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Contributions to Statistical Analysis of Gene

Expression Data

Anders Sjögren

Abstract

The abundance of RNA copies (i.e. gene expression) for a certain gene in
a cell determines the production of the corresponding protein, affecting the
machinery of the cell. Using a technique called DNA microarrays, the gene
expression of thousands of genes can be measured simultaneously, providing
a snapshot of the activity of the measured cells. This thesis consists of three
papers dealing with the statistical analysis of gene expression experiments.

In Paper I, an experiment is analysed aiming at identifying genes regu-
lated by treatment of nasal polyps with local glucocorticoids . A cube root
variance stabilising transformation is applied and a moderated t-statistic is
computed, protecting against spurious significances. Finally, p-values are
evaluated by forming a null distribution by a permutation procedure.

In Paper II, stably expressed genes are sought, to be used as references.
Novel candidate reference genes are first identified using a collection of mi-
croarray datasets. The candidate genes and widely used ones are then ex-
amined closer, using a measurement technique demanding a reference gene
to be known. A previously published technique providing a ranking of the
genes is extended by a bootstrapping step, to assess the credibility of the
ranks.

In Paper III, a novel model for the analysis of paired microarray experi-
ments is proposed, taking precision differences between replicates (biological
and/or technical) into account. The variance structure involves (i) gene-
specific scaling factors with a prior distribution, moderating the highly vari-
able variance estimates and (ii) a covariance matrix aiming at catching array-
wide differences in quality, including shared sources of variation. Methods
for parameter estimation are presented and a likelihood-ratio test is deduced.
The procedure is compared to existing methods on both real and simulated
data. On real data, substantial differences in quality between repetitions are
found. On simulated data, improved performance is shown in some cases.
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Background and introduction

In the world of molecular biology, the genome (DNA) is the passive blueprint
describing how different proteins can be built. The proteins in turn are the
actual working horses of the cells, determining the behaviour of the cell. In
order to produce more of a certain protein, a working order is placed in
the form of RNA copies of a relevant part of the DNA. Such a part of the
DNA encoding a protein is called a gene. The fact that DNA is transcribed
into RNA, which is translated into proteins is called the central dogma of
molecular biology. RNA abundance is often referred to as gene expression.

During the last few years, a measurement technique called DNA microar-
rays has become widely used and substantially developed, both on the tech-
nical and the analytical side. One DNA microarray is able to measure the
abundance of RNA for thousands of genes simultaneously, thus creating a
snapshot of the activity of the measured cells.

In the current thesis, some contributions related to the statistical analysis
of microarray experiments are presented. The variant of microarrays used
are mainly in situ hybridised arrays, manufactured by Affymetrix Inc. (Santa
Clara, USA). A good description of the steps involved in the low level analysis
of Affymetrix type arrays is provided in Bolstad (2004). That includes several
consecutive steps from the extracted RNA to the actual normalised array
signals signifying the gene expression for the different genes.

One challenging problem in the statistical analysis of microarray data is
that the datasets have thousands of dimensions (genes) but only relatively
few (biological) repetitions, typically 3 to 10. The challenge is then to take
advantage of this structure, using the fact that many genes behave similarly
and that many genes are measured on the same array, potentially carrying
shared characteristics. In this setting, using techniques such as the ordinary
t-test to find differentially expressed genes is problematic, since the gene-
specific variance estimates are highly variable due to the small number of
replicates, giving rise to false positives caused by underestimates of the stan-
dard deviation. Methods have been proposed, using the information in all
genes to moderate extreme estimates (Efron et al., 2001; Tusher et al., 2001).
A variant of the method by Efron et al. (2001), is used in Paper I. In Paper
III, empirical Bayes based methods (Baldi and Long, 2001; Lönnstedt and
Speed, 2002; Smyth, 2004) are generalised to include quality control aspects,
modelling the variability of the different repetitions (biological and/or tech-
nical). Here, the structure of the data is utilised to estimate the variance of
each array, as well as correlations between the different arrays.
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Comments on Paper I:
Gene profiling reveals increased expression of uteroglobin and
other anti-inflammatory genes in glucocorticoid-treated nasal

polyps.

In Paper I (Benson et al., 2004), human polyps from five patients are ex-
amined, before and after treatment with local glucocorticoids. The aim was
to identify differentially expressed genes, thereby increasing our understand-
ing about the mechanisms of the treatment. Biopsies were taken from the
polyps, microarrays were run in duplicates from each biopsy and low-level
analysis was performed to produce one signal value per gene and array.

The next step was to test all genes to identify which are differentially
expressed. If an ordinary paired t-test (|tg| > c where tg =

√
n X̄g

·
sg

) would be

applied on the averaged duplicates, a large number of genes with small differ-
ential expression would be called significant due to gravely underestimated
standard deviation estimates, caused by large variability in the standard de-
viation estimate. However, it is possible to take advantage of the structure of
the data, having 5 biological repetitions and over 20000 genes, to address the
problem; The standard deviation estimates, sg, can be moderated by adding
a suitably chosen global penalising constant, s0, thus forming the penalized
t-statistic of Efron et al. (2001):

zg =
√

n
X̄g

·
sg + s0

.

However, if different groups of the genes have different variability, some
groups will be favoured compared to others. When examining the data at
hand, the standard deviation estimates shows a strong trend of increasing
variability with increasing mean expression before and after treatment. Us-
ing a log-transform before creating Xg

i , a trend of decreasing variability with
increasing expression was instead apparent. Therefore, a cube root trans-
formation was selected, as described in Tusher et al. (2001), resulting in
substantially smaller trends. The moderating constant, s0, was chosen to
the 90th percentile of sg, according to Efron et al. (2001).

To determine the critical value, cα, for a certain level, α, of the test,

|zg| > cα ,

a permutation approach was used. Ideally, for genes unaffected by the treat-
ment, all four arrays from the same individual would be exchangeable. There-
fore, we can create pseudo-differences, Y g

i , by first creating pseudo-averages,
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averaging one array before and one after treatment, and then taking the
difference between the pseudo-averages. The zg based on Y g

i ,

z0
g =

√
nȲ g

·
s0

g + s0

,

are distributed according to the null distribution of zg, i.e. the distribution
of zg for genes without differential expression. This can be performed in
four ways for each individual, resulting in 45 = 1024 permutations. The
null distribution of zg was approximated by the combined empirical distri-
bution of the 1024 sets of z0

g . Comparing the distribution of zg to the null
distribution, the variability of zg seems to be larger than predicted. Consid-
ering the experimental layout closer, the arrays are not exchangeable even for
non-differentially expressed genes, since the replicates stem from the sample
extracted RNA from the same sample. Therefore, systematic variation due
to differences between polyps, timepoints or RNA extractions are not repro-
duced correctly. Therefore, the p-values reported were reported as approxi-
mate and a stringent limit was set for calling a gene differentially expressed
(p < 0.001).

Briefly, the biological results of the paper were that treating polyps with
local glucocorticoids increase the expression of uteroglobin and other anti-
inflammatory genes. The increased expression of uteroglobin was verified on
the RNA level using realtime RT-PCR and on protein level using immuno-
histochemistry.
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Comments on Paper II:
Evaluation of reference genes for studies of gene expression in

human adipose tissue.

In Paper II (Gabrielsson et al., 2005), a non-typical problem is addressed. In
certain measurement techniques, such as realtime RT-PCR, the gene expres-
sion for different genes can be measured, scaled by an unknown constant.
Genes that are known to be stably expressed between the studied conditions
may then serve as references to determine the scale. Widely used reference
genes, e.g. β-actin and GAPDH, have been shown to be regulated under
certain conditions and are therefore debated. Hence, Paper II aims at identi-
fying a suitable reference gene to be used in studies involving human adipose
tissue (i.e. fat), examining new candidates and widely used reference genes.

First, novel reference gene candidates are sought using three microarray
datasets, involving a variety of conditions for adipose tissue. Here, genes are
sought that are estimated to vary as little as possible between the conditions.

In the second part, the stability is evaluated using realtime RT-PCR
samples for the novel reference gene candidates and a small selection of widely
used reference genes, on 44 novel biological samples. Here, the fundamental
issue is the need for a reference gene to perform the measurements, but which
reference gene to use is the problem to be addressed. In Vandesompele et al.
(2002) a method is presented, ranking the candidates based on the fact that
ratios of abundance of reference genes in different samples should be constant.
In the current paper, an extension is introduced, performing bootstrapping
to assess the credibility of the ranks. Briefly, a novel reference gene, LRP10,
is ranked best in 71% of the cases and the ratio of LRP10 and CLN3 show
considerably less both systematic and non-systematic variation than the best
ratios of widely used reference genes.

An interesting alternative to the approach of Vandesompele et al. (2002)
has been presented by Andersen et al. (2004). Here a variance component
model is used to assess the variability of the different reference gene candi-
dates from realtime RT-PCR data.
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Comments on Paper III:
Weighted analysis of paired microarray experiments.

In Paper III (Kristiansson et al., 2005), a novel model for the analysis of
paired microarray experiments is introduced, titled Weighted analysis of
paired microarray experiments (WAME). In previous papers (Lönnstedt and
Speed, 2002; Smyth, 2004), parametric models explicitly modelling the prior
distribution for the gene-specific variances by the inverse gamma distribu-
tions have been proposed. There the large number of genes is used to de-
termine the hyperparameters for the prior according to the empirical Bayes
principle. In the current paper, the model is extended to catch array-wise
variations in quality, allowing for: (i) different variances for different rep-
etitions (technical or biological) and (ii) correlations catching e.g. shared
sources of variation. Methods are developed for estimating the covariance
matrix and the hyperparameter for the prior of the gene-specific scaling com-
ponents and a likelihood ratio test is derived for the differential expression
of each gene. The results from some simulated and three real datasets are
presented. On simulated data, WAME is performing at least as well as the
existing methods, even when data is deviating from the model. In WAME,
the structure of the data is utilised in a novel way, using the large num-
ber of genes that are non-differentially expressed to estimate the covariance
matrix, which is complicated by the heavy tails of the distribution for the
gene-specific variance scales.
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Gene profiling reveals increased expression of
uteroglobin and other anti-inflammatory genes
in glucocorticoid-treated nasal polyps

Mikael Benson, MD, PhD,a,b Lena Carlsson, MD, PhD,c Mikael Adner, PhD,a Margareta

Jernås, BSc,c Mats Rudemo, PhD,d Anders Sjögren, BSc,d Per Arne Svensson, PhD,c

Rolf Uddman,MD, PhD,a and Lars Olaf Cardell, MD, PhDa Malmö and Gothenburg, Sweden
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Background: Treatment with local glucocorticoids (GCs)

decreases symptoms and the size of nasal polyps. This might

depend on the downregulation of proinflammatory genes, as

well as the upregulation of anti-inflammatory genes.

Objective: We sought to identify GC-regulated anti-inflamma-

tory genes in nasal polyps.

Methods: Affymetrix DNA microarrays were used to analyze

the expression of 22,283 genes in 4 nasal polyps before and after

local treatment with fluticasone (400 mg/d). Expression of

uteroglobin and mammaglobin B was analyzed with real-time

PCR in 6 nasal polyps and in nasal biopsy specimens from

6 healthy control subjects.

Results: Two hundred three genes had changed in expression

in treated polyps, and 139 had known functions: 54 genes were

downregulated, and 85 were upregulated. Genes associated

with inflammation constituted the largest single functional

group. These genes affected key steps in inflammation (eg,

immunoglobulin production; antigen processing and presenta-

tion; and the chemoattraction and activation of granulocytes,

T cells, and B cells). Several proinflammatory genes were

downregulated. In contrast, some anti-inflammatory genes

were upregulated. The gene that increased most in terms of

expression was uteroglobin. This was confirmed with real-time

PCR. By contrast, expression of uteroglobin was lower in

untreated polyps than in healthy nasal mucosa.

Immunohistochemical investigation showed staining of

uteroglobin in the epithelium and in seromucous glands in

control subjects and in nasal polyps.

Conclusion: Upregulation of anti-inflammatory genes, such as

uteroglobin, might contribute to the effects of local treatment

with GCs in nasal polyps. (J Allergy Clin Immunol

2004;113:1137-43.)

Key words: Polyp, microarray, uteroglobin
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Nasal polyposis is often used as an in vivo model to
study the effects of local treatment with glucocorticoids
(GCs). Nasal polyps are characterized by an eosinophilic
edematous stroma.1 Immunohistochemical investigations
have revealedmast cell degranulation and high local levels
of IgE.2 The effects of GCs in treating nasal polyps have
not been fully elucidated. The downregulation of pro-
inflammatory cytokines and adhesion molecules that
attract and activate eosinophils has been demonstrated.3

Recently, upregulation of the anti-inflammatory cytokine
TGF-b was described in GC-treated nasal polyps.4 This
suggests that increased anti-inflammatory activity could
contribute to the effects of GC treatment.
DNA microarrays consist of a matrix with attached

DNA sequences that permit simultaneous analysis of the
expression of thousands of genes. This provides unique
opportunities to analyze the effects of GCs on a genome-
wide scale. Studies of this kind have been performed on
a variety of cell types.5-9 They reveal that GCs not only
downregulate proinflammatory mediators but also up-
regulate anti-inflammatory agents. However, gene ex-
pression profiles vary considerably in different cell types.
This is consistent with previous data. For example, GCs
induce apoptosis in eosinophils but inhibit apoptosis in
neutrophils.10 Different doses or types (ie, natural or
synthetic) of GCs could also contribute to the variety of
gene expression profiles. It is therefore of interest to ex-
amine the in vivo effects of pharmacologic doses of GCs
on human tissue by using DNA microarrays. To our
knowledge, no such studies exist, but microarray analyses
of nasal mucosa from patients with allergic rhinitis with
and without nasal polyps have been performed.11,12

In this study the effects of topical GC treatment on nasal
polyps were examined with DNA microarrays measuring
the expression of some 22,283 genes, with particular
emphasis on anti-inflammatory genes.

Abbreviations used

CCL: Chemokine (C-C motif) ligand

Ct: Cycle threshold

GC: Glucocorticoid

PDE: Phosphodiesterase
1137



J ALLERGY CLIN IMMUNOL

JUNE 2004

1138 Benson et al

R
h
in
itis,

sin
u
sitis,

a
n
d

o
cu

la
r
d
ise

a
se

s

METHODS

Patients

Six male patients with bilateral nasal polyposis requiring surgical

intervention (median age, 48 years; age range, 41-54 years) were

included in this study (Table E1 in the Journal’s Online Repository at

www.mosby.com/jaci). In addition, nasal mucosal biopsy specimens

were obtained from 6 healthy control subjects for examination with

real-time PCR. Their median age was 31 years (range, 24-47 years),

and 2 were women. Nasal polyposis was identified on the basis of

clinical symptoms and the visualization of polyps by means of anterior

rhinoscopy. A full ear, nose, and throat examination and a skin prick

test were performed before inclusion. Patients with cystic fibrosis and

ciliary dyskinesia were excluded from the study along with subjects

with a history of concurrent purulent nasal infection in the 6 weeks

before the study or any kind of nasal surgery during the last year. None

of the patients or healthy control subjects was an active smoker or

subjected to passive smoke exposure on a regular basis. None of the

patients or healthy control subjects had asthma that required continuous

medication. Skin prick tests were performed as previously described.11

None of the healthy control subjects but 2 of the patients had a positive

skin test response to birch pollen, grass pollen, or both, with a history of

intermittent allergic rhinitis. These patients participated in the study

during the autumn-winter (outside the pollen season).

Local treatment with GCs was withheld for a minimum of 6 weeks

before the study. After this running-in period, a first set of polyps was

surgically removed after topical application of local anesthesia

containing lidocainhydrochloride-nafazoline (34 mg/mL + 0.17 mg)

for about 20 minutes. No other surgical procedures were performed

on this occasion. One week later, the patients were re-examined by

the surgeon, and fluticasone, 200 lg twice daily, was initiated. After
6 weeks on this course, a new set of polyps was removed.

All patients were recruited through physician referrals. This study

was approved by the ethics committee of the University of Lund, and

informed written consent was obtained from all subjects.

DNA microarray analysis, quantitative
real-time PCR, and immunohistochemistry

For a detailed description, see the e-text in the Journal’s Online

Repository. Briefly, nasal polyps from each patient before and after

GC treatment were analyzed by using duplicate DNA microarrays

measuring the expression of 22,283 genes (HuGe U133A GeneChip;

Affymetrix, Santa Clara, Calif ). Nasal mucosal biopsy specimens,

macrophages, and adipose tissue were obtained and analyzed as

previously described.11,13,14

Data analysis

Data analysis was performed in 2 steps. First, as an internal

control, the expression levels of genes previously described as GC-

regulated were examined. The selection of GC-regulated genes was

based on a recent review.15 Second, an open search was performed

for genes that differed between nasal polyps before and after GC

treatment. This search was based on a statistical method, as described

below. The identities of the analyzed transcripts were verified by

means of BLAST analysis (http://www.ncbi.nlm.nih.gov/BLAST/)

and bymeans of database searches in the ExPASyMolecular Biology

Server (http://www.expasy.ch).

Statistical analysis

The Spearman rank correlation test was used to analyze cor-

relations between duplicate DNA microarrays.

Step 1. The Wilcoxon signed-rank test was used to compare

microarray expression levels before and after GC treatment for 30

genes previously found to be downregulated by GCs.
Step 2. Expression values were transformed to cube roots to find

out which genes were changed in expression levels,16 and for each

gene, a score value was computed as a modified t statistic:

zg ¼ �yygd=ðsg þ a0Þ. Here �yygd is the difference between averages of

cube root values after and before GC treatment for n patients.

Similarly, Sg is the SE corresponding to the n patients, and a0 is

a regularizing constant chosen as the 90th percentile for all Sg
values.17 To determine thresholds zmin and zmax, which give rise to

small or large zg values, a reference distribution was formed corres-

ponding to a variable, z0g. This variable was constructed analogously

to the variable zg but using the differences between the A and B arrays

instead of differences between levels before and after GC treatment.17

The differences can be created in 4 ways for each individual for each

gene. The distribution of z0g was defined as the average of the

distribution for all the corresponding combinations. The values of the

thresholds zmin and zmax were set according to that z0g distribution.
It should be noted that in addition to the effect of GC treatment, the

distribution of zg differs from the distribution of z0g also by including

effects of different polyps and of the time span of 6 weeks between

polyp acquirement. The levels for zmin and zmax were therefore

stringently chosen as the lower and upper 0.1% levels.

RESULTS

General characteristics of the gene
expression data

Nasal polyps before and after treatment with GCs were
analyzed with duplicate DNA microarrays that measured
the expression of 22,283 genes. The quality of the
microarray data was assessed during various control
experiments. This led to the exclusion of one of the
patients (see the Methods section in the Journal’s Online
Repository at www.mosby.com/jaci). The reproducibility
of the gene expression data for the remaining 3 patients
was supported by good agreement between the duplicate
microarrays. The mean ± SEM correlation coefficients
(r) for the duplicate expression levels were 0.95 ± 0.02
for the untreated polyps and 0.92 ± 0.07 for the treated
polyps.

Data analysis

Step 1: Analysis of genes previously described as
downregulated by GCs. A group of 30 genes earlier
found to be downregulated by GCs was defined on the
basis of a recent review to compare the effects of GCs in
this study with previously described effects.15 This served
as an internal control. Twenty of the 30 genes differed
more than 10% (comparing levels before and after GC
treatment): 18 of these had a lower expression and 2 had
a higher expression after treatment (P = .001, Wilcoxon
signed-rank test; Fig 1).
Step 2: Unbiased search for GC-regulated

genes. Two hundred three genes differed in expression
in nasal polyps before and after GC treatment (Tables E2
and E3 in the Journal’s Online Repository at www.
mosby.com/jaci). The median ratios between expression
levels before and after treatment were 0.46 for down-
regulated genes and 2.24 for upregulated genes. By using
a public database (http://www.ncbi.nlm.nih.gov/
LocusLink/), the genes were organized in functional

http://www.ncbi.nlm.nih.gov/LocusLink/
http://www.ncbi.nlm.nih.gov/LocusLink/
http://www.mosby.com/jaci


J ALLERGY CLIN IMMUNOL

VOLUME 113, NUMBER 6

Benson et al 1139

R
h
in
it
is
,
si
n
u
si
ti
s,

a
n
d

o
cu

la
r
d
is
e
a
se

s

groups: 139 of the 203 genes had known functions, with
54 being downregulated and 85 being upregulated. Genes
associated with inflammation constituted the largest single
functional group, comprising 32% of the total. Genes
involved in transcription and translation (12%) and
metabolism (12%) were the other major functional
categories. Downregulated inflammatory genes are listed
in Table I,18-21 and upregulated inflammatory genes are
listed in Table II.

Several proinflammatory genes were downregulated,
such as genes regulating the influx of leukocytes (prosta-
glandin D2 synthase, chemokine ligand 19, activated
macrophage-specific CC chemokine 1, and IL-8), antigen
processing (eg, cathepsin B), antigen presentation (MHC
class I and II), phagocytosis (peroxidasin), and the general
activation of inflammatory cells (phosphodiesterase 4B)
and specific cells, such as T lymphocytes (granulysin), B
lymphocytes (sialyltransferase 1 and immunoglobulins),
macrophages (b-site APP-cleaving enzyme 2), and
neutrophils (defensin b2 and lipocalin 2). Moreover,
CD52, a surface marker on eosinophils, T cells, and B
cells, was downregulated.

FIG 1. Expression levels of genes previously described as down-

regulated15 by GCs in nasal polyps before and after treatment with

a local GC. The diagonal line is the line of identity. Ten of the 30

genes differed less than 10% (circles), and of the remaining 20, 2

had a higher (open boxes) and 18 had a lower (filled boxes)

expression after treatment (P = .001, Wilcoxon signed-rank test).

CCL, Chemokine (C-C motif) ligand; ICAM1, intercellular adhesion

molecule 1 (CD54), human rhinovirus receptor; IFNG, IFN-c; JAK2,
Janus kinase 2 (a protein tyrosine kinase); MCP, monocyte

chemotactic protein; MMP, matrix metalloproteinase 12; MUC2,

mucin 2, intestinal, tracheal; NOS2A, nitric oxide synthase 2A,

inducible, hepatocytes; PLA2G6, phospholipase A2, group VI,

cytosolic, calcium independent; PLAT, plasminogen activator,

tissue; PTGS2, prostaglandin-endoperoxide synthase 2; SELE,

selectin E (endothelial adhesion molecule 1); SELL, selectin L

(lymphocyte adhesion molecule 1); STAT, signal transducer and

activator of transcription 1, 91 kd; TCR, T-cell receptor; TNF, tumor

necrosis factor (TNF superfamily, member 2); VCAM1, vascular cell

adhesion molecule 1.
In contrast, some anti-inflammatory genes were
upregulated. Uteroglobin was the gene the expression of
which increased most after treatment (ie, 4.2-fold com-
pared with before treatment). Uteroglobin is one of the
most abundant proteins in nasal secretions and has wide-
ranging anti-inflammatory properties. To independently
confirm the validity of the microarray data on relative
mRNA expression levels, we used TaqMan real-time
quantitative RT-PCR. This was performed on nasal polyps
from 6 patients before and after treatment. The levels of
uteroglobin were related to the expression of the reference
gene b-actin, and the D cycle threshold (Ct) values were
1.46 ± 0.61 and�1.26 ± 0.82 before and after treatment,
respectively. After DDCt analysis, the data demonstrated
a 5.56 ± 2.58efold increase in the expression of the
uteroglobin gene in 6 patients treated with GCs
(P = .0071). Mammaglobin B, another member of the
uteroglobin family, was also among the upregulated genes,
2.0-fold compared with before treatment. This was
confirmed by means of real-time PCR analysis of nasal
polyps from 6 patients before and after treatment (DCt

TABLE I. Inflammatory genes with lower expression

after treatment with GCs

Accession no. Description

Ratio,*

reference�

NM_004942.2 Defensin, b2 0.13

NM_006538.1 BCL2-like 11 (apoptosis

facilitator)

0.20

M85276 Granulysin isoform NKG5 0.23

NM_002600.1 Phosphodiesterase 4B 0.25 #18
NM_006128.1 Bone morphogenetic

protein 1

0.25

NM_000584.1 IL-8 0.37 #19#15$20

NM_004049.1 BCL2-related protein A1 0.37

L10343 Elafin 0.38

NM_004073.1 Cytokine-inducible kinase 17 0.40

U88321.1 Chemokine ligand 19 0.42

NM_000954.1 Prostaglandin D2 synthase 0.45

U64094.1 Soluble type II IL-1 receptor 0.46 "38#39
NM_001803.1 CD52 0.46

NM_005564.1 Lipocalin 2 0.48

AF003934.1 Prostate differentiation factor 0.48

Y13710 Activated macrophage-

specific CC chemokine 1

0.55

BF342851 Peroxidasin 0.58

AI743792 Sialyltransferase 1 0.62

NM_001908.1 Cathepsin B 0.69

NM_002121.1 Major histocompatibility

complex, class II, DP b1
0.70

M63438.1 Immunoglobulin-rearranged

c chain

0.77

AA573862 Major histocompatibility

complex, class I, A

0.79 #21

*Ratio between gene expression levels in nasal polyps before and after

treatment with GCs (with genes ordered by ratios). Each microarray

experiment was performed in duplicate (n = 4 for both untreated and

treated polyps).
�References to previous studies. Arrows indicate increased, decreased, or

unchanged expression of each gene.
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values were 4.54 ± 0.93 and 2.26 ± 1.54, respectively),
which rendered a 3.86 ± 2.16efold increase after GC
treatment (P = .0108).

In contrast to uteroglobin, the function of mamma-
globin B is not known. Examination of DNA microarray
analyses of various cells and tissues performed at our
laboratory showed that both mammaglobin B and utero-
globin were only expressed in nasal polyps and mucosa
(Fig 2). Interestingly, the expression of uteroglobin was
higher in normal nasal mucosa than in untreated nasal
polyps. This suggests that decreased uteroglobin could
contribute to the disease process in nasal polyposis. How-
ever, the nasal polyp values were obtained with a more
recent version of the DNA microarray GeneChip and not
directly comparable. Therefore real-time PCR analysis of
uteroglobin was performed in nasal biopsy specimens
from 6 healthy control subjects. The expression of

TABLE II. Inflammatory genes with higher expression

after treatment with GCs

Accession. no. Description Ratio,* reference�

NM_003357.1 Uteroglobin 4.2 "34
NM_004038.1 Amylase, a 1A 3.3

M64497.1 Nuclear receptor

subfamily 2, group F

3.3

M15872.1 Glutathione S-transferase

A2

3.3

X69397.1 CD24 3.2

NM_013230.1 CD24 3.2

S73751.1 Monocyte macrophage

serine esterase 1

3.1

NM_000635.1 HLA regulatory

factor X, 2

2.9

J05064.1 Complement component

C6

2.6

AF054817.1 CD84 2.5

NM_005060.1 RAR-related orphan

receptor C

2.5

NM_006992.1 B7 protein 2.340

NM_002231.2 CD82 2.2

NM_003012.2 Secreted apoptosis-related

protein

2.0

BF669455 CD164 1.8

NM_004079.1 Cathepsin S 1.7

NM_001140.1 Arachidonate

15-lipoxygenase

1.7

NM_021777.1 A disintegrin and

metalloproteinase

domain 28

1.7

BF793951 Serine protease 15 1.6

AF009616.1 CASP8 and FADD-like ap-

optosis regulator

1.5

AF182645.1 IK-cytokine, downregulator

of HLA

1.5

*Ratio between gene expression levels in nasal polyps before and

after treatment with GCs (with genes ordered by ratios). Each

microarray experiment was performed in duplicate (n = 4 for both

untreated and treated polyps).
�Reference to a previous study. The arrow indicates increased expression

of the gene.
uteroglobin showed a 0.09 ± 0.03efold decrease in
untreated nasal polyps compared with healthy nasal
mucosa (DCt values were 1.46 ± 0.61 and �2.02 ± 0.30,
respectively; ie, 11 times lower in the polyps, P = .0005).
The corresponding fold change for mammaglobin B was
1.05 ± 1.83 (DCt values were 4.54 ± 0.89 and
4.61 ± 0.82, respectively; P = .953).

Immunohistochemical investigation was performed to
examine the expression of uteroglobin in nasal biopsy
specimens from healthy control subjects and in untreated
nasal polyps. In the nasal mucosa from healthy indivi-
duals, an intense immunostaining of uteroglobin was de-
tected in the acini of seromucous glands and in epithelial
cells. In specimens from nasal polyps, a similar distribu-
tion was seen, although the staining of epithelial cells was
less intense and a smaller number of cells displayed
immunoreactivity (Fig 3).

Other upregulated genes included arachidonate 15-
lipoxygenase, an enzyme that induces production of
lipoxins, a class of anti-inflammatory eicosanoids; IK-
cytokine, which reduces MHC class II expression; and
secreted apoptosis-related protein, which is proapoptotic.
Two CD markers with anti-inflammatory properties were
upregulated: CD24, which induces B-cell apoptosis, and
CD164, which is cytoprotective and antiadhesive. Detoxi-
fying agents that protect against inflammatory damage in

FIG 2. Mean ± SEM expression levels of mammaglobin B (A) and

uteroglobin (B) in nasal polyps (open bars) and nasal biopsy

specimens (filled bars) from healthy control subjects and in various

control human cells and tissues. The expression levels in nasal

polyps are derived from experiments with HuGeU133A Gene Chips

and the other expression levels from experiments with HuGe95A

GeneChips. ND, Not detectable; AT, adipose tissue; SC, sub-

cutaneous.
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the airways were also upregulated (ie, glutathione S-trans-
ferase A2 and monocyte macrophage serine esterase 1).

DISCUSSION

In this study the expression of 22,283 genes was
analyzed in nasal polyps before and after GC treatment. Of
these genes, 203 differed in expression, and 139 had
known functions. The largest functional group comprised
genes related to inflammation. Several proinflammatory
genes were downregulated. These affected key steps in
inflammation, ranging from the influx of leukocytes to
immunoglobulin production. Although most of these
genes have not been previously described as GC reg-
ulated, their relevance is suggested by 2 of them being
targets for specific anti-inflammatory therapy: phospho-
diesterase (PDE) 4B and the CD52 antigen. PDEs
inactivate cyclic AMP, and PDE4 is the predominant
isoenzyme in inflammatory cells. Recently, a selective
PDE4 inhibitor has been developed to treat chronic
obstructive pulmonary disease.22 CD52 is expressed on
lymphocytes. Antibodies directed against CD52 are used
as immunosuppressants in transplantation and autoim-
mune disease.23 This suggests that identification of genes
that are downregulated by GCs might help to find new
therapeutic candidates. However, the effects of GCsmight
depend not only on downregulation of proinflammatory
genes but also on upregulation of anti-inflammatory
genes. This is the first study to confirm this in vivo on
a genome-wide scale.

There are several methodological concerns in micro-
array studies. A large number of genes are analyzed in
a small number of patients. This involves the risk of
spurious findings. To reduce this risk, a statistical method
that takes into account the variance of the data was used to
identify differentially expressed genes, rather than a fixed
cutoff point, such as a 2-fold change in expression.16,17,24

The validity of the data in this study is supported by
several control experiments that are part of the analytic
protocol. Decreased expression of proinflammatory genes
in this study could be caused by decreased influx of cells
rather than a direct effect on gene expression. As an
internal control, the effects of GCs in this study were
compared with those described in a recent review.15 The
majority of the genes that were reported to be down-
regulated by GCs also had lower expression in this study.
The finding that these genes included several related to
eosinophil adhesion, chemotaxis, and activation (VCAM1,
CCL5, CCL11, IL3, IL5, IL8, and TNF) was of particular
interest. This agrees with previous in vivo studies
indicating that GCs inhibit TH2 cytokines in nasal polyps
and allergic rhinitis2,3,25-27 but not with some in vitro
studies.15,28 It is worth noting that not all genes can be
characterized as either proinflammatory or anti-inflam-
matory. For example, TH1 cytokines inhibit IgE-mediated
allergic reactions but enhance type IV hypersensitivity. In
this study the TH1 cytokine IFNG did not change, and the
TH1-promoting cytokines IL12A and IL12B even tended
to increase. This is in agreement with previous studies of
nasal polyps and allergic disease showing either no change
or an increase in IFNG after GC treatment.4,8,25,26,29,30

Little is known about the effects of GCs on anti-
inflammatory genes in human tissue. Recently, increased
expression of the anti-inflammatory gene TGFB was
described in GC-treated nasal polyps.4 This suggests that
such genes could contribute to the beneficial effects of
GCs. In this study of nasal polyps, uteroglobin was the
gene that increased most after GC treatment. This was
confirmed with real-time PCR analysis. Uteroglobin, or
Clara cell 10-kd protein, is known to be secreted by Clara
cells in the lungs. To our knowledge, uteroglobin has not
been previously described in the nasal mucosa. It has
wide-ranging anti-inflammatory effects (ie, the inhibition
of leukocyte chemotaxis, phospholipase A2, and pro-
inflammatory cytokines, as well as protease activity). The
relevance of these anti-inflammatory effects is supported
by decreased local expression of uteroglobin protein in
asthma.31 Peptides derived from uteroglobin are among
the most potent anti-inflammatory agents identified to
date.32 Recently, a peptide of this kind was successfully
tested in an animal model of allergic conjunctivitis.33

Experimental data show that GCs induce the expression
of uteroglobin.34 To our knowledge, this is the first re-
port to confirm this in vivo. Because treatment with GCs
is known to decrease symptoms and the size of nasal
polyps, as well as eosinophil infiltration, it is possible that
uteroglobin might contribute to these effects. Interest-
ingly, comparisons with previous microarray studies in-
dicated lower expression of uteroglobin in untreated nasal
polyps compared with in nasal mucosa from healthy
control subjects. This was confirmed with real-time PCR
that showed that the expression levels were 11 times lower
in the polyps.

Immunohistochemical investigation of nasal biopsy
specimens from healthy control subjects revealed intense
immunostaining of uteroglobin in the acini of seromucous

FIG 3. Expression of uteroglobin protein determined by means of

immunohistochemistry in the nasal mucosa from one representa-

tive healthy control subject (A and B) and from one nasal polyp

(C and D) at 2003magnification. Immunoreactivity for uteroglobin

is found in the epithelium (Fig 3, A) and in the acini of seromucous

glands (Fig 3, B). In nasal polyps uteroglobin immunofluorescence

is found in the epithelium (Fig 3, C) and in glandular acini (Fig 3, D).
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glands and in epithelial cells. A similar distribution was
seen in untreated nasal polyps, but the staining of
epithelial cells was less intense, and a smaller number of
cells displayed immunoreactivity. Taken together, these
novel findings indicate that uteroglobin might have a role
in regulating inflammation in the nasal mucosa. Further
studies are needed to examine whether altered expression
of uteroglobin contributes to the pathogenesis of nasal
polyposis, as well as the beneficial effects of GCs in this
disease.

Mammaglobin B, another member of the uteroglobin
family, also increased in nasal polyps after treatment. In
a recent microarray study of nasal mucosa from patients
with allergic rhinitis with and without nasal polyps,
increased expression of mammaglobin B was found in
the patients with polyps.12 Interestingly, in our study
expression of mammaglobin B did not significantly differ
when healthy nasal mucosa was compared with untreated
nasal polyps. This suggests that further studies are needed
to examine the role of mammaglobin B in nasal polyposis
and allergic rhinitis. The function of mammaglobin has
not been defined. Different observations suggest that
mammaglobin B and uteroglobin might be functionally
related. The 2 genes display sequence homology, and an
examination of DNA microarray analyses of various cells
and tissues performed at our laboratory revealed that the
genes were only expressed in nasal polyps and mucosa. In
addition, the expression of both genes increased after GC
treatment.

The upregulated genes included another gene with
wide-ranging anti-inflammatory properties, arachidonate
15-lipoxygenase. This is an enzyme that induces pro-
duction of lipoxins, a class of eicosanoids that are
important stop signals for inflammatory reactions.35

Other upregulated anti-inflammatory genes included IK-
cytokine, which decreases MHC class II expression. This
is consistent with the lower expression of MHC class II
that was demonstrated in theGC-treated polyps. Similarly,
the increased expression of CD24, which induces B-cell
apoptosis,36 agrees with the reduced expression of genes
expressed by B cells, such as CD52, sialyltransferase 1,
and immunoglobulins.

The enhancement of anti-inflammatory genes could
therefore contribute to the beneficial effects of GCs in vivo.
Not all genes matched the simple concept of GC
downregulating proinflammatory genes and upregulating
anti-inflammatory genes. For example, the soluble type 2
IL-1 receptor decreased after GC treatment. Soluble cyto-
kine receptors might act as both enhancers or inhibitors,
depending on the relative concentration between the soluble
receptor and its ligand.37 Previous experimental data
indicate that GCs might both increase and reduce the
expressionof the soluble type 2 IL-1 receptor.38,39 Increased
expression of B7 is another example of the complex effects
of GC. B7 is expressed on antigen-presenting cells and
might either activate or inhibit T cells, depending on which
other costimulatory molecules are expressed.40

To summarize, GCs suppress the expression of many
proinflammatory genes and enhance some anti-inflamma-
tory genes. The characterization of the balance between
these genes might contribute to an understanding of the
effects of GCs. Profiling gene expression after GC
treatment might also help to identify therapeutic can-
didates.
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Malin Lönn,* Mats Rudemo,‡ and Lena M. S. Carlsson*

Abstract
GABRIELSSON, BRITT G., LOUISE E. OLOFSSON,
ANDERS SJÖGREN, MARGARETA JERNÅS, ANNA
ELANDER, MALIN LÖNN, MATS RUDEMO, AND
LENA M. S. CARLSSON. Evaluation of reference genes
for studies of gene expression in human adipose tissue.
Obes Res. 2005;13:?–?.
Objective: The aim of this study was to evaluate reference
genes for expression studies of human adipose tissue.
Research Methods and Procedures: Using 52 human adi-
pose tissue expression profiles (HU95), 10 putative refer-
ence genes with the lowest variation in expression levels
were selected for further studies. Expression stability of
these 10 novel and 5 previously established reference genes
was evaluated by real-time reverse transcriptase-polymerase
chain reaction analysis. For this purpose, 44 adipose tissue
biopsies from 27 subjects were chosen to include a wide
range of parameters such as sex, age, BMI, depot origin,
biopsy procedure, and effects of nutrition.
Results: LRP10 was identified as the gene with the least
variation in expression levels. The frequently used reference
genes RPLP0, 18S rRNA, PPIA, ACTB, and GAPD were
ranked as 4, 6, 7, 8, and 10, respectively.
Discussion: Our results suggest that LRP10 is a better choice
as reference for expression studies of human adipose tissue
compared with the most frequently used reference genes.

Key words: housekeeping, bootstrapping, LRP10, �-ac-
tin, GAPD

Introduction
A survey of 40 studies published since 2001 shows that,

in 70% of the papers, ACTB, GAPD, or 18S rRNA were used
as reference genes for reverse transcriptase-polymerase
chain reaction (RT-PCR)1 measurements of gene expression
in human adipose tissue or adipocytes. However, the ex-
pression of these genes has been reported to vary consider-
ably in other tissues and cells (1–3). In addition, we have
previously observed that ACTB was regulated during diet-
induced weight loss (4). This study was therefore performed
to identify and evaluate novel reference genes for analysis
of gene expression in human adipose tissue and to compare
these with frequently used reference genes.

Research Methods and Procedures
Subjects and Samples

This study was approved by the Medical Ethics Commit-
tee at Göteborg University, and all participants gave written
informed consent. All biopsies were taken after an overnight
fast, immediately frozen in liquid nitrogen, and stored at
–80 °C until analysis. Seventy-two biopsies from 27 sub-
jects (6 men and 21 women) were used for the microarray
expression profiling, and 44 biopsies from 27 subjects (14
men and 13 women) were used for the real-time RT-PCR
analysis (supplemental data available online at http://ww-
w.obesityresearch.org). Procedures for RNA isolation and
hybridization to the microarrays have been described pre-
viously (5,6).

Selection of Stably Expressed Genes in Human Adipose
Tissue using Microarray Data

In total, 52 expression profiles of human adipose tissue
from the above mentioned 72 biopsies were used for the
selection (supplemental data available online at http://www.
obesityresearch.org). To perform a preselection using the
largest group of data (n � 36), the 50 genes with the lowest
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coefficients of variation (CVs, %SD) were selected from
expression profiles of paired subcutaneous and omental
adipose tissue (5,6). Subsequently, all microarrays were
used to create eight different groups representing different
physiological variables of interest (supplemental data avail-
able online at http://www.obesityresearch.org). The average
expression for each group was calculated, followed by com-
putation of the CVs for the 50 genes across the eight groups.
The 10 genes with the lowest CV were selected for subse-
quent studies (Figure 1; supplemental data available online
at http://www.obesityresearch.org).

ACTB, GAPD, and 18S were identified by PubMed
searches as common reference genes for expression studies
of human adipose tissue. Two other frequently used refer-
ence genes, PPIA and RPLP0, with low CV in the microar-
ray data, were also included (Figure 1). The 5 established
and 10 novel putative reference genes were evaluated by
real-time RT-PCR analysis on individual samples.

Real-time RT-PCR
Eleven of the 15 genes were analyzed using predesigned

TaqMan Assays-on-Demand (Applied Biosystems, Foster
City, CA). Probe-primer sets for the four remaining genes,
COBRA1, ENTPD6, PDAP1, and HDAC5, were designed
using the Primer Express software v2.0 (Applied Biosys-
tems). TaqMan Reverse Transcriptase reagents, TaqMan
Universal PCR Master mix (Applied Biosystems), and re-
action conditions were used according to the manufacturer’s
instructions (supplemental data available online at http://
www.obesityresearch.org).

Ranking the Putative Reference Genes
Ranking of the selected reference genes was performed

essentially as described by Vandesompele et al. (7). Briefly,

for each gene, the gene expression ratio versus all other
genes was calculated in each sample. Subsequently, for each
pair of genes, a pairwise variation was defined as the SD of
the pairwise log ratios for all samples, and for each gene, a
gene instability measure was defined as the mean overall of
the pairwise variations for that gene.

An iterative process was employed in the ranking proce-
dure where genes were excluded stepwise. In each step, the
gene with the highest gene instability measure was ex-
cluded, after which new gene instability measures were
calculated using only the remaining genes. This procedure
was repeated until only three genes remained. These genes
were ranked as first, second, and third according to their
gene instability measures.

In addition, we performed a bootstrap step to evaluate the
certainty of the ranking. The ranking method was boot-
strapped (8) by resampling with replacement from the orig-
inal set of 44 sample files. The resampling procedure was
repeated 10,000 times (supplemental data available online
at http://www.obesityresearch.org). To check the robustness
of the ranking procedure with respect to outliers, we also
repeated the ranking with trimmed SDs, excluding the most
outlying 10%, 20%, and 40% of log ratios in the computa-
tion of the SDs of the pairwise log ratios.

Results
Selection of Putative Reference Genes in Human
Adipose Tissue from Microarray Data

Based on the analysis of data from 52 microarrays, the 10
genes with the least variability in expression levels were
selected as possible novel reference genes. Figure 1 shows
the normalized signal and the CVs for each of the 10 genes
together with established reference genes represented on the
same microarrays.

Evaluation of Gene Expression Stability
To evaluate the expression stability of the selected genes,

we collected samples from both sexes with wide variation
with respect to age (20 to 64 years), BMI (20.5 to 51.2
kg/m2), nutrition (before diet, 8 weeks of diet, and 2 weeks
refeeding after completed 16-week diet), depot (omental,
subcutaneous), biopsy procedure (surgical, needle), and an-
esthesia (local, general). In total, 44 adipose tissue biopsies
from 27 subjects were used for gene expression analysis by
real-time RT-PCR. The assays for PDAP1 and MGAT1
yielded no or very low signals; consequently, only 13 genes
were analyzed further.

The results from the ranking of the genes and the evalu-
ation of the certainty of ranking by bootstrap procedure are
shown in Figure 2. The figure shows that LRP10 was ranked
first in 71% of 10,000 bootstrap samples, followed by CLN3
ranked first in 24% and second in 51% of the bootstrap
samples. These results obtained by the bootstrap procedure

Figure 1: Expression stability of 10 novel (white bars) and 10
established (gray bars) reference genes in human adipose tissue
analyzed by microarrays. The data are shown as normalized ex-
pression for each gene, and error bars indicate the CV, which was
used to evaluate the expression stability of the genes (see Research
Methods and Procedures).
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were in agreement with the original ranking. Furthermore,
the ranking was also robust in that it was essentially unaf-
fected by trimming away 10%, 20%, or 40% of the most
outlying log ratios. The results suggest that LRP10 is the
most stably expressed gene.

Effects of Sex, BMI, Age, Depot, and Biopsy Procedure
To evaluate how the choice of reference gene affects the

final results, the analyzed samples were grouped according
to sex, BMI, age, depot origin, and effect of diet. Given that
18S, GAPD, and ACTB are frequently used as reference
genes, we chose to show the variation that was introduced
when 18S expression was related to GAPD, GAPD expres-
sion was related to ACTB, and ACTB expression was related
to 18S (Figure 3, A–C). The expression ratios of the two top
ranked genes, CLN3 and LRP10, are shown for comparison
(Figure 3D). Figure 3 shows that the combination of CLN3
and LRP10 reduced the within-group variation substantially
compared with the expression ratios of the other combina-
tions of reference genes. Furthermore, CLN3 and LRP10
showed lower variation among the medians in the different
groups, suggesting that the different conditions had very
small effects on the expression of these genes. The full
figure showing all possible combinations of reference genes
is shown in supplemental data (data available online at
http://www.obesityresearch.org).

Discussion
In this study we used microarray data, real-time RT-PCR,

and a bootstrap procedure to identify genes with low vari-
ation in expression levels in human adipose tissue. LRP10
was identified as the gene with the highest expression

stability in human adipose tissue biopsies that were selected
to represent a wide range of commonly studied physiolog-
ical parameters.

Several approaches have been made to adjust for sample
variation in quantitative RT-PCR analysis. For example,
gene expression has been related to total RNA or cell count
(9). However, this approach lacks control of the cDNA
synthesis step, and cell counts can only be applied to studies
performed on cells and not tissues. Other strategies, such as
spiking exogenous in vitro synthesized RNA (10,11), are
time-consuming, which is why the majority of published
studies use an endogenous reference gene. However, the
evaluation of an optimal reference gene based on the real-
time RT-PCR data becomes a circular problem because of
the lack of an absolute reference point, as discussed by
Vandesompele et al. (7) in their paper presenting a strategy
to identify the most stably expressed reference genes (7).
The use of the bootstrap technique, which we have applied
in this study, extends the method of Vandesompele et al. by
enabling us to differentiate the expression stability of the
two highest ranked genes.

ACTB, 18S, and GAPD are the most frequently used
reference genes for expression studies of human adipose

Figure 2: Empirical distribution of ranks shown in percentage for
the 13 remaining genes analyzed by real-time RT-PCR in boot-
strap of size 10,000. Stable genes have low ranks. The varying
shading of numbers is only for improved readability of the figure.

Figure 3: Variation in expression ratios of different gene combi-
nations in human adipose tissue analyzed by real-time RT-PCR.
(A) 18S/ACTB. (B) GAPD/ACTB. (C) ACTB/18S. (D) CLN3/
LRP10. The panels show box plots of the gene expression ratios in
adipose tissue from (a) women (n � 12), (b) men (n � 13), (c)
subjects with BMI �30 kg/m2 (n � 12), (d) subjects with BMI
�35 kg/m2 (n � 13), (e) age �40 years (n � 13), (f) age �40
years (n � 12), (g) omental depot (n � 9), (h) subcutaneous depot
(n � 7), (i) obese subjects, before weight loss (n � 8), (j) obese
subjects, during weight loss (n � 8) and (k) obese subjects, after
weight-loss (n � 4). The box plots show the quartiles of gene
expression ratios where the expression of each gene was normal-
ized before calculation of the ratios.
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tissue, but other reference genes have also been used (e.g.,
PPIA and RPLP0). We found that of the established refer-
ence genes, RPLP0 was highest ranked. However, expres-
sion of RPLP0 when related to LRP10 was significantly
affected by diet-induced weight loss. GAPD expression in
adipose tissue generally showed a higher variation in all
groups compared with 18S and ACTB, which is in contrast
to in vitro cultured human adipocytes, where GAPD is
stably expressed (12).

Little is known of the biological function of LRP10. The
mouse homologue to LRP10, Lrp10, also known as Lrp9,
mediates cellular uptake and hydrolysis of cholesterol esters
in apolipoprotein E-enriched very-low-density lipoproteins
in vitro (13). In conclusion, based on the results of this
study, we recommend the use of LRP10 as a reference gene
for expression studies of human adipose tissue.
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Methods and Procedures
Subjects and samples
The characteristics of the subjects in the study are
shown in Table S1 and S2.

RNA isolation and hybridization to the microarrays
Briefly, total RNA was isolated from the biopsies using
the Chomczynski method (1) but increasing the ratio of
chloroform/phenol to 1:1. Synthesis of biotin-labeled
cRNA from total RNA (5 to 8 µg) and hybridization to
the DNA microarrays were performed according to
Affymetrix GeneChip® Expression Analysis manual
(Affymetrix, Santa Clara, CA, USA). The microarrays
were scanned with a confocal laser scanner and
visualized using GeneChip® 4.0 software (Affymetrix).
The average target signal on each microarray was
globally scaled to an average intensity of 500. The
scanned images were analyzed using Microarray Suite
Version 5.0 software (Affymetrix).

Selection of stably expressed genes in human adipose
tissue using microarray data
In total, 52 expression profiles of human adipose tissue
were used for the selection (see Table S1). A pre-
selection based on within group variation was
performed using the largest group of arrays, i.e. paired
samples from subcutaneous and omental adipose tissue
(2, 3). The 50 genes with the smallest coefficient of
variation (CV, %SD) were selected. The initial
selection was performed on individual probe-sets.
When the corresponding genes were identified we
also searched for other probe-sets representing the
same gene. Subsequently, the geometric mean and
CV of each probe-set representing one gene, was
calculated.
Subsequently, to perform a selection based on
physiological parameters of interest, eight groups were
created as described below and in Table S3:
1. Obese men, omental depot
2. Obese men, subcutaneous depot
3. Obese women, before weight-loss
4. Obese women, during weight-loss
5. Obese women, after weight-loss
6. Obese women, with type 2 diabetes
7. Obese women, non-diabetic
8. Normal-weight women, post-menopausal
Microarrays #37-48 (Table S1) contained two
parameters of interest, presence of diabetes and effect
of weight-loss, and were therefore included in two
groups in the selection (Table S3). The average
expression for each group was calculated, followed by
computation of the CVs for the 50 genes across the
eight groups. The ten genes with the lowest CV were
selected for subsequent studies (table S4). The
expression stability of the ten putative and five
established reference genes was evaluated by real-time
RT-PCR analysis on a different set of samples.

Real-time RT-PCR
Probe-primer sets for the four genes; COBRA1,
ENTPD6, PDAP1 and HDAC5 were designed using the
Primer Express® software v2.0 (Applied Biosystems,
Foster City, CA) ensuring that the amplicons spanned
an exon junction to avoid amplification of genomic
DNA. The sequences were as follows; COBRA1
(probe; 5’-FAM-TCA CCA GGT TCC TCC CGA TGC

TCA-TAMRA-3’, forward primer; 5’-GGA GCC CAA
GAT GGA GGT AGA-3’, reverse primer; 5’-TGT
AGT CAT CCA CCA GGA AGG A-3’), ENTPD6
(probe; 5’-FAM-CCC AGG AGC AAA GTG CTG
AAG CTCA-TAMRA-3’, forward primer; 5’-CTC
ACC TAC GTC AGC CTG CTA CT-3’, reverse
primer; 5’-AGC TGG TCT CAA CAT TGT CAA TTT
T-3’), PDAP1 (probe; 5'-FAM-TCA TCT TCT TCA
TCC TCA CTC TCA TCT GA -TAMRA-3',  forward
primer; 5’-AGG AGC AAA AAG AAG GTG GAG
AT-3’, reverse primer; 5’- CCT TTG CGC TTT TGC
TGG TA-3’) and HDAC5 (probe; 5’-FAM-TGA TGC
CCA TTG CCC ACG AGT TCT-TAMRA-3’, forward
primer; 5’-GAG TAC CTT ACA GCC TTC AGG ACA
GT, reverse primer; 5’-GCG GAG ACT AGG ACC
ACA TCA). The remaining genes were analyzed using
Applied Biosystems pre-designed assays on demand
(Table S4).
Working standards were prepared from a large pool of
different adipose tissue RNAs and standard cDNA was
synthesized in parallel with the sample cDNAs. A
standard curve, obtained by serial dilution of the
standard cDNA (range 0.625 ng to 40 ng original RNA
per well), was included on each plate. Amplification
and detection of specific products were performed with
the ABI PRISM® 7900HT Sequence Detection System
(Applied Biosystems), using default cycle parameters.
All samples were analyzed individually in triplicate.
The background was manually set for each gene from
cycle 3 to about 2 cycles before the signal increased
using the linear amplification plot view. Threshold
values were adjusted to approximately the inflection
point in the logarithmic amplification plot view.

Ranking the putative reference genes
We performed a bootstrap step to evaluate the certainty
of the ranking. The ranking method (4) was
bootstrapped (5) by re-sampling from the original set of
44 sample files, where each file contained the
expression values of the analyzed genes for one sample,
and each time acquiring a random selection of 44 files.
In each resample, one sample file could hence be
included 0 to 44 times. The rank of each gene was
subsequently calculated as described in the article under
“Ranking the putative reference genes”. The re-
sampling procedure was repeated 10,000 times. The
rank distribution of the 13 genes in the 10,000 samples
gives an evaluation of the certainty of the ranks.

Testing for effects of physiological variables
To test for the effects of physiological parameters
specified by groups a)-k) in Figure 3 and Figure S2 we
performed t-tests and linear regression tests on log-
ratios using LRP10 as reference gene.

Results
The Bland-Altman plot was used to investigate whether
there was any systematic covariance between two
reference genes that would not be detected by simple
linear regression plots (6). Figure S1 shows Bland-
Altman plots of the novel reference genes CLN3 versus
LRP10 and of 18S versus GAPD. The 95% confidence
intervals for the expression ratios of CLN3/LRP10 and
18S/GAPD were 0.58 to 1.35 and 0.19 to 2.0,
respectively.
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Effects of gender, BMI, age, depot and biopsy
procedure
Figure S2 shows the expression ratios of different
combinations of reference genes. The expression ratios
of the two best ranked genes are shown in the bottom
row for comparison. Relative expression of the five
established reference genes related to LRP10, shown in
the fifth column, resulted in few outlying medians. The
different physiological parameters appeared to affect
the expression ratios of the established reference genes
to a larger extent when related to each other (shown in

the first four columns) compared with when related to
LRP10. Of the variables, BMI and diet-induced weight-
loss appeared to introduce the largest systematic
variations. The expression of the majority of the
established reference genes when related to LRP10
indicated effects of diet-induced weight-loss but,
possibly due to the small number of patients, most of
the results were not significant. The only clear effect
was the increase of RPLP0 with time during very low
calorie diet (Figure S2, column LRP10 and row RPLP0,
p=0.006 in linear regression test).

Supplemental figures

Figure S1. Bland-Altman plots of CLN3 versus LRP10
(left) and 18S versus GAPD (right). The gene expression
was normalized for each gene before calculation of mean
expression and expression ratio of the two reference genes
in each sample (n=44). The mean of the ratios and the
95% confidence intervals are shown as a solid line and
gray box, respectively.

Figure S2: Variation in
expression ratios of the
different reference gene
combinations in human
adipose tissue analyzed by
real-time RT-PCR The top
row shows relative gene
expression of ACTB/18S,
GAPD/18S, RPLP0/18S etc;
the bottom row shows
relative gene expression of
CLN3/LRP10, the two top
ranked genes. The box plots
show the quartiles of gene
expression ratios where the
expression of each gene was
n o r m a l i z e d  b e f o r e
calculation of the ratios.
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Tables

Table S1. Characteristics of subjects included in the microarray studies.

Subject        Array # Age
(years) Sex Biopsy Depot Anesthesia

BMI
(kg/m2)

S-Insulin
(mU/l)

1 1, 2, 3, 4, 5, 6 47 male surgical omental and subcutaneous general 41.2 37

2 7, 8, 9, 10, 11, 12 33 male surgical omental and subcutaneous general 51.2 32

3 13, 14, 15, 16, 17, 18 51 male surgical omental and subcutaneous general 39.4 12

4 19, 20, 21, 22, 23, 24 37 male surgical omental and subcutaneous general 41 19

5 25, 26, 27, 28, 29,30 41 male surgical omental and subcutaneous general 42.3 8

6 31, 32,33, 34, 35, 36 56 male surgical omental and subcutaneous general 39 38

7 37, 38, 39, 40, 41, 42 50 female needle subcutaneous local 31.4 24

8 37, 38, 39, 40, 41, 42 59 female needle subcutaneous local 37.5 43

9 37, 38, 39, 40, 41, 42 48 female needle subcutaneous local 39.0 16

10 37, 38, 39, 40, 41, 42 47 female needle subcutaneous local 38.5 15

11 37, 38, 39, 40, 41, 42 41 female needle subcutaneous local 39.2 16

12 37, 38, 39, 40, 41, 42 57 female needle subcutaneous local 38.5 20

13 37, 38, 39, 40, 41, 42 51 female needle subcutaneous local 45.9 21

14 37, 38, 39, 40, 41, 42 59 female needle subcutaneous local 46.9 34

15 37, 38, 39, 40, 41, 42 35 female needle subcutaneous local 59.0 70

16 43, 44, 45, 46, 47, 48 48 female needle subcutaneous local 34.0 7

17 43, 44, 45, 46, 47, 48 56 female needle subcutaneous local 35.3 12

18 43, 44, 45, 46, 47, 48 50 female needle subcutaneous local 37.6 10

19 43, 44, 45, 46, 47, 48 49 female needle subcutaneous local 36.8 9

20 43, 44, 45, 46, 47, 48 50 female needle subcutaneous local 36.8 16

21 43, 44, 45, 46, 47, 48 51 female needle subcutaneous local 39.7 12

22 43, 44, 45, 46, 47, 48 47 female needle subcutaneous local 41.3 7

23 43, 44, 45, 46, 47, 48 37 female needle subcutaneous local 43.3 14

24 43, 44, 45, 46, 47, 48 55 female needle subcutaneous local 55.5 14

25 49, 50, 51, 52 58 female needle subcutaneous local 26.9 54

26 49, 50, 51, 52 62 female needle subcutaneous local 26.1 32

27 49, 50, 51, 52 60 female needle subcutaneous local 31.5 46
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Table S2. Characteristics of samples included in the real time RT-PCR study.

Subject Sample Age
(years)

Sex Type of biopsy Depot Anesthesia
BMI

(kg/m2)
S-Insulin

(mU/l)

1 1 33 male surgical omental general 51.2 32

1 2 33 male surgical subcutaneous general 51.2 32

2 3 51 male surgical omental general 39.4 12

2 4 51 male surgical subcutaneous general 39.4 12

3 5 40 male surgical omental general 52.2 14

3 6 40 male surgical subcutaneous general 52.2 14

4 7 31 male surgical omental general 46.0 25

5 8 26 female surgical omental general 61.2 461

5 9 26 female surgical subcutaneous general 61.2 461

6 10 48 female surgical omental general 48.1 9.21

7 11 64 female surgical omental general 36.5 671

7 12 64 female surgical subcutaneous general 36.5 671

8 13 43 male surgical subcutaneous local 26.0 5.61

9 14 25 male surgical subcutaneous local 24.7 7.61

10 15 22 female surgical subcutaneous local 26.3 9.21

11 16 49 female surgical subcutaneous local 24.0 5.41

12 17 54 male needle subcutaneous local 23.0 5.21

13 18 33 male needle subcutaneous local 24.9 5.01

14 19 33 male needle subcutaneous local 28.8 131

15 20 42 male needle subcutaneous local 20.5 4.71

16 21 29 male needle subcutaneous local 37.8 31

16 22 29 male needle subcutaneous local 32.0 32

16 23 29 male needle subcutaneous local 28.6 7

17 24 34 male needle subcutaneous local 40.1 16

17 25 34 male needle subcutaneous local 35.7 10

17 26 34 male needle subcutaneous local 33.7 11

18 27 29 male needle subcutaneous local 32.5 20

18 28 29 male needle subcutaneous local 28.8 11

18 29 29 male needle subcutaneous local 29.1 12

19 30 25 male needle subcutaneous local 41.4 30

19 31 25 male needle subcutaneous local 33.8 9

19 32 25 male needle subcutaneous local 29.1 10

20 33 49 female needle subcutaneous local 36.8 9

20 34 49 female needle subcutaneous local 33.3 6

21 35 35 female needle subcutaneous local 59.0 70

21 36 35 female needle subcutaneous local 51.0 28

22 37 57 female needle subcutaneous local 38.5 20

22 38 57 female needle subcutaneous local 34.5 20

23 39 51 female needle subcutaneous local 45.8 21

23 40 51 female needle subcutaneous local 39.6 10

24 41 46 female needle subcutaneous local 26.9 4.3

25 42 20 female needle subcutaneous local 29.0 19

26 43 54 female needle subcutaneous local 25.0 5.6

27 44 46 female needle subcutaneous local 26.1 6.6

1 Plasma insulin
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Table S3. Grouping the expression profiles into the eight physiological parameters of interest.

Group Array # Samples

1. Obese men, omental depot
1, 2, 3, 7, 8, 9, 13, 14,
15, 19, 20, 21, 25, 26,
27, 31, 32, 33

Individual RNA from omental adipose tissue (surgical) from 6 obese men
(triplicate arrays)

2. Obese men, subcutaneous
depot

4, 5, 6, 10, 11, 12, 16,
17, 18, 22, 23, 24, 28,
29, 30, 34, 35, 36

Individual RNA from subcutaneous adipose tissue (surgical) from 6 obese
men (triplicate arrays)

3. Obese women, before
weight-loss

37, 38, 43, 44
RNA pooled from subcutaneous adipose tissue from 18 obese women during
weight-loss; before start of a very low calorie diet (VLCD, duplicate arrays)

4. Obese women, during
weight-loss

39, 40, 45, 46
RNA pooled from subcutaneous adipose tissue from 18 obese women during
weight-loss; after 8 weeks of VLCD (duplicate arrays)

5. Obese women, after weight-
loss

41, 42, 47, 48
RNA pooled from subcutaneous adipose tissue from 18 obese women during
weight-loss; two weeks after completed 16-week VLCD (duplicate arrays)

6. Obese women, with type 2
diabetes

37, 38, 39, 40, 41, 42
RNA pooled from subcutaneous adipose tissue from 9 obese women with
type 2 diabetes (duplicate arrays)

7. Obese women, non-
diabetics

43, 44, 45, 46, 47, 48
RNA pooled from subcutaneous adipose tissue from 9 obese women with no
diabetes (duplicate arrays)

8. Normal-weight women,
post-menopausal

49, 50, 51, 52
RNA pooled from subcutaneous adipose tissue from 3 post-menopausal
women before and after seven days daily injection of 25 mg prednisolone
(duplicate arrays)
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Table S4. Novel and established reference genes for expression analysis in human adipose tissue

Gene
symbol

Signal
(mean±SD)*

CV
(%)*

Gene name Function
ABI Assay on
demand

LRP10   1861 ±  62   3.4
Low density lipoprotein receptor-
related protein 10

Unknown (cholesterol
metabolism)

Hs00204094_m1

HPCAL1   3977 ± 165   4.3 Hippocalcin-like 1 Unknown, (calcium-BP) Hs00365962_m1

COBRA1   3120 ± 146   4.7 Cofactor of BRCA1
Chromatin structure,
transcription regulation

Own probe-primer
design

HDAC5   1054 ±  62   5.9 Histone deacetylase 5 Chromatin modeling/ silencing
Own probe-primer
design

ENTPD6   1206 ±  77   6.4
Ectonucleoside triphosphate
diphosphohydrolase 6

Unknown, member of the CD39-
like family

Own probe-primer
design

NME3   1172 ±  86   7.3
Protein expressed in non-metastatic
cells 3

Nucleotide kinase, pyrimidine
metabolism

Hs00358004_g1

PDAP1   2835 ± 212   7.5 PDGFA associated protein 1 Unknown
Own probe-primer
design

PSAP 17360 ±1344   7.7
Prosaposin (sphingolipid activator
protein-1)

Lipid metabolism/
transport/binding

Hs00248055_m1

CLN3   1099 ±  91   8.2
Ceroid-lipofuscinosis, neuronal 3,
juvenile

Putative mitochondrial
membrane protein; protein
folding/ chaperone

Hs00164002_m1

MGAT1   2354 ± 201   8.5
Mannosyl (alpha-1,3)-glycoprotein
beta-1,2-N-
acetylglucosaminyltransferase

Protein glycosylation,
carbohydrate metabolism

Hs00159121_m1

ACTB

17802 ± 1315
23378 ± 4514
13236 ± 2755
22745 ± 6627

  7.4
19.3
20.8
29.1

Beta actin
Cytoskeletal structure
(nonmuscle)

Hs99999903_m1

B2M
15415 ± 10623
13248 ± 2392
17082 ± 2539

68.9
18.1
14.9

Beta-2-microglobulin Immune response Not assayed

GAPD

14164 ± 2290
  7267 ± 1306
10595 ± 2834
17340 ± 6987

16.2
18.1
26.7
40.3

Glyceraldehyde-3-phosphate
dehydrogenase

Carbohydrate metabolism Hs99999905_m1

GUSB   2305 ±   619 26.9 Glucuronidase, beta Glycosaminoglycan catabolism Not assayed

PPIA 15696 ± 1578 10.1
Peptidylprolyl isomerase A
(cyclophilin A)

Cyclosporin A binding protein Hs99999904_m1

RPLP0 12572 ± 1626 12.9 Large ribosomal protein P0 Ribosomal protein Hs99999902_m1

SDHA   2665 ±   341 12.8 Succinate dehydrogenase complex,
subunit A

Complex II of the respiratory
chain

Not assayed

TBP     205 ±    54 33.3 TATA-box binding protein
Transcription by RNA
polymerase I, II and III

Not assayed

UBC
21091 ± 4274
  6008 ± 2786

20.3
46.4 Ubiquitin C Protein degradation Not assayed

YWHAZ   1479 ±   498 33.7 Phospholipase A2
Glycerolipid and phospholipid
metabolism

Not assayed

18S NA NA 18S ribosomal RNA Hs99999901_s1

* Signal intensities from microarray data (arbitary units).
  NA: not applicable
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Abstract

In microarray experiments quality often varies, for example between samples
and between arrays. The need for quality control is therefore strong. A
statistical model and a corresponding analysis method is suggested for ex-
periments with pairing, including designs with individuals observed before
and after treatment and many experiments with two-colour spotted arrays.
The model is of mixed type with some parameters estimated by an empirical
Bayes method. Differences in quality are modelled by individual variances
and correlations between repetitions. The method is applied to three real
and several simulated datasets. Two of the real datasets are of Affymetrix
type with patients profiled before and after treatment, and the third dataset
is of two-colour spotted cDNA type. In all cases, the patients or arrays had
different estimated variances, leading to distinctly unequal weights in the
analysis. For simulated data the improvement relative to previously pub-
lished methods without weighting is shown to be substantial.
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1 Introduction

DNA microarrays are strikingly efficient tools for analysing gene expression
for large sets of genes simultaneously. They are often used to identify genes
that are differentially expressed between two conditions, e.g. before and after
some treatment. A drawback is that the technology involves several consec-
utive steps, each exhibiting large quality variation. Thus there is a strong
need for quality assessment and quality control to handle occurrences of poor
quality, as is clearly pointed out in Johnson and Lin (2003) and Shi et al.
(2004).

Despite the observed need for effective quality control, only recently have
standard operating procedures for quality assurance of the entire chain of
processing steps been proposed (Ryan et al., 2004, for one-channel experi-
ments only). However, even utilising an optimal quality control procedure
aiming at removing low quality arrays and/or individual gene measurements
(e.g. spots), there will always be a marginal region with some measurements
being of decreased quality without being worthless, as noted in Ryan et al.
(2004). Consequently, it should be possible to make progress by integrating
quality control quantitatively into the analysis following the lab steps and
low-level analysis, taking quality variations into account.

When integrating the quality concept into the analysis, the quality of dif-
ferent parts of the dataset should ideally be estimated from data and used in
the subsequent selection of differentially expressed genes. Here we introduce a
method, called Weighted Analysis of paired Microarray Experiments (referred
to as WAME), for the analysis of paired microarray experiments, e.g. com-
parison of pairs of treatment conditions and most two-colour experiments.
WAME aims at estimating array-wide quality deviations and integrates the
quality estimates in the statistical analysis. Only the observed gene expres-
sion ratios are used in the quality assessment, making the method applicable
to most paired microarray experiments, independent of which DNA microar-
ray technology is used.

In short WAME identifies and downweights repetitions (biological or tech-
nical) of pairs (corresponding to individuals or to arrays) with decreased
quality for many genes. Repetitions with positively correlated variations, e.g.
caused by shared sources of variation, are similarly down-weighted. Thus,
estimates of differential expression with improved precision and tests with
increased power are provided.

In the adopted model, log ratios of measured RNA-levels are assumed
normally distributed. The covariance structure is specified by parameters of
two types: (i) a global covariance matrix signifying different quality for dif-
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ferent repetitions and (ii) gene specific multiplicative factors. The latter have
inverse gamma prior distribution with one gene-specific parameter, which is
estimated by an empirical Bayes method.

The paper is organised as follows. In the next section, a background and
a selection of previous work in the field are presented. This is followed by a
detailed description of the our model. Methods for estimating the parameters
and a likelihood ratio test for identifying differentially expressed genes are
derived. In the following section simulations are used to compare WAME
to four currently used methods: (i) average fold change, (ii) ordinary t-test,
(iii) the penalized t-statistic of Efron et al. (2001), and (iv) the moderated
t-statistic of Smyth (2004). Next, WAME is applied to three real datasets,
the Cardiac dataset of Hall et al. (2004), the Polyp dataset of Benson et al.
(2004) and the Swirl dataset (Dudoit and Yang, 2003). The results obtained
are discussed in a subsequent section and some derivations and mathematical
details are given in an appendix.

2 Background

To put the quality control aspect of our model into context, the different
steps and sources of variation in typical paired microarray experiments are
outlined below. In addition, a selection of publications dealing with quality
control for microarray experiments are briefly reviewed.

2.1 Sources of variation in typical microarray experi-
ments

The first step, after decision on experimental design, of a microarray ex-
periment aiming at identifying differentially expressed genes would typically
be to determine how biological samples should be acquired. In experiments
dealing with homogeneous groups of single cell organisms, such as yeast, in
highly controlled environments, this task is typically less complex than when
dealing with heterogeneous groups of multicellular organisms, such as hu-
mans. Here selection of subjects and cells from the relevant organ, e.g. by
biopsy or laser dissection, are complicated tasks.

From the biological sample the following lab-steps are performed: RNA
extraction, reverse transcription (and in vitro transcription), labelling, hy-
bridisation to arrays and scanning. The parts of the scanned images corre-
sponding to the different genes (i.e. spots or probe-pairs) are identified and
quantified. In addition, background correction may be performed. Subse-
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quently, normalisation of the quantified measurements is performed to han-
dle global differences. In the case of Affymetrix type arrays, 11-20 pairs of
quantitative measurements are combined into one expression level estimate
for each gene. For an experiment of paired type, one log2-ratio of the expres-
sion level estimates is calculated for each pair and gene. These log2-ratios
are then used to examine which genes are differentially expressed.

In several of the steps mentioned above there are substantial quality vari-
ations. For example, the quantity and quality of the RNA in biopsies may
vary considerably. There are sometimes evidence of poor quality making it
possible to remove obviously worthless samples. Nevertheless, there will al-
ways be a marginal region with some measurements being of reduced quality
without being worthless, as noted in Ryan et al. (2004). In addition, some
variations are hard to detect before the actual normalised log2-ratios are
computed, e.g. the representativeness in tissue distribution of human biop-
sies. An additional aspect of quality control is systematic errors, where the
variations of different repetitions are correlated. This could be due to shared
sources of variation, such as simultaneous processing in lab steps or similar,
non-representative tissue composition in the biopsies.

Another potentially important factor is the quality of the arrays used for
the measurements. Flaws in the manufacturing process might make mea-
surements for individual genes inferior. This is more of a problem in the case
of spotted arrays, since there is only one or a few spots per gene. However,
such bad spots can often be detected. The quality control in the actual man-
ufacturing of microarrays is certainly very important but will not be further
discussed here.

2.2 A brief review of some relevant publications

In Johnson and Lin (2003) and Shi et al. (2004) the general need for improved
quality assurance in the context of DNA microarray analysis is emphasised.
Tong et al. (2004) implement a public microarray data and analysis software
and note that ”Although the importance of quality control (QC) is generally
understood, there is little QC practise in the existing microarray databases”.
They include some available measures of quality for different steps in the
analysis in their database.

Dumur et al. (2004) survey quality control criteria for the wet lab steps
of Affymetrix arrays, going from RNA to cDNA. Additionally, three sources
of technical variation (hybridisation day, fluidic scan station, fresh or frozen
cDNA) are evaluated using an ANOVA model.
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Ryan et al. (2004) present guidelines for quality assurance of Affymetrix
based microarray studies, utilising a variety of techniques for the different
steps, some of which are shown to agree. A sample quality control flow
diagram is suggested, including steps from extracted RNA to the quantified
arrays.

Chen (2004) aims at screening out ineligible arrays (Affymetrix type),
using a graphical approach, so called 2D image plots , to display grouped data.
Park et al. (2005) similarly aim at identifying outlying slides in two-channel
experiments by using scatterplots of transformed versions of the signals from
the two channels.

Tomita et al. (2004) use correlation between arrays (Affymetrix type) to
evaluate the RNA integrity of the individual arrays, by forming an average
correlation index (ACI). The ACI is shown to correlate with several existing
quality factors, such as the 3’-5’ ratio of GAPDH.

Several papers have been written on the quality control of individual
measurements of genes (spots or probes). Wang et al. (2001, 2003) define a
spot-wise composite score from various quantitative measures of quality of
individual spots in spotted microarrays. They further perform evaluations
on several in-house datasets, showing that when bad spots are removed, the
variance of all gene-wise ratios in one chip is decreased. In Hautaniemi et al.
(2003) Bayesian networks are used to discriminate between good and bad
spots with training data provided by letting experienced microarray users
examine the arrays by hand.

In the papers discussed above the countermeasure against low-quality
spots or arrays is to treat them as outliers and to remove them. Again,
there will always be a marginal region with some measurements being of
decreased quality without being worthless. An interesting approach using
weighted analysis of the microarray gene expression data is due to Bakewell
and Wit (2005). The starting point is a variance component model for the
log expression mean for a spot i with variance σ2

b + σ2
i /mi, where σ2

b is the
variance between spots while σ2

i is the variance between pixels in spot i with
the effective number mi of pixels. For each gene the spots are weighted
inversely proportional to estimated variances, and different genes are essen-
tially treated independent of each other. Only quality deviations of the actual
hybridised spots are included in the model.

In Yang et al. (2002) the variance of different print tip groups or arrays
in cDNA experiments are estimated by a robust method. The need for scale
normalisation between slides is determined empirically, e.g. by displaying box
plots for the log ratios of the slides.

The model we propose (WAME) assesses the quality of different arrays
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quantitatively by examining the computed log2-ratios. Thus, quality devi-
ations in all steps leading to the gene expression estimates are included, as
long as the quality deviations occur for a wide variety of measured genes.
Furthermore, shared systematic errors are taken care of via estimated covari-
ances between repetitions. The assessed qualities are incorporated into the
analysis based on the statistical model presented in the next sections.

In microarray experiments there are often relatively few replicates, result-
ing in highly variable gene-wise variance estimates. To use the information
in the large number of measured genes to handle this problem, an empirical
Bayes approach can be taken, determining a prior distribution from the data,
thus moderating extreme estimates. This approach has been used in Baldi
and Long (2001), Lönnstedt and Speed (2002) and Smyth (2004).

3 The model

The experimental layouts studied in the present paper are oneswith compar-
ison of paired observations. For each gene g = 1, . . . , NG and each pair of
measurements i = 1, . . . , NI , let Xgi be the normalised log2-ratio of the gene
expressions from the two conditions. The expected value µg of Xgi measures
the log ratio of the RNA concentrations.

In Section 2.1 it was noted that there may exist dependencies between
repetitions, e.g. due to systematic errors. Furthermore, different arrays may
have different precision in their measurements of the gene expressions. To
describe this, we use a covariance structure matrix Σ which models precision
as individual variances for the different repetitions and dependencies between
repetitions as covariances.

Due to both technical and biological reasons the observations for the
different genes have different variability, and a gene-specific multiplicative
factor cg for the covariance matrix is introduced. The cg-variables for different
genes are assumed to be independent. Given cg the vector Xg consisting
of all repetitions for gene g is assumed to have a NI-dimensional normal
distribution with mean vector µg1 and covariance matrix cgΣ. The vectors
Xg for different genes are also assumed independent.

In microarray experiments, the number of experimental units is typically
fairly small and estimates of cg utilising only information from the measure-
ments with gene g would be highly variable. Therefore prior information is
introduced as an a priori distribution for cg, which serves to moderate the
estimates of cg. The prior for cg is assumed to be an inverse gamma dis-
tribution with a parameter α determining the spread of the distribution, in
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effect determining the information content in the prior. The inverse gamma
distribution is a conjugate prior distribution for the variance of a normal
distribution and has as such been used in Bayesian and empirical Bayesian
analysis of microarray data before (Baldi and Long, 2001; Lönnstedt and
Speed, 2002; Smyth, 2004).

The model can be summarised as follows: We observe Xg = (Xg1, . . . , XgNI
)

where g = 1, . . . , NG. Let Σ be a covariance matrix with NI rows and
columns, cg a set of gene-wise variance scaling factors and α a hyperparam-
eter determining the spread of the prior distribution for cg. Then for fixed
µg, Σ and α,

cg ∼ Γ−1(α, 1) and

Xg | cg ∼ NNI
(µg1, cgΣ) ,

(1)

and all variables corresponding to different genes are assumed independent.

4 Inference

4.1 Estimation of a scaled version of the matrix Σ

Estimating Σ may appear easy but it turns out to be rather intricate and
there are several issues involved.

Firstly, there are trivial solutions that give infinite likelihood of the model.
Just put one gene-specific mean value µg equal to the observation of one of
the repetitions and the corresponding variance equal to zero. To avoid this
complication the assumption that the differential expression of most genes
is approximately zero is introduced temporarily. This assumption is not as
consequential as it might sound, since it is made by most of the procedures
that have become de facto standard in the (preceding) normalisation step,
one example being the loess normalisation method (Yang et al., 2002). Nev-
ertheless, it does limit the set of experimental setups that can be treated
and the proportion of genes that are regulated must not be too large. The
impact of this assumption is further investigated by a simulation study in
Section 5.2. For the rest of this section, µg is thus set equal to zero for all
g = 1, . . . , NG.

Another issue is the scaling of Σ. For each gene, the covariance matrix is
scaled with the random variable cg which has an inverse gamma distribution
with a parameter which is unknown in a first stage. To address this issue, the
estimation of Σ is performed in two steps. In the first step, a transformation
is applied to Xg such that the transformed vector has a distribution that is
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independent of cg. To simplify notation the index g will be dropped from Xg

and cg in the rest of this section. Let U = (U1, . . . , UNI
) where

Ui =

{
X1 if i = 1
Xi/X1 if 2 ≤ i ≤ NI .

The distribution of the vector U has the density

fU | c,Σ(u) = fX | c,Σ(x(u))|J(u)|

where J is the corresponding Jacobian. Some algebra shows that the scaling
factor c cancels for U2, . . . , UNI

and by integrating over U1, we get the density

fU2,...,UNI
| Σ(u2, . . . , uNI

) =

∫ ∞

−∞
fU | c,Σ(u) du1

= C |Σ|−1/2 [
vTΣ−1v

]−NI/2
,

(2)

where C is a normalisation constant and v = (1, u2, . . . , uNI
). The distribu-

tion (2) is independent of c and the marginal distributions are scaled and
translated Cauchy distributions.

From (2) we see that the distribution of U is unchanged if we multiply
Σ with a constant. Let us therefore fix one element of Σ, e.g. we put the
first element in the first row equal to one. Let Σ∗ denote the matrix thus
obtained. Then

Σ∗ = λΣ , (3)

and the constant λ will estimated together with the hyperparameter α as
described below in Section 4.2. Thus estimation of the covariance matrix Σ
will be carried out in two steps: first estimate Σ∗ with one element fixed and
then estimate λ.

Numerical maximum likelihood based on the distribution (2) is used to
produce a point estimate of Σ∗. The computational complexity grows as N2

I

since the number of unknown parameters NI(NI + 1)/2. To get an efficient
implementation C/C++ is combined with R (R Development Core Team,
2004). The resulting computational time for three arrays is less than a second
and for 30 arrays it takes a few hours.

4.2 Estimation of the hyperparameter α and the scale λ

In this section, we develop methods for estimation of the hyperparameter
α as well as the scale parameter λ in (3). From the model assumptions
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in Section 3 we recall that cg has as an inverse gamma distribution with
hyperparameter α, e.g.

cg | α ∼ Γ−1(α, 1).

The inference of α will be based on the statistic

Sg = (AXg)(AΣAT)−1AXg,

where A is an arbitrary contrast matrix, i.e. a (NI − 1) × NI matrix with
full rank and each row sum equal to 0. It follows that the distribution of Sg

conditioned on cg is a scaled chi-squared distribution with NI − 1 degrees of
freedom,

Sg | cg ∼ cg · χ2
NI−1.

The unconditional distribution of Sg can be calculated by use of the fact
that a gamma distribution divided by another gamma distribution has an
analytically known distribution, a beta prime distribution (Johnson et al.,
1995). Thus,

Sg | α ∼ 2× β′ ((NI − 1)/2, α) ,

which has the density function

fSg | α(sg) =
1

2

Γ(α + (NI − 1)/2)

Γ(α)Γ((NI − 1)/2)

(sg/2)(NI−1)/2−1

[1 + sg/2]α+(NI−1)/2
.

In the same fashion, denote the variance estimator based on Σ∗ in (3) by S∗
g ,

that is,
S∗

g = (AXg)
T(ATΣ∗A)−1AXg .

It follows that, S∗
g = Sg/λ so

S∗
g | α, λ ∼ 2/λ× β′ ((NI − 1)/2, α) .

Assuming independence between the genes, α and λ can now be estimated
by numerical maximum likelihood. The estimated value of the (unscaled)
covariance matrix Σ can then be calculated from Equation (3). Results
from simulations show that the estimation of α and λ is accurate enough
for any realistic values (results not shown). In the following sections, these
parameters are assumed to be known.
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4.3 The posterior distribution of cg

The posteriori distribution of cg is not explicitly used in the calculations
above, but still of general interest. As previously mentioned, the distribution
of Sg conditioned on cg is a scaled chi-squared distribution with NI−1 degrees
of freedom. Since chi-squared distributions and inverse gamma distributions
are conjugates, the posteriori distribution of cg given Sg is an inverse gamma
distribution as well. We find

cg ∼ Γ−1 (α, 1)

cg | Sg ∼ Γ−1

(
α + (NI − 1)/2, 1 +

Sg

2

)
,

and the prior can be interpreted as representing 2α pseudo observations,
which add a common variance estimate to all genes. A discussion regarding
the use of this model in microarray analysis can be found in Lönnstedt and
Speed (2002) and Smyth (2004) and a general discussion in Robert (2003).

4.4 Inference about µg

In this section we derive a statistical test for differential expression based on
the WAME model. The hypotheses can for gene g can be formulated as

H0 : gene g is not regulated (µg = 0)

HA : gene g is regulated (µg 6= 0).

A test suitable for the hypothesis H0 is the likelihood ratio test (LRT) based
on the ratio of the maximum values of the likelihood function under the
different hypotheses. With our notation we reject H if

sup
HA

L (µg|xg)

sup
H

L (µg|xg)
=

sup
µg 6=0

L (µg|xg)

L (0|xg)
≥ k, (4)

where k, 1 ≤ k < ∞, sets the level of the test. To calculate the likelihood
function, we need to integrate over cg, e.g.,

L (µg|x) =

∫
fX|µg ,cg(x|cg)fcg |α(cg|α) dcg

= (2π)−NI/2 |Σ|−1/2 Γ(NI/2 + α)

Γ(α)

[
(xg − µg1)T Σ−1 (xg − µg1)

2
+ 1

]−(α+NI/2)

.

10



It is now straight forward to calculate the denominator L(0|xg) in (4) and
some algebra shows that the numerator is maximised by µ̂g = x̄w

g , where

x̄w
g =

1TΣ−1

1TΣ−11
xg ,

is a weighted mean value of the observations. Analogously, we define the
random variable X̄w

g by replacing xg with Xg. It can be shown that

wT =
1TΣ−1

1TΣ−11
(5)

is the weight vector that minimises the variance of wTXg. The weights in
equation (5) will depend on the covariance matrix as follows. A repeti-
tion with high variance will have a low weight while a repetition with low
variance will have a high weight. Moreover, a positive high correlation be-
tween repetitions will cause decreased weights. Note that if a repetition is
highly correlated with a repetition with lower variance, its weight can actu-
ally become negative. According to the theory, this is nothing strange but
practically this is of course not satisfying. Fortunately, such extreme cases
seem to be rare in the microarray context and if they appear, the source of
the correlation should be investigated and one could consider removing the
negatively weighted repetition.

Evaluation of the likelihood function at 0 and x̄w
g and a few calculations

show that the inequality (4) is equivalent to

|x̄w
g |√

sg + 2
≥ k′

where sg is defined according to Section 4.2 and k′ is a new constant (0 ≤
k′ < ∞). Thus if we define the statistic Tg as

Tg =
X̄w

g√
Sg + 2

.

the null hypothesis is rejected if

|Tg| ≥ k′.

The statistic Tg will be referred to as the weighted moderated t-statistic since it
is a weighted generalisation of the moderated t-statistic derived by Lönnstedt
and Speed (2002) and later refined by Smyth (2004). Indeed, if the weights
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are equal (i.e. all weights are equal to 1/n), Tg becomes equivalent to the
result in Section 3 in Smyth (2004). To calculate the value of k′ that corre-
sponds to a given level of the test, the distribution of Tg needs to be derived.
It turns out to be a scaled t-distribution with 2α+NI−1 degrees of freedom,

Tg ∼
1√

2α + NI − 1
× t2α+NI−1(µg).

5 Results from simulations

5.1 Comparison to similar gene ranking methods

A simulation study was done to compare the performance of WAME to four
published methods. These methods were

• Average fold-change

• Ordinary t-statistic

• Efron’s penalized t-statistic

• Smyth’s moderated t-statistic

The average fold-change for a gene is simply the mean value over all the
observed log2-ratios and the ordinary t-statistic is the average fold-change
divided by the corresponding sample standard deviation. These two methods
have traditionally been popular gene ranking methods and it is therefore
interesting to see how they perform. Another method introduced in (Efron
et al., 2001) is the penalized t-statistic which is a modified version of the
ordinary t-statistic where a constant has been added to the sample standard
deviation. The motivation for this adjustment is the unreliability of the t-
statistic in situations when only a few repetitions are used. The constant
used here was chosen as the 90th percentile of the empirical distribution of
the sample standard deviations, according to Efron et al. (2001). Finally, the
moderated t-statistic is included. It was developed and implemented Smyth
(2004) and it is available in the R package LIMMA (Smyth et al., 2003).
The moderated t-statistic can be seen as a refined version of the B-statistic
which was first presented in Lönnstedt and Speed (2002). In the paired
microarray context, WAME is a generalisation of LIMMA in the sense that
the two models are identical when all repetitions have the same variance and
no correlations exist.
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All methods were applied to a series of simulated datasets with different
settings and the number of true positives as a function of false positives was
plotted, generating several so called receiver operator characteristic (ROC)
curves. The average over 100 datasets was used to produce a single curve
where each dataset was created as follows. The number of genes (NG) was
fixed to 10000, the number of repetitions (NI) to 4 and the hyperparameter
α to 2. These values were chosen since they are typical for real datasets.
The covariance matrix Σ is fixed and for each gene g the following steps were
done.

1. cg was sampled from an inverse gamma distribution according to the
model specification.

2. A vector of NI = 4 independent observations was drawn normal dis-
tribution with man value zero and variance one. This vector was then
multiplied by the square-root matrix of Σ.

3. If this particular gene was selected to be regulated, then the absolute
mean value for each of the NI elements was drawn from a uniform
distribution between 0 and 2.

5% of the genes were randomly selected and set to be upregulated. Analo-
gously, 5% were downregulated resulting in totaly 10% regulated genes. It
should be noted that it is only the total number of regulated genes had an
impact on the performance for the different methods, not the number of
upregulated genes compared to the number of downregulated genes.

Four cases, all with different covariance matrices, were studied. In the
first case, all of the repetitions had variances equal to 1 and there were no
correlations, thus Σ was an identity matrix. The ROC curves produced by
the simulated data can be seen in the upper part of Figure 1. WAME and
LIMMA performs best, closely followed by the penalized t-statistic. Note
that WAME and LIMMA have almost identical performance in this case
and, as mention above, this was expected since the weighted moderated t-
statistic and the moderated t-statistic are almost equivalent for this setting.
Another interesting detail is the low performance of the t-statistic due to its
instability issues when only few repetitions are used.

In the second case, different variances were introduced. Σ was again a
diagonal matrix but with the values 0.5, 1, 1.5 and 2 on the diagonal, thus all
correlations were again zero. The ROC curves can be seen in the lower part
of Figure 1. As before, WAME and LIMMA are the methods that performs
best, but in this case, WAME performs better since it put less weight on the
repetitions with high variance.
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To investigate the impact of correlations, the third case used

Σ =


1.0 0.4 0.2 0.0
0.4 1.0 0.4 0.2
0.2 0.4 1.0 0.4
0.0 0.2 0.4 1.0

 . (6)

This corresponds to a case when there are both high and low correlations
between the repetitions. The upper part of Figure 2 shows that WAME
performs slightly better than both LIMMA and the penalized t-statistic since
it estimates the correlations and takes them into account.

Finally, in the fourth case both different variances and correlations were
included. The variances and correlations were identical to the ones in the
second and third cases respectively, i.e. variances of 0.5, 1.0, 1.5, 2.0 and
correlations of 0, 0.2 and 0.4, the latter placed according to (6). The result
can be seen in the lower part of Figure 2. Here, the largest advantage of
using WAME can be seen. For a rejection threshold such that half of the
selected genes are true positives, using WAME results in almost a third less
false positives which can correspond to hundreds of genes.

All four simulations show that WAME and its weighted moderated t-
statistic perform as least as well as the moderated and penalized t-statistics.
In the case of both different variances and correlations between the repeti-
tions, WAME performs clearly better than all of the included methods. Both
the average fold-change and the ordinary t-statistic have poor performance
in the current setting with only four repetitions.

5.2 Evaluation of the point estimation of Σ

The estimation of Σ is one of the crucial steps when applying WAME since
errors made will affect estimates of other entities such as α and the weighted
mean value x̄w

g . The resulting precision and accuracy when numerical max-
imum likelihood is applied to the distribution in equation (2) are therefore
interesting questions, both when the model assumptions hold and when they
are violated. In an attempt to partially answer these questions, Σ was es-
timated from different simulated datasets and the results were compared to
the true values. The datasets were created according to the description in
the previous section and the same parameters were used, i.e. NG = 10000,
NI = 4 and α = 2. In total, five different cases were examined, listed in
Table 1. As in the previous section, 100 datasets were simulated for each
setting and for each such dataset the covariance matrix Σ and the hyperpa-
rameter α were estimated according to Section 4. Table 2 summarises the
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Figure 1: ROC curves from simulated data. The pair at the top, from the
first case, show the performance of the evaluated methods on data with equal
variances of 1 for all replicates and no correlations. The pair at the bottom,
from the second case, analogously show the performance on data with differ-
ent variances of 0.5, 1, 1.5, 2 and no correlations. The parameters used for
these two simulations were as follows. NG = 10000, NI = 4, α = 2 and 10%
of the genes were regulated. The figures to the right are magnifications of
the dashed boxes to the left.
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Figure 2: ROC curves from simulated data. The pair at the top, from
the third case, show the performance of the evaluated methods on data with
equal variances of 1 for all replicates and correlations of 0, 0.2 and 0.4, placed
according to (6). The pair at the bottom, from the fourth case, analogously
show the performance on data with different variances of 0.5, 1, 1.5, 2 and
correlations of 0, 0.2 and 0.4, placed according to (6). The parameters used
for these two simulations were as follows. NG = 10000, NI = 4, α = 2 and
10% of the genes were regulated. The figures to the right are magnifications
of the dashed boxes to the left.
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Case Correlation Heavy tails Regulated genes Filter
I No No None No
II Yes No None No
III Yes Yes None No
IV Yes No Yes, 10% No
V Yes No Yes, 10% Yes, 5% removed.

Table 1: Descriptions of the five different settings used in this simulation
study. When correlations are used, they follow the structure in equation (6).

result where the true value of Σ, the mean value of the estimated Σ as well
as the standard deviations are listed. It should be noted that in all cases,
except for case III, α is estimated with high accuracy and precision.

In the first two cases (I and II), the covariance matrix was estimated
without any bias and with low standard deviation showing that the methods
is accurate under the model assumptions. In case III the normal distribution
was substituted against a t-distribution with 5 degrees of freedom, having
substantially heavier tails. The estimated Σ seems to be slightly biased
toward higher variances and α was estimated to 1.55 instead of 2. This
pattern was also seen when the degrees of freedom were increased to 10 and
15 (results not shown). In case IV 10% of the genes were set to be regulated
and since no differentially expressed genes are assumed, the regulation leads
to positive correlations and increased variance estimates. Having 10% of the
genes regulated is a rather high number, but not extreme. Therefore, a filter
was applied to minimise the impact of regulated genes on the estimation of
the covariance matrix. For each gene g, the filter calculates the minimal
absolute value of the fold change, which will be denoted Xg,min. Removing
the top 5% of the genes with highest Xg,min gave a much better estimate of
Σ, which is included as case V. Note that the genes were only removed for
the estimation of Σ (not for the estimation of α and λ) and that the number
5% depends on several parameters, such as the total number of regulated
genes and the covariance matrix itself. The results of the filtering procedure
on real data is presented in the next section.

6 Results from real data

WAME was run on three real data sets: the ischemic part of the dataset of
Hall et al. (2004), the dataset of Benson et al. (2004) (henceforth referred to
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True Σ Mean estimated Σ Standard deviation

I
0.50 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.50 0.00
0.00 0.00 0.00 2.00

0.50 0.00 -0.00 -0.00
0.00 1.01 -0.00 0.00

-0.00 -0.00 1.51 -0.00
-0.00 0.00 -0.00 2.02

0.01 0.01 0.01 0.01
0.01 0.04 0.02 0.01
0.02 0.02 0.05 0.02
0.01 0.01 0.01 0.07

II
0.50 0.28 0.17 0.00
0.40 1.00 0.49 0.28
0.20 0.40 1.50 0.69
0.00 0.20 0.40 2.00

0.50 0.28 0.17 0.00
0.40 1.00 0.50 0.29
0.20 0.40 1.51 0.70
0.00 0.20 0.40 2.00

0.02 0.01 0.01 0.01
0.01 0.04 0.02 0.03
0.01 0.01 0.06 0.04
0.01 0.01 0.01 0.11

III
0.50 0.28 0.17 0.00
0.40 1.00 0.49 0.28
0.20 0.40 1.50 0.69
0.00 0.20 0.40 2.00

0.51 0.29 0.18 -0.00
0.40 1.01 0.50 0.28
0.20 0.40 1.52 0.70

-0.00 0.20 0.40 2.03

0.02 0.01 0.01 0.01
0.01 0.04 0.02 0.02
0.01 0.01 0.05 0.03
0.01 0.01 0.01 0.07

IV
0.50 0.28 0.17 0.00
0.40 1.00 0.49 0.28
0.20 0.40 1.50 0.69
0.00 0.20 0.40 2.00

0.61 0.39 0.28 0.11
0.48 1.11 0.60 0.39
0.28 0.45 1.61 0.80
0.10 0.25 0.43 2.11

0.02 0.02 0.02 0.01
0.01 0.04 0.03 0.01
0.01 0.01 0.06 0.04
0.01 0.01 0.01 0.08

V
0.50 0.28 0.17 0.00
0.40 1.00 0.49 0.28
0.20 0.40 1.50 0.69
0.00 0.20 0.40 2.00

0.46 0.21 0.11 -0.02
0.33 0.90 0.38 0.22
0.14 0.34 1.39 0.59

-0.02 0.16 0.36 1.93

0.01 0.01 0.01 0.02
0.01 0.02 0.02 0.02
0.01 0.02 0.06 0.03
0.02 0.01 0.01 0.07

Table 2: Result from the estimations of Σ from each of the five different
cases. Correlations are shown in italic and covariances in non-italic. The
parameter values used were NG = 10000, NI = 4 and α = 2. The mean
values and sample standard deviations were calculated from the result of 100
simulated dataset. Refer to Table 1 for a description of the different cases.
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as the Cardiac and Polyp datasets, respectively) and the Swirl dataset (de-
scribed in chapter 3.3 of Dudoit and Yang, 2003). These datasets represent
microarray experiments with different characteristics; different laboratories,
both two-colour cDNA and one-channel oligonucleotide (Affymetrix) arrays,
different tissues and two different species (human and zebrafish). The Car-
diac and Swirl datasets are publicly available.

The Cardiac dataset is described to have been strictly quality controlled
by a combination of several available methods. The dataset is therefore
interesting to examine to see if WAME detects relevant differences in quality
even in an example of a quality controlled, publicly available dataset. The
Polyp dataset includes one biopsy that was previously thought to be an
outlier and therefore discarded, thus providing a case with one seemingly
lesser quality to be detected. In the Swirl dataset, two highly differentially
expressed genes exist. Therefore, it is of interest to check that those genes are
highly ranked by WAME. Furthermore, the Swirl dataset has been analysed
in e.g. (Smyth, 2004).

6.1 Cardiac dataset

In the public dataset from Hall et al. (2004), heart biopsies from 19 patients
with heart failure were harvested before and after mechanical support with
a ventricular assist device. The aim of the study was to ”define critical
regulatory genes governing myocardial remodelling in response to significant
reductions in wall stress”, where a first step was to identify differentially
expressed genes between the two conditions.

Affymetrix one-channel oligonucleotide arrays of type HG-U133A were
used in the study, each containing 22283 probe-sets. The quality of the ar-
rays was controlled using quality measures recommended by Affymetrix as
well as by the program Gene Expressionist (GeneData, Basel, Switzerland).
The quality of the different lab steps leading to the actual hybridisations
were controlled using standard methods. The 19 patients were divided into
three groups: ischemic (5 patients), acute myocardial infarction (6 patients)
and non-ischemic (8 patients). The ischemic group was the smallest and
consequently the one where quality variations might make the biggest dif-
ference. It was therefore chosen for further examination using WAME, to
see if relevant quality variations could be detected despite the close quality
monitoring.

The dataset was retrieved in raw .CEL-format from the public repository
Gene Expression Omnibus (Edgar et al., 2002). The .CEL-files were subse-
quently processed using RMA (Irizarry et al., 2003) on all the arrays of the 19
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patients simultaneously. Patient-wise log2-ratios of the five ischemic patients
were then formed by taking pairwise differences of the log2 measurements
before and after implant.

Applying WAME to the patient-wise log2-ratios provided interesting re-
sults. The estimated covariance matrix (see Table 3) suggests that two of the
five patients (I13 and I7) were substantially more variable than the others,
while the correlations between patients were rather limited. These numbers
seem credible when examining Figure 3, where for each pair of patients, the
respective log2-ratios of all genes were plotted against each other. The plots
clearly imply that the observations of the two patients in question (I13 and
I7) are more variable than the others.

The corresponding weights, derived from the estimated covariance matrix
Σ, are shown in Table 4. As was discussed in Sections 4.1 and 5.2, when
estimating Σ all genes are assumed to be non-differentially expressed. To
examine the impact of potentially regulated genes on the estimation of Σ,
the analysis was redone, removing genes with high lowest absolute log2-ratio
in the estimation of Σ, as described in Section 5.2. The individual elements
of the estimated covariance matrix and of α changed only slightly, even when
as much as 50% of the data was removed (data not shown). This is reflected
in the stable weights in Table 4.

Patient
Patient I12 I13 I4 I7 I8

I12 0.046 0.003 0.001 0.012 0.002
I13 0.033 0.196 -0.014 0.007 -0.001
I4 0.023 -0.126 0.065 0.013 0.002
I7 0.111 0.030 0.102 0.258 -0.017
I8 0.040 -0.011 0.038 -0.152 0.047

Table 3: Estimated covariance-correlation matrix, Σ, for patients in the Car-
diac dataset. (Correlations in italic, covariances in non-italic.)

The hyperparameter α related to the spread of the gene-wise variance
components, cg, was estimated to 1.92, giving a thick tail for the prior distri-
bution. Thus removing cg by transformation when estimating Σ (Section 4.1)
is justified.

Inspecting the fitted distribution of Sg given α = 1.92 against the em-
pirical distribution of Sg reveals a good fit (see Figure 4), implying that the
family of inverse gamma prior distributions is rich enough for this dataset.
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Figure 3: Pair-wise plots of the log2-ratios of the patients in the Cardiac
dataset. The plots to the lower-left show two-dimensional kernel density
estimates of the distribution of log2-ratios in each pair of patients. This pro-
vides information in the central areas where the corresponding scatterplots
are solid black (cf. Figure 6 in Huber et al., 2003). The colour-scale is, in
increasing level of density: white, grey, black and red.
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Patient
Removed genes I12 I13 I4 I7 I8

none 0.297 0.091 0.232 0.053 0.326
5% 0.301 0.089 0.233 0.054 0.323
10% 0.303 0.087 0.235 0.053 0.321
50% 0.323 0.082 0.240 0.046 0.308

Table 4: Weights for patients in the Cardiac dataset. Different numbers of
potentially regulated genes were removed in the estimation of Σ, to check
their influence. Potential regulation was measured by minimal log2-ratio
among the patients.
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Figure 4: Empirical distribution of Sg in the Cardiac dataset, together with
the density of Sg given α = 1.92.
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Examining the observed values of the statistic, Tg, compared to the ex-
pected null distribution reveals a good overall concordance (see Figure 5).
Some genes have a larger tg than can be explained by the null distribution,
which points toward some of them being up-regulated by the treatment (see
the qq-plot in Figure 5).
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Figure 5: To the left, a histogram of the observed statistic, tg, together with
the density of the null distribution (in red), in the Cardiac dataset. To the
right, a quantile-quantile plot where the observed values of Tg are paired with
the quantiles of Tg under the null hypothesis. The points generally follow
the identity line well, showing good concordance with the null distribution.
For high positive Tg, the observed values exceed the predicted ones, pointing
at the existence of up-regulated genes.

6.2 Polyp dataset

In the dataset from Benson et al. (2004), biopsies from nasal polyps of five
patients were taken before and after treatment with local glucocorticoids.
The goal was to examine closer the mechanisms behind the effect of the
treatment and one step was to identify differentially expressed genes. Tech-
nical duplicates stemming from the same extracted RNA were run for each
biopsy on Affymetrix HG-U133A arrays, forming a dataset of 20 arrays and
22283 probe-sets.

Looking at pair-wise scatterplots between arrays, the arrays from before
treatment of patient 2 showed substantially larger variation, comparing it to
all other arrays, than any other array in the dataset. The biopsy in question
was found to be considerably smaller than the others, providing possible
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explanations by e.g. non-representativeness in tissue distribution. The data
from patient 2 was therefore excluded in Benson et al. (2004).

WAME would preferably identify the patient 2 observation as having
larger variation and downweight it. The data was processed using RMA
(Irizarry et al., 2003) and the log2-ratio for each patient was formed by taking
differences between the averages over the technical duplicates, before and
after treatment, combining 4 arrays for each patient into one set of log2-
ratios. Making one scatter plot of the two sets of log2-ratios for each pair
of patients (Figure 6) clearly indicates that patient 2 is more variable than
patients 1,3 and 5. Interestingly, the measurements from patients 1 and 2
seem to be highly correlated and patient 4 seems to have high variability.

Estimating the covariance matrix, Σ, the correlation between patients 1
and 2 is estimated to 0.82 (see Table 5), which is high but not unbelievable
when studying Figure 6. The variance of patient 2 is furthermore estimated
to four times that of patient 1. Examining the resulting weights, patient 2
actually receives a weight of −2% (see Table 6). The negativeness is a result
of it’s variance being much higher than that of patient 1, together with them
being highly correlated. If negative weights are not satisfying, patient 2 could
be removed altogether and the analysis rerun, which is essentially what was
performed in Benson et al. (2004). Beside the result of the very low weight
for patient 2, the other patients receive distinctly different weights, which is
interesting.

Patient
Patient 1 2 3 4 5

1 0.300 0.493 0.000 -0.012 -0.067
2 0.822 1.200 0.004 0.041 -0.157
3 0.002 0.012 0.091 -0.071 -0.055
4 -0.038 0.067 -0.417 0.319 0.102
5 -0.291 -0.340 -0.434 0.430 0.178

Table 5: Estimated covariance-correlation matrix, Σ, for patients in the
Polyp dataset. (Correlations in italic, covariances in non-italic.)

The hyperparameter α, related to the spread of the gene-wise variance
components, cg, was estimated to 1.97, giving infinite variance for the distri-
bution of cg. The fit of Sg given α = 1.97 was very good (see Figure 10 in
the Appendix).

Similar to in the Cardiac dataset, the weights were steadily estimated
when potentially regulated genes were removed in the estimation of the co-
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Figure 6: Pair-wise plots of the log2-ratios of the patients in the Polyp
dataset. The plots to the lower-left show two-dimensional kernel density
estimates of the distribution of log2-ratios in each pair of patients. This pro-
vides information in the central areas where the corresponding scatterplots
are solid black (cf. Figure 6 in Huber et al., 2003). The colour-scale is, in
increasing level of density: white, grey, black and red.
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Patient
Removed genes 1 2 3 4 5

none 0.179 -0.026 0.483 0.104 0.260
5% 0.181 -0.025 0.481 0.104 0.259
10% 0.180 -0.024 0.482 0.103 0.259
50% 0.157 -0.015 0.506 0.100 0.252

Table 6: Weights for the patients in the Polyp dataset. Different numbers of
potentially regulated genes were removed, to check their potential influence
in the estimation of Σ. Potential regulation was measured by minimal log2-
ratio among the patients.

variance matrix Σ (see Table 6). However, the estimated correlations between
patients 3, 4 and 5 were decreased somewhat. Removing 5% of the genes de-
creased those correlations by 0.03-0.04 and removing 10% decreased them by
0.06-0.07. The high correlation between patient 1 and 2 was only slightly
decreased (<0.03), even when 50% of the genes were removed.

Examining the observed values of the statistic, Tg, compared to the ex-
pected null distribution (see Figure 7) reveals a good overall concordance.
Some genes have a more extreme Tg than can be explained by the null distri-
bution, which points toward many of them being regulated by the treatment
(see the qq-plot in Figure 7).

6.3 Swirl dataset

In the Swirl experiment (described in chapter 3.3 of Dudoit and Yang, 2003),
the authors are interested in identifying genes that are differentially expressed
in zebrafish carrying a point mutated SRB2 gene, compared to ordinary, wild-
type zebrafish. SRB2 and one of it’s known targets, Dlx3 are expected to be
highly differentially expressed in this experiment, thus these genes should be
highly ranked using WAME. The Swirl dataset has been examined in Smyth
(2004).

The dataset consists of four two-colour cDNA microarrays with 8448
spots, whose data are publicly available. We used standard pre-processing
to compensate for effects such as background and dye bias (Background cor-
rection subtract and within-array normalisation printtip loess were used in
the LIMMA package (Smyth et al., 2003)). It should be noted that between-
array normalisation (Yang et al., 2002) was not performed in contrast to the
analysis in Smyth (2004).
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Figure 7: To the left, a histogram of the observed statistic, tg, together with
the density of the null distribution (in red), in the Polyp dataset. To the right,
a quantile-quantile plot where the observed values of Tg are paired with the
quantiles of Tg under the null hypothesis. The points generally follow the
identity line well, showing good concordance with the null distribution. For
extreme Tg, the observed values are more extreme than the predicted ones,
pointing at the existence of regulated genes.

Making one scatter plot of the log2-ratios for each pair of arrays (Figure 8)
indicates that array 2 is less variable than the others, while the genes with
lowest log2-ratio on array 1 seem to be outliers, since they are not extreme in
any other array. Examining the estimated covariance matrix (see Table 7),
array 2 indeed receives the highest variance. In addition, there are substantial
correlations between arrays 1-3, 2-4 and 3-4, which seems believable when
examining the scatter-plots (Figure 8).

Array
Array 1 2 3 4

1 0.128 0.007 0.079 0.017
2 0.066 0.086 -0.002 0.038
3 0.489 -0.017 0.203 0.076
4 0.136 0.371 0.482 0.124

Table 7: Estimated covariance-correlation matrix, Σ, for the arrays in the
Swirl dataset. (Correlations in italic, covariances in non-italic.)

When re-performing the estimation of Σ , removing potentially regulated
genes (in analogy with the Polyp and Cardiac datasets), the correlations were
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Figure 8: Pair-wise plots of the log2-ratios of the arrays in the Swirl dataset.
The plots to the lower-left show two-dimensional kernel density estimates of
the distribution of log2-ratios in each pair of patients. This provides infor-
mation in the central areas where the corresponding scatterplots are solid
black (cf. Figure 6 in Huber et al., 2003). The colour-scale is, in increasing
level of density: white, grey, black and red.
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decreased somewhat. Removing 5% of the genes decreased the three high
correlations by 0.02-0.06, while removing 10% decreased them by 0.04-0.08.
However, the corresponding weights only changed marginally (see Table 8).

Array
Removed genes 1 2 3 4

none 0.289 0.474 0.072 0.165
5% 0.288 0.469 0.076 0.166
10% 0.290 0.462 0.075 0.173
50% 0.282 0.447 0.087 0.184

Table 8: Weights for the arrays in the Swirl dataset. Different numbers of
potentially regulated genes were removed, to check their potential influence
in the estimation of Σ. Potential regulation was measured by minimal log2-
ratio among the arrays.

The hyperparameter α was estimated to 1.89. Further analysing the
dataset, the distribution of Sg fits the predicted distribution of Sg given
α = 1.89 well (see Figure 11 in in the Appendix). The observed values of the
statistic, Tg, seem to fit the null distribution well (see Figure 9).

Since the point mutated gene, SRB2 and one of it’s known targets, Dlx3,
are expected to be highly differentially expressed, their actual ranking is of
interest. In Table 9 below, the top 20 genes as ranked by WAME are listed.
The values of some widely used statistics are included for comparison. The
rankings by WAME and the moderated t-statistic (Smyth et al., 2003) are
very similar, while the rankings by the ordinary t-statistic and the average
log2-ratio (i.e. fold change) are rather different than the one by WAME,
which was expected. All four spots for the two validated genes are included
in WAME:s top 20 list (see Table 9).

7 Discussion

A drawback of the microarray technology is that it involves several consec-
utive steps, each exhibiting large quality variation. Thus there is a strong
need for quality assessment and quality control to handle occurrences of poor
quality. In this paper, we introduce a method called WAME for the anal-
ysis of paired microarray experiments, which aims at estimating array-wide
quality deviations and integrates these quality estimates into the statistical
analysis.
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Name ID average ordinary moderated WAME
log2-ratio t-statistic t-statistic

fb85d05 18-F10 -2.66 -18.41 -20.79 -15.15
fb58g10 11-L19 -1.60 -14.32 -14.15 -11.51
control Dlx3 -2.19 -15.91 -17.57 -11.17
control Dlx3 -2.19 -13.58 -16.08 -9.84

fb24g06 3-D11 1.32 19.52 13.62 9.80
fb54e03 10-K5 -1.20 -25.74 -13.11 -9.66
fc22a09 27-E17 1.26 24.76 13.68 9.50
fb40h07 7-D14 1.35 14.15 12.69 9.12
fb85a01 18-E1 -1.29 -17.35 -13.01 -8.81
fb87f03 18-O6 -1.08 -27.90 -12.06 -8.80
fb37e11 6-G21 1.23 14.37 11.94 8.47
fb94h06 20-L12 1.28 15.41 12.54 8.46
fb87d12 18-N24 1.28 12.96 11.87 8.39
control BMP2 -2.24 -8.63 -11.78 -8.33
fc10h09 24-H18 1.20 15.05 11.92 8.23
fb85f09 18-G18 1.29 11.50 11.38 8.22
control BMP2 -2.33 -8.37 -11.58 -7.95

fb26b10 3-I20 1.09 15.50 11.17 7.81
fb37b09 6-E18 1.31 11.57 11.55 7.78
fc22f05 27-G10 -1.19 -10.42 -10.44 -7.70

Table 9: The top 20 most probably regulated genes in the Swirl dataset
according to WAME.
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Figure 9: To the left, a histogram of the observed statistic, tg, together with
the density of the null distribution (in red), in the Swirl dataset. To the right,
a quantile-quantile plot where the observed values of Tg are paired with the
quantiles of Tg under the null hypothesis. The points generally follow the
identity line well, showing good concordance with the null distribution. For
extreme Tg, the observed values are more extreme than the predicted ones,
pointing at the existence of regulated genes.

The quality deviations are modelled as different variances for different
repetitions (e.g. arrays) as well as correlations between them, thus catch-
ing both unequal precision and systematic errors. This is contained in a
covariance matrix Σ. Genes have different variability (both biological and
technical), which is modelled by a gene-specific variance scaling factor cg.
Given this structure, the pair-wise measured log2-ratios for each gene are
assumed to be normally distributed. It should be straight-forward to in-
corporate exclusion of outlying gene-wise observations (e.g. spots) into the
model. Including quantitative measures of quality of such observations, e.g.
by a hierarchical variance component model (cf. Bakewell and Wit (2005)),
would be interesting as feature work.

Estimation of the covariance matrix is non-trivial due to the gene-wise
scalings and unknown differential expressions µg. Here, an assumption is
made that most genes are not differentially expressed (µg = 0) and a trans-
formation is performed to remove the gene-wise scalings. Then, a scaled
version of Σ is estimated using numerical maximum likelihood, based on the
derived resulting distribution. The assumption of no differential expression
somewhat limits the experimental setups that can be analysed. However, this
is not as consequential as it might sound, since it is made by most of the pro-
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cedures that have become de facto standard in the (preceding) normalisation
step.

Since most microarray experiments contain only a few repetitions, the
estimate of the gene-specific variance scaling factor cg is imprecise, which can
easily lead to false conclusions if not accounted for. Here, an empirical Bayes
approach is taken where an inverse gamma prior distribution is assumed, in
effect moderating extreme estimates (Baldi and Long, 2001; Lönnstedt and
Speed, 2002; Smyth, 2004). The hyperparameter α determining the spread
of the prior distribution is estimated from the data, by numerical maximum
likelihood together with the scale of the previously estimated scaled Σ.

To identify differentially expressed genes a likelihood-ratio test is derived,
resulting in the weighted moderated t-statistic, which is a generalisation of the
moderated t-statistic in Smyth (2004). Here, the estimated covariance matrix
Σ is used both to produce weights for the different repetitions and when
estimating the gene-specific variances. The weighted mean is the estimate of
differential expression with minimal variance.

As discussed above, array-wide quality deviations in all steps leading
to the observed log2-ratios are estimated and incorporated into the analy-
sis. However, the current paper is restricted to paired, two sample settings.
Interesting directions for future work would be to generalise the model to in-
clude more experimental setups, e.g. non-paired two sample cases (e.g. from
one-channel arrays) and time series. There, challenges would be to model a
more general variance structure and to estimate the corresponding covariance
matrix Σ with less restricting assumptions.

A simulation study was done to compare the performance of WAME
to four published methods. On data without correlations and with equal
variances between repetitions, WAME performs as well as the moderated
t-statistic which assumes this structure. When correlations and/or unequal
variances were included, WAME performs better than all the other methods.
In one case, using WAME results in almost a third less false positives which
can correspond to hundreds of genes. Evaluating the point estimation of the
covariance matrix Σ revealed good precision and accuracy when no regulated
genes were present. Including 10% regulated genes resulted in a bias, which
was partly handled by removing genes likely to be regulated. In both cases
estimation of the hyperparameter α was nearly unbiased and accurate. The
estimate of Σ was unbiased when heavy tails was introduced in contrast to
the estimate of α which was estimated to 1.55 instead of 2.

Three real datasets were analysed: the ischemic part of the dataset of
Hall et al. (2004)(publicly available), the dataset of Benson et al. (2004) and
the Swirl dataset (described in chapter 3.3 of Dudoit and Yang, 2003)(pub-

32



licly available). In all cases, relevant correlations and differences in precision
between replicates were found, even in first dataset which had been quality
controlled by a combination of several available methods. The exact origin
of the correlations is an interesting, open question. In the second dataset
one previously identified outlier was practically removed by WAME. In the
Swirl dataset, expected differentially expressed genes are ranked among the
top 20. Relevant empirical distributions showed good fit to the theoretic
distributions, pointing toward the family of prior distributions for cg being
flexible enough and the normal assumption being satisfying.

To summarise, WAME estimates and integrates array-wide quality devia-
tions into the analysis of paired microarray experiments. An empirical Bayes
approach is used to moderate the gene-specific variance scale estimates, re-
sulting in a weighted moderated t-statistic with a derived distribution. The
performance of WAME has been evaluated on both simulated and real mi-
croarray data, with interesting results.
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Appendix

Additional Figures

Mathematical details

We observe Xg = (Xg1, . . . , XgNI
) where g = 1, . . . , NG. Let Σ be a covari-

ance structure matrix for the NI repetitions, cg a set of gene-wise variance
scaling factors and α a hyperparameter determining the shape of the prior
distribution for cg. Then for fixed µg, Σ and α,

cg ∼ Γ−1(α, 1), and

Xg | cg ∼ NNI
(µg1, cgΣ)

and all variables corresponding to different genes are assumed independent.
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Figure 10: Empirical distribution of Sg in the Polyp dataset, together with
the density of Sg given α = 1.97.
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Figure 11: Empirical distribution of Sg in the Swirl dataset, together with
the density of Sg given α = 1.89.

Estimation of a scaled version of the matrix Σ

Assume that µg = 0 for all g. Under this assumption, it is possible to derive
a scale independent estimate of the covariance matrix Σ by a transformation
of the vector Xg. This is done as follows (the index g is dropped to increase
the readability) Let U = (U1, . . . , UNI

) where

Ui =

{
X1 if i = 1
Xi/X1 if 2 ≤ i ≤ NI .
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The inverse becomes

Xi =

{
U1 if i = 1
UiU1 if 2 ≤ i ≤ NI .

and the Jacobian can be derived to

J(u1, . . . , uNI
) = uNI−1

1 ,

so for U ∈ RNI the density becomes

fU | c,Σ(u) = fX | c,Σ (x(u)) |J(u)|

= (2π)−NI/2 c−NI/2 |Σ|−1/2 |u1|NI−1e−
u2
1

2c
vTΣ−1v.

where v = (1, u2, . . . , uNi
)T. Integration over u1 yields

fU2,...,UNI
| Σ(u2, . . . , uNI

| Σ) =

∫ ∞

−∞
fU | c,Σ(u | c, Σ) du1

= C |Σ|−1/2 [
vTΣ−1v

]−NI/2
.

(7)

C is a normalisation constant and v is defined as above. Observe that this
density is scale invariant with respect to the parameter Σ in the sense that
for any scalar λ,

fU2,...,UNI
| Σ(u2, . . . , uNI

|λΣ) = fU2,...,UNI
| Σ(u2, . . . , uNI

|Σ).

Thus, it is also independent of c (as can be seen by looking at the function
of the density) and under the assumption of independent genes, the log-
likelihood function becomes

l(Σ|x) = C ′ − NG

2
log (|Σ|)− NI

2

Ng∑
g=1

log (vTΣv) ,

where C ′ is a constant that is independent of Σ. Numerical maximisation
yields a scaled version of Σ, denoted Σ∗.

Estimation of the hyperparameter α and the scale λ

From the model assumptions, we know that

cg | α ∼ Γ−1(α, 1).
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Assume that Σ is known and define

Sg = (AXg)(AΣAT)−1AXg,

where A is a contrast matrix, e.g., a matrix of dimension NI − 1×NI , with
full rank and with each row sum equal to 0. It follows that

Sg ∼ cg × χ2
NI−1.

The unconditional distribution of Sg can be derived by integrating over cg,
i.e.,

fSg | α(sg) =

∫ ∞

0

fSg | cg(s)fcg | α(cg) dcg

=
1

2

(s/2)(NI−1)/2−1

Γ (α) Γ((NI − 1)/2)

∫ ∞

0

c−α−(NI−1)/2−1e−(s/2+1) dcg

=
1

2

Γ(α + (NI − 1)/2)

Γ(α)Γ((NI − 1)/2)

(s/2)(NI−1)/2−1

[1 + s/2]α+(NI−1)/2
.

This is a beta prime distribution (also called a beta distribution of the second
kind) (Johnson et al., 1995) with parameters NI − 1 and α which is denoted
by β′(NI − 1, α). Since only a scaled version of Σ, denoted Σ∗, is assumed
known from the primary estimation step, following entities are defined. Let

Σ∗ = λΣ

S∗
g = (AXg)

T(AΣ∗AT)−1AXG = Sg/λ,

where λ in the unknown scale for Σ∗. It follows that

S∗
g ∼ 2/λ× β′(NI − 1, α).

The likelihood function can be simplified to

l(α, λ|{sg}NG
g=1) = C + NG [(NI − 1)/2 log(λ) + log Γ(α + (NI − 1)/2)− log Γ(α)]

− (α + (NI − 1)/2)

NG∑
g=1

log(sgλ/2 + 1).

Numerical maximum likelihood is used to estimate α and λ, which together
with Σ∗ can be used to calculate an estimate for Σ.
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Inference about µg

The hypotheses that are interesting to test are if different genes are regulated
or not, that is for each g,

H0 : gene g is not regulated (µg = 0)

HA : gene g is regulated (µg 6= 0).

To test these hypotheses a maximum likelihood ratio (LRT) test is derived.
For each g, we reject H0 if

λ (xg) =

sup
µg 6=0

L (µg|xg)

L (0|xg)
≥ k,

where 1 ≤ k < ∞. The likelihood L can be calculated by integration over
cg, e.g.

L (µg|x) =

∫
fX | µg ,cg(x)fcg | α(cg) dcg

= (2π)−NI/2 |Σ|−1/2 Γ(NI/2 + α)

Γ(α)

[
(xg − µg1)T Σ−1 (xg − µg1)

2
+ 1

]−NI/2−α

.

To calculate the numerator in the likelihood ratio we need to maximise L
over µg, which is the same as minimising

(xg − µg1)T Σ−1 (xg − µg1)

A little algebra shows that this maximum corresponds to the argument

µ̂g =
1TΣ−1

1TΣ−11
xg .

Observe that µ̂g is the weighted mean value with minimal variance for the
covariance matrix Σ. We will use x̄w

g to denote this weighted average. The
maximum value of the likelihood function becomes

L(x̄w
g |xg) = (2π)−NI/2 |Σ|−1/2 Γ(NI/2 + α)

Γ(α)

[
xT

gΣ
−1xg − (x̄w

g )21TΣ−11

2
+ 1

]
.
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Using this, the likelihood ratio test statistic can be rewritten as

L
(
x̄w

g |xg

)
L (0|xg)

=

[
xT

gΣ
−1xg + 2

xT
gΣ

−1xg − (x̄w
g )21TΣ−11 + 2

]NI/2+α

=

[
1 +

(x̄w
g )21TΣ−11

xgΣ−1xg − (x̄w
g )21TΣ−11 + 2

]NI/2+α

=

[
1 +

(x̄w
g )21TΣ−11

(xg − (x̄w
g )1)TΣ−1(xg − (x̄w

g )1) + 2

]NI/2+α

=

[
1 +

(x̄w
g )21TΣ−11

(AXg)T(AΣAT)−1(AXg) + 2

]NI+α

=

[
1 +

(x̄w
g )21TΣ−11

sg + 2

]NI/2+α

≥ k,

which is equivalent to
|x̄w

g |√
sg + 2

≥ k′, (8)

where 0 ≤ k′ < ∞ is a new constant. A is the expressions above is the
contrast matrix

A =


1− w1 −w2 −w3 . . . −wNI

−w1 1− w2 −w3 . . . −wNI

. . . . . . . . . . . . . . .
−w1 −w2 −w3 . . . 1− wNI


and wi is the i:th element of the vector

1TΣ−1

1TΣ−11
.

To derive the distribution of the statistic that corresponds to (8), we proceed
as follows. Let

Tg =
X̄w

g√
Sg + 2

.

Then since

Tg =
X̄w

g /
√

cg√
Sg/cg + 2/cg

,

the nominator in this expression is independent of Sg and has the same
normal distribution conditionally on all cg (and thus also unconditionally
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has this normal distribution), showing that the denominator in this ratio
expression is independent of the nominator. Since furthermore a similar
argument shows that also Sg/cg and 2/cg are independent, and since 2/cg is
χ2 distributed with 2α degrees of freedom and Sg/cg is χ2 distributed with
NI − 1 degrees of freedom, the sum is distributed as a χ2 with NI − 1 + 2α
degrees of freedom. Hence, it follows that Tg is a scaled and translated
t-distribution with NI − 1 + 2α degrees of freedom, namely,

Tg | µg, Σ, α ∼ 1√
NI − 1 + 2α

× tNI−1+2α(µg).

We call Tg the weighted moderated t-statistic.
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