1 as well as By, ..., By are specified; then we also know
the truncated function hy_1, and the variance o2 _, arising in the asymptotic distribution
of (8) with m = k — 1. We are then free to choose first By and then Ay large enough so
that the following conditions hold.

(i) By, > 300001

(ii) Ay is large enough so that the approach to normality in (8) with m = k-1
guarantees that

Ap+2

1 24k

Pl—— > m1(Xi) € (=30k-1,306—1) | > 0.99
(\/2Ak+2 =

(iii) Ay >2¢B2
(iV) Ap > A 1+ 10
(That (ii) can be ensured by picking Ay large is, of course, due to the fact that
\/% f33 e 24y > 0.99.) Thus, Ay and By, arc specified, and the induction can con-
tinue.
This defines the function h. To use h as a counterexample for Theorem 1.3, we first

need to establish that it has a finite second moment under the stationary distribution
.

Lemma 3.2 With h defined as above, we get w(h?) < occ.

Proof: For k =1 we have that

Ap+2

m({z € X : a(z) = Ax}) (Bki—:> _ %(23/2)2 -1

and a further direct calculation gives

n(h?) = m({z € X : a(z) = Ax}) (k

k=1

o0
1+ Z Ap2 (At
k=2

00B2
1+) =%
= Ak

& 3

< 1+Y 27k =1

k=2 2

where the inequality is due to condition (iii). O

For the next lemma, we introduce for simplicity the notation Z, = 37, X; and Cy, =
2Ak+2_

Lemma 3.3 Let the chain Xg, X1,... start according to the stationary distribution .
Then, for all sufficiently large k, we have

Z
G < —0.999) > 0.1 (9)

P (—1.001 <
= Bp/Cy

Zg,

P (0.999 < < 1.001) > 0.1. (10)
Bp/Cy,

Proof: Without loss of generality, we may assume that the chain Xy, X3, ... is obtained

from the bi-infinite i.i.d. sequence ...,Y 1,Yg,Y7,... as in Section 2. Define events E',%,

E2, E} and E} as follows.




Let E} be the event that the sequence (V3,...,Ye,) is not intersected by any run
of I's of length Ajy1 or more. By condition (iv), E} has probability at least

—10
1-2-270=1- 1.

Let E;‘: be the event that the sequence (Yi,...,Yc,) contains exactly one run of
1’s (from the bi-infinite sequence) of length exactly A;. By a standard Poisson
approximation argument (see, e.g., Barbour et al [1]), the distribution of the
number of such runs converges in total variation to a Poisson distribution with
mean 1, so that P(EZ) — e ! ~ 0.368 as k — co.

Let E? be the event that (Y3,...,Yg,) is intersected by no other runs of length
Ay, than those which it contains. Obviously, P(E}) — 1 as k — oo.

Let E‘,‘cl be the event that

By condition (ii), we have that
1 &
P-3<—7r) (X)) <3 2099,
0k 1VCk ; ’

and the choice (i) of By, therefore ensures that lim infy_,o, P(E{) > 0.99 = 1-0.01.

Finally, define the event Ey, = E} N E} N E} N E}. Bonferroni’s inequality gives that

1
liminf P(E}) > e ! — — — 0. 2.
imin (By) > e 512 0.01 > 0.2 (11)

On the event Ej, the (unique) run of 1’s of length A in (Yi,...,Yc,) contributes a
term +1 or —1 (depending on y(X;) for the X;’s corresponding to the run) to %,

while Bk\l/C’; ijl hi—1(X;) contributes between —0.001 and 0.001. Hence we have, still

on the event Ej, that

Zc,
< 1.001.
B/ Cy
Conditional on Ej, we have by symmetry that Z¢, is positive or negative with prob-
ability § cach. In combination with (11), this implics (9) and (10), and we are done.
O

0.999 < ‘

Proof of Theorem 1.3: Choose the Markov chain Xg, X1,... and the function A as
above. By Lemma 3.2, we have w(h?) < oo, while a combination of Lemmas 3.3 and 3.1
implies that the sums Y7 h(X;) are not asymptotically normal. Hence the theorem is
established. O

Remark. Since By — 0o as k — 0o, we can deduce from Lemma 3.3 that the 1/4/n-
normalized sums ﬁ Y21 h(X;) fail to define a tight sequence of probability distribu-
tions. O
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