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THE 3G INEQUALITY FOR A UNIFORMLY JOHN DOMAIN

HIROAKI ATKAWA AND TORBJORN LUNDH

Dedicated to the memory of Professor Nobuyuki Suita

AssTrACT. Let G be the Green function for a domain D ¢ R? with d > 3. The Martin boundary of
D and the 3G inequality:

G(x,)G(y,2)

G(x,2)

are studied. We give the 3G inequality for a bounded uniformly John domain D, although the
Martin boundary of D need not coincide with the Euclidean boundary. On the other hand, we
construct a bounded domain such that the Martin boundary coincides with the Euclidean boundary
and yet the 3G inequality does not hold.

<A(x -y +ly-2*% forx,y,z€ D

1. INTRODUCTION

For a bounded Lipschitz domain D ¢ R? with d > 3, Cranston, Fabes and Zhao [13] proved
the following 3G inequality:

G(x,y)G(y,2)

<Ao(lx =y +ly-2*% forx,y,zeD,
G(x,2)

ey)

where G is the Green function for D and Ay is a positive constant depending only on D. They
used (1) for the conditional gauge theorem and the Schrédinger equation. Their proof is based
on the boundary Harnack principle, a comparison principle among positive harmonic functions
vanishing on a portion of the boundary ([6, 15, 18]). The boundary Harnack principle also yields
the coincidence of the Martin boundary of D and the Euclidean boundary ([16]). So, one might
think that there is a relationship between the 3G inequality and the coincidence of the Martin
and the Euclidean boundaries. We shall however see that there is no direct connection between
them. We shall prove the 3G inequality for a uniformly John domain, whose Martin boundary
need not coincide with the Euclidean boundary (Theorem 1). On the other hand, we shall provide
an example of a bounded domain in RY with d > 3, whose Martin boundary coincides with the

Euclidean boundary and for which the 3G inequality fails to hold (Proposition 2).
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Key words and phrases. Green function, 3G inequality, boundary Harnack principle, uniformly John domain,
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2 HIROAKI ATKAWA AND TORBJORN LUNDH

Throughout the paper, let D be a bounded domain in R¢, d > 3, and let 5,(x) = dist(x, D).

For x,y € D, we define the internal metric or the inner diameter distance Pp(x,y) by
Pp(x,y) = inf{diam(y)},

where the infimum is taken over all curves vy connecting x and y in D and diam(y) stands for the
diameter of y. The inner length distance Ap(x,y) is defined similarly by Ap(x,y) = inf{é(y)},
where the infimum is taken over all curves v connecting x and y in D and ¢(y) stands for the
length of y. Obviously |x — y| < Pp(x,y) < Ap(x,y). If |x — y| < max{dp(x),dp(y)}, then |[x —y| =
Pp(x,y) = Ap(x,y). We say that D is a uniformly John domain if there exists a constant A; > 1
such that each pair of points x, y € D can be connected by a curve y € D for which

o minf|x — z|,|z -y} < A10p(z) forallzevy,

diam(y) < A1Pp(x,y)
(Balogh and Volberg [7, 8]). We say that D is an inner uniform domain if there exists a constant

A, > 1 such that each pair of points x,y € D can be connected by a curve y € D for which

min{€(y(x,z)), £(¥(z,y))} < A6p(z) forallz €y,
{(y) < Asdp(x, ),

where y(x, z) is the subarc of y connecting x and z (Bonk, Heinonen and Koskela [11]). In view of
Viisild [17], the family of uniformly John domains and that of inner uniform domains coincide.

Under some additional assumptions, such as the the uniform perfectness of the boundary
or the existence of a strong barrier, Balogh-Volberg and Bonk-Heinonen-Koskela studied the
boundary Harnack principle and the Martin boundary for these domains. In [4] Mizutani and the
authors gave the boundary Harnack principle and identified the Martin boundary of a bounded
uniformly John domain without any other additional assumptions. The Martin boundary is the
ideal boundary with respect to the internal metric Pp(x, y); it need not be homeomorphic to the
Euclidean boundary. In this note we show the following.

Theorem 1. Let D be a bounded uniformly John domain in RY with d > 3. Then the 3G inequality
(1) holds.

In Section 3 we shall construct a bounded domain in R with d > 3, such that the Martin

boundary coincides with the Euclidean boundary and yet the 3G inequality does not hold.

Remark 1. There is a significant difference between the planar case and the case d > 3. For the
planar case Bass and Burdzy [10] established the 3G inequality (with suitable modification of the
right hand side) for an arbitrary bounded domain.
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2. Proor oF THEOREM 1

We shall use the following notation as in [4]. By the symbol A we denote a positive constant
depending only on the dimension d, whose value is unimportant and may change even in the same
line. We shall say that two positive functions f; and f, are comparable, written f; ~ f, if and
only if there exists a constant A > 1 such that A™! f; < f, < Afi. The constant A will be called the
constant of comparison. By B(x, r) we denote the open ball with center at x and radius r.

Let D* be the completion of D with respect to the internal metric. That is, D* is the equiva-
lence class of all Pp-Cauchy sequences with equivalence relation “~”, where we say {x;} ~ {y;} if
{x;}U{y;} is a Pp-Cauchy sequence. The completion D" is a compact space. Let "D = D"\ D, the
boundary with respect to Pp. Take & € D*. Suppose &£ is represented by a Pp-Cauchy sequence
{x;}. Since {x;} is also a usual Cauchy sequence, it follows that x; converges to some point & € D.
The point ¢ is independent of the representative sequence {x;} and uniquely determined by £*. We
say that & lies over &€ € D. If £ € D, then £ and &¢* coincide. Define the projection 7 : D* — D
by m(€) = &. Let B,(&", r) be the open connected component of D N B(w(£¥), r) which can be
connected to £ in itself, i.e. for every x € B,(£”, r) there is an arc y C B,(£", r) starting from x

and converging to &*. By definition Pp(&*, x) < 2r for x € B,(£%, r); in other words

3) if Pp(€7,x) > 2r, then x € D\ B,(&", 7).

Let & € 0*D. Observe from (2) that

@ if there exists y € D with Pp(£7,y) > 2r, then there exists x € B,(£", r) with 6p(x) ~ r.

In [4] Mizutani and the authors proved the following.

Theorem A. Let D be a bounded uniformly John domain. Then the Martin compactification of

D is homeomorphic to D* and each boundary point & € 0D is minimal.

This theorem was deduced as a corollary to a uniform boundary Harnack principle, whose
proof is based on the following estimate of the Green function (cf. [3, Lemma 3] and [4, Lemma
3.2]).

Lemma A. Let & € 0"D. Then

G(x,y) N G(x,y)
Gx,y) GX,y)

with constant comparison depending only on D.

forx,x' € B,(¢*,r)andy,y € D\ B,(¢,6r)

In [4, Lemma 3.2], the above estimate was given actually for the Green function for the
intersection of D and B,(£”, Ar) with A large enough. However, for the case d > 3, we see that
the same estimate holds for the Green function for D itself.

We also need the following lemma whose proof is easy and left to the reader.
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Lemma 1. Let x,y € D. Then G(x,y) < APp(x,y)>"%. Moreover, if 5p(x) > A™'Pp(x,y) and
Sp(y) = A7'Pp(x,y), then G(x,y) > A"'Pp(x,y)* .

Proof of Theorem 1. We have observed |x — y| < Pp(x,y). So, let us prove the following slightly

stronger form of the 3G inequality.

G(x,y)G(y,2)
G(x,2)

We will prove (5) according to the line of Bass’ proof of the 3G inequality. See [9, Theorem 3.6]

(5) < APp(x, 9> +Pp(y,2*™%) forx,y,z€D.

and its correction. Let ¢ = % and ¢, = 11—301. By symmetry we may assume that

(6) Pp(x,y) < Pp(y,2).

Case 1. Pp(x,y) > c1Pp(x,z). Let r = Pp(x,z). If 6p(x) > cor, then we let x; = x. If
Op(x) < cyr, then we take x; as follows: Let X € 0D with |x — x| = dp(x). Since the line segment
xx' is included in D N B(X’, c,r), we find x* € 9*D lying over x” such that x € B,(x", c,r). Then

Pp(x*,y) 2 Pp(x,y) = Pp(x,x*) 2 (c1 — c2)r = 12¢5r,

Pp(x*,2) = Pp(x,2) — Pp(x, x*) > (1 — cp)r > 12¢;,r.
By (4) we can take x; € B,(x",c,r) with 6p(x1) = cor. Then x,x; € By(x",cpr) and y,z €
D\ B,(x", 6¢c,r) by (3), so that by Lemma A yields

G(x,y)  G(x2)
G(x1,y) G(xl,Z).
Similarly, if 6p(z) > c,r, then we let z; = z. If 6p(z) < c,r, then we take 77 € D with [z—7'| = 6p(2)

and z* € 0"D lying over 7’ such that z € B,(z*, c,r). By (6)
Pp(z",y) 2 Pp(z,y) —Pp(z,2°) = (c1 — co)r = 12¢,r,
Pp(z*, x1) 2 Pp(x,z) — Pp(x, x1) = Pp(z,2") 2 (1 = 2c)r > 12¢5r.

Hence we find z; € B,(z", c,r) such that 0p(z1) = cpr by (4). Then z,z1 € B,(z",cor) and y, x; €
D\ B,(z", 6¢yr), so that Lemma A yields

G2 _ GO.21)
G(x1,2) G(x1,21)'

Hence
G(x’ )’)G(Y, Z) ~ G(xl ) )’)G()’a Zl)
G(x,2) G(x1,z1)

Now observe that 6p(x1) ~ 6p(z1) ~ Pp(x1,21) ~ 1, so that G(x1,z;) ~ ¥ by Lemma 1. Also,

Pp(x1,y) = Pp(x,y) = cir and Pp(y, 1) = Pp(y,2) = Pp(x,y) by (6). Hence Lemma 1 yields
G(-x, y)G(y, Z) < ApD(x, y)2(2_d)
G(x,z) r=d
Thus (5) holds in this case.

< APp(x,y)* ™.
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Case 2. Pp(x,y) < c1Pp(x,z). Let s = Pp(x,y). By connectedness there is w € D with
Pp(x,w) = s/c1. Then

1
@) Pp(y,w) > Pp(x,w) —Pp(x,y) = (c_ —1s > s =Pp(x,y) = c1Pp(x,w),
1
so that Case 1 applies to the triplet x, y, w. Hence
G(x,y)G(y, _
) GENGOW) _ 4p .y,
G(x,w)

We are now going to replace w with z.

Subcase 2a. s = Pp(x,y) > %(5,3()7). Lety € 0D with [y —y'| = dp(y). Since the line segment
yy' is included in D N B(y’,2s), we find y* € 6*D lying over y’ such that Pp(y,y*) = 6p(y) < 2s.
Then x,y € B,(y*, 3s). Observe from (7) that

1
Pp(y*,w) = Pp(y, w) = Pp(y,y*) > (c_ —3)s = 36s,
1

1
pD(y*az) ZPD(X,Z) —pD(x,)’) _pD(yLy*) = (C_ - 3)S = 36S7
1

so that w,z € D\ B,(y", 18s) by (3). Lemma A implies

Ghy,w)  GO,2)
G(x,w) G(x2)

which together with (8) yields

G(x)G(y,2)  Gx,y)GH,w)
G(x,z) ~  G(xw)

Subcase 2b. s = Pp(x,y) < 36p(y). Then G(x,y) ~ |x — yI*? = Pp(x,y)* * by Lemma 1.
If furthermore |y — z| > 25p(y), then G(-,z) is positive and harmonic in B(y, 26p(y)), so that the

S ApD(xs )’)Z_d-

Harnack inequality shows G(x, z) = G(y, z) and hence

G(x,y)G(y,2) _
GENGOD L G(x, ) ~ Pt .
G(x,2)
If [y —z| < 26p(y), then |y —z| = Pp(y,2) = Pp(x,y) = [x—y| by (6), so that [x—z| < |x—y|+|y—z] <
2ly — z|. Moreover, G(y,z) = |y — zI*™¢ and G(x, z) = |x — z|*™¢; and hence,

Gr.)G.2) _ e =y ly — 2
G(x,2) |x — 2>~
Thus (5) also holds in Case 2. The proof is complete. O

< Alx —y[* 4 = APp(x, y)* .

3. AN ExAaMPLE

Let us begin with an application of the 3G inequality.

Proposition 1. Let D be a domain of finite volume in RY with d > 3. Suppose the 3G inequality
(1) holds. Then the following Cranston-McConnell inequality
1

© sup —— fD Gx, yuy)dy < V2D,
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holds for every nonnegative superharmonic function u in D, where V; stands for the volume of a
unit ball in R?.

Proof. Let B(0, R) be the open ball with the same volume as D. Suppose u is a Green potential
fD G(-, 2)du(z) of a measure ¢ in D. Then (1) and Fubini’s theorem yield

| sy = [ aue) [ GeenGo.aa
D D D
< Ao f G(x, 2)du(z) f (x—y* 4 +1ly -2 Ddy
D D
< 2A0u(x) f P 4dy = AgdV R*u(x) = AodV,, /| DI ¥u(x).
B(O,R)

Thus (9) holds for a Green potential. Since every nonnegative superharmonic function is ap-
proximated from below by Green potentials, the monotone convergence theorem completes the

proof. O

For an arbitrary planar domain D of finite area, Cranston and McConnell [14] proved (9) with
Ap bounded by the area of D up to an absolute multiplicative constant. See [12] for a simple
proof and [1, 5, 2] for an analytic proof and some generalizations. Cranston and McConnell [14]
provided also an example of bounded domain in R?, failing to satisfy (9). We shall modify their
example to construct a bounded domain whose Martin boundary coincides with the Euclidean
boundary and which fails to satisfy the Cranston-McConnell inequality (9). In view of Proposition
1, this domain also fails to satisfy the 3G inequality (1).

Construction. Let R, | 0 and N, T oo be a decreasing sequence of positive numbers and an

increasing sequence of positive integers such that

R R
(i) Ry + =2 <R, - 2,

Nn+] Nn
00 R 2
(ii) Z(ﬁ) N = oo,
n=1 n

1
For example, R, = — and N,, = 8n satisfy the above condition. In fact,

\n
R, Ry 1 1 1 1 1
Ry == = Ry + ") 2 —= = - - -
N, Nost” — An Vn+1 4nvn \nVn+1(Vn+ Vn+1) 4nyn

S 1 1 -+l
“2m+1D)\n 4nvn  4n(n+Dvn

2 2
(%) N1 = (8 1‘/_) (8nyt! = §43pd4 > 843,71,
n nyn

Let 0 < 17 < 1/4 be a constant depending only on the dimension such that we can place N9~

and

many mutually disjoint open balls of radius r, = pR,/N, with centers on the sphere S, = {x €
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R? : |x| = R,}. Order these balls and call them B¥, k = 1,..., N*!. In view of (i), we may assume
that the family of the doubles of B (n = 1,...,00 and k = 1,..., N9 ") is mutually disjoint. Fix
n and connect each ball B to the next B}, | for k = 1,...,N*' — 1, in order, by a cylindrical
tube lying in B(0, R, + 2r,). Then connect the last ball B} with k = N¢~! to the first ball B! | of
the (n + 1)-th level by a cylindrical tube lying in B(0, R, + 2r,). Moreover, each tube intersects
its ball in circular caps subtending solid angle € < /6 and the two caps in each ball (except the
first) are antipodal. We may assume that the tubes are mutually disjoint and the connection is so
smooth that the resultant domain D is locally Lipschitz apart from the origin. Hence, we observe
that the Martin boundary of D is homeomorphic to the Euclidean boundary except for the origin.

We shall show that there is a unique minimal function 4 corresponding to the origin.

Proposition 2. Let D be as above. Then there is a unique minimal function h corresponding to

the origin. Moreover,
f G(x,y)h(y)dy = co.
D
Hence, the Martin boundary of D coincides with the Euclidean boundary and yet the Cranston-

McConnell inequality (9) and the 3G inequality (1) fail to hold.

We prepare the proof of Proposition 2 by stating the following boundary Harnack principle
for a specific Lipschitz domain. Since we consider near a smooth boundary portion, the boundary

Harnack principle can be proved easily. See Figure 1.

V3

Lemma2. Let Q = {x = (x1,...,x) : 3 <d <1,-R <x; <0, H={xeQ:x = —3
and x* = (—%,O, ..., 0). If u and v are positive harmonic functions on Q such thatu = v = 0 on
{x=(x1,...,x9) : x| = 1,—% < x1 <0}, then

ux) v el
uGr) ~ v0e)  Sal@)

forx € H.

|
Q

L

/
=1 [ x* K

H
~—__

Ficure 1. Boundary Harnack Principle for the shaded domain Q.
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Proof of Proposition 2. Let By = B(xy, po), B1 = B(x1,p1),...be the enumeration of {Bﬁ}n,k in
order and let T; be the tube connecting B; and B;,;. Our domain D looks like a long wiggling
string of beads. Take j > 1. We may assume by rotation that B; and 7'; intersect in a circular cap
with center at (—p;, 0, ..., 0)+x;. Translate and dilate Q in Lemma 2 so that x; and (—p;, 0, ...,0)+
x; correspond to the origin and (-1, 0,...,0), respectively. Let H; and xjf correspond to H and x*,
respectively. Observe that B; \ H; consists of two connected components. By B’ we denote the
component containing x;. Let L; = ByUToU---UT;; U B, and let U; = D\ (L; U Hj). See
Figure 2

By

[ ] [ ] [ J ._xo

Ficure 2. Counter example to the Cranston-McConnell inequality: a long wig-
gling string of beads.

Fix x such that |x — x;| = p;/4. Apply Lemma 2 to u = G(x, -) and v = G(xo, ). Then

G(x,)’) ~ G(XO,)’)
G(x,x3)  Gl(xo, x})

for y € H; and hence fory € U;

by the maximum principle. Since G(x, x}) = p5~, it follows that

Gy P

G(x0.y) ~ G(x0,x7)
Let K(x,y) = G(x,y)/G(xp,y) for x € D and y € D \ {xo}. The Martin kernel is given as the limit
of K(x,y) when y tends to a boundary point. Let # and v be Martin kernels at O with respect to xy.

fory e U;.

Then the above estimate implies

2-d
(10) u(x) = v(x) =~ m for |x — x;| = p;/4 and hence for |x — x;| < p;/4
by the maximum principle. By the Harnack inequality
2-d
R e e —
o~V * G

so that the boundary Harnack principle (Lemma 2) gives a constant A3 > 1 such that
an A3 u(x) < v(x) < Azu(x)

for x € H; and hence for x € L; by the maximum principle. Since j is arbitrary, we have (11) for
all x e D.
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Now, a standard technique ([3, Theorem 3]) shows that there exists a unique minimal Martin
kernel at 0. For the reader’s convenience we give a proof. Let H, be the family of all positive
harmonic functions # on D vanishing on dD \ {0}, bounded on D \ B(0,r) for each r > 0 and
taking value u(xg) = 1. Obviously, a Martin kernel at O belongs to H,. Since every u € H, can

be represented as an integral over Martin kernels at 0, we see that (11) extends to u,v € Hy. Let

(12) )

u,veHy V(X)
xeD
Then 1 < ¢ < Ag < oo by (11). Let us show that ¢ = 1. Suppose to the contrary ¢ > 1. Take
arbitrary u, v € Hy. Then vy = (cv —u)/(c — 1) € Hy, so that u < cvy; = c(cv — u)/(c — 1) by (12).

Hence (2¢ — 1)u < c*v on D, which would imply

u(x) c? B
c= sup —= c,
u,veHy V(X) 2C -1
xeD

a contradiction. Thus ¢ = 1 and H, is a singleton consisting of the Martin kernel K(-,0) at 0.
Moreover, the Martin kernel K(-,0) is minimal since there is at least one minimal Martin kernel
at 0.

Let h = K(-,0) be the Martin kernel at 0. Then (10) and the Harnack inequality give
2-d

p
f G(an y)h(y)dy ~ G(.X(), X )G p = p_]
B(-xj P1/4)

(X0, )"

In view of Construction (ii), we obtain

| Gt meay > Z | Gy = .

B(x; P, 1/ 4)
By the Harnack inequality the above 1ntegra1 diverges for every x € D in place of xj as well. The

proof is complete. m|
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