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Abstract

When considering regularity of surfaces, it is its geomédtat ts of interest. Thus, the concept
of geometric regularity or geometric continuity of a specdider is the relevant concept. In this
paper we discuss necessary and sufficient conditions farfacsuto be geometrically continuous
of order one and two or, in other words, being tangent planérmaous and curvature continuous.
Particularly, we consider a 4-patch surface, where thehpatbave a general representation. The
focus is on the regularity of the point where four patchestraed the compatibility conditions
that must appear.
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1 Introduction

In many applications in Computer-Aided Geometric Design (CAGD) and Comfrsghics a sur-
face is composed of several patches, where a patch usually is refjateseby a Bezier polynomial,
B-spline or NURB. In particular, each patch is as regular as is needwess, When considering regu-
larity of a surface such as tangent plane continuity or curvature contithityack of regularity only
occurs somewhere at a common boundary curve between two or moregatch

Regularity for a surface constituting of two adjacent patches intersectmg@mmon boundary
curve, see Figure 1, is a well studied problem. A general approadfi'fas well asG? continuity,

i e tangent plane continuity and curvature continuity respectively, weesdy Juergen Kahmann in
a paper from 1983, see [7]. In the same paper he also applies histoethdtcase of Bezier patches.
Other authors such as Degen [3], Liu and Hoschek [10], Liu [9], @eH4], have also treated tangent
plane continuity in the 2-patch case. In the case of curvature continuitlyifaype of 2-patch surface
we refer to articles by Kiciak [8], Ye, Liang and Nowacki [14].

A more complicated situation is where four patches intersect at a common poart edery pair
of adjacent patches meet at a common boundary, see Figure 2. Amongtieaathors that has
treated regularity problem in this 4-patch surface case aémeB[1], Sarraga [12] and [13], Ye and
Nowacki [15]. For further references and an overview, look abibek by Hoschek and Lasser [6].

Most often the approach has been to study the regularity problem in teeotasspecific patch
representation. In this paper we consider a 4-patch surface with aafypaéch representation. We
give necessary and sufficient compatibility condition in order to have tdangane continuity and
curvature continuity respectively for such a surface. The conditiomg@neral and independent of
the patch representation.



2 Geometric continuity of order 1

When discussing regularity of a surface our focus is on the geometrg aiuitiace and not its repre-
sentation. Consequently, the notation geometric continuity of a certain oriher igoper concept in
this context. The lowest order of regularityG8, which means that the surface is connected. Another
way to put it is to require that its representation is continuous. The nextdéwvegularity is tangent
plane continuity, denoted b, which will be defined next.

Definition 1 A continuous surface is said to be tangent plane continuous, denotéd i every
point on the surface has a unique tangential plan, which varies contimfpionsthe surface. Such a
surface is also said to be geometrically continuous of order one.

Let us look at Definition 1 in a specific situation. In this connection we usedktegionr ¢ C#
for a differential function(u, v) ~ r(u,v) € R3, with 7, x r, # 0for 0 < u,v < 1. Suppose
that a surface constitutes of two patches with a common boundary. Let the patches béddsas
(u,v) — M (u,v) with 0 < u,v < 1 and(s,t) — 3 (s,t) with 0 < s,¢ < 1. Supposing further
that each patch is regular enough, ie that,7*) € CJ. In order for the surfacé to be tangent
plane continuous the only points that not automatically fulfill Gitecondition are those along the
common boundary of the two patches, see Figure 1. On this boundany wervnust particularly
havev — r((1,v) = r)(0,t(v)) for 0 < v < 1, wherev — t(v) maps|0, 1] continuously and
uniquely onto[0, 1], ie that the two patches together constitute a continuous surface. Morabv
a common boundary point the tangent planes considered from p@tcandr(2) respectively must
coinside.

Figure 1: Two patches connected by a common boundary

At a particular boundary point with parameter valuthis can be formulated as
spar{r(!(1,v), 71 (1,0)} = span(r{?) (0, ¢(v)), 7 (0, ¢(v))},
which must not be degenerated. An equivalent way to put it is that
r£2)(0,t(v)) = A2(v) r&l)(l,v) + K12(v) rf)l)(l,v), 0<wv<1, (2.1)

where)\s andx s are continuous functions along the boundary curve, and the tangﬂotyél) (1,v)

andrf,l)(l,v) are linearly independent for everye [0, 1]. Without loss of generality, from now on
we identify the parametersandt on the common boundary.



The formula description in (2.1) of two adjacent patches is very well studiethis paper we
will rather consider the problem with four adjacent patches, i e a sudanstituting of four patches
where every two adjacent patches have a common boundary, see Eiglioeeover, the four patches
intersect in a common poiit. The difference between the 2-patch case compared to the 4-patch
case is that in the later case exists compatibility conditions that must be satisfieteirfar every
two patches with a common boundary to fulfill equation (2.1). Thus, we wafihdothe correct
conditions for a 4-patch surface to be tangentially continuous at the ioters@ointV’.

The compatibility conditions can be rephrased in such a way that we formwdagssary and
sufficient conditions on the functions; andx;; at the intersection poirit’.

First, by using the relation (2.1) we get the next four relations betweeneatichgs(1)—(2), (2)—
(3), (4)—(3) and (1)—(4). For practical purposes we use the same parametersd v for all the
patches, wher@ < u,v < 1. Thus

r@(0,v) = A2 (v)rM (1, v) + K12(0)rD (1, v) 2.2
r3(0,v) = Az (0)r(1,0) + rag(0)r(D (1, v) '
and
r@) (u,0) = )\14(u)r1()1)(u, 1)+ /<e14(u)7’(1)(u, 1) 2.3)
( .

We have here used a patch numbering as is indicated in Figure 2.

v
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Figure 2: Four patches connected in a common vértex

Besides the above relations we also have the following natural identitiesAfgagéch surface in
order to satisfyG° on the common boundary between two nearby patches

(2.4)
7“5;4)(1,?)) = rvg)(O,v)
and
1) 4)
u 71 = ,0
1) = i (w,0) 5



Using the equations (2.2)—(2.5), we prove the next theorem, which is theresailh in this section. In
the case where the patches are described by polynomials, this resulteeaty soublished by Bzier
in 1986. See [1], p 44-46.

Theorem 1 Let S be a surface consisting of fom’;&-patches, where each pair of adjacent patches
has a common boundary. L&t be the intersection point of the four patches. See Figure 2. Then,
necessary and sufficient (compatibility) conditions in order for the serfado be tangent plane
continuous(71, are that the continuous functions; and«;;, defined in the equations (2.2) and (2.3),
fulfill the relations

K12 = A14K43 2.6)
K14 = A12K23

and

A2 — A43 = K14k
12 43 14K43 2.7)
A4 — A23 = K12K23
at the pointV.

Remark. The notatiorns2, A\14, k43, €tc, are to be interpreted as(1), A\4(1), x43(0), etc.

Proof. In order to prove the above statement, we must see under what conditieguhgons (2.2)

and (2.3) together are satisfied. We start by eIiminatfﬁb r$?, 7Y andr? in the equations (2.2)
and (2.3) by using (2.4) and (2.5) to get

(1)

Aars) + kgt —rY =0
Aagr) ) g = 2.8)
fuare) 4 AparV ¥ =0 .
)\QgTq()l) + Hgg?"f,(;)) — T'q()3) =0.
The equation system (2.8) can easily be changed to the equivalent shstewilows
Arg s Y - A =0
(i3 — Aig + Kiakiaz) 7 + (Aaraz — Kag) V) =0 (2.9)
Kaarl) g —r =0
(A12k23 — K14) r (A23 — A1g + K12K23) r! =0.

From the second and fourth equations in (2.9) we get
(M3 — M2 + Fraras)ri) + (Makag — m12)rl) =0

and
(A12ka3 — 514)7“1(11) + (A3 — Aua + /f12l<623)7"1()1) = 0.



Since the vectors&l),rf,(,l) span the tangent plane, it must hold that
K12 = A14K43
K14 = A12K23
and
A2 — \43 = K14K43
A4 — A23 = K12K23.

Thus, it is obvious that a necessity and sufficiency for simultanies satisfiaaf the equations (2.2)
and (2.3) to be fulfilled is that the equalities (2.6) and (2.7) are true. Thiradition concludes the
proof. O

Let us look at some simple consequences of Theorem 1. Obviously, togdios \;; are not
allowed to be zero if tangential continuity is to be satisfied. Thus, ikgg0) # 0 thenx12(0) # 0,
which follows from 2.6. On the other hand, #f4(0) = 0 then alsoka3(0) = 0. This situation is
examplified in Figure 3. In general, it follows from equation (2.6) that thiegdas;;'s in each equality
must both be zero or non-zero. A simplier case is, of course, when;alle zero.

Figure 3: Four patches connected in a common veltexvith x14(0) = k23(0) = 0 and
k12(0)k43(0) # 0

Another observation that can made from (2.6) and (2.7) is that the rakbres are true

Mgz = Aa(M2 — K1aka3) = A2 14 — AMaK43K14
= A2\ 14 — K12K14
and

A2A23 = A12(A14 — K12K23) = A12A14 — K12\ 12K23

= AM2A14 — K12K14.

In particular, we have
A12A23 = A14M43, (2.10)

which will be usefull in the next section.



3 Geometric continuity of order 2

As mentioned previously, it is the regularity of the surface and not its septation that is of interest.
Therefore we introduce, similarly as before, the following concept.

Definition 2 A tangent plane continuou&;!, surface is said to be curvature continuous, denoted by
G?, if every point on the surface has a unique Dupin indicatrix, which varaegicuously on the
surface. Such a surface is also said to be geometrically continuous aftarde

Another equivalent way to describe the notation of curvature continuity gayothat the normal
curvature at each point and in each tangential diretti@s to be unique, or the principal curvatures
are unique. These differential geometric notations are introduced autaireed in any book about
differential geometry, e g [2]. First we consider a 2-patch surfatereithe patches are of regularity
C% = C, N C? Thus, lack ofG*-regularity for the surfaces can only occur at the common
boundary of the two patches. Next, we give a necessary and sufficiedition for a 2-patch surface
to be curvature continuous. This result was proved in a paper byeluimhmann [7]. We have

Lemmal Let S be a 2-patch surface consisting of the m@-patches(u, v) — M (u,v) and
(u,v) — 3 (u,v), where0 < u,v < 1, satisfying equation (2.1) on their common boundary. A
necessary and sufficient condition for the surf&ct be curvature continuous is that the following
relation is fulfilled

ri (0,0) = Mo (v)rl) (1,0) + 2M2(v) 1z (0)r(y) (1,0) + w15 (0)r) (1,v)

u uv

(3.11)
+ 12(0)rP(1,0) + o ()r (Lv), 0<v <,

where the functionas, k12, 12 andvi4 are continuous.

Proof Let P be any point on the common boundary drahy tangential vector on th@!-surface at

the pointP. Lets — ~(s) be a curve orb crossing the common boundary between the two patches
at the pointP = (s, ), with its tangential vectot at that point. Lety; = v|,.;) fori = 1, 2. Since the
surface is tangent plane continuous, the tangent vectrst satisfy

Vi(s0) =t = agr® + Borl® = ag(Marlt) + kiar(V) + BorlV
= ahiorl) + (azkiz + Bo)r{)
alrl(}) + 517“1(,1) =71 (s0), (3.12)

where we have used formula (2.1) and the next relations

ar = a2)i2
B = k12 + o

A necessary and sufficient condition in order to have curvature catgtilsithat the normal curvature
k in the directiont at the pointP is independent of coordinate system or representation, i e

(k1 N1)|p = (k2 N2)|p, (3.13)

YIn fact, it is enough that it holds for 3 pairwise linearly independent tatigledirections by the 3-Tangent Theorem,
see Pegna & Wolter [11] or Hoschek & Lasser [6], p 333.



where

/
vy Vi Vi

(ki Ni)lp = (15 — =1 V)P

o o7 R o L

Sincey] = 74 = t at the pointP, it follows from the above formula that equation (3.13) is equivalent
to

(1 =12)lp =0

modulo a tangent vector.
Combining the fact that — ~;(s) = 7% (u;(s), v;(s)) with the relations in (3.12), we get

O = )lp = wfrd) o+ ofrD) o+ (i) + 2uolrtl) + (o))
fuzrq‘) i — (i) - 2upir (2~ (")
= u/llrl(}) + vi/rz()l) + a2rl) (1) 4 2a1517‘ + ﬁ%r(l)
—ugrf) — 1157“1()2) % ( — 2042527“(2) — ﬁQT‘W
= ur) + o)) 4 (042)\12)2 o 4 2042>\12(a2/€12 + B2)rY) + (azkiz + o))
—ugrff) — vé’m(?) a%r( 2042627“ ﬂQTW

= 042()\127"1(“2 + 2/\12&127‘53 + K1 T'( ) (2)) + 20&252()\127‘1“)) + H127’( ) g))
FRY — ) 4 ) +ofrD — o2 — )

From this follows the equivalent formulation in equation (3.11). O
We now continue to consider a 4-patch surface as in Figure 2. Therfolshast obvious condi-

tions to have geometric continuity of order two are that the equalities in (2.2J2aBHare satisfied
after a differentiation with respect to the parameteasdu respectively. We then get

0,0 = Xia(0) 1 (1,0) + Aa(@) i (L) 4wy (0) 7 (10) 12 () L)
ri (0,0) = Nig(v) 1V (1,0) + Aaa(v) () (1,0) + Kl (v) 7§D (1,0) + raz(0) i) (1, 0)
and
ri (4, 0) = Nig () i) (u, 1) + Mg () 73 (u, 1) + w4 (u) i (1) + £1a(u) i) (u, 1)
ri (4, 0) = Ny () i (u, 1) + s () 752 (u, 1) + rhs (u) 7 (u, 1) + roaz(u) ) (u, 1). 329

From Lemma 1,we know that curvature continuity implies that the next four rakatrust be fulfilled,
ie

ri (0,0) = Ao ()r) (1,0) + 2X12(v) 1z (0)r() (1,0) + KTy (0)r) (1, )

3.16
+ p12(v)rP (1, v) + 1/12(1))7’1(;1)(17 v) ( )
r(3(0,v) = A3(0)r) (1,v) + 2Ma3(v)ras (0)r{) (1, 0) + K35 (0)r{) (1, 0)
(3.17)
+ a3 (0)r$) (1,0) + vag(0)r$H (1,0)
and
700,00 = Mo 1) 4 Dy (wpraa)r o, 1) + b )

+ /AQg(U)’I”l(}Q) (u,1) 4+ Vgg(u)rg )(u, 1)



r6y) (u,0) = Ady (w)rly) (u, 1) + 22 (w)maa(w)rly) (u, 1) + w14 (w)rly) (u, 1)
+ pa(w)r§) (u, 1) + vig(w)rd (u, 1),
We are now in a position to prove the main result in this section.

(3.19)

Theorem 2 LetS be aG''-surface consisting of fo@i-patches, where each pair of adjacent patches
has a common boundary. LEtbe the intersection point of the four patches. See Figure 2. Then, nec-
essary and sufficient (compatibility) conditions in order for the surféi¢e be curvature continuous,

G?, are that the differentiable functions; and«;; and the continuous functions; andv;;, defined

in the equations (3.14)—(3.19), satisfy the relations

2)\43)\’14/<o43 — V12 + V4314 + M14’@213 =0

2X23N\|oka3 — V14 + Va3 A1z + pi2ksg = 0

2\a3kazkiyy — p12 + Ha3 + Vaskia + Viakis = 0 (3.20)
2X93K23K19 — H14 + po3 + Vogkiz + V12’<ﬂ§3 =0

! ! ! ! !
Az — X231y + Aa3Ky — Ai2Ko3 + K1akyg — 12K23 + Viakag = 0

! ! ! ! !
A9z — A3y + Ao3Klg — Aaky3 + K12K9g — [L14K43 + Vigkeg = 0

at the pointV.

Proof First, we know that the equations (3.14) and (3.15) must hold. Using th#redg2.4) and
(2.5) in order to eliminate the vectoréz) andrff) together withr£4) andr£4) in those equations, we
get

AarD) — @ 4 XD 4 korl) 4 ke =0

a
Aaarl) — () + Nigrl + Klgr(? + kagrll) =0
1) a

2

AarSy) = r$) + k(D + Myl + kel =0

Aoar(s) — ri) + ke + Nygrl?) + koar(s) = 0.

After some minor rearrangements, we get the following equivalent formalafithe above equation
system

Aarld) — @ L X r D 4k r () 4 ke =0

)\437“1%) - 7"1(;;) + ML?,T?(}) + “2137"754)

Arary) = 8+ kgl + Marl) + k1ar(l) =0 (3.21)

u

+ /{437’1%) =0

(—Ny3 + AagNly — Magkly + Makhs — w1arls)ri) + (N3 + Aaskly — Mgy

=+ I<L12/<L/23 — )\14%213)7“1()1) — )\431%147’192 + /\23/1127’1%) + FLQgT’&) — E437’1(]%) = 0.

Considering the last part in the last equation in system (3.21) and usiag@ugi(3.16) and (3.19)



combined with (2.4) and (2.5) we get

— )\43/43147’192 + )\23/43127’1%) + /43237’532 — /43437’1()%)

—Mazk1arll) 4+ Aozk1or() + kogr) — kyzrld)
= —Aagk1arly) + Aagkarl)

+raz(Alorlh) + 2Xaam1orly) + Kiarl) + marl? + viarlY)

—kaz(A2 ) + 22 am00rl) + K200 4 p1ar(Y 40y (D)
= /‘623(,u127“( ) + V127“(1)) - K43(M14T( ) + V147”(1))

+(kasAly — Kasky — Maskra)r()

+(r23kdy — KasAiy + Aaghiz)rly)

+2(Ka3M12k12 — KazAiak1a)ry).

In order to further reduce the above formula, we use the relations (2dgPas). We get

2 2 2
K23A1g — K43K1y — A43K14 = K14A12 — K43KT4 — M3K14
= Kua(A2 — M3 — Kiakaz) = 0,
2 2 2
K23K1g — K43A14 + A23k12 = K23K1p — K12A14 + A23k12

= Ki12(A23 — Mg + K12K23) =0
and
K23A12K12 — K43A14K14 = K1ak12 — K12k14 = 0.

Thus, it follows that

— )\43%14?”&2 + )\23%12?”1()1}) + H23?”1(;8 — H43?”1()%)

= (Kagpna — kagvra)TSY + (Kosvia — Kazpina)rSY.

Input the above equality in the last equation in formula (3.21). The indegrerdof the two vectors

r andr(V together with (2.6) gives

/ / ! ! /
—A43 — A3k + A23\]o + MoKy — K1aky3 + K312 — kagvia = 0 (3.22)
/ / / / / '
)\23 — )\43)\14 + )\23%12 + R12K93 — )\14/1'43 + K23V12 — K43M414 = 0.

The equations (3.22) are necessary in order to fulfill the condition ahgé@c continuity of order 2.

Let us continue to study the equations (3.16)—(3.19) more closely. Affoanulation of this
equation system we have

2)\12/1127"(1) + ulgrf}) + V127“1()1) + )\%Qr(l) + H%zrﬁ) — 7“52 =0

uv uu
A A
(pa3 + 2 agkagkly — Ml%%i)ﬂ(}) + (2A43k43\ 14 — me:z)?“zgl) + V437“1(;3)

2 M3 (1) _ (1- Aa3

+ (M + 2Maskaskis — Madas)rly) — Kl 28y, 3) 4 2,003) = 0

A12 To A12 (3.23)
A2 A23 '
(2N]9 2323 — V1= i) ) 4 (g3 + 2k 5 Aaskiag — paay— 4) D 4 g3
9 A A
K4 )\23 it + (M35 + 2m12 03603 — Aradas)rlh) + k3ar(S) — (1 — Ti)ﬁ(;%) =0

2)\14%614"”&1;) + 1/147"1(}) + M147“1(;1) + /@%47“512 + /\%4(@7"1(;};) - 7“1(;?73) =0.
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Let us start to consider the second equation in the above system. We wawtite this equation in
order to make it easier to handle. Using the relations (2.4)—(2.9) combined3ait) and (3.19), we
get

) 3)

(paz A2 +2M12 43K43K), — M12)\43)TQ(L1) + A3 (2N 12Kk43 N4 — V12)7“1(Jl +vagAiary + A2Aa3 (A3
+ 2K14K43 — /\12)7"1%) - )\43#&%27”1(,})) — (A2 — )\43)7“52 + )\12&213?"1(;%)
(4312 + 2X12\43K43K] 4 — /’L12)\43)T'EL1) + A3 (2A 12643\ 4 — V12)7"£1) + V43)\12(H14TQ(L1)

1 1 2 4
+ AurS )) + /\12)\43/114H437°q(u) - )\43@27"1(,})) - H14/<&437“z(m) + )\12/@2137“1(;1])

1 1
=(pazAi2 +2)\12/\43f€43/‘é/14—M12/\43+V43/\12H14)7“18 )+(2/\12)\43/<&43X14—V12)\43+V43)\12/\14)7'q(; )

1 1 1
+)\12)\43/<614f<6437“1(2 - /\43/1%27'1(;};) - /114%43()\%27'1(12 F2X19k197 +ﬁ%27’z()1;) +M127’£¢ ) 4 vyor ))

+ /\12f€42;3(>\f47”z(;};) + 2X k14l + "0%4r£112 + paarS? + V14T1(¢1))
1
=(ua3 12 +2)\12)\43f€43/‘6'14—H12)\43+V43)\12/<614—/ﬁ14f€43/~012+)\12/@2;31/14)7“5 )+(2)\12)\43/<643/\'14
1 1
*V12)\43+V43)\12)\14*Ii14/€431/12+>\12f@213m4)7“z(; )+()\12)\43/i14f€43*If14/<43>\%2+)\12/@213/€%4)7“512
1 1
+ (—Aazk3y — Kiakazkiy + )\1254213>\%4)7‘1(;v) + 2(—K14K43 12612 + A2k A\ 14K14) T

1
:(M43>\12+2>\12>\43H43f€/14—M12>\43+V43>\12/<14—%14H43u12+>\12/@2131/14)7“£ )+(2>\12>\43H43/\'14
1 1
— V1243 + Va3 A 12 14 — K1akazvi2 + )\12/@213%4)7“1(; )+ M2k1akaz(Aaz — A2 + /f14/<643)7“£u)

1 1
— kiy( M3 + Kiakag — /\12)7"q(w) — 2 12Kk14K43(K12 — )\14543)T£v)

1
=(az 12 +2 12 \43K43K] 4 — 12 Aa3 + Va3 A12K14 — K14K43 /012 +)\12K/42131/14)T’L(L )4 (2A12M43Kk43\] 4

1
— V1243 + V4312 14 — K14Ka3li2 + A12ﬁi3u14)r£ ) —0.

The independence of the tangential vecbé}% andm(,l) gives

/ 2
a3 A12 + 2X 12 43K43K74 — (1243 + VazA12K14 — [12K14K43 + V1ad12Kg3 = 0

/ 2
212 43K43\ 14 — V1243 + Vag A2 14 — V12K14k43 + pl1ad12kg3 = 0

or equivalently, by the use of relation (2.7), we get

Mo (fta3 + 2M\a3K43Kh, — 12 + vagkia + vigkis) = 0

(3.24)
M2(2Ma3ka3 Ny — V12 + vasAia + piargs) = 0.

We now continue our examination of the equation system (3.23) by congjderithird equation. As
above, we use (2.4)—(2.9) combined with (3.16) and (3.19). We have

23 (2N g A 14k23 — V14)7‘£l) + (p23M14 + 2K 9 A 14 X203 K23 — M14>\23)7”z(}1) +vashpart) — Azz*ﬁﬂ&)
+ AaA23(Ao3 + 2K12K23 — )\14)7‘1%) + )\14/‘6337“1(2 — (A4 — )\23)7“1(;%)
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=X23(2M 9\ 14K23 — 1/14)7’1(}) + (2314 + 2K 9 14 X23k03 — ,u14)\23)7’z()1) + V23>\14()\127'1(¢1)

4
+ I€12T1(;1)) - )\23/%47“13112 + Audaskiokosrly + /\14/‘6337“7%) — K1oko3TSy

=(2)\23>\'12>\14f€23—V14)\23+V23)\14)\12)7“51)+(M23>\14+2fi’12)\14>\23f€23—u14)\23+V23)\14/<&12)7‘z(}1)

- )\23143%47”1(2 F A4 A3 k12K23T 08 +)\14/€%3()\%2T1%) 2N k107 +/€%27“1(;1;) +/L12T£1) +V127"7gl))

- %12/‘6230\%47“&) + 2)\14/€147”$;) + /6%4?%%) + ,u147“1(11) + V14T1(L1))

1
=(2\23 N9 A14k23 — V1423 + Va3 A4 12+ 12\ 14 K33 — V14K12 H23)T1(L )4 (12314 +2K 9 14 A2 K23
1 1
— 143+ 93 aK12 V12 A14K53 —M14/<612/€23)7”£; )4 (—A2gkiy+ 14635303 — H12H23/€%4)?”1(m)

2 .2 2 1) 2 1
+ (AMada3K12K23 + AMaKsgky — )\14H12/€23)7“1(m + 2(A1aK33 12612 — 512523)\14514>T1(w)

1
=(2\23 N9 A 14K23 — V14 X23 + Va3 A1a A 12+ f12 A 14K53 — V14/€12H23)7“z(t )4 (2314426 9 14 A23 23
1
— H14)a3 + Va3 Mgk + V12 A4k — ,u14/412f€23)7“z(; ) 4 K3, A1a — Aoz — /<&12f€23)7"1%)

+ Aaki12623(A23 + Kiakag — )\14)7’1(;1;) + 2 14K12K23 (K23 A 12 — R14)7‘7%)

=(2)\23X12/\14K23_V14)\23+V23)‘14)‘12+'“12>‘14’€%3—V14ﬁ12H23)T181)+(ﬂ23/\14+2f<a/12)\14)\23f£23
1
— s + vashaakin + vishuady — prakizkas)rs) = 0.

The same argument as before, i e the independence of the tangerttina.tvg& andrfjl), implies that
2X03 N9 A 14k23 — V14A23 + Vo 1412 + p1a\14KEs — Viak12ke3 = 0
2314 + 2619\ 14\23k23 — f114093 + VagA14k12 + ViaA14kag — H14k12ke3 = 0.

Using the relation (2.7) we can simplify the above written equalities into the nexbmes

A1 (2003 N, ok23 — V14 + Vaghia + firokg) = 0
14(2A23\ 9 K23 14 9312 + [12k23) (3.25)

A4 (po3 + 2K 9 Ao3k03 — 14 + vogki2 + V12/€%3) =0.

Combining the results in (3.22), (3.24) and (3.25) with the factXpat 0, we get the compatibil-
ity conditions (3.20) foiG2, which are necessary and sufficient for having a simultaneous satsfica
of the equations (3.14)—(3.19). This ends the proof. O
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