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Abstract. If C' is a domain in R", the Brownian exit time of C is denoted
by T¢. Given domains C and D in R™ this paper gives an upper bound of
the distribution function of 7 p when the distribution functions of 7» and
Tp are known. The bound is sharp if C and D are parallel affine half-spaces.
The paper also exhibits an extension of the Ehrhard inequality.

1. Introduction

Throughout W = (W (t));>o denotes Brownian motion in R" and if C is a
domain in R",
Te=TY =inf{t >0; W(t) ¢ C}

is called the exit time from C. Below the notation P, [-] or E, -] indicates
that Brownian motion starts at the point z at time zero.

The main aim of this paper is to prove an inequality of the Brunn-
Minkowski type for distribution functions of Brownian exit times from do-
mains in R", such that equality occurs for parallel affine half-spaces. Here
perhaps the most interesting point is the fact that the set of all Brownian
paths {W(w); Tc > t} is not an affine half-space if C' is an affine half-space
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in R™. Recall that affine half-spaces often turn out to be extremals for Gaus-
sian measures (see Ehrhard [5] and Carlen, Kerce [3]). In connection with
our main results Theorems 1.1a and 1.1b, the Bachelier formula for the dis-
tribution of the maximum of real-valued Brownian motion (see e.g. Karatzas
and Shreve [6], p. 96) plays an important part. Finally, to make comparisons
with the Ehrhard inequality (Ehrhard [4], Borell [2]) we find it natural to
extend this inequality to more general linear combinations of sets.

Let us continue by giving some more definitions. First the so called vector
sum or Minkowski sum of two subsets A and B of R" equals

A+B={z+vy; x € Aand y € B}.

Moreover, if a > 0, the dilation oA = {ax; =z € A}. Sometimes we will write
=4

o

In [1] T use a method based on the maximum principle for elliptic differ-
ential equations to prove the following inequality for expected Brownian exit
times. Suppose C' and D are bounded domains in R" and z € C, y € D.

Then
By Tei0] = VE T + /B, [Tl (1)

Here equality occurs in many interesting cases. First recall that

B, [Te] = /0 TP, Te > 1) dt.

Therefore by the scaling property of Brownian motion

\/an [TaC’] = Qy/ Ex [Tc], a>0

and it follows that equality occurs in (1.1) if C' and D are convex and ho-
mothetic, that is C' is convex and D = AC + a for appropriate A > 0 and
a € R™. In this paper we will use a method similar to those in my papers
[1] and [2] to prove inequalities of the Brunn-Minkowski type for distribution
functions of Brownian exit times.

If H is an open affine half-space in R", the Bachelier formula for the
maximum of real-valued Brownian motion yields

HC
d(z, )), t>0, zr€H

P, [Ty > t] = \II(T



where d(z, H®) = minyg¢y | —y | and

" A2 d)
U(r) = exp(——)—, 0 < r < 0.
1= [ exni=5) =

The main aim of this paper is to prove the following

Theorem 1.1a. Suppose C and D are domains in R™ and let x € C,
y€ D, and t > 0. Then

U (Pyyy [Tosp > 1)) > U2, [Te > 1)) + UH(P,([Tp > 1]).  (1.2)

Equality occurs in (1.2) if C and D are parallel affine half-spaces.

It is not obvious to the author that Theorem 1.1a implies (1.1). There is
a functional form of Theorem 1.1a, which reads as follows

Theorem 1.1b.  Suppose C and D are domains in R"™ and f:C — [0,1],
g:C — [0,1], and h:C — [0,1] continuous functions such that

U (h(z +y)) > O (f(2) + ¥ (9(y), z€C, ye D (1.3)
Then, if t € C,y € D, and t > 0,
U By [R(W()); Torn > 1))

> U (B [f(W (1) T > t]) + U (Ey [9(W(1); Tp > #)). (1.4)

Equality occurs in (1.4) if f=g=h=1 and C and D are parallel affine
half-spaces.

Next we introduce some additional definitions. Below F' denotes a real,
separable Fréchet space and ~ a centred Gaussian measure on F', that is 7y is
a Borel probability measure on F' such that each bounded linear functional
on F has a centred Gaussian distribution. The Borel field in F' is denoted by
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B(F). The definitions of Minkowski sums and dilations of subsets of F' are
as in the special case F' = R".

If
" A2 dA
P(r) = exp(——)—, — oo <r<oo,
") /_oo p( 2)\/27r -

and 0 < 6 < 1, my paper [2] proves the so called Ehrhard inequality
O (Y(0A + (1 = 0)B) > 097" (v(A4)) + (1 — )~ (4(B))

for all A, B € B(F). As in the Latala paper [8] we here follow the convention
that co — o0 = —00 + 00 = —00.

The following result is slightly more informative than the Ehrhard in-
equality.

Theorem 1.2. Suppose a, B > 0 are given. Then the inequality

' (y(eA + BB) > a® ' (y(A)) + & (v(B)) (1.5)
is valid for all A, B € B(F) if

a+f>1land |a— <1 (1.6)

Moreover, if 7 is not a Dirac measure at origin and (1.5) is valid for all
A, B € B(F) then (1.6) holds.

Equality occurs in (1.5) if A and B are parallel affine half-spaces. If, in
addition, « + =1 equality occurs in (1.5) if A is convex and B = A.

To comment on a certain relation between Theorems 1.1a and 1.2 we
denote by C([0,00[; R™) the space of all continuous maps of [0, co[ into R™
equipped with its standard locally convex topology of uniform convergence
on compact subintervals of [0, co[. Furthermore, we will have the picture that
the identity map on C([0, oo[; R™) gives a representation of Brownian motion
in R™ relative to Wiener measure on C([0, o[ ; R"). Now using the shorthand
notation W, (t) = x + W (t) it follows that

(Waz+py(s) € aC + D, 0 < s <]

Da[W,(s) e C, 0<s<t|+pB[Wy(s)eD, 0<s<t], a,>0
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and, hence, by (1.5),
O (Pazipy [Tacrpp > t]) > a® (P, [Te > 1)) + B (P, [Tp > t]) (1.7)

for all reals o and f satisfying (1.6). The inequality (1.2) is not weaker than
the inequality (1.5) with o = 3 =1 since

WU a) + UL(B)) > B(07(a) + D) (1.8)

for all 0 < a,b < 1, which follows from the fact that there is equality in (1.2)
when C' and D are parallel affine half-spaces. It is simple to check that strict
inequality holds in (1.8) forall0 < a <1 and 0 < b < 1.

It does not seem to exist any natural counterpart of the inequality (1.2)
for linear combinations of sets as in (1.7). For example, the inequality

_ 1__ 1.
VP, [Tyeryo > 1)) 2 59 (Pe[Te > ) + 59 (P(Tp > 1)

is not true in general. In fact, if that was the case we use the concavity of
U to get

Prpisy [Ticiin > 1)) > %Px To > 1) + %Py([TD > 1.
Now if C' is convex and D = C' we integrate over 0 < ¢ < oo and have that
the expected exit time E, [T¢] is a concave function of z € C, which is wrong
for the plane domain {z € C; 0 < argz < T and | z |< 1} (see my paper [1],
Example 3.1).

By passing note that if « = 8 = 1 in (1.5) and the function ®~' is
everywhere replaced by U~! the resulting inequality is false since, otherwise,
(1.8) would be an identity.

Theorem 1.2 immediately implies the following result by Sudakov and
Tsirelson [9] of independent interest.

Corollary 1.1. Suppose C € B(F) is convex and H an open affine half-space
in R™ such that

'Yn(C) = ’Yn(H)
Then
Yu(rC) > yu(rH) ifr > 1.
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Stated otherwise,

(7, (rC)) > 18 1 (1(C)) if 7 > 1.

See also Yurinski’s book [10] and the early paper by Landau and Shepp
7], which shows Corollary 1.1 in the special case 7,(C) > 3.

The present paper is organized as follows. In Section 2 we prove Theorems
1.1a and 1.1b. Finally, Section 3 is devoted to a (partly sketchy) proof of
Theorem 1.2.

2. Proof of Theorems 1.1a and 1.1b

First in this section we want to point out that Theorems 1.1a and 1.1b are
equivalent. It is obvious that Theorem 1.1b implies Theorem 1.1a simply by
choosing f = g = h = 1. To prove the converse implication set

1 (e € R, 2. s s < V110

Dy = {(z,201) € R™ & € D and @y < ViU (9(0))}

and

(C+ D), = {(x,xn+1) eR"™; 1 €C+Dand 1,4 < \/E\Il_l(h(a:))} :

By (1.3)
(C+ D), 2 Cr+ D,.

Furthermore, if W"*! = (W, W,,;1) is a Brownian motion in R"*! the Bache-
lier formula yields

P [Wnﬂ(s) <V, 0<s< t] —W(g), 0< €< 0.

Thus "
Py T8 > 1] = BE[F(W(@®); Te >4
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and it is plain how Theorem 1.1a leads to Theorem 1.1b.

Proof of Theorem 1.1b: By monotone convergence there is no loss of gen-
erality to assume that C' and D are finite unions of open cubes with edges
parallel to the coordinate axes. In addition, given 6 € ]0,1[, we may as-
sume f:C' — [0,0] and g:D — [0, d] are continuous functions with compact
supports in C' and D, respectively. Finally, there is no loss of generality to
assume that h possesses compact support in C' 4+ D and

h:C+D— [0,9(20 ()]
Now for each g = f, g, h, set
ug(t, ) = Ey [q(W (t)); Toom ¢ > 1]

for every t > 0 and every = belonging to the closure of Dom ¢, where Dom
q denotes the domain of definition of q. Moreover, set

U, = \Ijil(“q)
and introduce the continuous function
V(t: x, y) = Uh(ta T+ y) - Uf(ta $) - Ug(t: y)

defined for all t > 0 and z € C, y € D. We will prove that V(t,z,y) > 0,
which completes the proof of Theorem 1.1b.

The construction shows that V(0,2,y4) > 0 for all 2 € C, y € D.
Furthermore, if x € C and y € 0D, then V(t,z,y) > 0 if and only if
un(t,z +y) > up(t, z). The latter inequality is obvious since

ur(t,x) = E[f(x+W(t));z+W(s) € C, 0 <s <t

S<Plhlz+W(Et)+y); a+W(s)+yeC+y, 0<s<H{]
<Plhz+W(Et)+y); c+W(s)+yeC+D, 0<s<t]=u(t,z+y).
In a similar way, it follows that V(¢,z,y) > 0 if z € dC and y € D. In
the next step we will show that V' (¢, z,y) is a solution of a certain parabolic

differential equation and the non-negativity of V (¢, z,y) then follows from
the maximum principle.



Recall that ¥(a) = 2®(a) — 1, 0 < a < o0, so that ¥'(a) = 2¢(a),
0 < a < oo, where p(a) = ®'(a) if a €R. Moreover, if ¢ = f, g, h we have in
the interior of Dom u, that

ou, 1
R
and, as u, = V(U,),
Oug v,
1 _9 -4
at SD( q) at 9
Vu, =2¢(U,) VU,
and
Aug = 20(U,) (AU, — U, | VU, |2)
Thus ou, 1 1
79 _ - _ - 2
L = 5 AU, - U, | VU, |

To simplify notation, from now on let

§= (t,.’l?), n= (tay)’ and ¢ = (t,l‘+y)

so that, if ¢t >0, x € C and y € D,

V.V = (VUL)(s) — (VU)(8),

Vv,V = (VUL)(s) — (VU,)(n),

AV = (AUL)(s) — (AU;)(8),
)

and

we get



Note here that the quadratic form

2 2
Q(T1y ey Try S1y eoey Sp) = Z re— Z TiS; + Z s;

1<i<n 1<i<n 1<i<n

is positive semi-definite. From the above

ev = Zh0) 4 SULS) | (VU(S) P
220 (6) - SUSE) | (VUR)(E) P
~% ()~ SUyn) | (VU0) P
or oV
EV = N +Q(t, z,y)
with

Ot 2,y) = SUA6) | (VORG) 2 = 5US€) | (VUR(E) 2 ~5Uslm) | (VUR) () 7

Here
| (VU)(© =] (VUG |2+1;n{an )+ 50 {50 - 520}
and
[0 =1 (T P+ 3 T+ G20 | { G - G -

From the above equations it follows that
1
t,2,1) = 5 | (VU)(6) 2V = blt,,3) - Vo)V

for an appropriate function b(¢,z,y). Moreover,

v 1 )
E + 5 | (VUh)(() | V.

The non-negative of V (¢, z,y) now follows from the maximum principle.
For completeness we give a direct proof here. Let T" € ]0, 00 be fixed. We

EV + b(t, x, y) . V(w,y)V:
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know that the function V' (¢, z, y) is non-negative on ({0} x (C'x D))U([0, T] x
0(C x D)). Therefore, if V (¢, z,y) < 0 at some point (,z,y) € [0, T]x(Cx D)
there exists a strictly positive number ¢ such that the function et + V' (¢, z, y)
possesses a strictly negative minimum in [0,77] x (C' x D) at a certain point
o = (to, Zo,Y0) € ]0,7] x (C x D). But then

ov
V(C()) < 0, —_—

5 (s0) < =&, Vizy)V(s) =0, and EV(s) > 0.

and we have got a contradiction.

3. A sketchy proof of Theorem 1.2

Let
dz

(o) = exp(—5 | = )~

be the canonical Gauss measure in R”.
First suppose a, 5 > 0 and

7 (m(ad + BB)) = a®™ (1a(A)) + B2 (1a(B))

for all A, B € B(R"™). We claim that (1.6) holds.
To see this suppose C' € B(R") is convex, symmetric, and 0 < 7,(C) <
Then

S (Ya((a+B)C)) = a® (1 (C)) + B (1.(C))

Now, if @ + 8 < 1 we have

O (1 (C)) > a® (1 (C)) + B (1 (C))

or

0> (a+B-1)27 ((C))

which is a contradiction. On the other hand if | o — 8 |[> 1 we get a
contradiction as follows. Depending on symmetry there is no loss of generality
to assume that 8 — «a > 1. Then

R"\ C D aC + B(R"\ C)
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and we get
O (1(R*\ C)) > a® ' (1,(C)) + S~ (1u(R™\ C))

—27 1 (1(C)) 2 a® " ((C)) = B2 (1(C))
since @ 1(1 —y) = - !(y) for all 0 < y < 1. Thus

0> (a+1-p8)27 (1.(C))

which is a contradiction.

To prove that (1.6) implies that (1.5) is valid for all A, B € B(F') there
is no loss of generality to assume v = 7,. Most parts of the proof may be
arranged in a similar way as the proof of Theorem 1.1b above and, moreover,
we may proceed almost in the same manner as in my proof of Ehrhard’s
inequality [2] (replace the pair (6,1 —6) by («, 8) and replace the differential

operator
£=ln,+2 > LN

1<i<n

by the differential operator

1 1—a?—pj? 0?
=_ AV
Enew Q{Az+ <7 > Sy T y}

1<i<n

Finally, note that if, «, 5 > 0, the differential operator &,.,, is semi-elliptic if
and only if o+ 3> 1 and| a — 5 |< 1). The details are omitted here.
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