
CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRONTRANSPORT EQUATIONM. ASADZADEH1 AND A. KADEM2Abstrat. We study onvergene of a ombined spetral and (SN ) disreteordinates approximation for a multidimensional, steady state, linear transportproblem with isotropi sattering. The proedure is based on expansion of theangular ux in a trunated series of Chebyshev polynomials in spatial variablesthat results in the transformation of the multidimensional problems into a setof one-dimensional problems. The onvergene of this approah is studied inthe ontext of the disrete-ordinates equations based on a speial quadraturerule for the sattering integral. The disrete-ordinates and quadrature errorsare expanded in trunated series of Chebyshev polynomials of degree � L, andthe onvergene is derived assuming L � �t� 4��s where �t and �s are total-and sattering ross-setions, respetively.1. IntrodutionIn this note we develop spetral approximations for two and three dimensional,steady state, linear transport equation with isotropi sattering, in bounded do-mains. The proedure is based on the expansion of the angular ux in a trunatedseries of Chebyshev polynomials in the spatial variables. We study the onvergeneof this method in two dimensional ase, where we use a speial quadrature rule todisretize in the angular variables, approximating the salar ux. The similarity ofthe spetral method to the �nite element method is evident: the bases funtionshave a onstant norm and the proedure is to represent the approximate solutionas a linear ombination of �nite number of basis funtions (trunated series ofChebyshev polynomials) and then use a variational formulation. The main di�er-ene is that: the �nite element bases funtions are loally supported, whereas thehebyshev polynomials are global funtions. See also [6℄ for further details.In [16℄ this approah, with no onvergene rate analysis, is onsidered for atrunated series of general orthogonal polynomials. The detailed study in [16℄is arried out for the Legendre polynomials, where an index mix aused that asigni�ant drift term is argued to be of lower order and therefore its ontributionis not inluded in the estimates.We apply this proedure using Chebyshev polynomials with,e.g., the advantageof having onstant weighted-L2 norms, and give a full onvergene study inludingestimates of the ontribution from the whole drift term. The �nal estimation is viaan inverse iterative/indution argument, based on an estimate derived from someelementary properties of Chebyshev polynomials in Appendix I. In our knowledgeonvergene rate analysis, in this setting, is not onsidered in the literature.1991 Mathematis Subjet Classi�ation. 65N35, 65D32, 82D75, 40A10, 41A50.Key words and phrases. Convergene analysis, linear transport equation, isotropi sattering,Chebyshev spetral method, disrete-ordinates method.1



2 M. ASADZADEH1 AND A. KADEM2Related problems, in di�erent settings, are studied in the nulear engineeringliterature, see, e.g., referenes in Vilhena et al in [16℄. Barros and Larsen [4℄ arriedout a spetral nodal method for ertain disrete-ordinates problems. Chebyshevspetral methods for radiative transfer problems are studied, e.g., by Kim andIshimaru in [11℄ and by Kim and Mososo in [12℄. In, e.g., astrophysial aspets,spetral methods are onsidered for relativisti gravitation and gravitational ra-diation by Bonazzola el al in [6℄. A multi-domain spetral method is studied byGrandl�ement et al [10℄, for salar and vetorial Poisson equations. C++ soft-ware library, developed for multi-domain, is available in publi domain (GPL),http://www.lorene.obspm.fr. For more detailed study on Chebyshev spetral methodand also approximations by the spetral methods we refer the reader to monographsby Boyd [7℄ and Bernardi and Maday [5℄.An outline of this paper is as follows: In Setion 2 we derive the trunated spe-tral equations in 2 dimensions. In Setion 3 we prove that a ertain weighted-L2norm for the error in the disrete-ordinates approximation of the spetral solutionis dominated by that of a quadrature approximation. In Setion 4 we onstruta speial quadrature rule and derive onvergene rates for the quadrature error.Combining the results of Setions 3 and 4, we onlude the onvergene of thedisrete-ordinates for the spetral method. Appendix I is devoted to ertain prop-erties of the Chebyshev polynomials, that are frequently used in the paper, andalso the proof of a ruial estimate used in the approximation of the ontributionfrom the drift term. Finally in Appendix II we derive the spetral equations in athree dimensional setting.2. The two-dimensional spetral solutionConsider the two-dimensional linear, steady state, transport equation given by� ��x	(x; �; �) +p1� �2 os � ��y	(x; �; �) + �t	(x; �; �)= Z 1�1 Z 2�0 �s(�0; �0 ! �; �)	(x; �0; �0)d�0d�0 + S(x; �; �);(2.1)in the retangular domain 
 = fx := (x; y) : �1 � x � 1; �1 � y � 1g and thediretions in D = f(�; �) : �1 � � � 1; 0 � � � 2�g. Here 	(x; �; �) is the angu-lar ux, �t and �s denote the total- and the di�erential ross setions, respetively,(�s(�0; �0 ! �; �) desribes the sattering from an assumed pre-ollision angularoordinates (�0; �0) to a post-ollision oordinates (�; �)), and S is the soure term.See [14℄ for the details.Note that, in the ase of one-speed neutron transport equation; taking the angu-lar variable in a dis, this problem would orresponds to a three dimensional asewith all funtions being onstant in the azimuthal diretion of the z variable. Inthis way the atual spatial domain may be assumed to be a ylinder with the ross-setion 
 and the axial symmetry in z. Then D will orrespond to the projetionof the points on the unit sphere (the \speed") onto the unit dis (whih oinideswith D.) See, [1℄ for the details.Given the funtions f1(y; �; �) and f2(x; �; �), desribing the inident ux, weseek for a solution of (2.1) subjet to the following boundary onditions:



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 3For 0 � � � 2�, let(2.2) 	(x = �1; y; �; �) = � f1(y; �; �); x = �1; 0 < � � 1;0; x = 1; �1 � � < 0:For �1 < � < 1, let(2.3) 	(x; y = �1; �; �) = � f2(y; �; �); y = �1; 0 < os � � 1;0; y = 1; �1 � os � < 0:Expanding the angular ux 	(x; �; �) in terms of the Chebyshev polynomials,in the y variable, leads to(2.4) 	(x; �; �) = IXi=0 	i(x; �; �)Ti(y):Below we determine the �rst omponent, i.e., 	0(x; �; �) expliitly, whereas theother omponents, 	i(x; �; �); i = 1; : : : I , will appear as the unknowns in I onedimensional transport equations: We start to determine 	0(x; �; �), by inserting(2.4) into the boundary onditions (2.3) at y = �1, to �nd that:(2.5) 	0(x; �; �) = f2(x; �; �)� IXi=1(�1)i	i(x; �; �); 0 < os � � 1;(2.6) 	0(x; �; �) = � IXi=1 	i(x; �; �); �1 � os � < 0:where �1 � x � 1, �1 < � < 1, and we have used the fat that for the Chebyshevpolynomials T0(x) � 1, Ti(1) � 1 and Ti(�1) = (�1)i. See Appendix I.If we now insert 	 from (2.4) into (2.1), multiply the resulting equation byTk(y)p1�y2 , k = 1; : : : ; I , and integrate over y we �nd that the omponents 	k(x; �; �),k = 1; ::::; I; satisfy the following I one-dimensional transport equations:� ��x	k(x; �; �) + �t	k(x; �; �)= Z 1�1 Z 2�0 �s(�0; �0 ! �; �)	k(x; �0; �0)d�0d�0 +Gk(x; �; �):(2.7)The same proedure with the boundary ondition (2.2) at x = �1, and (2.4) yields(2.8) 	(�1; y; �; �) = f1(y; �; �) = IXi=0 	i(�1; �; �)Ti(y):Now multiply (2.8) by Tk(y)p1�y2 ; k = 1; : : : ; I , and integrating over y we �nd that(2.9) 	k(�1; �; �) = 2� Z 1�1 f1(y;�; �) Tk(y)p1� y2 dy:Similarly, (note the sign of � below), the boundary ondition at x = 1 is written as(2.10) IXi=0 	i(1;��; �)Ti(y) = 0; 0 < � � 1:



4 M. ASADZADEH1 AND A. KADEM2Multiplying (2.10) by Tk(y)p1�y2 ; k = 1; : : : ; I and integrating over y, we get(2.11) 	k(1;��; �) = 0; 0 < � � 1; 0 � � � 2�:We an easily hek that Gk in (2.7) is written as(2.12) Gk(x; �; �) = Sk(x; �; �)�p1� �2 os � IXi=k+1Aki	k(x; �; �)where(2.13) Aki = 2� Z 1�1 ddy (Ti(y)) Tk(y)p1� y2 dyand(2.14) Sk(x; �; �) = 2� Z 1�1 S(x; y; �; �) Tk(y)p1� y2 dy:Note that the solutions to the one dimensional problems given through theequations (2.7){(2.14) de�ne the omponents 	k(x; �; �) for k = I; : : : ; 1; in thisdereasing order to avoid the oupling of the equations. One this is done, theangular ux is ompletely determined by (2.4). Here, we have used the onven-tion PIi=I+1 : : : = 0. Hene, the staring GI(x; �; �) � SI(x; �; �). Note also thatalthough the solution, developed in here, rely on spei� boundary onditions theproedure is quite general in the sense that the expression for the �rst omponent,	0(x; �; �); keeps the information from the boundary onditions in the y variable,while the other omponents are derived based on the boundary onditions in x.3. Convergene of the spetral solutionIn the sequel we fous on the two dimensional, steady state linear transportproess with isotropi sattering, i.e., �s(�0; �0 ! �; �) � �s = onstant. For thisproblem we show, using a weighted-L2 norm, onvergene of the spetral solutionde�ned for the spatial variables. More spei�ally we show that: in a ertainweighted- L2 norm, the (trunated) disrete ordinates approximation error for thespetral solution is dominated by that of a speial quadrature error. The study ofonvergene of this quadrature approximation is the matter of the next setion.Assuming isotropi sattering, the equation (2.1) is written as� ��x	(x; �; �) +p1� �2 os � ��y	(x; �; �) + �t	(x; �; �)= �s Z 1�1 Z 2�0 	(x; �0; �0)d�0d�0 + S(x; �; �)(3.1)for x 2 
 := f(x; y) : �1 � x � 1; �1 � y � 1g, � 2 [�1; 1℄ and � 2 [0; 2�℄. Thestudy of the problem with the anisotropi sattering is a rather involved task. See,e.g., [3℄ for an approah involving anisotropi sattering. Consider now the disreteordinates (SN ) approximation of the equation (3.1): for m = 1; :::;M , let(3.2) �m ��x	m(x) + �m ��y	m(x) + �t	m(x) = �s MXn=1!n	n(x) + Sm(x);where(3.3) �m =p1� �2m os �m;



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 5and 	m(x) := 	m(x; y) is the angular ux in the diretions de�ned by �m and �mand assoiated with the quadrature weights !m. Finally Sm(x) is the orrespondinginhomogeneous soure term de�ned in the disrete diretion (�m; �m) 2 [�1; 1℄2.We assume a quadrature mesh (�m; �m) 6= (0; 0),(3.4) � �1 < �2 < :::: < �M ;�1 < �2 < ::: < �M;satisfying the following onditions:(3.5) !m � 4�=M; MXm=1!m � 4�; m = 1; :::;M:Further, we assume that the disrete-ordinates equation (3.2) satisfy the sameboundary onditions, in the disrete diretions, as the ontinuous one, i.e., (3.1)(as stated is Setion 2). We shall prove that, under ertain assumptions, the solu-tion of the equation (3.2) would onverge to that of the equation (3.1) as M !1.To this approah we de�ne the error in the approximate ux by(3.6) "m(x) = 	(x; �m; �m)�	m(x); m = 1; :::;M;and the trunation error in the quadrature formula as(3.7) �(x) = Z 1�1 Z 2�0 	(x;�0; �0)d�0d�0 � MXn=1!n	(x; �n; �n):Subtrating the disrete ordinates equation (3.2) from the ontinuous equation (3.1)in the disrete diretions, we obtain, for eah m = 1; : : : ;M , an equation relatingthe disrete ordinates approximation error to the quadrature error, viz,(3.8) �m �"m(x)�x + �m �"m(x)�y + �t"m(x) = �s MXn=1!n"n(x) + �s�(x):We expand both the approximation and the quadrature errors in a trunated seriesof Chebyshev polynomials in y,(3.9) "m(x) = LXl=0 "lm(x)Tl(y);(3.10) �(x) = LXl=0 � l(x)Tl(y)and de�ne the l � th moments of the errors by(3.11) "l = �2� Æl;0� Z 1�1 MXm=1!m("lm(x))2dx�1=2;(3.12) � l = �2� Æl;0� Z 1�1(� l(x))2dx�1=2:Remark. Note that (3.9) and (3.10) involve further, trunated, approximations of�(x), in (3.7) and the solution "m(x) of (3.6). We keep using the same notation asbefore the trunations. Also, despite the reent trunation in y, we use equalitiesin (3.9), (3.10), as well as in the subsequent relations below.



6 M. ASADZADEH1 AND A. KADEM2The main result of this paper is as follows:Theorem 3.1. Let L = O(�), where � = �tr � 4��s, then for l = 0; 1; : : : ; L,"l �! 0; as M �! 1:In the remaining part of this setion we show that, for !m � 4�=M; m =1; : : : ;M , the L2 norm of the trunated spetral error "l, ounted in a reverseorder on l = L;L� 1; : : : ; 0, is dominated by that of the quadrature error � l.The next setion is devoted to proof of the following result:Theorem 3.2. For !m � 4�=M; m = 1; ; : : : ;M , if 	 2 L1(�; �), then� l �! 0; as M �!1:To prepare for the proof of the Theorem 3.1, we substitute (3.9) and (3.10) intothe equation (3.8) to get�m LXl=0 d"lm(x)dx Tl(y) + �m LXl=0 "lm(x)dTldy (y) + �t LXl=0 "lm(x)Tl(y)= �s MXn=1!n LXl=0 "ln(x)Tl(y) + �s LXl=0 � l(x)Tl(y):(3.13)Multiplying (3.13) by Tj(y)p1�y2 , j = 0; : : : ; L and integrating over y yields�2� Æj;0�m d"jm(x)dx +�m LXl=0 j(l)"lm(x) + �2� Æj;0�t"jm(x)= �2� Æj;0�s MXn=1!n"jn(x) + �2� Æj;0�s� j(x);(3.14)where(3.15) j(l) = Z 1�1 dTldy (y) � Tj(y)p1� y2 dy:Finally, we multiply the equation (3.14) by "jm(x) and integrate over x to obtain�2� Æj;0�m Z 1�1 "jm(x)d"jm(x)dx dx+ �m LXl=0 j(l) Z 1�1 "jm(x)"lm(x)dx+ �2� Æj;0 �t Z 1�1 �"jm(x)�2 dx= �2� Æj;0�s MXn=1!n Z 1�1 "jm(x)"jn(x)dx + �2� Æj;0�s Z 1�1 "jm(x)� j(x)dx:(3.16)
Now we rewrite the �rst term in equation (3.16) as(3.17) �m Z 1�1 "jm(x)d"jm(x)dx dx = �m2 �("jm(1))2 � ("jm(�1))2� :



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 7Note that �m[("jm(1))2 � ("jm(�1))2℄ > 0. Indeed, for �m > 0, using the boundaryondition "m(�1; y) = 0 and the identity(3.18) "jm(x) = 2� Æj;0� Z 1�1 "m(x; y)Tj(y) 1p1� y2 dy;we �nd that "jm(�1) = 0. The same is valid for x = 1, when �m < 0. Consequently,2� Æj;0� �m LXl=0 j(l) Z 1�1 "jm(x)"lm(x)dx + �t Z 1�1 �"jm(x)�2 dx� �s MXn=1!n Z 1�1 "jm(x)"jn(x)dx + �s Z 1�1 "jm(x)� j (x)dx:(3.19)To proeed we multiply the inequality (3.19) by !m and sum over m to obtain�t Z 1�1 MXm=1!m �"jm(x)�2 dx � �s Z 1�1 " MXm=1!m"jm(x)#2 dx+ �s Z 1�1 " MXm=1!m"jm(x)# � j(x)dx�2� Æj;0� MXm=1!m "�m LXl=0 j(l) Z 1�1 "jm(x)"lm(x)dx#:= I + II + III:(3.20)
The ruial part is now to estimate the -term III using the elementary propertiesof the Chebyshev polynomials. We start with the simpler terms I and II :Lemma 3.3. With !m � 4�=M; m = 1; : : : ;M , we have, for j = 0; : : : ; L, thatjI j �4��s �2� Æj;0 "j2jII j �p4��s �2� Æj;0 "j � j(3.21)Proof. We use the elementary relation(a1 + a2 + : : :+ aM )2 �M(a21 + a22 + : : :+ a2M );to write(3.22) " MXm=1!m"jm(x)#2 �M max1�m�M j!mj MXm=1!m �"jm(x)�2 :Integrating (3.22) over x and using !m � 4�=M we get(3.23) Z 1�1 " MXm=1!m"jm(x)#2 dx � 4� Z 1�1 MXm=1!m �"jm(x)�2 dx;



8 M. ASADZADEH1 AND A. KADEM2and hene the �rst estimate follows realling (3.11). As for the seond estimate,applying the Cauhy-Shwarz inequality, (3.23), (3.11) and (3.12) we getZ 1�1 " MXm=1!m"jm(x)# � j(x)dx� 0�Z 1�1 " MXm=1!m"jm(x)#2 dx1A1=2 ��Z 1�1 ��� j(x)��2 dx�1=2� p4� Z 1�1 MXm=1!m �"jm(x)�2 dx!1=2 �r �2� Æj;0 k� jk� p4� �2� Æj;0 k"jkk� jk;
(3.24)
whih gives the desired estimate for II and the proof is omplete. �Next using the Proposition 5.1 from the Appendix I we estimate the ontributionfrom the  term III and derive the following key estimate:Proposition 3.4. For k = 0; 1; 2; : : : ; L, we have the reursive estimates(3.25) k"L�kk � kXj=0 �1� (�1)j+k�� (L� j)k"L�jk+ p4��s� k�L�kk:Hene, in partiular the starting estimate, for k = 0, is:(3.26) k"Lk � p4��s� k�Lk:With these estimates we an now easily prove our main result:Proof of Theorem 3.1. Proposition 3.4 and Theorem 3.2 give the desired result. �Proof of Proposition 3.4. By the Proposition 5.1 (see Appendix I) we have that(3.27) j(l) = 0; for j � l;whereas for j < l,(3.28) j(l) = � 0; for j + l evenl�; for j + l odd.Therefor if we start with j = L , then j(L) = 0 and hene (3.20) ombined withthe de�nition (3.11) and Lemma 3.3 yields(3.29) �t�2 "L2 � 4��s �2 "L2 +p4��s �2 "L �L :Now rearranging the terms and realling that � := �t � 4��s we obtain (3.26).The proof of (3.25) is a reversed indutive argument as follows:For j = L� 1 we have that j(L) = L�1(L) = L�, whereas L�1(l) = 0, for l < L.Hene, using (3.27) we get(3.30) LXl=0 j(l)"lm(x) = LXl=0 L�1(l)"lm(x) = L�1(L)"Lm(x) = L�"Lm(x):



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 9Thus using the Cauhy-Shwarz inequalityjIII j =���� 2� Æj;0� MXm=1!m��m Z 1�1 LXl=0 L�1(l)"lm(x)"L�1m (x) dx����� 2�L� Z 1�1 ��� MXm=1 �m!m"Lm(x)"L�1m (x) ���dx� 2L(maxm j�mj)�Z 1�1 MXm=1!m["Lm(x)℄2 dx�1=2��Z 1�1 MXm=1!m["L�1m (x)℄2 dx�1=2� 2Lr�2 "Lr�2 "L�1 = L� "L "L�1 :
(3.31)
Inserting in (3.20) and using also (3.11) and Lemma 3.3, with j = L� 1, we get�t�2 "L�12 � 4��s �2 "L�12 +p4��s �2 "L�1 �L�1+ L� "L "L�1 ;(3.32)or equivalently using the notation � = �t � 4��s,(3.33) � "L�1 � 2L "L+p4��s �L�1 :The same proedure applied to j = L� 2 yields j(L) = L�2(L) = 0, (note thathere j + L is even), L�2(L� 1) = (L� 1)� and L�2(l) = 0, for l < L� 1. Thus(3.34) LXl=0 L�2(l)"lm(x) = L�2(L� 1)"L�1m (x) = (L� 1)�"L�1m (x);so that, as in the previous step(3.35) � "L�2 � 2(L� 1) "L�1+p4��s �L�2 :Similarly sine for j = L�3; we have L�3(L) = L�, L�3(L�1) = 0, L�3(L�2) =(L� 2)� and L�3(l) = 0 for l < L� 2, we getLXl=0 L�3(l)"lm(x) = L�3(L� 2)"L�2m (x) + L�3(L)"Lm(x)= 2(L� 2)"L�2m (x) + 2L"Lm(x);(3.36)whih using the same proedure as before yields(3.37) � "L�3 � 2L "L+ 2(L� 2) "L�2+p4��s �L�3 :Now the formula (3.25) is proved by an indution argument. �4. The quadrature rule and Proof of Theorem 3.2In this setion we onstrut a speial quadrature mesh satisfying the onditionsin (3.5) and prove the Theorem 3.2 in this setting. This would provide us theremaining step in the proof of the Theorem 3.1 and omplete the onvergene



10 M. ASADZADEH1 AND A. KADEM2analysis. We also derive onvergene rates for the quadrature error (3.7) where weidentify the angular domain(4.1) D = f(�; �) : �1 � � � 1; 0 � � � 2�g ;by(4.2) ~D := n(�; �) : �1 � �; � � 1; � =p1� �2 os �o :Then the quadrature (ubature) rule, for the multiple integral in (3.1) an be on-struted using (4.2) as in (3.7), see [9℄. To derive onvergene rates, below weonstrut an equivalent rule, diretly disretizing D given by (4.1), and with asomewhat general features:(4.3) Z 2�0 Z 1�1	(x;�; �)d�d� �X� !kj	(x; �k; �j);where � := f(�k ; �j); k = 1; :::;K and j = 1; :::; J; J � Kg � D is a M = JK,disrete set of points in D onsisting of the Gauss quadrature points �k 2 [�1; 1℄assoiated with the equally spaed �j = 2�jJ ; j = 1; :::; J; and weights !kj = AkWjwhere Wj = 2�J , j = 1; :::; J and Ak are given below. Thus the error in (4.3) anbe split into two deoupled quadrature errors:jeM (	)j := ��� Z 2�0 Z 1�1	(x;�; �)d�d� �X� !kj	(x; �k; �j)���� Z 2�0 ��� Z 1�1	(x;�; �)d�� KXk=1Ak	(x; �k; �)���d�+ KXk=1Akh��� Z 2�0 	(x; �k; �)d� � JXj=1Wj	(x; �k; �j)���i:= Z 2�0 jeK [	(x; �)℄j d� + KXk=1AkjeJ [	(x; �k)℄j;(4.4)
with the obvious notations for the two quadrature errors:(4.5) eJ [	(x; �)℄ := Z 2�0 	(x; �; �)d� � JXj=1Wj	(x; �; �j);(4.6) eK [	(x; �)℄ := Z 1�1	(x;�; �)d�� KXk=1Ak	(x; �k; �):Below we derive error estimates for the quadrature rules (4.5) and (4.6), withoptimal onvergene rates with respet to the assumed regularity of 	 in � and �.Lemma 4.1. Let eJ [	℄ denote the error in (4.5), with J equally spaed quadraturepoints �j 2 [0; 2�℄. Suppose that ����r	(x;�;�)��r ��� is integrable on [0; 2�℄, then(4.7) jeJ [	℄j � CrJr Z 2�0 ����r	(x; �; �)��r ��� d�;where Cr is independent of J and 	.



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 11Lemma 4.2. Let eK [	℄ denote the error in K-point Gaussian quadrature approx-imation of the integral of 	 on � 2 [�1; 1℄. Suppose that (1� �2)s=2����s	(x;�;�)��s ��� isintegrable on [�1; 1℄, then(4.8) jeK [	℄j � CsKs Z 1�1 ����s	(x; �; �)��s ��� � (1� �2)s=2 d�;where Cs is independent of K and 	.We postpone the proofs of these lemmas and �rst derive the proof of Theorem 3.2from them. For the transport equation (3.1), in polygonal domains, the regularityrequirements in the lemmas 4.1 and 4.2 are proved for r = s = 1 in [1℄:Proposition 4.3. Let �	�� 2 L1[0; 2�℄ and �	�� 2 L ~w1 [�1; 1℄, where ~w := (1��2)1=2.Then for the quadrature error �(x) of the approximation (4.3) we have,(4.9) k�kL2(
) � C� 1J + 1K� kgkH1(
) ;where g is the right hand side of (3.1), i.e., g = �s ~	+ S with ~	 = R 1�1 R 2�0 	, andH1(
) is the usual L2-based Sobolev spae of order one on 
.Now we are ready to derive our �nal error estimate:Proof of Theorem 3.2. We multiply (3.10) by Tk(y)p1�y2 ; k = 0; : : : ; L, integrate overy 2 [�1; 1℄ and use the Cauhy-Shwarz inequality to get for l = 0; : : : ; L,� l(x) = 2� Æl;0� Z 1�1 �(x) Tl(y)p1� y2 dy� 2� Æl;0� �Z 1�1 �(x)2 dyp1� y2�1=2�Z 1�1 Tl(y)2 dyp1� y2�1=2= �2� Æl;0� Z 1�1 �(x)2 dyp1� y2�1=2:(4.10)Now realling (3.12) it follows that(4.11) � l � 2� Æl;0� �Z 1�1 Z 1�1 �(x)2 dyp1� y2 dx�1=2 � C k�kL2(
) :Combining with (4.9), realling alsoM � J1=2 � K1=2 we get the desired result. �Remark. The onvergene rate in Lemmas 4.1 and 4.2, as well as the rates inProposition 4.3, an be improved up to the optimal order O(J2�") � O(K2�"), "arbitrarily small, for the neutron transport equation, in polygonal domains using,e.g., a post proessing proedure f. Asadzadeh [2℄.Now it remains to verify the estimates in Lemmas 4.1-4.2.Proof of Lemma 4.1. We may assume that 	 is 2�-periodi in � and in the quad-rature formula(4.12) Z 2�0 	(x; �; �)d� � JXj=1Wj	(x; �; �j);



12 M. ASADZADEH1 AND A. KADEM2approximate 	 by trigonometri polynomials in �. Then we an easily hek that:no matter how we hoose the quadrature points �j and weights Wj , the formula(4.12) an not be exat for trigonometri polynomials of degree J , (see, e.g., [13℄ forthe details). It turns out that the highest degree of preision J � 1 is ahieved justfor our simplest quadrature formula: equally spaed nodes �j = 2�jJ and onstantweights Wj = 2�J ; j = 1; 2; : : : ; J . Thus we have(4.13) Z 2�0 	(�)d� � 2�J JXj=1	�(j � 1)2�J �:We an easily verify that (4.13) is exat for the funtions eimx;m = 0; 1; : : : ; J � 1.Further a trigonometri polynomial of degree J , with the Fourier series expansion(4.14) TJ(x) � a02 + JXj=1(aj os jx+ bj sin jx);having 2J + 1 degrees of freedom (a0; aj ; bj ; j = 1; : : : ; J) orresponds to analgebrai polynomials of degree 2J . Thus (4.13) is exat for algebrai polynomialsof degree 2J � 1, so that for 	 2 C(r)[0; 2�℄; r = 2J , (	 is 2J times ontinuouslydi�erentiable in �), using Taylor expansion up to degree 2J � 1, in both sides of(4.12), we obtain the desired result. �Lemma 4.2 is a speial ase of the a lassial result due to DeVore and Sott(Theorem 3 in [8℄, Proposition 4.4 below): Consider, for positive integer s, thefuntion spae(4.15) 	 2 Y sw := fu 2 L1lo(℄� 1; 1[) : kukw;s <1gwith w being a weight funtion and(4.16) kukw;s = Z 1�1[ju(�)j+ ju(s)(�)j(1� �2)s℄w(�) d�;where u(s) is interpreted as a weak derivative.Proposition 4.4 (DeVore and Sott). Let eK [	℄ denote the error in K-pointGaussian quadrature approximation of the integral of 	 on [�1; 1℄. Suppose that(1� �2)s����s	(x;�;�)��s ��� (weak derivative) is integrable on [�1; 1℄, i.e., 	 2 Y s1 , wheres is any positive integer suh that 1 � s � 2K. Then(4.17) jeK [	℄j � Cs Z 1�1 ����s	(x; �; �)��s ���minn�p1� �2K �s; (1� �2)so d�;where Cs is independent of K and 	.Proof of Lemma 4.2. This follows, evidently, from the Proposition 4.4. �Below we review a proedure, based on analyzing the Peano kernel for the quad-rature error (4.6), and establish the bound (4.8) for s = 1, see [1℄ or [8℄. This wouldsuÆes to justify the use of Proposition 4.3. The full proof of (4.8), or (4.17), fors � 1 is treated as in [8℄. Consider the Gauss quadrature rule(4.18) Z 1�1	(x;�; �)d� � KXk=1Ak	(x; �k; �);



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 13where(4.19) �k := � os�k; �k 2 h (2k � 1)�2K + 1 ; 2k�2K + 1 ; i; k = 1; : : : ;K;are zeros of Legendre polynomials and(4.20) Ak := Z 1�1Yl6=k x� xlxk � xl dx; k = 1; : : : ;K;are the integrals of the assoiated Lagrange interpolation polynomials. Now usingthe Peano kernel theorem we an write(4.21) eK [	℄ = Z 1�1 �(�)	0(�) d�;where �(�) = eK [H� ℄, j�j � 1 and H� is the Heaviside funtion(4.22) H�(�) := � 0; � < �;1; � � �:It follows that(4.23) �(�) = 1� � � X�k>�Ak = X�k<�Ak � � � 1:By the Chebyshev-Markov-Stieltjes (f. [17℄ p. 50) inequality we have(4.24) 1 + �k � kXi=1 Ai � 1 + �k+1; k = 1; : : : ;K:Thus with �1 = �0 < �1 < : : : < �K < �K+1 = 1 we get for k = 1; : : : ;K that(4.25) �k�1 � �k � �(�k�) � 0 � �(�k+) � �k+1 � �k:Sine � vanishes on eah interval [�k�1; �k℄ and has the slope one almost every-where, we have(4.26) maxfj�(�)j : � 2 [�k�1; �k℄g � �k � �k�1; k = 1; : : : ;K:To bound �k � �k�1, we de�ne Ik := [�k�1; �k℄, then�k � �k�1 = os�k�1 � os�k = Z �k�k�1 sin�d�� (�k � �k�1)max�2Ikfsin�g � 3�2K max�2Ikfsin�g:(4.27)Now sine (sin�)=� is dereasing in [0; �℄, using (4.19) we get(4.28) sin� � � ��k�1 � sin�k�1 � � �k�k�1 � sin�k�1 � 4 sin�k�1; � 2 Ik;for k = 2; : : : ;K. By the symmetry properties of �j (f. [17℄) we also get(4.29) sin� � 4 sin�k; � 2 Ik; k = 2; : : : ;K:Thus for k = 2; : : : ;K,(4.30) max�2Ikfsin�g � 4 min�2Ikfsin�g � 4 min�2Ikfp1� os2 �g:



14 M. ASADZADEH1 AND A. KADEM2Hene, ombining (4.27) and (4.30), and using (4.19) we have for k = 2; : : : ;K,(4.31) �k � �k�1 = 6�K min�2Ikfp1� os2 �g = 6�K min�2Ikfp1� �2g:Thus, by (4.26), for � 2 [�1; �N ℄,(4.32) j�(�)j � 6�p1� �2K :The orresponding estimate for � 2 [�1; �1℄ and � 2 [�N ; 1℄ is (see [8℄):(4.33) j�(�)j � �p1� �2p2K :Summing up we have shown(4.34) jeK [	℄j � 6�K Z 1�1 ����	�� ��� �p1� �2 d�:This proves (4.8) for s = 1. For further details we refer to [1℄ and [8℄.Referenes[1℄ Asadzadeh, M., Analysis of Fully Disrete Sheme for Neutron Transport in Two-DimensionalGeometry. SIAM J. Numer. Anal. 23 (1986), pp 543-561.[2℄ , Lp and eigenvalue error estimates for disrete ordinates method for two-dimensionalneutron transport, SIAM J. Numer. Anal. 26 (1989), pp 66{87.[3℄ , The Fokker-Plank Operator as an Asymptoti Limit in Anisotropi Media. Math.Comput. Modelling, 35 (2002) pp 1119-1133.[4℄ Barros, R. C. and Larsen E. W., A Spetral Nodal Method for One-Group X; Y {GeometryDisrete Ordinates Problems. Nul. Si. and Eng., 111 (1992).[5℄ Bernardi, C. and Maday, Y., Approximations spetrales de problemes aux limites elliptiques,Springer-Verlag, Paris, (1992).[6℄ Bonazzola, S., Gourgoulhon, E, and Mark, J.-A., Spetral methods. Relativisti gravitationand gravitational radiation, Comb. Contemp. Astrophys., Cambridge University Press, (1977).[7℄ Boyd, John. P., Chebyshev and Fourier Spetral Methods, Seond Edition, Dover Publiation,New York, (2001).[8℄ DeVore, R. A. and Sott, L. R., Error bounds for Gaussian quadrature and weighted-L1 poly-nomial approximation, SIAM J. Numer. Anal., 21 (1984), pp 400{412.[9℄ Engels, H., Numerial Quadrature and Cubature, Aademi Press, London, (1980).[10℄ Grandl�ement, P., Bonazzola, S., Gourgoulhon, E, and Mark, J.-A., A multidomain spetralmethod for salar and vetorial Poisson equations with nonompat soures, J. Comp. Phys.170 (2001), pp. 231{260.[11℄ Kim, Arnold. D. and Ishimaru, Akira, A Chebyshev Spetral Method for Radiative TransferEquations Applied to Eletromagneti Wave Propagation and Sattering in Disrete RandomMedium, J. Comp. Phy. 152 (1999), pp. 264{280.[12℄ Kim, Arnold. D. and Mososo, Miguel, Chebyshev Spetral Methods for Radiative Transfer,SIAM J. Si. Comput., 23 (2002), pp. 2075{2095.[13℄ Krylov, V. E., Approximate alulation of integrals, Translated by Stroud, A. H., MaMillan,New York, London, (1962).[14℄ Lewis, E. E. and Miller, W. F. Jr. Computational Methods of Neutron Transport, John Wiley& Sons, New York, (1984).[15℄ Rivlin, T. J., The Chebyshev Polynomials.John Wiley & Sons, New York, (1974).[16℄ Vilhena, M. T., Barihello, L. B., Zabadal, J. R., Segatto, C. F., Cardona, A. V., and Pazos, R.P., Solution to the multidimensional linear transport equation by the spetral method, Progressin Nulear Energy, 35 (1999), pp 275-291.[17℄ Szeg�o, G., Orthogonal Polynomials, AMS Colloquium Publiations 23, Amerian Mathemat-ial Soiety, New York, (1957).



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 155. Appendix I: Elementary properties of Chebyshev PolynomialsChebyshev polynomials are weighted orthogonal polynomials de�ned by(5.1) Tn(x) = os(n aros(x));with the weight funtion w(x) = 1p1�x2 . Thus Chebeshev polynomials are a sub-lass of Jaobi polynomials, where the Jaobi weights wJ = (1 + x)a(1 � x)b,a; b > �1 are restrited to a = b = �1=2. It follows that(5.2) Z 1�1 Ti(x)Tj(x)w(x) dx =8<: 0 i 6= j�=2 i = j 6= 0� i = j = 0:Hene(5.3) kTikw = �2� Æi;0 ; i = 0; 1; : : : :Tn(x) is a polynomial of degree n, orthogonal to all polynomials of degree � n� 1:On di�erentiating Tn(x) = osn� with respet to x(= os�) we obtain a polynomialof degree n� 1 alled the Chebyshev polynomials of seond kind:(5.4) Un�1 = 1nT 0n(x) = sinn�sin� ; x = os�:Further we an easily verify the following properties (see [15℄ for the details):For even (odd) n only even (odd) powers of x our in Tn(x).(5.5) Tn(�x) = (�1)nTn(x):(5.6) 12 + T2(x) + T4(x) + : : :+ T2k(x) = U2k(x)2 ; k = 0; 1; : : : ;(5.7) T1(x) + T3(x) + : : :+ T2k+1(x) = U2k+1(x)2 ; k = 0; 1; : : : ; :Below we formulate and prove the property that has been essential in deriving thebasi estimate in setion 3 (Proposition 3.4.):Proposition 5.1. Let(5.8) j(l) := Z 1�1 ddyTl(y) � Tj(y)p1� y2 dy;we have that(5.9) j(l) = 0; for j � l;and for j < l,(5.10) j(l) = � 0; j + l evenl�; j + l odd.



16 M. ASADZADEH1 AND A. KADEM2Proof. The �rst assertion is a trivial onsequene of the fat that Tj is orthogonalto all polynomials of degree � j � 1. As for the seond assertion we note thatT 0l (x) = lUl�1(x):Thus if l is odd then l � 1 is even, say l� 1 = 2k, hene using (5.6)j(l) = 2l Z 1�1 h12 + T2(x) + T4(x) + : : :+ Tl�1(x)i � Tj(y)p1� y2 dy= � 0; j odd, i.e., j + l even2l �2�Æj;0 ; j even, i.e., j + l odd:(5.11)The ase l is even is treated similarly and using (5.7) and the proof is omplete. �6. Appendix II: The three-dimensional spetral solutionWe extend now the approah presented in Setion 2 to the transport proess inthree dimensions,� ��x	(x; �; �) +p1� �2�os � ��y	(x; �; �) + sin � ��z	(x; �; �)�+ �t	(x; �; �) = Z 1�1 Z 2�0 �s(�0; �0 ! �; �)	(x; �0; �0)d�0d�0 + S(x; �; �);(6.1)where we assume that the spatial variable x := (x; y; z) varies in the ubi domain
 := f(x; y; z) : �1 � x; y; z � 1g; and 	(x; �; �) := 	(x; y; z; �; �) is the angularux in the diretions de�ned by � 2 [�1; 1℄ and � 2 [0; 2�℄.We seek for a solution of (6.1) satisfying the following boundary onditions:For the boundary terms in x; for 0 � � � 2�,(6.2) 	(x = �1; y; z; �; �) = � f1(y; z; �; �); x = �1; 0 < � � 1;0; x = 1; �1 � � < 0;For the boundary terms in y and for �1 < � < 1,(6.3) 	(x; y = �1; z; �; �) = � f2(x; z; �; �); y = �1; 0 < os � � 1;0; y = 1; �1 � os � < 0:Finally, for the boundary terms in z; for �1 < � < 1,(6.4) 	(x; y; z = �1; �; �) = � f3(x; y; �; �); z = �1; 0 � � < �;0; z = 1; � < � � 2�:Here we assume that f1(y; z; �; �), f2(x; z; �; �) and f3(x; y; �; �) are given funtions.Expanding the angular ux 	(x; y; z; �; �) in a trunated series of Chebyshevpolynomials Ti(y)and Rj(z) leads to(6.5) 	(x; y; z; �; �) = IXi=0 JXj=0	i;j(x; �; �)Ti(y)Rj(z):We repeat the proedure in Setion 2 and insert 	(x; y; z; �; �) given by (6.5) intothe boundary onditions in (6.3), for y = �1. Multiplying the resulting expressionsby Rj(z)p1�z2 and integrating over z, we get the omponents 	0;j(x; �; �), j = 0; : : : ; J :(6.6) 	0;j(x; �; �) = f j2 (x; �; �) � IXi=1(�1)i	i;j(x; �; �); 0 < os � � 1;



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 17and(6.7) 	0;j(x; �; �) = � IXi=1 	i;j(x; �; �); �1 � os � < 0:Similarly, we substitute 	(x; y; z; �; �) from (6.5) into the boundary onditions forz = �1, multiply the resulting expressions by Ti(y)p1�y2 , i = 1; : : : ; I and integrate overy, to de�ne the omponents 	i;0(x; �; �), i = 0; : : : ; I : For�1 � x � 1; �1 < � < 1;(6.8) 	i;0(x; �; �) = f i3(x; �; �) � JXj=1(�1)j	i;j(x; �; �); 0 � � < �;(6.9) 	i;0(x; �; �) = � JXj=1	i;j(x; �; �); � < � � 2�;where(6.10) f j2 (x; �; �) = 2� Æ0;j� Z 1�1 f2(x; z; �; �) Rj(z)p1� z2 dzand(6.11) f i3(x; �; �) = 2� Æi;0� Z 1�1 f3(x; y; �; �) Ti(y)p1� y2 dy:To determine the omponents 	i;j(x; �; �), i = 1; : : : ; I , and j = 1; : : : ; J , wesubstitute 	(x; �; �), from (6.5) into (6.1) and the boundary onditions for x = �1.Multiplying the resulting expressions by Ti(y)p1�y2 � Rj(z)p1�z2 ; and integrating over yand z we obtain I � J one-dimensional transport problems, viz��	i;j�x (x; �; �) + �t	i;j(x; �; �) = Gi;j (x;�; �)+ Z 1�1 Z 1�1 �s(�0 ; �0 ! �; �)	i;j(x; �0 ; �0)d�0d�0 ;(6.12)with the boundary onditions(6.13) 	i;j(�1; �; �) = f i;j1 (�; �);where(6.14) f i;j1 (�; �) = 4�2 Z 1�1 Z 1�1 Ti(y)Rj(z)p(1� y2)(1� z2)f1(y; z; �; �)dzdy;and(6.15) 	i;j(1;��; �) = 0;for 0 < � � 1; and 0 � � � 2�. FinallyGi;j (x; �; �) = Si;j (x; �; �)�p1� �2 � 24os � IXk=i+1Aki	k;j(x; �; �) + sin � JXl=j+1Blj	i;l(x; �; �)35 ;(6.16)



18 M. ASADZADEH1 AND A. KADEM2with(6.17) Si;j (x; �; �) = 4�2 Z 1�1 Z 1�1 Ti(y)Rj(z)p(1� y2)(1� z2)S(x; �; �)dzdy;(6.18) Aki = 2� Z 1�1 ddy (Tk(y)) Ti(y)p1� y2 dy(6.19) Blj = 2� Z 1�1 ddz (Rl(z)) Rj(z)p1� z2 dz:Now, starting from the solution of the problem given by equations (6.12){(6.19)for 	I;J(x; �; �), we then solve the problems for the other omponents, in the de-reasing order in i and j. Reall thatPIi=I+1 : : : =PJj=J+1 : : : � 0: Hene, solvingI � J one-dimensional problems, the angular ux 	(x; �; �), is now ompletelydetermined through (6.5).Remark: If we have to deal with a di�erent type of boundary onditions, we have tokeep in mind that the �rst omponents 	i;0(x; �; �) and 	0;j(x; �; �) are determinedfrom the boundary onditions for z and y and the other ones, 	i;j(x; �; �) for i =1; : : : ; I and j = 1; : : : ; J will satisfy one-dimensional transport problems subjetto the same type of boundary onditions of the original problem in the variable x.Aknowledgments: The researh of the �rst author is supported by the INTASgrant Ref. Nr 04-77-6902.1 Department of Mathematis, Chalmers University of Tehnology, SE-412 96 Gothen-burg, Sweden.E-mail address: mohammad�math.halmers.se2Department of Mathematis, Faulty of Siene, University of Setif 19000, Algeria.E-mail address: abdelouahabk�yahoo.fr


