CHEBYSHEV SPECTRAL-Sy METHOD FOR THE NEUTRON
TRANSPORT EQUATION

M. ASADZADEH! AND A. KADEM?

ABSTRACT. We study convergence of a combined spectral and (Sy) discrete
ordinates approximation for a multidimensional, steady state, linear transport
problem with isotropic scattering. The procedure is based on expansion of the
angular flux in a truncated series of Chebyshev polynomials in spatial variables
that results in the transformation of the multidimensional problems into a set
of one-dimensional problems. The convergence of this approach is studied in
the context of the discrete-ordinates equations based on a special quadrature
rule for the scattering integral. The discrete-ordinates and quadrature errors
are expanded in truncated series of Chebyshev polynomials of degree < L, and
the convergence is derived assuming . < oy —4mos where o and o are total-
and scattering cross-sections, respectively.

1. INTRODUCTION

In this note we develop spectral approximations for two and three dimensional,
steady state, linear transport equation with isotropic scattering, in bounded do-
mains. The procedure is based on the expansion of the angular flux in a truncated
series of Chebyshev polynomials in the spatial variables. We study the convergence
of this method in two dimensional case, where we use a special quadrature rule to
discretize in the angular variables, approximating the scalar flux. The similarity of
the spectral method to the finite element method is evident: the bases functions
have a constant norm and the procedure is to represent the approximate solution
as a linear combination of finite number of basis functions (truncated series of
Chebyshev polynomials) and then use a variational formulation. The main differ-
ence is that: the finite element bases functions are locally supported, whereas the
chebyshev polynomials are global functions. See also [6] for further details.

In [16] this approach, with no convergence rate analysis, is considered for a
truncated series of general orthogonal polynomials. The detailed study in [16]
is carried out for the Legendre polynomials, where an index mix caused that a
significant drift term is argued to be of lower order and therefore its contribution
is not included in the estimates.

We apply this procedure using Chebyshev polynomials with,e.g., the advantage
of having constant weighted-Ly norms, and give a full convergence study including
estimates of the contribution from the whole drift term. The final estimation is via
an inverse iterative/induction argument, based on an estimate derived from some
elementary properties of Chebyshev polynomials in Appendix I. In our knowledge
convergence rate analysis, in this setting, is not considered in the literature.
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Related problems, in different settings, are studied in the nuclear engineering
literature, see, e.g., references in Vilhena et al in [16]. Barros and Larsen [4] carried
out a spectral nodal method for certain discrete-ordinates problems. Chebyshev
spectral methods for radiative transfer problems are studied, e.g., by Kim and
Ishimaru in [11] and by Kim and Moscoso in [12]. In, e.g., astrophysical aspects,
spectral methods are considered for relativistic gravitation and gravitational ra-
diation by Bonazzola el al in [6]. A multi-domain spectral method is studied by
Grandclément et al [10], for scalar and vectorial Poisson equations. C++ soft-
ware library, developed for multi-domain, is available in public domain (GPL),
http://www.lorene.obspm.fr. For more detailed study on Chebyshev spectral method
and also approximations by the spectral methods we refer the reader to monographs
by Boyd [7] and Bernardi and Maday [5].

An outline of this paper is as follows: In Section 2 we derive the truncated spec-
tral equations in 2 dimensions. In Section 3 we prove that a certain weighted-L,
norm for the error in the discrete-ordinates approximation of the spectral solution
is dominated by that of a quadrature approximation. In Section 4 we construct
a special quadrature rule and derive convergence rates for the quadrature error.
Combining the results of Sections 3 and 4, we conclude the convergence of the
discrete-ordinates for the spectral method. Appendix I is devoted to certain prop-
erties of the Chebyshev polynomials, that are frequently used in the paper, and
also the proof of a crucial estimate used in the approximation of the contribution
from the drift term. Finally in Appendix II we derive the spectral equations in a
three dimensional setting.

2. THE TWO-DIMENSIONAL SPECTRAL SOLUTION

Consider the two-dimensional linear, steady state, transport equation given by

0 0
,U_‘I’(Xali,o)‘i‘ 17u2 COSG_‘I}(X7N79)+Ut\IJ(X7H70)
ox oy
(21) 1 2w
— [ [ ot > w80 + S0,
J—-1J0

in the rectangular domain Q = {x:= (z,y) : =1 <z <1, —-1<y <1} and the
directionsin D = {(u,6): —1 <pu <1, 0<60<2r}. Here ¥(x,y,0) is the angu-
lar flux, o, and o4 denote the total- and the differential cross sections, respectively,
(os(n',0" = p,0) describes the scattering from an assumed pre-collision angular
coordinates (u', 6") to a post-collision coordinates (i, )), and S is the source term.
See [14] for the details.

Note that, in the case of one-speed neutron transport equation; taking the angu-
lar variable in a disc, this problem would corresponds to a three dimensional case
with all functions being constant in the azimuthal direction of the z variable. In
this way the actual spatial domain may be assumed to be a cylinder with the cross-
section ) and the axial symmetry in z. Then D will correspond to the projection
of the points on the unit sphere (the “speed”) onto the unit disc (which coincides
with D.) See, [1] for the details.

Given the functions fi(y, u,60) and fo(z, u,8), describing the incident flux, we

3

seek for a solution of (2.1) subject to the following boundary conditions:
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For 0 < 60 < 2w, let

fily,w,0),  z=-1, 0<p<l,
(2.2) U(x==+1,y,u,0) = { 0 el l<u<.
For -1 < pu<1,let
_ _ f2(y7//’70)7 yzfl, O<C0$9S1,
(23)  U(z,y==+1,p60)= { 0 y=1  1<cosf<0

Expanding the angular flux ¥(x, i, ) in terms of the Chebyshev polynomials,
in the y variable, leads to

T
(2.4) U(x,p,0) = Z\IIZ(ZEHUQ)TZ(:U)

i=0
Below we determine the first component, i.e., Wg(x, u,0) explicitly, whereas the
other components, ¥,;(z,u,0), i = 1,...1, will appear as the unknowns in I one
dimensional transport equations: We start to determine ¥q(x, u,6), by inserting
(2.4) into the boundary conditions (23) at y = £1, to find that:

(25)  Uo(z,p,60) = fol,p,0) Z (,1,6),  0<cosb <1,

i=1

I
(2.6) Uo(z, 1, 0) = — Z\Ili(a:,,u,ﬁ), -1 < cosf < 0.
i=1
where —1 <z <1, -1 < u < 1, and we have used the fact that for the Chebyshev
polynomials Ty(z) = 1, T;(1) = 1 and T;(—1) = (—1)’. See Appendix 1.
If we now insert ¥ from (2.4) into (2.1), multiply the resulting equation by

]( ) ,k=1,... 1, and integrate over y we find that the components ¥ (z, u, ),
y?
k=1,...., I, satisfy the following I one-dimensional transport equations:

0
,Ua—‘I’k(-Talh 9) + ot ¥y, (T/ //’70)
(2.7)

/ / s(1', 0 =, 0) (2, ', 0")d0 dp' + Gy (x, 1, 9).
—1

The same procedure with the boundary condition (2.2) at z = —1, and (2.4) yields

I

i=0
: Te(y) . 7. —
Now multiply (2.8) by S k=1,...,1, and integrating over y we find that

Similarly, (note the sign of u below), the boundary condition at x = 1 is written as

1
(2.10) DL, —p,0)Ti(y) =0, 0<p<l.
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Multiplying (2.10) by ; k=1,...,.I and integrating over y, we get
( \/—
(2.11) Ue(l,—pu,0) =0, O<pu<l, 0<60<27.

We can easily check that Gy, in (2.7) is written as

I
(212) Gk(T//j’ae) = Sk(T,ll:e) Y 1- /l’2 cos Z Af‘I"k(T:H,o)

i=k+1
where
and
(2.14) Sk(x, 1, 6) / S(x,y, u, 9)\/17(_%(&/.

Note that the solutions to the one dimensional problems given through the
equations (2.7)—(2.14) define the components Wy (z, u,6) for k = I,...,1, in this
decreasing order to avoid the coupling of the equations. Once this is done, the
angular flux is completely determined by (2.4). Here, we have used the conven-
tion 21{:14-1 ... = 0. Hence, the staring G;(z,u,0) = Sr(x,u,0). Note also that
although the solution, developed in here, rely on specific boundary conditions the
procedure is quite general in the sense that the expression for the first component,
Uy (z, 1, 0), keeps the information from the boundary conditions in the y variable,
while the other components are derived based on the boundary conditions in z.

3. CONVERGENCE OF THE SPECTRAL SOLUTION

In the sequel we focus on the two dimensional, steady state linear transport
process with isotropic scattering, i.e., os(u',0' — u,0) = o5 = constant. For this
problem we show, using a weighted-Ls norm, convergence of the spectral solution
defined for the spatial variables. More specifically we show that: in a certain
weighted- Lo norm, the (truncated) discrete ordinates approximation error for the
spectral solution is dominated by that of a special quadrature error. The study of
convergence of this quadrature approximation is the matter of the next section.

Assuming isotropic scattering, the equation (2.1) is written as

0 0
IUE‘II(XNHG) + 1 _N’Q cos@a—y\IJ(x,,u,H) +Ut‘II(X:N70)
(3.1) T
o [ [ e oa8an + S(x. 10
—1Jo
forx e Q:={(z,y): -1<z<1, 1<y <1}, ue[-1,1] and 8 € [0,27]. The
study of the problem with the anisotropic scattering is a rather involved task. See,

e.g., [3] for an approach involving anisotropic scattering. Consider now the discrete
ordinates (Sy) approximation of the equation (3.1): for m = 1,..., M, let

0] 0]
(32) Hm%‘pm(x)"‘nma_yq} ()+(7f —Uezwn n m(x),

where

(3.3) Nm = /1 — u2, cosbp,,
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and U,,(x) := U,,(x,y) is the angular flux in the directions defined by u,, and
and associated with the quadrature weights w,,. Finally S,,(x) is the corresponding
inhomogeneous source term defined in the discrete direction (g, n,) € [—1,1]%
We assume a quadrature mesh (n;,,nm,) # (0,0),

(34) < po < ..o < U,
m<mn <..<num,

satisfying the following conditions:
M
(3.5) W ~ 4 [M, > wm ~ 4, m=1,.. M.

Further, we assume that the discrete-ordinates equation (3.2) satisfy the same
boundary conditions, in the discrete directions, as the continuous one, i.e., (3.1)
(as stated is Section 2). We shall prove that, under certain assumptions, the solu-
tion of the equation (3.2) would converge to that of the equation (3.1) as M — oc.
To this approach we define the error in the approximate flux by

(3.6) Em(X) = V(X, ;s Nm) — ¥ (%), m=1,.., M,

and the truncation error in the quadrature formula as

1 27 M
e I AR TR SR Tn)
-1J0 n=1

Subtracting the discrete ordinates equation (3.2) from the continuous equation (3.1)
in the discrete directions, we obtain, for each m = 1,..., M, an equation relating
the discrete ordinates approximation error to the quadrature error, viz,

O m (x) O m (x)
(38)  m—go— +m—g, = +oiEm(x —angnan ) + 0,7(x).

We expand both the approximation and the quadrature errors in a truncated series
of Chebyshev polynomials in y,

L

(3.9) em(x) = 3L (@) (y),
1=0
L

(3.10) T(x) =Y 7 (2)Ti(y)
1=0

and define the [ — th moments of the errors by

(3.11) le!] = 2*5’0/ Zwm @)2ds) ",

(3.12) 1] = (m /11(Tl($))2d$)1/2.

™

Remark. Note that (3.9) and (3.10) involve further, truncated, approximations of
7(x), in (3.7) and the solution &,,(x) of (3.6). We keep using the same notation as
before the truncations. Also, despite the recent truncation in y, we use equalities
n (3.9), (3.10), as well as in the subsequent relations below.
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The main result of this paper is as follows:
Theorem 3.1. Let L = O(o), where 0 = oy, — 4wos, then for 1 =0,1,...,L,

||z—:l|| — 0, as M — oo.

In the remaining part of this section we show that, for w, ~ 47/M, m =
1,..., M, the Ly norm of the truncated spectral error ||sl||, counted in a reverse
orderon! =L, L—1,...,0,is dominated by that of the quadrature error ||7'l ||

The next section is devoted to proof of the following result:
Theorem 3.2. For w, ~4n/M, m=1,,..., M, if U € Ly(u,0), then
||7'l|| — 0, as M — oc.

To prepare for the proof of the Theorem 3.1, we substitute (3.9) and (3.10) into
the equation (3.8) to get

L
m§j% +nm§j )+ S e (@) Ti(y)
1= 1=0
faszwnzs () + 0,3 T (@) Tily).

Multiplying (3.13) by % j =0,..., L and integrating over y yields

(3.13)

7y2
T dz—:7 T .
J
T mZ% (@)
(3.14)
_ T j T j
70, O ansn(ﬂ") + 700 o7 (z),
where
Lar Tj(y)
3.15 i(1 :/ —(y) - —===d

Finally, we multiply the equation (3.14) by &/ (z) and integrate over z to obtain

1 J
Lum/ e ()d6 ) +an% / &l (2)el (z)da
27(53'70 1

1
(3.16) R at/ [5{;1(x)]2dx
2 - (sj’() —1
T M o . T o .
= o Wn el (z)el (z)dx + as/ el (z)r! (x)dx.
EAAY JRECE 5o [ el @)

Now we rewrite the first term in equation (3.16) as

Lo ded (x o ‘
B [ e B = B2 e @) - D)

—1
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Note that um[(sz (1)) — (e7,(—1))%] > 0. Indeed, for pm, > 0, using the boundary
condition e, (—1,y) = 0 and the identity

1
1
| entenT) s
1 1—y

2—10j0
s

(3.18) el (z) =
we find that €/ (—1) = 0. The same is valid for z = 1, when p,, < 0. Consequently,

2 Z% / el (z)el (x)dx + oy /]] [ggn(g;)]Q dx

1

asﬁj:wn '/11 afn(m)a{l(m)dm-i—as/ el (z)ri (z)dx.

J—1

(3.19)

To proceed we multiply the inequality (3.19) by w,, and sum over m to obtain

oy /1 iwm (4, () du < o, '/1 [iwma{n(x)] d

J—1

(3.20) o5 [ X Lzl wmsfn(w)] 7 (z)dz
_ 77 Z Win |j7m Z% / 5-,771 x)sfn(a:)dw]
= I + 11+ III.

The crucial part is now to estimate the y-term I1] using the elementary properties
of the Chebyshev polynomials. We start with the simpler terms I and I7:

Lemma 3.3. With w,, ~4n/M, m =1,..., M, we have, for j =0,...,L, that

12
1| <dmo,7— ||s]||

(3.21)
|| <\/_ag

el
Proof. We use the elementary relation

(a1 +as+...+ay)?> < M(a?+a2+...+d%),

to write

o 2
(3.22) [Z wmz—:fn(x)] <M max |wp Z Wi [€0, (z
m=1

1<m<M

Integrating (3.22) over x and using w,,, ~ 4w /M we get
2 M

(3.23) '/7] [Z wmszn(a“)] dz < 4m '/7] Z Win [57771(7«)]2 dx,

m=1 m=1



8 M. ASADZADEH! AND A. KADEM?

and hence the first estimate follows recalling (3.11). As for the second estimate,
applying the Cauchy-Schwarz inequality, (3.23), (3.11) and (3.12) we get

1 M
/ Z wmel (z)| 7/ (z)dzx
=1 m=1
1 M ' 2 1/2 o 1/2
< / [Z wmsﬁn(az)] dz X </ ‘7-7 (m)| dm)
(3.24) —1 {m=1 -1
LM 1/2
< Vi4r (/ Z Win [8%(7«)]2 d:1:> ||77]]
J-1 m=1
T . .
< Vi lle? 111,
2—4j0
which gives the desired estimate for I1 and the proof is complete. O

Next using the Proposition 5.1 from the Appendix I we estimate the contribution
from the v term I1] and derive the following key estimate:

Proposition 3.4. For k=0,1,2,..., L, we have the recursive estimates
k (1 _ (_1)7+k) T
(3.25) D D e

Hence, in particular the starting estimate, for k =0, is:

Vamog
(3.26) e < X225 7k
ag

With these estimates we can now easily prove our main result:
Proof of Theorem 3.1. Proposition 3.4 and Theorem 3.2 give the desired result. 0O

Proof of Proposition 3.4. By the Proposition 5.1 (see Appendix I) we have that

(3.27) () =0, for j=>I,
whereas for j < I,

[0 for j+1 even
(3.28) ’Yj(l) = { Im, for j+1 odd.

Therefor if we start with j = L , then v;(L) = 0 and hence (3.20) combined with
the definition (3.11) and Lemma 3.3 yields

(3.29) o5 e < dmo 2 |l + VATaL S | |17

Now rearranging the terms and recalling that o := 0; — 470 we obtain (3.26).
The proof of (3.25) is a reversed inductive argument as follows:

For j = L —1 we have that v;(L) = v,_1(L) = Lw, whereas v,_1(l) = 0, for | < L.

Hence, using (3.27) we get

(330) Sl va = 1 (Db (@) = Lmek (a).
=0
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Thus using the Cauchy-Schwarz inequality

275'0 M 1 L
11| =| - Tf’ Z wm (11 / p mel)a;(x)sﬁ;l(m) dz),

1x)‘daz
1/2
(3.31) <2Lmax|7)m| /Zwm dr) X
1
(], S ot o ar)”

<ony 315 I = ol )

Inserting in (3.20) and using also (3.11) and Lemma 3.3, with j = L — 1, we get

(3.32) ”tEHELil” S47“’-95||€L*1|| +mas§”iL1”L |jTL1||
+ L [l [|le* ],

or equivalently using the notation o = g; — 470y,
(3.33) olle" | < 2L ||e"| + Vira, |71 .

The same procedure applied to j = L — 2 yields v;(L) = yr,_2(L) = 0, (note that
here j + L is even), vy, _o(L — 1) = (L — 1)m and 7, _2(l) =0, for I < L — 1. Thus

(3.34) ZW o =yr-2(L =gy, () = (L = Dmey ' (2),

so that, as in the previous step
(3.35) o e < 2L = 1) [ || + Vamo, |72

Similarly since for j = L—3; we have v, _5(L) = Lm, yp—3(L—1) = 0, yp_3(L—2) =
(L—2)7 and y,_3(l) =0 for | < L — 2, we get

— el 2(x L—3 el (z
(3.36) Zw 3( ) =v1-3(L = 2)e,, () + yr—3(L)ey, (z)
=2(L —2)ek2(z) + 2Lek (x),

which using the same procedure as before yields

(3.37) o[ < 2L | + 2L - 2) || 2 + Ve, [0
Now the formula (3.25) is proved by an induction argument. O

4. THE QUADRATURE RULE AND PROOF OF THEOREM 3.2

In this section we construct a special quadrature mesh satisfying the conditions
n (3.5) and prove the Theorem 3.2 in this setting. This would provide us the
remaining step in the proof of the Theorem 3.1 and complete the convergence
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analysis. We also derive convergence rates for the quadrature error (3.7) where we
identify the angular domain

by

(4.2) D := {(,u,n):—lg,u,ngl, n:\/l—/ﬂcosﬁ}.

Then the quadrature (cubature) rule, for the multiple integral in (3.1) can be con-
structed using (4.2) as in (3.7), see [9]. To derive convergence rates, below we
construct an equivalent rule, directly discretizing D given by (4.1), and with a
somewhat general features:

(43) [ v b)duas ~ S s Wl 5).

where A = {(ug, 0;), k=1,..,Kand j=1,..,J, J~K} C Disa M = JK,
discrete set of points in D consisting of the Gauqq quadrature points p € [—1,1]
associated With the equally spaced 6; = 2’” , 3 =1,...,J, and weights wy; = A W;
where W; = =%, j =1,...,J and A; are glven below Thus the error in (4.3) can
be split into two decoupled quadrature errors:

27
ler (O |—‘/ / xuﬁdudG—Zwk7 (x, phge, )‘

27T
</
0

+ iAk H /0 ’ (x, py, 0)db — Z Wj\I!(x,uk,Gj)H
k=1 "

Jj=1

1
/ ‘II(X N7 d,l,t E Ak X ,uk7 ‘da
1

= / ’ e [U(x,0)][d6 + > Axles[¥(x, )],
0 k=1

with the obvious notations for the two quadrature errors:

2 J

(4.5) TN ESY B CNRTTES SUATSN)
1 K

(4.6) er[¥(x,0)] = / U(x;p,0)dp — > ApW(x, iy, ).
J-1 k=1

Below we derive error estimates for the quadrature rules (4.5) and (4.6), with
optimal convergence rates with respect to the assumed regularity of ¥ in gy and 6.

Lemma 4.1. Let e;[V] denote the error in (4.5), with J equally spaced quadrature

points 6; € [0,2x]. Suppose that ‘7"0)‘ is integrable on [0,27], then
C, " (x, u,0
(4.7 oot < S [ |20 g,

where C,. is independent of J and U.
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Lemma 4.2. Let ex[V] denote the error in K-point Gaussian quadrature approz-
O° W (x,u,0)
ous

imation of the integral of ¥ on p € [—1,1]. Suppose that (1 — u2)5/? is
f gral of p € [=1,1]. Supp J

integrable on [—1,1], then

C ! 63‘1}(X7u:9) 2\s/2
(4.8) e V]| < KS/ ‘T (1= ) dp,

where Cy is independent of K and ¥.

We postpone the proofs of these lemmas and first derive the proof of Theorem 3.2
from them. For the transport equation (3.1), in polygonal domains, the regularity
requirements in the lemmas 4.1 and 4.2 are proved for r = s = 1 in [1]:

Proposition 4.3. Let 2% € L1[0,2n] and % € LV[-1,1], where @ := (1 —p?)'/2.
Then for the quadrature error 7(x) of the approximation (4.3) we have,

1 1
(4.9) Il agey < €(5 + 72) gl oy

where g is the right hand side of (3.1), i.e., g = 0,¥ + S with ¥ = f f” U, and
H'(Q) is the usual Ly-based Sobolev space of order one on .

Now we are ready to derive our final error estimate:

Proof of Theorem 3.2. We multiply (3.10) by \/— k =0,...,L, integrate over
€ [-1,1] and use the Cauchy-Schwarz inequality to get for I =0,...,L

oy 2= 00 ]TX Ti(y)
ey == [ 0y

— 30 1 ) _ 1/2 1 ) ) 1/2
(4.10) 2, (/,IT(X) 7\/1{?—%) ([1Tl(y) Tdﬁ_yz)
2—360 (! , d 1/2
= & []T(x) 71:/2) .

Now recalling (3.12) it follows that

-5 1/2
(4.11) o) < 222 ( // daz) <l

Combining with (4.9), recalling also M ~ J]/2 ~ Kl/2 we get the desired result. [

)

IN

Remark. The convergence rate in Lemmas 4.1 and 4.2, as well as the rates in
Proposition 4.3, can be improved up to the optimal order O(J?>7%) ~ O(K?7¢), ¢
arbitrarily small, for the neutron transport equation, in polygonal domains using,
e.g., a post processing procedure cf. Asadzadeh [2].

Now it remains to verify the estimates in Lemmas 4.1-4.2.

Proof of Lemma 4.1. We may assume that ¥ is 27-periodic in 6 and in the quad-
rature formula

27 J
(4.12) | w618 ~ W0k,

Jj=1
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approximate ¥ by trigonometric polynomials in #. Then we can easily check that:
no matter how we choose the quadrature points 6; and weights W;, the formula
(4.12) can not be exact for trigonometric polynomials of degree J, (see, e.g., [13] for
the details). It turns out that the highest degree of precision J — 1 is achieved just

for our simplest quadrature formula: equally spaced nodes §; = 2%7 and constant
weights W; = 27”, j=1,2,...,J. Thus we have
2z 7 & 27
413 w(O)do ~ >0 (G -1,
(413) | v~ v(u-n7
We can easily verify that (4.13) is exact for the functions /™, m =0,1,...,.J — 1.
Further a trigonometric polynomial of degree J, with the Fourier series expansion
J
a . .
(4.14) Ti(z) = ?0 + Z(aj cos jx + bj;sin jz),
j=1
having 2.J + 1 degrees of freedom (ag, aj, b;, 5 = 1,...,J) corresponds to an

algebraic polynomials of degree 2.J. Thus (4.13) is exact for algebraic polynomials
of degree 2J — 1, so that for ¥ € C("[0,2x], r = 2J, (¥ is 2J times continuously

differentiable in ), using Taylor expansion up to degree 2J — 1, in both sides of

(4.12), we obtain the desired result. O

Lemma 4.2 is a special case of the a classical result due to DeVore and Scott
(Theorem 3 in [8], Proposition 4.4 below): Consider, for positive integer s, the
function space

(4.15) VeV = {ue Ly (- 11): |, <oc}

w

with w being a weight function and

(4.16) llull,y s = [][\U(u)l + [u® ()| (1= 2*)*Tew(p) dp,

where u(%) is interpreted as a weak derivative.

Proposition 4.4 (DeVore and Scott). Let ex[¥] denote the error in K-point
Gaussian quadrature approzimation of the integral of ¥ on [—1,1]. Suppose that
(1— p?)* %W‘ (weak derivative) is integrable on [—1,1], i.e., © € Y, where
s is any positive integer such that 1 < s < 2K. Then

0% (x, u, ) ‘ win { (ﬂ

wn  jetwli <o, [T Y 1y

where Cy is independent of K and ¥.

Proof of Lemma 4.2. This follows, evidently, from the Proposition 4.4. O

Below we review a procedure, based on analyzing the Peano kernel for the quad-
rature error (4.6), and establish the bound (4.8) for s = 1, see [1] or [8]. This would
suffices to justify the use of Proposition 4.3. The full proof of (4.8), or (4.17), for
s > 11is treated as in [8]. Consider the Gauss quadrature rule

(4.18) [ o~ S A0

k=1
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where
2k — ) 2knw
2K+1 2K +1'1

(4.19) U = —cosay, Q€ {( k=1,...,K,

are zeros of Legendre polynomials and

1 P
(4.20) Ak::/ HT " de, k=1,...,K,

Ty — Iy

are the integrals of the associated Lagrange interpolation polynomials. Now using
the Peano kernel theorem we can write

1
(4.21) ex[¥] = / A(Q)Y'(¢) d¢,
J1
where A(¢) = ex[H¢], |¢] <1 and H, is the Heaviside function
_Jo, p <,
(4.22) He (1) = { yooonse
It follows that
(4.23) AQO=1-¢= > Ap= > Ay—(-1
e >C pre <€

By the Chebyshev-Markov-Stieltjes (cf. [17] p. 50) inequality we have
k

(4.24) T <Y Ay <1+ ppyr, k=1,... K.
i=1

Thus with —1 =pg < p1 < ... < px < px+1 =1 we get for k =1,..., K that
(4.25) o1 — e < Alpe=) <0 < A(pet) < g —

Since A vanishes on each interval [ug_1, ] and has the slope one almost every-
where, we have

(4.26) max{[A(p)| : p € [pr—1, pal} < pw — pr—1, k=1,... K.
To bound py, — pg—1, we define Iy, := [ag_1, ay], then
g
Ik — [k—1 = COSQp_1 — COS Q= / sin a da
(4.27) k-1

3
< — Qg i < — i .
< (ap — ay, 1)3116;1,):{sm a} < 5K Lneal)k({sm a}

Now since (sin @)/« is decreasing in [0, 7], using (4.19) we get

. ap . .
)smak,1 < ( )smak,l <d4dsinay_,, «a€ I,
Ap—1

(4.28)  sina< (
Ap—1

for k =2,..., K. By the symmetry properties of a; (cf. [17]) we also get
(4.29) sina <4sinayg, o€ I, E=2,...,K.
Thus for k =2,..., K,

(4.30) max{sina} <4 miln{sin at =4 miln{\/l — cos? a}.
a€cly acly

a€ly
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Hence, combining (4.27) and (4.30), and using (4.19) we have for k =2,..., K,

(4.31) M — M1 = 6% min{v/'1 —cos? a} = 6% mi’n{\/l — u?}
aEly

a€ly
ThllS, bY (426)/ for IS [,Ula,UN]:

< 6my/1 — p?

(4:32) G| < T

The corresponding estimate for p € [—1, ;] and p € [un, 1] is (see [8]):

w1 — p?
(433) N

Summing up we have shown

6 [ |0V
—110H

This proves (4.8) for s = 1. For further details we refer to [1] and [§].
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5. APPENDIX I: ELEMENTARY PROPERTIES OF CHEBYSHEV POLYNOMIALS

Chebyshev polynomials are weighted orthogonal polynomials defined by
(5.1) Ty (x) = cos(n arccos(x))

3

with the weight function w(z) = ﬁ Thus Chebeshev polynomials are a sub-
class of Jacobi polynomials, where the Jacobi weights w; = (1 + z)%(1 — z)°,

a, b > —1 are restricted to a = b = —1/2. It follows that

1 0 i
(5.2) | Tem@uEd = w2 12540
-1 ™ i=j=0.
Hence
™
: Tillw = ———  i=0,1,....
(5.3) Tl = 575 i=0.

T, (z) is a polynomial of degree n, orthogonal to all polynomials of degree < n — 1.
On differentiating T, (z) = cosnf with respect to z(= cos 3) we obtain a polynomial
of degree n — 1 called the Chebyshev polynomials of second kind:

B ,, o sinnf
(5.4) Up = ;T (z) = sng

x = cos 3.

Further we can easily verify the following properties (see [15] for the details):
For even (odd) n only even (odd) powers of z occur in T),(z).

(5.5) Tp(—1) = (—1)"Tn(x).
(5.6) %+T2(a:)+T4(:U)+...+T2k(:U): UQ’;(”’”), k=0,1,...,
(57) T1($)+T3(37)+...+T2k+1(.’12):UQIH_Tl(m), ]{3:0,1,...,.

Below we formulate and prove the property that has been essential in deriving the
basic estimate in section 3 (Proposition 3.4.):

Proposition 5.1. Let

'd T;(y)

5.8 'l::/ —Ti(y)  —===dy,
(5.8) wl)= [ i) Si—g
we have that
(5.9) ) =0, for j>1,
and for j <1,

B 0, j+1 even,
(5.10) 7;(1) { I, J+1 odd.
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Proof. The first assertion is a trivial consequence of the fact that T} is orthogonal
to all polynomials of degree < j — 1. As for the second assertion we note that

T(2) = Ui ().
Thus if [ is odd then [ — 1 is even, say [ — 1 = 2k, hence using (5.6)

1
1 T
7il) = 2l/ 5+ Te(@) + Ta(@) + ...+ Tia(@)] - LW 4,
12 =
(5.11)
_[0 J odd, ie., j+1 even
B 21#7 J even, 187 ]+l Odd

The case [ is even is treated similarly and using (5.7) and the proof is complete. O

6. ApPENDIX II: THE THREE-DIMENSIONAI, SPECTRAL SOLUTION

We extend now the approach presented in Section 2 to the transport process in
three dimensions,

uilll(x,u,é) + 1= p? COSGE\IJ(XHIJ,H) + sinGE\IJ(x,,u,H)
ox oy 0z
(6]‘) 1 21
+ 0 U(x, p1,0) = / / os(1', 0 — 1, 0)¥(x, 1, 0)d0'du’' + S(x, 1, 0),
—1Jo

where we assume that the spatial variable x := (z,y, ) varies in the cubic domain
Q:={(z,y,2): 1<z, y, 2 <1}, and U(x,u,0) := ¥(z,y, z,u, ) is the angular
flux in the directions defined by u € [—1,1] and 6 € [0, 2x].

We seek for a solution of (6.1) satisfying the following boundary conditions:
For the boundary terms in z; for 0 < 6 < 27,

_ _ fl(y=Z=N79)7 213:—1, 0<,u§17
(6.2) U(x==+1,y,2,u,0) = { 0. =1 1<u<o
For the boundary terms in y and for —1 < pu < 1,

_ _ fQ(ZL',Z“LL,e), y:_17 0<CO59§17
(6.3) W(z,y=+12p6)= { 0, y=1, —1 < cosf < 0.
Finally, for the boundary terms in z; for =1 < u < 1,

_ _ f?(T,UaH,o), 22717 OS9<7T7

(64) \IJ(.’I:,y,Z - ilaﬂ,o) - { 0} 2= 1} T < 9 S 27,

Here we assume that f1(y, z, u,0), fo(z, z, u,8) and f3(z,y, u, 0) are given functions.
Expanding the angular flux ¥(z,y,z2,u,0) in a truncated series of Chebyshev
polynomials T;(y)and R;(z) leads to

I J
(6.5) Uy, 2,0 0) = S0 S0, (o, 1, 0)Ti(y) Ry (2)

i=0 j=0
We repeat the procedure in Section 2 and insert ¥(x,y, z, u, ) given by (6.5) into
the boundary conditions in (6.3), for y = £1. Multiplying the resulting expressions

by % and integrating over z, we get the components ¥q ;(z,u,6), j =0,...,J:

I
(66) \1107.7(;6:”70) = f27($lj'70) - Z(_l)i‘l’z‘7_i($=ﬂ79)7 0 < cosd S 1:

i=1
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and
1
(6.7) Vo i(z,p1,0) =— Z U, i(z, 1, 0), —1<cosf <0.

i=1

Similarly, we substitute ¥(z,y, z, u,0) from (6.5) into the boundary conditions for

z = %1, multiply the resulting expressions by \;1(”—)27 1 =1,...,I and integrate over
—y

y, to define the components ¥; o(z,u,0),i=0,...,[: For -1 <z <1, -1<pu<1,

(6.8) U, o(x, 11,0) = fi(z,p,0) Z )70, j(z,p1,0), 0<6<m,
7j=1
J
(69) ‘I}i,ﬂ(mnlj’:e) = - Z \I!i,j(mal‘L:o): T<f < 27‘-7
j=1
where
1 2—(50 1 ! R(Z)
1 J . — 5] 3 . J
(6 0) fz(x,lha) T . fl(wwznu;e)mdz
and
; 2—6i0 [ Ti(y)
6.11 2z, p,l) = —— Ty, 1, 0) —=—dy.

To determine the components ¥; ;j(z,p,6), i = 1,...,I,and j = 1,...,J, we

substitute ¥(z, u, #), from (6.5) into (6.1) and the boundary conditions for z = £1.

Multiplying the resulting expressions by # x i) and integrating over y

1—y2 V1—22"
and z we obtain I x .J one-dimensional transport problems, viz

6\1»'1 j 2 N 9 =G .6
s ():U’ (-Tali: ) Ot i,j('1’7u7 ) i (’ ’ )

+/ / a0 = 11, 0) s (w4t ,0)d dpy
J—-1J—-1

with the boundary conditions

(6.13) U i(=1,1.0) = £ (1, 6),
where

4 (ot Ti(y)R,(2)

I = — J z, zdy,
6190 o= [ [ S e w0y
and
(6.15) Wi i(1,—p,8) =0,

for 0 < u <1, and 0 <0 < 2r. Finally
Gi,]‘ (337 s 9) = Sz’,j (:U, 1, 0)_
(6.16)

I J
V1 p2x {COSQ Z Af\IIk,j(m,,u,H) + sinf Z B;\I!,;,l(m,u,ﬂ)} ,

k=it+1 I=j+1
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with

4 (1Y Ti(y)Ri(z)
6.17 S (z,p,0)=— : S(x, pu,0)dzdy,
(6.17) e =5 [ ] s )y
(6.18) Al = %/4 %(Tk(y))% dy
(6.19) B! = %[1 %(Rl(z))% dz.

Now, starting from the solution of the problem given by equations (6.12)—(6.19)
for Uy j(x, u,d), we then solve the problems for the other components, in the de-
creasing order in 7 and j. Recall that ZLH] = Z}']:JH ... = 0. Hence, solving
I x J one-dimensional problems, the angular flux ¥(x,u,#), is now completely
determined through (6.5).

Remark: If we have to deal with a different type of boundary conditions, we have to
keep in mind that the first components ¥; o(z, p,6) and ¥q ;(z, u, #) are determined
from the boundary conditions for z and y and the other ones, ¥; ;(x, i, ) for i =
1,...,1 and j = 1,...,.J will satisfy one-dimensional transport problems subject
to the same type of boundary conditions of the original problem in the variable z.
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