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Supercyclic and Hypercyclic
non-convolution operators

Henrik Petersson®

Abstract

A continuous linear operator 7' is hypercyclic/supercyclic if there is a
vector f such that the orbit Orb(T, f) = {T"f} respective the set of scalar-
multiples of the orbit elements, forms a dense set. A famous theorem, due to
G. Godefroy & J. Shapiro, states that every non-scalar convolution operator,
on the space # of entire functions in d variables, is hypercyclic (and thus
supercyclic). This motivates us to study cyclicity of operators on .7 outside
the set of convolution operators. We establish large classes of supercyclic and
hypercyclic non-convolution operators.

Key words and Phrases: Cyclic, Hypercyclic, Invariant, Backward shift, Con-
volution operator, Exponential type, PDE-preserving, Fischer pair.

1. INTRODUCTION AND PRELIMINARIES

Let T = (7,) be a sequence of continuous linear operators on a TVS X. Let
Orb(T, f) = {T.f : n > 0} denote the orbit of f € X under T and by Orby(T, f)
and Orby(T, f) we denote the linear hull respective the set of scalar multiples of
the elements in Orb(T, f). Recall that T is cyclic/supercyclic/hypercyclic if, re-
spectively, Orb(T, f)/ Orby(T, f)/ Orb(T, f) is dense in X for some f € X. (Thus
hypercyclic implies supercyclic which, in turn, implies cyclic.) The vector f is said
to be of corresponding cyclic type (for T). An operator T is cyclic (with cyclic
vector f) when T = (T™) is cyclic (with cyclic vector f), and analogous for super-
and hypercyclicity. In this case of a single operator we write, simply, Orb(7T’, f) etc.
(A fuller account of the significance of all these notions is given in [4] and we refer
to [5] for a nice overview of the invariant subspace theory.)

We let d be a fixed arbitrary natural number and denote by .77 the Fréchet space
of entire functions in d variables, equipped with the compact-open topology. Thus
a generating family of semi-norms is obtained by [|f|l, = sup,<,[f], » € N. In
1929 Birkhoff proved that, in the case of one variable, every translation operator 7,
a # 0, is hypercyclic on . (1,f(2) = f(z + a).) MacLane obtained in 1952 the
analogue result for the differentiation operator D (see [4] for further references to
these two classical results). Both 7, and D are convolution operators, i.e., continuous
linear operators that commute with translations. In 1991, Godefroy & Shapiro
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generalized Birkhoft’s and MacLane’s results considerably by proving: Every non-
scalar convolution operator on J# (d is arbitrary) is hypercyclic (cf. [9]). Their
proof [4] is based on the well-known Hypercyclicity Criterion, which we formulate in
Proposition 3. Godefroy-Shapiro’s Theorem motivates us, and others [1], to study
cyclic properties of operators outside the set € of convolution operators on .. The
objective in this note is to establish supercyclic and hypercyclic non-convolution
operators on 7, by applying results from our study on PDE-preserving operators
[10]-[13]:

Definition 1. A continuous linear operator T : J# — ¢ is PDE-preserving for a set
P C C[y, ..., &) if it maps ker P(D) invariantly for all P € P. The set, and algebra!,
of PDE-preserving operators for P is denoted by &'(P). (Note, & (P) = Np&'(P).)

(Later we extend this definition.) Since any differential operator P(D) € ¥ and
operators in 4 commute, ¥ forms a commutative subalgebra of &'(P) for any set
P. To explain the connection between the notion PDE-preserving operators and the
study under consideration, we first recall the following result (see Theorem 2): An
operator T is PDE-preserving for a given P # 0 iff T ”almost commutes” with P(D)
in the sense that P(D)T = T") P(D) for some continuous linear operator 7F). Tn
fact, by Malgrange’s Theorem [7], P(D) is surjective so TF) is unique and is called
the derivative of T' € O (P) w.r.t. P. The following is now elementary:

Theorem 1. Let P # 0 and assume T € O(P) is cyclic and f a corresponding cyclic
vector. Then TP) is also cyclic and P(D)f forms a cyclic vector. The analogue
holds true for both super- and hypercyclicity. (See also Remark 2.)

Proof. Put S = T). We note that P(D)T" = S"P(D) for all n > 0. Hence
P(D)Orb(T, f) = {P(D)T"f} = Orb(S,P(D)f), and from this we also deduce,
P(D) Orb, (T, f) C Orb,(S,P(D)f), v = s,l. Since P(D) is surjective (Malgrange),
and thus maps dense sets onto dense sets, our claim follows. l

Thus by studying PDE-preserving properties, and corresponding derivatives, of
operators of given cyclic type, it is possible to get new such operators. Unfortunately,
by commutativity, any derivative of any convolution operator 7" is a new convolution
operator (in fact, equal to T'), so Theorem 1 does not provides us with any non-
convolution operators by starting out of operators in %. Thus, to apply Theorem
1 in this way, we must first find a, say, hypercyclic operator outside %, and there
are very few such examples in the literature. However, we shall establish a set
Oy of supercyclic operators on # and a multiplicative closed subset &y formed by
hypercyclic operators, where s\ € and 0\ € are large and we can apply Theorem
1 in the way that we have indicated. Moreover, Theorem 1 gives information about
how cyclic vectors are transferred, and from this we derive some ”internal” structures
of the set of supercyclic/hypercyclic vectors for the operators in Os/0%y.

An important concept, and tool, in the invariant subspace theory is the notion
of backward shifts [4, 6]. A general theory for cyclic properties of operators that
commute with a so called generalized backward shift B, and thus with any of its
power B", is developed in [4] (in particular, see Theorem 3.6). Now, B = D is a
generalized backward shift on .7# in the case of one variable but, unfortunately, in
view of our purposes, an operator 7' commutes with D iff T € € [4, Prop. 5.2].
Thus their theory is not applicable to obtain, say, hypercyclic operators outside %
Now, our result(s), when d = 1, is based on the fact that, roughly, it is possible
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to extend their ideas on backward shifts for operators that almost commute with
any power of B, i.e., PDE-preserving operators for the homogeneous polynomials
{1,€£,€2,...}. (This particular algebra of PDE-preserving operators (for homogeneous
polynomials) has been studied more comprehensively (see Proposition 2), which
implies that we can provide the operators in 0s/0y with explicit representations -
we think this is a strength of our results.) Moreover, if d > 1, there is no analogue
of the backward shift B = D. However, we can extend our one variable result(s)
by showing that, for any non-constant homogeneous polynomial P, P(D) may serve
as some sort of a backward shift. The key is to apply results from the theory of so
called Fischer decompositions (Fischer pairs) developed by H. Shapiro and others
(3, 8, 14]. In fact, we show that even other Fischer pairs, i.e., not necessarily formed
by homogeneous polynomials (see page 6 for further explanation), provide us with
alternative ”backward shifts” in the same way, see Remarks (i) and (iii) at the end.

The paper is organized as follows: First we recall some fundamental results from
our study on PDE-preserving operators. Our main results are Theorems A, B and
C, which are exposed in Section 3. In Theorem A, we establish the class 05 of
supercyclic operators. Next, by applying Theorem 1, we prove in Theorem B that
U5 is stable under certain operations and that the set of supercyclic vectors for any
T € 05 admits internal vector space structures and invariant properties. Then we
consider the more delicate problem - the existence of hypercyclic non-convolution
operators. Our results obtained so far motivate us to study if, in particular, there are
any such operators in 5. In Theorem C we establish the multiplicative closed subset
Ou (£ €) of Os formed by hypercyclic operators, and prove internal properties, of
the type above, of the corresponding sets of hypercyclic vectors.

2. FUNDAMENTALS

Given n € N, Exp,, denotes the Banach space of functions ¢ € . such that
lelln = supg |@(€)le ¢l < oo, equipped with the norm || - ||, thus defined. The
space of exponential type functions, Exp, is the union U,>Exp,, provided with the
corresponding inductive-limit topology. We put e, = e¥ € J#, where (z,£) =
> zi&;, and recall that the Fourier-Borel transform F, 7" 5 A — FA(§) = Meg), is
a topological isomorphism between 7" (strong topology) and Exp. Thus 4 and
Exp form a dual pair by (f, ) = F'o(f) (the Martineau-duality).

We denote by & the set of entire mappings P = P(z,§), in 2d variables (z, &) €
C?¢ x C?, with the following property: For every n > 0 there are m = m,, M = M,, >
0 such that ||P(-,€)|l, < Me™¢ (thus P(z,-) € Exp). The algebra of continuous
linear operators on 7 is denoted by .£ = Z(#°) and we have the following Kernel-
Theorem:

Proposition 1. T+ P(z,£) = e *8Te:(z) defines a bijection between £ and &.
P is called the symbol for T, we write T = P(-, D) and have T f(z)={(f, P(z,-)e,)
and P(-,D)Q(-, D)=R(-, D), where R(z,&)=e~*(Q(-,&)es, P(2,-)e,). The set of
convolution operators, €, is a commutative subalgebra of £ and is formed by the

operators with symbols in Exp C &, and we write o(D) = (-, D), ¢ € Exp. (Thus,
H' ~FExp~%F.)

Proof. Let T € .. We must prove that P(z,£) = e *9Te(z) € &. Clearly,
P(-,§) € # and from Teg(z) = Te,(€), P(z,-) € #. By Hartog’s Theorem, P
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is entire on C? x C¢ and it remains to prove that P is bounded as required, i.e.
z +— P(z,-) maps any bounded set in C% into a bounded set in Exp,, for some m.
But one can prove that a set in Exp is bounded iff it is contained and bounded in
some Exp,, and hence, P € & since C? > 2z — ¢, € Exp is continuous and thus so
is C* 3 z — P(z,-) € Exp. Conversely, let P € G and define Tf(z) = (f, P(z,-)e,).
It is easily checked that T € . and e *&Tes(z) = P(z,£). Thus, the map £ >
T — e #8Tes(2) € & is onto and since {eg: € € C} forms a total set in J7, it is
one-to-one. The composition formula is elementary.
The last part is well-known and a proof is exposed in [4]. B

Remark 1. If P(2,€) = "5 Pop2*¢P € &, then P(-,D)f = D ap Popgz®DP f in A
(Cauchy’s Estimates!). Thus every operator in . can be written as an infinite
type of differential operator with variable coefficients, and the elements of % are
those with constant coefficients. (Here, and in the sequel, we use standard multi-
index notation and thus, in particular, a! = [[ !, |a] = )  a;, D* = [[ D* where
D; = 0/0z and o € N¢.)

We now extend Definition 1 by allowing P to be any set in Exp. Thus, in par-
ticular, if ¢ € Exp, O(yp) is formed by all continuous operators that map ker (D)
invariantly. We remark that the transpose of ¢(D) € € is the multiplication oper-
ator ¢ : Y — 1 on Exp. Moreover, the general version of Malgrange’s Theorem
[7] states that any (D) # 0 is surjective and it is convenient to note the following
consequence ker ¢(D)* = Imp = Exp - ¢.

A main result in our study of PDE-preserving operators is the theorem that
follows. The technical part in our proof is the following lemma and division property
for 6 (£): (d) Let 0 # ¢ € Exp, P € & and assume P(z,§) = ¢(£)Q(z, &) where
Q(z,+) € Exp for all z € C¢, then Q € &. (A proof of (d) is obtained from [13]
where we prove an analogous statement.)

Theorem 2 (Characterization-Theorem). Let ¢ € Exp and T = P(-,D) € Z.
Then the following are equivalent:

1. T s PDE-preserving for ¢,
2. o(D)T = S¢(D) for some S € £,

3. ¢lp(€ + D)P(-,€)(2) in 6, ie, p(€ + D)P(-,§)(2) = ¢(§)Q(2,€) for some
Q€ 6.

(0(§+ D) = (1ep)(D) € €.) If ¢ # 0 the operator S is unique and is called the
derivative of T € O(p) w.r.t. ¢ and is denoted by T¥).

Proof. We may assume ¢ # 0 and note that the uniqueness of S follows by the
surjectivity of ¢(D). The equivalence between 2 and 3 follows by the observation
©(D)Tee(2) = p(D)P(-,€)ee(2) = 8 p(E+ D) P(+,€)(2). Since 2 obviously implies
1, it remains to prove that if 1 holds true, then ¢|R in & where R(z,&) = ¢(D)Tes(z)
(€ &). For fixed z € C? let \,(f) = o(D)Tf(z). Then )\, € #" and F\,(§) =
R(z,£). We prove that F\, € Im ¢ = ker o(D)*. But if f € ker (D),

<f7-7:)\z> = )‘z(f) = (p(D)Tf(Z) =0

since T € O(y). Thus, for every z € C? there is a unique Q(z,-) € Exp such that
R(z,6) = (£)Q(2,€), £ € C¢, and (d) completes the proof. B

4



Remark 2. Recall, Theorem 1 was derived from Theorem 2 for a polynomial ¢ = P,
and by this more general version we deduce that Theorem 1 also holds true for any
p € Expand T € O(p).

Let & denote the algebra of (complex) polynomials in d variables and by £,
we denote the vector space of polynomials in & of degree at most n. 7, denotes
the set, and vector space, of n-homogeneous polynomials in &2 and by H we denote
the set of all homogeneous polynomials U,>¢74,. (#y = 7 = C.)

Lemma 1. If T € O(H), then T maps every &, invariantly. If d = 1 the converse
holds true, i.e., T € OH) iff T € £ and maps every &, invariantly.

Proof. Let n > 0 and P € &,. We must prove that TP € &£2,. By virtue of
Taylor’s Formula, f € &2, ift Q(D)f = 0 for all Q € 4, 1. So, for any such @,
Q(D)P = 0 and hence, Q(D)TP = 0 since T € 0(Q). The converse part, when
d = 1, follows by the observation ker D"*! = &2,. R

We denote by S the set of sequences ® = (p,) = (po,...) in Exp such that
llonllm < RM™ for some R, M, m > 0. H,, denotes the projector in J# onto /%,
defined by f = > f, = fm, where )_ f,, is the power series expansion of f € JZ.
We have the following one-to-one correspondence between ¢'(H) and S:

Proposition 2. The algebra O(H) is formed by the operators of the form ®(D)f =
> nso Huon(D) f, where ® = (¢,) € S and is unique. (Note, (D) = ®(D) € €,
® = (p,0,..).) If P € #,, ®D)P) = o™ (D) € O(H) where ®™ = (p,1m) €
S. (Thus the derivative only depends on m, not on P, and O(H) is closed under
derivations.)

Proof. A proof of the first part can be found in [11, 12] (in fact, the result is
there extended to infinite-dimensional holomorphy). We prove the claim about
the derivative. We note that, for any m-homogeneous polynomial P, P(D)H, =
H,_,P(D)if n > m and P(D)H, = 0 otherwise. Thus,

P(D)®(D) = )  P(D)Hupn(D) = Y Ho mP(D)n(D) = ™ (D)P(D)

n>0 n>m

since P(D) and ¢, (D) commute. B

Ezample 1. With ¢, = 1 if n < m and ¢, = 0 otherwise, ®(D) is the Taylor
projector, i.e. the operator obtained by mapping a function into its Taylor polynomial
of order m at the origin. The Euler operator (-, D) = 21Dy + ... + 24Dy, i.e. the
operator with symbol (z,&) € &, belongs to & (H). Indeed, for any power m > 1,
(-, D)™ = ®(D) where ® = (¢, = n™).

We equip S with the algebra structure induced by €'(H) so that (®V)(D) =
®(D)U(D). In fact, one can prove [11, Theorem 6] that if (£,) = ®¥ in S, then

o0

&= Hi(0n)bnsis, @ =(pn), U= (). (1)
=0
An element ¢ € Exp is non-degenerate if ¢(0) # 0 and a sequence ® = (¢,)
in Exp is non-degenerate if all the elements ¢, are. From (1) we deduce that the
product ®V of any non-degenerate sequences ® and ¥ in § is again non-degenerate

(£n(0) = ©n(0)¢n (0))-



Lemma 2. Let ® = (¢,) € S be non-degenerate. Then ®(D) maps every &, iso-
morphically (cf. Lemma 1). Thus, the restriction of ®(D) to &2 is an isomorphism.

Proof. ®(D) is surjective on &, = C for ®(D)1 = ¢o(0) # 0. Next we note
that if |a| =m > 1: (%) ®(D)z* = ¢,,(0)2* + (lower degree terms). Assume ®(D)
is surjective on every &,,, m < n—1 and let P € Z,. By (*), we may find a
Qn € H, such that ®(D)Q, — P € &, 1 and hence, by the inductive hypothesis,
®(D)Qn-1 = (D)Q, — P for some Q € &, ;. Thus ®(D) maps &, onto &, for
all n. To prove that ®(D) is one-to-one on &, it is clearly enough to prove that
®(D) is injective on £, which is obvious in view of (x). B

The following result is due to H. Shapiro [14]: For any homogeneous polynomial
P # 0, P(D)P* is a bijection on 4, where P* is the homogeneous polynomial
obtained by conjugating the coefficients in P and P* : f — P*f. (We say that
(P(D), P*) forms a Fischer pair for J#, and it is an easy exercise to prove that a
pair (P(D),Q), where P,Q € &, forms a Fischer pair iff 7# = ker P(D) & Im Q
(Fischer decomposition).) This is an extension of Fischer’s classical Theorem [3]:
P(D)P* maps every #;, bijectively. (Note, P*5, C 4, ., and P(D)#pm C H,
if P € J#,.) In view of our purposes, we require estimates:

Lemma 3. For given m and dimension d, there is a constant k = k(m, d) such that
for any 0 # P € Ay, and Q € Ay, |P*(P(D)P*)™' Qs < E"||Qll/m!||Pll1. (We

assume the Buclidian norm on C* in the sup-norm || - ||y = sup|, < | - |.)

Proof. Consider the inner-product (P, Q) = > PaQac! on & where P =Y P,z°
and the coefficients @), are defined analogously. By ||-|| we denote the corresponding
(Fischer) norm. The key is to note that P* is the Hilbert-adjoint of P(D) : 44, .., —
H,, P € 7, w.r.t. the inner-products induced by (-,-). Indeed, let f € %, and
put ¢ = (P(D)P*)"'f € #,. Then, with A = P*(P(D)P*)~!, P*g = Af and
Cauchy-Schwartz’ Inequality gives

I1lllgll = I P(D)Pgllllgll > (P(D)P"g,g) = | P*glI* > |IP[|[Aflllgll,

since ||P*|| = ||P|| and, by the formula in the proof of [14, Lemma 4|, ||P*f| >
IP*|I|lf|l- Thus the norm of A : %, — J&,.,, is not greater than 1/||P|| for the
Fischer norm and we only have to translate all this to the (equivalent) sup-norm.
To do so we refer to [14, p. 519], where the arguments show that

QI < 1QI/Vn! < (n+1)*2d"?|1 QI

for any @Q € #4,. (However, they are there dealing with the supremun norm over
polydiscs and to the readers convenience we remark that sup,, <; (@] < d™?||Q||. if
Q € £,.) Now, there is a constant k = k(m, d) such that k" > (n+ 1)%2d"/? for all
n > 0. From ||AQ| < ||Q||/||P]| a straight forward computation gives the lemma.
|

Finally we formulate the Fréchet space version of [4, Corollary 1.4]:



Proposition 3 (Godefroy-Shapiro). Let X be a separable Fréchet space and T =
(T) a sequence of continuous linear operators on X. Assume there are dense subsets
Z,Y C X (not necessarily linear) and a sequence of maps S = (S, : Y = Y) (not
necessarily continuous) such that:

1. T,z —0 forall z € Z,
2. Spy — 0 forally ey,
3. ToSpy =1y forally €Y.

Then T is hypercyclic.
3. THE MAIN RESULTS

We are now ready to prove our first main result. Recall, we shall first prove it in
the case of one variable, where the proof is based on the theory of backward shifts.

Theorem A (one variable). Let ® = (p,) € S be a sequence such that p, = £™y,
i.e. (D) = ¥U(D)D™, for some m > 1 and non-degenerate ¥ = (v,) € S. Then
®(D) is supercyclic.

Proof. Let e, = 2"/n! denote the monomial basis vectors in & and define the
"forward shift” A : & — & by: Ae, = e,,1 and then extended linearly. Then BA
is the identity on & where B = D (backward shift). We can find a non-degenerate
By = (¢,) € S such that ®(D) = Bm®y(D) = ™ (D)B™ (i.e. ™ = ). Indeed,
let ¢,, n = 0,....,m — 1, be arbitrary non-degenerate elements in Exp and put
&n = Ynm, n > m. Then &, = (¢,) is non-degenerate and <I>(()m) = V. From
this point we apply the technique of Godefroy & Shapiro in [4, Theorem 3.6.b]
(however, they are dealing with Banach spaces and we must complement with some
arguments). Let ®,'(D) denote the inverse of ®(D) as a mapping & — & (Lemma
2) and put C = &, (D)A™ so that (x) ®(D)C = B"A™ = Id». C maps &, into
Pvm and, with notation as in [4], we let o(n) denote the operator norm of this
restriction. Here we assume every finite-dimensional space &7, is equipped with
its unique Banach space topology, and thus with the topology defined by the norm
|Pln = Y70 |1Hi(P)]]1, (recall ||-[|; = sup, < |-). Now, C" maps &, into Py pm With
norm < o(k+ (n—1)m)" = ok, [4, p. 246 |. Let r, = nlo,, and put T, = r,®(D)".
Then T,, € £ and it suffices to prove that T = (7,,) is hypercyclic. We shall apply
Proposition 3. Define S, = r,'C" : & - . Then with Z =Y = £, T,, —» 0
pointwise on Z, since m > 1, and T,S,, = Idy in view of (x). (In fact, T,, P = 0 for
all n sufficiently large if P € £2.) Thus, by virtue of Proposition 3, we only have to
prove that S, — 0 pointwise on &. But if 0 # P € &, and n > k,

‘SnP‘k+nm/‘P|k S Tglo-lm S Tglo-nn = 1/n',

since o is increasing. Hence, for any given semi-norm || - ||, (v > 1),
k+nm
150 Plly < Y VIIH(SuP)ll < * ™S Plisnm < 57| Ply/nl 0.
i=0
|



Remark 3. The attentive reader note that we have proved a little bit more than
what is claimed. We have proved that T = ®(D) is strongly supercyclic in the sense
that there is a fixed sequence r = (r,,) and f € # such that r-Orb(T, f) = {r,T" f}
(C Orby(T, f)) is dense.

The following example shows that some of the operators in Theorem A are in
fact hypercyclic, and we shall extend this fact later (Theorem C).

FEzample 2. Aron and Markrose proved recently [1] that in the case of one variable
Ty, Thf(z) = f'(A\z), is a hypercyclic operator for any A € C with |[A\| > 1. They
also discuss hypercyclicity of Th., = Ta7a : f — f'(Az + a) (see below). Note that
Ti.., = D1, € € and, in fact, T),, € ¥ iff A = 1. Now, we note that for arbitray
A and a, Ty, = ®(D) € O(H) where ® = (p,(£) = &9 \"). Thus, for any
A # 0, Ty, belongs to the class of operators in Theorem A and is thus supercyclic.

However, assume |A| > 1 so that T\, = T}, is hypercyclic. By Theorem 1, Tip) also

forms a hypercyclic operator for any P = £™ € H. We deduce that T)EP) = AT so
A™T) is a hypercyclic operator, and moreover, P(D)f = f (m) is a hypercyclic vector
for any such vector f for 7). A simple argument [1] shows that 7)., is hypercyclic
for any root of unity A, A™ = 1. We note that, for such A\, T\, € €(P) for any
P = Y.a;2" € & such that m|i whenever i,a; # 0. However, T/{f;) = Ty., SO
this does not provide us with any new hypercyclic operator. On the other hand,
Theorem 1 gives that P(D) maps the set of hypercyclic vectors for T, invariantly.

Finally, an interesting phenomenon is that 7} is not (and presumably not any
T.o) hypercyclic if |A\| < 1 [1, Prop. 14], but we know that T) is supercyclic for any
A#0.

Let us note that Theorem A covers some facts we already know. We know that
(D) is hypercyclic, and thus supercyclic, for any non-scalar ¢ € Exp. In particular,
if p(0) =0, (&) = £™P(§) for some unique m > 0 and non-degenerate ¢ € Exp
and now, (D) = ¢(D)D™ = ¥ (D)D™, ¥ = (1,1, ...). Thus the class of operators
in Theorem A above contains all T' = ¢(D) € € such that ¢(0) =0, i.e., T1 = 0.

Next we shall, as promised, extend Theorem A to an arbitrary number of vari-
ables d.

Let Ss denote the set of sequences ® € S of the form ® = (¢, P,) where ¥ = (¢,)
is non-degenerate and 0 # P, € ,, n = 0, ... for some m > 1. By 05 we denote
the corresponding class of operators ®(D). It is convenient to clarify the following.
Let ¥ = (¢,) be a non-degenerate sequence in Exp and 0 # P,, P € 4, where
m > 1, then:

1. f ¥ e S and ||P]1 < MR™, then ® = (¢, P,) € Ss.
2. = (Y, P)eSsiff U eS.

(1 is elementary and, by Cauchy’s Estimates, a sequence (¢,) € S iff ||H;(pn)]1 <
MR /i! for some r, R, M > 0, hence 2 is an easy consequence of the following: If
P € 4, and Q € H,,, then ||P|1]|Q|l: < (2¢)"™™||PQ||1 [2, p- 72].) In particular,

2 implies that when d = 1 then &5 is precisely the class of operators in Theorem A
above, that we thus extend by:

Theorem A. Every operator ®(D) € Os is (strongly) supercyclic. Thus, in par-
ticular, any operator ®(D) = W(D)P(D), where ¥V € S is non-degenerate and
0+# P e s, m>1, is (strongly) supercyclic.
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Proof. Let us first prove the special case, i.e., assume all the homogeneous P,
in ® are equal to some P € 4%, so that ®(D) = ¥(D)P(D), ¥ € S. First of
all we note that ®(D)"P = 0 for all n sufficiently large if P € & since m > 1.
Next, as in the one variable proof, we can find a non-degenerate ®;, € & such
that <I>("” = U and thus ®(D) = P(D)®y(D) = ®{™ (D)P(D). Next, P(D)P* is a
bl_]eCtIOIl on ## by H. Shapiro’s result and, by Fischer’s Theorem, P(D)P* maps £,
into £, isomorphically (see page 6). Thus, if (P(D)P*)~! denotes the inverse of the
restriction of P(D)P* to &, A = P*(P(D)P*)"' : 2 — & maps &, into P, .
Now, ®,'(D) : & — & exists by Lemma 2 and with C = ®,'(D)A : & — 2,
®(D)C =1dp and CZ, C P, p. From this point the arguments in the proof
above for d = 1 proves the theorem for this particular case.

Next consider the general case, i.e. ® = (¢, P,) where P, € ;. Again, as
a starting point we conclude that ®(D)"P = 0 for large n if P € &2. We define
B: % — & by BQ = Zn>m (D)@, where Q = > Q,, Q, € ;. Let

&y = (¢,) be a non-degenerate sequence in Exp with <I>8m) = V. Since ¥ may not be

in S, it is possible that ®y ¢ S, however ®y(D) = > ., H,¢,(D) is a well-defined
map on & and we claim that ®(D) = B®y(D) on Z. Indeed,

B®(D) =Y Pun(D)Hun(D) = > Hy_nPren(D)¢n(D) = &(D)

n>m n>m

since ¢,, = Y,_, for n > m. Moreover, from the proof of Lemma 2, it is clear that
Dy(D)!: P — P exists. By Fischer’s Theorem, we can define a map A: & — &
by AQ = " P*(P,(D)P})~'Q, with Q as above. We deduce that BA = Ids so
with ¢ = ®;'(D)A : & — &, &(D)C = Idp and, again, from this point the
arguments in the one variable proof applies. ll

Let 0% denote the set of operators ®(D) = ¥(D)P(D) in Theorem A, i.e. where
¥ € § is non-degenerate and 0 # P € JZ,,, m > 0. By 8§ we denote the corre-

sponding set of sequences ® = (Pv,) = PV in S. Note that in the case of one
variable, 0§ = 0.

Theorem B. Assume ®(D) € Os (Y = (p,) € Ss). Then:
1. ®™) (D) € Os for any m > 0 and conversely,
2. For any m > 0 there is a V(D) € O such that $™) (D) = ®(D).
3. For any ¥ € 8§ or non-degenerate ¥ € S, ®(D)¥(D) € Os.

O¢ forms a multiplicative closed subset of Os and is stable in the sense of 1-3. For
any set A C S x H such that P # 0, U™ = & if P € 4, for all (¥, P) € A:

Iy =UA{P(D)f : [ supercyclic for ¥(D)} (2)

forms an invariant set (under ®(D)) of supercyclic vectors for ®(D). In particular,
for any m > 1 there is a vector f such that

—{P(D)f: P € #,)

forms an (m:;fl_l) dimensional vectors space (i.e. ~ F;,,) whose non-zero elements

(P(D)f, P #0) are supercyclic vectors for ®(D).
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Proof. 1 is elementary and so is 2. Indeed, let m > 0, then ¥ = & and
U = (¢,) € Ss where ¥, 1y = @, Py if n > 0 and ¢, = P,¢,, n < m, where ¢,, € Exp
are arbitrary non-degenerate elements. 3 follows by formula (1). For assume ¥ =
(¥nQ) € 8 and let (&,) = ®W. Then (1) gives &, = PQ > s, Hi-m(on)Vitn =
P,Q¢, if P, € #,. R, = P,Q are all homogeneous of the same degree > 0 and
every ¢, is non-degenerate. Thus Os€0f C O and the other claim in 3 follows in
the same way.

That (2) is formed by supercyclic vectors follows by Theorem 1. We must prove
that .#4 is invariant. So let P(D)f € %, (¥,P) € A. Then ®(D)P(D)f =
P(D)¥(D)f. Since f is supercyclic for ¥(D), it is elementary that ¥(D)f also
forms a supercyclic vector for U(D), hence ®(D)P(D)f € .#.

In particular, given m, then, in view of 2, there is a ¥ € Sg with (™ = &
and by Theorem A we can find a supercyclic vector f for ¥(D). So from (2),
{P(D)f :0# P € 4¢,} is formed by supercyclic vectors for ®(D) and we deduce
that %, > P +— P(D)f € .#,, defines a linear isomorphism ¢. Indeed, P(D)f # 0
for all P # 0, for otherwise 0 would be a supercyclic vector, so £ is one-to-one and
hence a bijection. l

Ezample 3. Fix m and ¥ € Ss such that U™ = & € Sg. Then, with A =
{(¥,P):0# P € 7,}, we obtain the invariant set %y = Upc, (0} P(D)SC(¥) of
supercyclic vectors for ®(D). Here SC(¥) denotes the set of supercyclic vectors for
V(D).

Remark 4. The attentive reader note that the arguments in the proof concerning
the invariant set .#; hold more generally. Let S € .Z and let A = {(T,¢)} be
any family of pairs (T, ) € % x Exp such that ¢ # 0, T € €(p) and T = S.
Then Uap(D){f: f supercyclic for T'} (possibly empty) forms an invariant set of
supercyclic operators for S. The analogue holds for hypercyclicity (but not cyclicity,
cf. [4, p. 235)).

A cyclic vector manifold for an operator T is, in the sense of Godefroy & Shapiro
[4], a vector space whose non-zero elements are cyclic for 7. Supercyclic and hyper-
cyclic vector manifolds are defined similarly and thus, with this terminology, .#,,
in Theorem B is a supercyclic vector manifold for ®(D).

Ezample 4. The example of Aron and Markrose (Example 2) is easily extended to d
variables. Indeed, let A € C? and consider the affine map A : 2 +— A-2, A=z = (\i2;).
(We assume a = 0.) Define Myf = f(A-z). Then we claim that if |A;| > 1 then
T = Mp\D* (i.e. Tf(2) = f(®()\-2)) is hypercyclic for any o # 0. (This follows
with smaller, and obvious, modifications of the proof of [1, Theorem 13].) Now, if
all \; are equal, \; = A, but where ) is arbitrary we have that 7 = ®(D) € €(H),
O = (@, = £*A"). Thus, if |A| > 1, T is a hypercyclic operator in & C 05 and
outside € if X\ # 1 (since ® is not a constant sequence). If \; not all are equal, it
follows that 7' ¢ ¢(H) and consequently T ¢ O, hence if also |A\;| > 1 then T is a
hypercyclic non-convolution operator outside Os.

Thus there are examples of hypercyclic non-convolution operators in &s and &%
also when d > 1, we now extend this fact:

10



Theorem C. Let ® = (Y, P,) € Ss, P, € #;,, where 1, are scalars and, for
some ¢,C,R > 0: (b) ¢ < ||| Palli < CR™ (note, ® € S and ¥ = (¢,) is non-
degenerate). Then T = ®(D) is hypercyclic.

If Oy denotes the set of operators of this form (and Sy the corresponding class of
sequences), Oy is multiplicative closed and stable in the sense of 1-2 (Theorem B).

Finally, invariant sets of hypercyclic vectors for T are obtained analogous to (2)
and, in particular, for every m > 1 there is an f € H such that My, = {P(D)f
P € s} forms a hypercyclic vector manifold for T.

Proof. We prove that T = ®(D) is hypercyclic and intend to apply Proposition

3 with Z =Y = &. We choose a non-degenerate scalar sequence ®, = (¢,)

such that ¢, = ¥,, ie. CD(()m) = ¥ = (¢,), and define operators A, B and C

as in the proof of Theorem A. Clearly, ®;'(D) = Y. ¢.'H, and from this we

deduce CQ = @y (D)AQ = >, oo ¥n AnQn, where A, = P!(P,(D)P;)~! and
» = H,Q € ,. Hence, B

Cf = Z(wiwz’—l—m---wz’—km(n—l))_lAi-Fm(n*l)"'AH'mAiQi’ Q= Z Qn € 2,

i>0

and thus, Lemma 3 gives,

IC™Qllr <) r ™™ 4. iemin—1) | N Aim(nn) - AiQill <

i>0

. 1 Usdtm(n— -t { nk d
o pivm Wi bimoon =y all@lly e R m g g0 g

>0 | Bill1 - Bt men-1)ll1 min ml" "

as n — 00. S0 S, = C" — 0 pointwise on Y, T"S,, = Idy and, sincem > 0, 7" — 0
pointwise on Z = &. Thus T is hypercyclic by Proposition 3.

That the analogues of 1 and 2 in Theorem B hold true for &y is elementary and
we prove that Oy is multiplicative closed. But by formula (1), (¢, Pp)(¥nQn) =
(OnVnsmPnQnim) if P, € 5, for all n, hence Oy is stable under multiplication. H

Remark 5. Of course, given & = (¢n ) € Sy we may always assume 1, = 1 for all

n and thus that we deal with a ” pure” sequence in %,,. However, in view of the more

general construction Ss, we chose to define Sy in the way we did to underline the

inclusion Sg C Ss. Another motivation is that we think that proof becomes more

informative in this way in view of the more general problem: For what sequences
= (Y Pp) € Ss is ®(D) hypercyclic?

In particular, if & = (¢,) is a sequence of scalars such that: (') 0 < ¢ <
lon| < CR™, then ® € S and ®(D)P(D) (€ O%x) is hypercyclic for any non-constant
P e H. (P, = P forallnin Theorem C.) In the case of one variable, every .72, is one
dimensional and every element of &y can be factorized in this form (cf. 6§ = O%).

Ezample 5. Consider the Euler operator (-, D) € &(H). We recall from Example 1
that, for any power m, (-, D)™ = ®(D) where ® = (¢, = n™). Thus & satisfies the
bounds (b') above except for that ¢y = 0. But if we add a sequence (c,0,...), ¢ # 0,
to ® we obtain a sequence satisfying (0') and conclude: For any m > 1, ¢ # 0 and
non-constant P € H, ({-, D)™ + ¢dy)P(D) is hypercyclic. (6o(f) = f(0) = Hof.)

Further, any derivative ®™ (D) of (-, D)™ corresponds in S to a sequence ®™ of
constants of the form (') and hence: P(D){(-, D)™ is hypercyclic for any m > 1 and
non-constant P € H. Thus, for example, if d = 1 then f +— D(zDf) = zf"(2)+ f'(2)
forms a hypercyclic operator.
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Note that with [A| > 1 and ® = (¢, = \"), T = ®(D)D* € Oyq if a« # 0. In
fact, T is precisely the hypercyclic operator in Example 4 with A\; = A for all 7. In
particular, if d = 1 and a = 1 our result that 7 is hypercyclic is that of Aron and
Markrose that Ty is hypercyclic provided || > 1 (Example 2).

REMARKS: (i) We note that the example due to Aron and Markrose, and all our
examples far, of cyclic type operators T outside € degenerates in the sense that
T1 = 0. Thus, the question is if there is any, say, hypercyclic T € £ \ € with
T1 # 0. We shall show that the answer is affirmative by once again illustrate how
Fischer pairs provide us with alternative ”backward shifts”. (For simplicity we let
d = 1 and in order to be brief, we tacitly assume the reader keep an eye on the
(one-variable) proof of Theorem A.)

H. Shapiro’s result on page 6 admits the following generalization: (P(D)—c, P*)
forms a Fischer pair for .7, for any constant ¢ and homogeneous polynomial P # 0, ¢
[14, Theorem 3].

Let P = ¢ and thus P(D) — ¢ = D —¢, P* = P. Put &, = ker(D — ¢)"*},
ie., &, = Pre. = Ppe (finite-dimensional). Then & = U,>o8), is dense in 7
and an operator T is PDE-preserving for E = {1,£ — ¢, (§¢ — ¢)?, ...} iff it maps
every &, invariantly (cf. Lemma 1). It is now easy to prove that P(-, D) € O(E)
iff P.(-,D) € O(H) where P, = P(z,{ + ¢) € 6. From this and Proposition 2 we
deduce the following. Let E,, denote the map F, = e.Hpe ., i.e. E,f = (D —
c)"f(0)z"e./n! € &,. Then ® — ®[D| = > ., E,pn(D) defines a one-to-one
correspondence between S and @ (E) and ®[D]F) = @™ [D]if P = (¢ —c)". If ® is
non-degenerate at ¢, i.e., p,(c) # 0 for all n, then ®[D] maps every &, isomorphically.
We obtain: Every operator T' of the form ®[D](D — ¢)™ is supercyclic if ® is non-
degenerate at ¢ and m > 1. Indeed, (D — ¢)&,41 C &, so T"E = 0 for large n
if £ € &. Further, there is a factorization T = (D — c)mfb(()m) [D] where &5 € S
is non-degenerate at c. (P(D) — ¢)P* maps every &, isomorphically and we put
A =P [(P(D)—¢c)P*]7': & = &. Thus with C = ®,'[D]A™: & — &, TC =1d¢
and we deduce that there is a sequence r = (r,) such that T = (7,, = r,T") is
hypercyclic, hence T is (strongly) supercyclic. In particular we note that 71 # 0
for a suitable ® (see below for a specific example), on the other hand, Te. = 0.
In the same way, with smaller modifications of the proof of Theorem C we obtain:
®[D](D — )™ is hypercyclic for any scalar sequence ® = (¢,) with bounds (b') (thus
® is non-degenerate at ¢). With ® = (¢, = n+ 1) and m = 1 we obtain the
hypercyclic operator: T = zD? — 2czD + ¢?2 + D — ¢, which with ¢ = 0 reduces to
the operator in the latter part of Example 5 and 71 # 0 if ¢ # 0.

(ii) We suggest a study on in what degree the converse of Theorem 1 holds: Is every,
say, hypercyclic S € .Z the derivative, T¥), of some hypercyclic T € &(y). (Note,
this is true for any S in % \ C and in 04.) Or even stronger, is every hypercyclic
vector g for S of the form ¢(D)f for some hypercyclic T € €(p) with T(®) = §.
(This is, as far as we know, an open problem even for S € € \ C.)

(iii) Our technique of working with Fischer pairs should work for other spaces, in
particular, other power series spaces. Indeed, Fischer decompositions have also been
studied for: Exp, germs of analytic functions, the entire ring of formal power series
etc. This is interesting in view of the fact that these spaces do not in general
admit backward shifts. In particular, Fischer splittings have been studied for entire
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function spaces in an infinite number of variables and we believe that some of the
results in this note are extendible to infinite-dimensional holomorphy in this way.
(cf. [9] where an infinite-dimensional analogue of Godefroy-Shapiro’s Theorem is
obtained.)
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