
CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRONTRANSPORT EQUATIONM. ASADZADEH1 AND A. KADEM2Abstra
t. We study 
onvergen
e of a 
ombined spe
tral and (SN ) dis
reteordinates approximation for a multidimensional, steady state, linear transportproblem with isotropi
 s
attering. The pro
edure is based on expansion of theangular 
ux in a trun
ated series of Chebyshev polynomials in spatial variablesthat results in the transformation of the multidimensional problems into a setof one-dimensional problems. The 
onvergen
e of this approa
h is studied inthe 
ontext of the dis
rete-ordinates equations based on a spe
ial quadraturerule for the s
attering integral. The dis
rete-ordinates and quadrature errorsare expanded in trun
ated series of Chebyshev polynomials of degree � L, andthe 
onvergen
e is derived assuming L � �t� 4��s where �t and �s are total-and s
attering 
ross-se
tions, respe
tively.1. Introdu
tionIn this note we develop spe
tral approximations for two and three dimensional,steady state, linear transport equation with isotropi
 s
attering, in bounded do-mains. The pro
edure is based on the expansion of the angular 
ux in a trun
atedseries of Chebyshev polynomials in the spatial variables. We study the 
onvergen
eof this method in two dimensional 
ase, where we use a spe
ial quadrature rule todis
retize in the angular variables, approximating the s
alar 
ux. The similarity ofthe spe
tral method to the �nite element method is evident: the bases fun
tionshave a 
onstant norm and the pro
edure is to represent the approximate solutionas a linear 
ombination of �nite number of basis fun
tions (trun
ated series ofChebyshev polynomials) and then use a variational formulation. The main di�er-en
e is that: the �nite element bases fun
tions are lo
ally supported, whereas the
hebyshev polynomials are global fun
tions. See also [6℄ for further details.In [16℄ this approa
h, with no 
onvergen
e rate analysis, is 
onsidered for atrun
ated series of general orthogonal polynomials. The detailed study in [16℄is 
arried out for the Legendre polynomials, where an index mix 
aused that asigni�
ant drift term is argued to be of lower order and therefore its 
ontributionis not in
luded in the estimates.We apply this pro
edure using Chebyshev polynomials with,e.g., the advantageof having 
onstant weighted-L2 norms, and give a full 
onvergen
e study in
ludingestimates of the 
ontribution from the whole drift term. The �nal estimation is viaan inverse iterative/indu
tion argument, based on an estimate derived from someelementary properties of Chebyshev polynomials in Appendix I. In our knowledge
onvergen
e rate analysis, in this setting, is not 
onsidered in the literature.1991 Mathemati
s Subje
t Classi�
ation. 65N35, 65D32, 82D75, 40A10, 41A50.Key words and phrases. Convergen
e analysis, linear transport equation, isotropi
 s
attering,Chebyshev spe
tral method, dis
rete-ordinates method.1



2 M. ASADZADEH1 AND A. KADEM2Related problems, in di�erent settings, are studied in the nu
lear engineeringliterature, see, e.g., referen
es in Vilhena et al in [16℄. Barros and Larsen [4℄ 
arriedout a spe
tral nodal method for 
ertain dis
rete-ordinates problems. Chebyshevspe
tral methods for radiative transfer problems are studied, e.g., by Kim andIshimaru in [11℄ and by Kim and Mos
oso in [12℄. In, e.g., astrophysi
al aspe
ts,spe
tral methods are 
onsidered for relativisti
 gravitation and gravitational ra-diation by Bonazzola el al in [6℄. A multi-domain spe
tral method is studied byGrand
l�ement et al [10℄, for s
alar and ve
torial Poisson equations. C++ soft-ware library, developed for multi-domain, is available in publi
 domain (GPL),http://www.lorene.obspm.fr. For more detailed study on Chebyshev spe
tral methodand also approximations by the spe
tral methods we refer the reader to monographsby Boyd [7℄ and Bernardi and Maday [5℄.An outline of this paper is as follows: In Se
tion 2 we derive the trun
ated spe
-tral equations in 2 dimensions. In Se
tion 3 we prove that a 
ertain weighted-L2norm for the error in the dis
rete-ordinates approximation of the spe
tral solutionis dominated by that of a quadrature approximation. In Se
tion 4 we 
onstru
ta spe
ial quadrature rule and derive 
onvergen
e rates for the quadrature error.Combining the results of Se
tions 3 and 4, we 
on
lude the 
onvergen
e of thedis
rete-ordinates for the spe
tral method. Appendix I is devoted to 
ertain prop-erties of the Chebyshev polynomials, that are frequently used in the paper, andalso the proof of a 
ru
ial estimate used in the approximation of the 
ontributionfrom the drift term. Finally in Appendix II we derive the spe
tral equations in athree dimensional setting.2. The two-dimensional spe
tral solutionConsider the two-dimensional linear, steady state, transport equation given by� ��x	(x; �; �) +p1� �2 
os � ��y	(x; �; �) + �t	(x; �; �)= Z 1�1 Z 2�0 �s(�0; �0 ! �; �)	(x; �0; �0)d�0d�0 + S(x; �; �);(2.1)in the re
tangular domain 
 = fx := (x; y) : �1 � x � 1; �1 � y � 1g and thedire
tions in D = f(�; �) : �1 � � � 1; 0 � � � 2�g. Here 	(x; �; �) is the angu-lar 
ux, �t and �s denote the total- and the di�erential 
ross se
tions, respe
tively,(�s(�0; �0 ! �; �) des
ribes the s
attering from an assumed pre-
ollision angular
oordinates (�0; �0) to a post-
ollision 
oordinates (�; �)), and S is the sour
e term.See [14℄ for the details.Note that, in the 
ase of one-speed neutron transport equation; taking the angu-lar variable in a dis
, this problem would 
orresponds to a three dimensional 
asewith all fun
tions being 
onstant in the azimuthal dire
tion of the z variable. Inthis way the a
tual spatial domain may be assumed to be a 
ylinder with the 
ross-se
tion 
 and the axial symmetry in z. Then D will 
orrespond to the proje
tionof the points on the unit sphere (the \speed") onto the unit dis
 (whi
h 
oin
ideswith D.) See, [1℄ for the details.Given the fun
tions f1(y; �; �) and f2(x; �; �), des
ribing the in
ident 
ux, weseek for a solution of (2.1) subje
t to the following boundary 
onditions:



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 3For 0 � � � 2�, let(2.2) 	(x = �1; y; �; �) = � f1(y; �; �); x = �1; 0 < � � 1;0; x = 1; �1 � � < 0:For �1 < � < 1, let(2.3) 	(x; y = �1; �; �) = � f2(y; �; �); y = �1; 0 < 
os � � 1;0; y = 1; �1 � 
os � < 0:Expanding the angular 
ux 	(x; �; �) in terms of the Chebyshev polynomials,in the y variable, leads to(2.4) 	(x; �; �) = IXi=0 	i(x; �; �)Ti(y):Below we determine the �rst 
omponent, i.e., 	0(x; �; �) expli
itly, whereas theother 
omponents, 	i(x; �; �); i = 1; : : : I , will appear as the unknowns in I onedimensional transport equations: We start to determine 	0(x; �; �), by inserting(2.4) into the boundary 
onditions (2.3) at y = �1, to �nd that:(2.5) 	0(x; �; �) = f2(x; �; �)� IXi=1(�1)i	i(x; �; �); 0 < 
os � � 1;(2.6) 	0(x; �; �) = � IXi=1 	i(x; �; �); �1 � 
os � < 0:where �1 � x � 1, �1 < � < 1, and we have used the fa
t that for the Chebyshevpolynomials T0(x) � 1, Ti(1) � 1 and Ti(�1) = (�1)i. See Appendix I.If we now insert 	 from (2.4) into (2.1), multiply the resulting equation byTk(y)p1�y2 , k = 1; : : : ; I , and integrate over y we �nd that the 
omponents 	k(x; �; �),k = 1; ::::; I; satisfy the following I one-dimensional transport equations:� ��x	k(x; �; �) + �t	k(x; �; �)= Z 1�1 Z 2�0 �s(�0; �0 ! �; �)	k(x; �0; �0)d�0d�0 +Gk(x; �; �):(2.7)The same pro
edure with the boundary 
ondition (2.2) at x = �1, and (2.4) yields(2.8) 	(�1; y; �; �) = f1(y; �; �) = IXi=0 	i(�1; �; �)Ti(y):Now multiply (2.8) by Tk(y)p1�y2 ; k = 1; : : : ; I , and integrating over y we �nd that(2.9) 	k(�1; �; �) = 2� Z 1�1 f1(y;�; �) Tk(y)p1� y2 dy:Similarly, (note the sign of � below), the boundary 
ondition at x = 1 is written as(2.10) IXi=0 	i(1;��; �)Ti(y) = 0; 0 < � � 1:



4 M. ASADZADEH1 AND A. KADEM2Multiplying (2.10) by Tk(y)p1�y2 ; k = 1; : : : ; I and integrating over y, we get(2.11) 	k(1;��; �) = 0; 0 < � � 1; 0 � � � 2�:We 
an easily 
he
k that Gk in (2.7) is written as(2.12) Gk(x; �; �) = Sk(x; �; �)�p1� �2 
os � IXi=k+1Aki	k(x; �; �)where(2.13) Aki = 2� Z 1�1 ddy (Ti(y)) Tk(y)p1� y2 dyand(2.14) Sk(x; �; �) = 2� Z 1�1 S(x; y; �; �) Tk(y)p1� y2 dy:Note that the solutions to the one dimensional problems given through theequations (2.7){(2.14) de�ne the 
omponents 	k(x; �; �) for k = I; : : : ; 1; in thisde
reasing order to avoid the 
oupling of the equations. On
e this is done, theangular 
ux is 
ompletely determined by (2.4). Here, we have used the 
onven-tion PIi=I+1 : : : = 0. Hen
e, the staring GI(x; �; �) � SI(x; �; �). Note also thatalthough the solution, developed in here, rely on spe
i�
 boundary 
onditions thepro
edure is quite general in the sense that the expression for the �rst 
omponent,	0(x; �; �); keeps the information from the boundary 
onditions in the y variable,while the other 
omponents are derived based on the boundary 
onditions in x.3. Convergen
e of the spe
tral solutionIn the sequel we fo
us on the two dimensional, steady state linear transportpro
ess with isotropi
 s
attering, i.e., �s(�0; �0 ! �; �) � �s = 
onstant. For thisproblem we show, using a weighted-L2 norm, 
onvergen
e of the spe
tral solutionde�ned for the spatial variables. More spe
i�
ally we show that: in a 
ertainweighted- L2 norm, the (trun
ated) dis
rete ordinates approximation error for thespe
tral solution is dominated by that of a spe
ial quadrature error. The study of
onvergen
e of this quadrature approximation is the matter of the next se
tion.Assuming isotropi
 s
attering, the equation (2.1) is written as� ��x	(x; �; �) +p1� �2 
os � ��y	(x; �; �) + �t	(x; �; �)= �s Z 1�1 Z 2�0 	(x; �0; �0)d�0d�0 + S(x; �; �)(3.1)for x 2 
 := f(x; y) : �1 � x � 1; �1 � y � 1g, � 2 [�1; 1℄ and � 2 [0; 2�℄. Thestudy of the problem with the anisotropi
 s
attering is a rather involved task. See,e.g., [3℄ for an approa
h involving anisotropi
 s
attering. Consider now the dis
reteordinates (SN ) approximation of the equation (3.1): for m = 1; :::;M , let(3.2) �m ��x	m(x) + �m ��y	m(x) + �t	m(x) = �s MXn=1!n	n(x) + Sm(x);where(3.3) �m =p1� �2m 
os �m;



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 5and 	m(x) := 	m(x; y) is the angular 
ux in the dire
tions de�ned by �m and �mand asso
iated with the quadrature weights !m. Finally Sm(x) is the 
orrespondinginhomogeneous sour
e term de�ned in the dis
rete dire
tion (�m; �m) 2 [�1; 1℄2.We assume a quadrature mesh (�m; �m) 6= (0; 0),(3.4) � �1 < �2 < :::: < �M ;�1 < �2 < ::: < �M;satisfying the following 
onditions:(3.5) !m � 4�=M; MXm=1!m � 4�; m = 1; :::;M:Further, we assume that the dis
rete-ordinates equation (3.2) satisfy the sameboundary 
onditions, in the dis
rete dire
tions, as the 
ontinuous one, i.e., (3.1)(as stated is Se
tion 2). We shall prove that, under 
ertain assumptions, the solu-tion of the equation (3.2) would 
onverge to that of the equation (3.1) as M !1.To this approa
h we de�ne the error in the approximate 
ux by(3.6) "m(x) = 	(x; �m; �m)�	m(x); m = 1; :::;M;and the trun
ation error in the quadrature formula as(3.7) �(x) = Z 1�1 Z 2�0 	(x;�0; �0)d�0d�0 � MXn=1!n	(x; �n; �n):Subtra
ting the dis
rete ordinates equation (3.2) from the 
ontinuous equation (3.1)in the dis
rete dire
tions, we obtain, for ea
h m = 1; : : : ;M , an equation relatingthe dis
rete ordinates approximation error to the quadrature error, viz,(3.8) �m �"m(x)�x + �m �"m(x)�y + �t"m(x) = �s MXn=1!n"n(x) + �s�(x):We expand both the approximation and the quadrature errors in a trun
ated seriesof Chebyshev polynomials in y,(3.9) "m(x) = LXl=0 "lm(x)Tl(y);(3.10) �(x) = LXl=0 � l(x)Tl(y)and de�ne the l � th moments of the errors by(3.11) 

"l

 = �2� Æl;0� Z 1�1 MXm=1!m("lm(x))2dx�1=2;(3.12) 

� l

 = �2� Æl;0� Z 1�1(� l(x))2dx�1=2:Remark. Note that (3.9) and (3.10) involve further, trun
ated, approximations of�(x), in (3.7) and the solution "m(x) of (3.6). We keep using the same notation asbefore the trun
ations. Also, despite the re
ent trun
ation in y, we use equalitiesin (3.9), (3.10), as well as in the subsequent relations below.



6 M. ASADZADEH1 AND A. KADEM2The main result of this paper is as follows:Theorem 3.1. Let L = O(�), where � = �tr � 4��s, then for l = 0; 1; : : : ; L,

"l

 �! 0; as M �! 1:In the remaining part of this se
tion we show that, for !m � 4�=M; m =1; : : : ;M , the L2 norm of the trun
ated spe
tral error 

"l

, 
ounted in a reverseorder on l = L;L� 1; : : : ; 0, is dominated by that of the quadrature error 

� l

.The next se
tion is devoted to proof of the following result:Theorem 3.2. For !m � 4�=M; m = 1; ; : : : ;M , if 	 2 L1(�; �), then

� l

 �! 0; as M �!1:To prepare for the proof of the Theorem 3.1, we substitute (3.9) and (3.10) intothe equation (3.8) to get�m LXl=0 d"lm(x)dx Tl(y) + �m LXl=0 "lm(x)dTldy (y) + �t LXl=0 "lm(x)Tl(y)= �s MXn=1!n LXl=0 "ln(x)Tl(y) + �s LXl=0 � l(x)Tl(y):(3.13)Multiplying (3.13) by Tj(y)p1�y2 , j = 0; : : : ; L and integrating over y yields�2� Æj;0�m d"jm(x)dx +�m LXl=0 
j(l)"lm(x) + �2� Æj;0�t"jm(x)= �2� Æj;0�s MXn=1!n"jn(x) + �2� Æj;0�s� j(x);(3.14)where(3.15) 
j(l) = Z 1�1 dTldy (y) � Tj(y)p1� y2 dy:Finally, we multiply the equation (3.14) by "jm(x) and integrate over x to obtain�2� Æj;0�m Z 1�1 "jm(x)d"jm(x)dx dx+ �m LXl=0 
j(l) Z 1�1 "jm(x)"lm(x)dx+ �2� Æj;0 �t Z 1�1 �"jm(x)�2 dx= �2� Æj;0�s MXn=1!n Z 1�1 "jm(x)"jn(x)dx + �2� Æj;0�s Z 1�1 "jm(x)� j(x)dx:(3.16)
Now we rewrite the �rst term in equation (3.16) as(3.17) �m Z 1�1 "jm(x)d"jm(x)dx dx = �m2 �("jm(1))2 � ("jm(�1))2� :



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 7Note that �m[("jm(1))2 � ("jm(�1))2℄ > 0. Indeed, for �m > 0, using the boundary
ondition "m(�1; y) = 0 and the identity(3.18) "jm(x) = 2� Æj;0� Z 1�1 "m(x; y)Tj(y) 1p1� y2 dy;we �nd that "jm(�1) = 0. The same is valid for x = 1, when �m < 0. Consequently,2� Æj;0� �m LXl=0 
j(l) Z 1�1 "jm(x)"lm(x)dx + �t Z 1�1 �"jm(x)�2 dx� �s MXn=1!n Z 1�1 "jm(x)"jn(x)dx + �s Z 1�1 "jm(x)� j (x)dx:(3.19)To pro
eed we multiply the inequality (3.19) by !m and sum over m to obtain�t Z 1�1 MXm=1!m �"jm(x)�2 dx � �s Z 1�1 " MXm=1!m"jm(x)#2 dx+ �s Z 1�1 " MXm=1!m"jm(x)# � j(x)dx�2� Æj;0� MXm=1!m "�m LXl=0 
j(l) Z 1�1 "jm(x)"lm(x)dx#:= I + II + III:(3.20)
The 
ru
ial part is now to estimate the 
-term III using the elementary propertiesof the Chebyshev polynomials. We start with the simpler terms I and II :Lemma 3.3. With !m � 4�=M; m = 1; : : : ;M , we have, for j = 0; : : : ; L, thatjI j �4��s �2� Æj;0 

"j

2jII j �p4��s �2� Æj;0 

"j

 

� j

(3.21)Proof. We use the elementary relation(a1 + a2 + : : :+ aM )2 �M(a21 + a22 + : : :+ a2M );to write(3.22) " MXm=1!m"jm(x)#2 �M max1�m�M j!mj MXm=1!m �"jm(x)�2 :Integrating (3.22) over x and using !m � 4�=M we get(3.23) Z 1�1 " MXm=1!m"jm(x)#2 dx � 4� Z 1�1 MXm=1!m �"jm(x)�2 dx;



8 M. ASADZADEH1 AND A. KADEM2and hen
e the �rst estimate follows re
alling (3.11). As for the se
ond estimate,applying the Cau
hy-S
hwarz inequality, (3.23), (3.11) and (3.12) we getZ 1�1 " MXm=1!m"jm(x)# � j(x)dx� 0�Z 1�1 " MXm=1!m"jm(x)#2 dx1A1=2 ��Z 1�1 ��� j(x)��2 dx�1=2� p4� Z 1�1 MXm=1!m �"jm(x)�2 dx!1=2 �r �2� Æj;0 k� jk� p4� �2� Æj;0 k"jkk� jk;
(3.24)
whi
h gives the desired estimate for II and the proof is 
omplete. �Next using the Proposition 5.1 from the Appendix I we estimate the 
ontributionfrom the 
 term III and derive the following key estimate:Proposition 3.4. For k = 0; 1; 2; : : : ; L, we have the re
ursive estimates(3.25) k"L�kk � kXj=0 �1� (�1)j+k�� (L� j)k"L�jk+ p4��s� k�L�kk:Hen
e, in parti
ular the starting estimate, for k = 0, is:(3.26) k"Lk � p4��s� k�Lk:With these estimates we 
an now easily prove our main result:Proof of Theorem 3.1. Proposition 3.4 and Theorem 3.2 give the desired result. �Proof of Proposition 3.4. By the Proposition 5.1 (see Appendix I) we have that(3.27) 
j(l) = 0; for j � l;whereas for j < l,(3.28) 
j(l) = � 0; for j + l evenl�; for j + l odd.Therefor if we start with j = L , then 
j(L) = 0 and hen
e (3.20) 
ombined withthe de�nition (3.11) and Lemma 3.3 yields(3.29) �t�2 

"L

2 � 4��s �2 

"L

2 +p4��s �2 

"L

 

�L

 :Now rearranging the terms and re
alling that � := �t � 4��s we obtain (3.26).The proof of (3.25) is a reversed indu
tive argument as follows:For j = L� 1 we have that 
j(L) = 
L�1(L) = L�, whereas 
L�1(l) = 0, for l < L.Hen
e, using (3.27) we get(3.30) LXl=0 
j(l)"lm(x) = LXl=0 
L�1(l)"lm(x) = 
L�1(L)"Lm(x) = L�"Lm(x):



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 9Thus using the Cau
hy-S
hwarz inequalityjIII j =���� 2� Æj;0� MXm=1!m��m Z 1�1 LXl=0 
L�1(l)"lm(x)"L�1m (x) dx����� 2�L� Z 1�1 ��� MXm=1 �m!m"Lm(x)"L�1m (x) ���dx� 2L(maxm j�mj)�Z 1�1 MXm=1!m["Lm(x)℄2 dx�1=2��Z 1�1 MXm=1!m["L�1m (x)℄2 dx�1=2� 2Lr�2 

"L

r�2 

"L�1

 = L� 

"L

 

"L�1

 :
(3.31)
Inserting in (3.20) and using also (3.11) and Lemma 3.3, with j = L� 1, we get�t�2 

"L�1

2 � 4��s �2 

"L�1

2 +p4��s �2 

"L�1

 

�L�1

+ L� 

"L

 

"L�1

 ;(3.32)or equivalently using the notation � = �t � 4��s,(3.33) � 

"L�1

 � 2L 

"L

+p4��s 

�L�1

 :The same pro
edure applied to j = L� 2 yields 
j(L) = 
L�2(L) = 0, (note thathere j + L is even), 
L�2(L� 1) = (L� 1)� and 
L�2(l) = 0, for l < L� 1. Thus(3.34) LXl=0 
L�2(l)"lm(x) = 
L�2(L� 1)"L�1m (x) = (L� 1)�"L�1m (x);so that, as in the previous step(3.35) � 

"L�2

 � 2(L� 1) 

"L�1

+p4��s 

�L�2

 :Similarly sin
e for j = L�3; we have 
L�3(L) = L�, 
L�3(L�1) = 0, 
L�3(L�2) =(L� 2)� and 
L�3(l) = 0 for l < L� 2, we getLXl=0 
L�3(l)"lm(x) = 
L�3(L� 2)"L�2m (x) + 
L�3(L)"Lm(x)= 2(L� 2)"L�2m (x) + 2L"Lm(x);(3.36)whi
h using the same pro
edure as before yields(3.37) � 

"L�3

 � 2L 

"L

+ 2(L� 2) 

"L�2

+p4��s 

�L�3

 :Now the formula (3.25) is proved by an indu
tion argument. �4. The quadrature rule and Proof of Theorem 3.2In this se
tion we 
onstru
t a spe
ial quadrature mesh satisfying the 
onditionsin (3.5) and prove the Theorem 3.2 in this setting. This would provide us theremaining step in the proof of the Theorem 3.1 and 
omplete the 
onvergen
e



10 M. ASADZADEH1 AND A. KADEM2analysis. We also derive 
onvergen
e rates for the quadrature error (3.7) where weidentify the angular domain(4.1) D = f(�; �) : �1 � � � 1; 0 � � � 2�g ;by(4.2) ~D := n(�; �) : �1 � �; � � 1; � =p1� �2 
os �o :Then the quadrature (
ubature) rule, for the multiple integral in (3.1) 
an be 
on-stru
ted using (4.2) as in (3.7), see [9℄. To derive 
onvergen
e rates, below we
onstru
t an equivalent rule, dire
tly dis
retizing D given by (4.1), and with asomewhat general features:(4.3) Z 2�0 Z 1�1	(x;�; �)d�d� �X� !kj	(x; �k; �j);where � := f(�k ; �j); k = 1; :::;K and j = 1; :::; J; J � Kg � D is a M = JK,dis
rete set of points in D 
onsisting of the Gauss quadrature points �k 2 [�1; 1℄asso
iated with the equally spa
ed �j = 2�jJ ; j = 1; :::; J; and weights !kj = AkWjwhere Wj = 2�J , j = 1; :::; J and Ak are given below. Thus the error in (4.3) 
anbe split into two de
oupled quadrature errors:jeM (	)j := ��� Z 2�0 Z 1�1	(x;�; �)d�d� �X� !kj	(x; �k; �j)���� Z 2�0 ��� Z 1�1	(x;�; �)d�� KXk=1Ak	(x; �k; �)���d�+ KXk=1Akh��� Z 2�0 	(x; �k; �)d� � JXj=1Wj	(x; �k; �j)���i:= Z 2�0 jeK [	(x; �)℄j d� + KXk=1AkjeJ [	(x; �k)℄j;(4.4)
with the obvious notations for the two quadrature errors:(4.5) eJ [	(x; �)℄ := Z 2�0 	(x; �; �)d� � JXj=1Wj	(x; �; �j);(4.6) eK [	(x; �)℄ := Z 1�1	(x;�; �)d�� KXk=1Ak	(x; �k; �):Below we derive error estimates for the quadrature rules (4.5) and (4.6), withoptimal 
onvergen
e rates with respe
t to the assumed regularity of 	 in � and �.Lemma 4.1. Let eJ [	℄ denote the error in (4.5), with J equally spa
ed quadraturepoints �j 2 [0; 2�℄. Suppose that ����r	(x;�;�)��r ��� is integrable on [0; 2�℄, then(4.7) jeJ [	℄j � CrJr Z 2�0 ����r	(x; �; �)��r ��� d�;where Cr is independent of J and 	.



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 11Lemma 4.2. Let eK [	℄ denote the error in K-point Gaussian quadrature approx-imation of the integral of 	 on � 2 [�1; 1℄. Suppose that (1� �2)s=2����s	(x;�;�)��s ��� isintegrable on [�1; 1℄, then(4.8) jeK [	℄j � CsKs Z 1�1 ����s	(x; �; �)��s ��� � (1� �2)s=2 d�;where Cs is independent of K and 	.We postpone the proofs of these lemmas and �rst derive the proof of Theorem 3.2from them. For the transport equation (3.1), in polygonal domains, the regularityrequirements in the lemmas 4.1 and 4.2 are proved for r = s = 1 in [1℄:Proposition 4.3. Let �	�� 2 L1[0; 2�℄ and �	�� 2 L ~w1 [�1; 1℄, where ~w := (1��2)1=2.Then for the quadrature error �(x) of the approximation (4.3) we have,(4.9) k�kL2(
) � C� 1J + 1K� kgkH1(
) ;where g is the right hand side of (3.1), i.e., g = �s ~	+ S with ~	 = R 1�1 R 2�0 	, andH1(
) is the usual L2-based Sobolev spa
e of order one on 
.Now we are ready to derive our �nal error estimate:Proof of Theorem 3.2. We multiply (3.10) by Tk(y)p1�y2 ; k = 0; : : : ; L, integrate overy 2 [�1; 1℄ and use the Cau
hy-S
hwarz inequality to get for l = 0; : : : ; L,� l(x) = 2� Æl;0� Z 1�1 �(x) Tl(y)p1� y2 dy� 2� Æl;0� �Z 1�1 �(x)2 dyp1� y2�1=2�Z 1�1 Tl(y)2 dyp1� y2�1=2= �2� Æl;0� Z 1�1 �(x)2 dyp1� y2�1=2:(4.10)Now re
alling (3.12) it follows that(4.11) 

� l

 � 2� Æl;0� �Z 1�1 Z 1�1 �(x)2 dyp1� y2 dx�1=2 � C k�kL2(
) :Combining with (4.9), re
alling alsoM � J1=2 � K1=2 we get the desired result. �Remark. The 
onvergen
e rate in Lemmas 4.1 and 4.2, as well as the rates inProposition 4.3, 
an be improved up to the optimal order O(J2�") � O(K2�"), "arbitrarily small, for the neutron transport equation, in polygonal domains using,e.g., a post pro
essing pro
edure 
f. Asadzadeh [2℄.Now it remains to verify the estimates in Lemmas 4.1-4.2.Proof of Lemma 4.1. We may assume that 	 is 2�-periodi
 in � and in the quad-rature formula(4.12) Z 2�0 	(x; �; �)d� � JXj=1Wj	(x; �; �j);



12 M. ASADZADEH1 AND A. KADEM2approximate 	 by trigonometri
 polynomials in �. Then we 
an easily 
he
k that:no matter how we 
hoose the quadrature points �j and weights Wj , the formula(4.12) 
an not be exa
t for trigonometri
 polynomials of degree J , (see, e.g., [13℄ forthe details). It turns out that the highest degree of pre
ision J � 1 is a
hieved justfor our simplest quadrature formula: equally spa
ed nodes �j = 2�jJ and 
onstantweights Wj = 2�J ; j = 1; 2; : : : ; J . Thus we have(4.13) Z 2�0 	(�)d� � 2�J JXj=1	�(j � 1)2�J �:We 
an easily verify that (4.13) is exa
t for the fun
tions eimx;m = 0; 1; : : : ; J � 1.Further a trigonometri
 polynomial of degree J , with the Fourier series expansion(4.14) TJ(x) � a02 + JXj=1(aj 
os jx+ bj sin jx);having 2J + 1 degrees of freedom (a0; aj ; bj ; j = 1; : : : ; J) 
orresponds to analgebrai
 polynomials of degree 2J . Thus (4.13) is exa
t for algebrai
 polynomialsof degree 2J � 1, so that for 	 2 C(r)[0; 2�℄; r = 2J , (	 is 2J times 
ontinuouslydi�erentiable in �), using Taylor expansion up to degree 2J � 1, in both sides of(4.12), we obtain the desired result. �Lemma 4.2 is a spe
ial 
ase of the a 
lassi
al result due to DeVore and S
ott(Theorem 3 in [8℄, Proposition 4.4 below): Consider, for positive integer s, thefun
tion spa
e(4.15) 	 2 Y sw := fu 2 L1lo
(℄� 1; 1[) : kukw;s <1gwith w being a weight fun
tion and(4.16) kukw;s = Z 1�1[ju(�)j+ ju(s)(�)j(1� �2)s℄w(�) d�;where u(s) is interpreted as a weak derivative.Proposition 4.4 (DeVore and S
ott). Let eK [	℄ denote the error in K-pointGaussian quadrature approximation of the integral of 	 on [�1; 1℄. Suppose that(1� �2)s����s	(x;�;�)��s ��� (weak derivative) is integrable on [�1; 1℄, i.e., 	 2 Y s1 , wheres is any positive integer su
h that 1 � s � 2K. Then(4.17) jeK [	℄j � Cs Z 1�1 ����s	(x; �; �)��s ���minn�p1� �2K �s; (1� �2)so d�;where Cs is independent of K and 	.Proof of Lemma 4.2. This follows, evidently, from the Proposition 4.4. �Below we review a pro
edure, based on analyzing the Peano kernel for the quad-rature error (4.6), and establish the bound (4.8) for s = 1, see [1℄ or [8℄. This wouldsuÆ
es to justify the use of Proposition 4.3. The full proof of (4.8), or (4.17), fors � 1 is treated as in [8℄. Consider the Gauss quadrature rule(4.18) Z 1�1	(x;�; �)d� � KXk=1Ak	(x; �k; �);



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 13where(4.19) �k := � 
os�k; �k 2 h (2k � 1)�2K + 1 ; 2k�2K + 1 ; i; k = 1; : : : ;K;are zeros of Legendre polynomials and(4.20) Ak := Z 1�1Yl6=k x� xlxk � xl dx; k = 1; : : : ;K;are the integrals of the asso
iated Lagrange interpolation polynomials. Now usingthe Peano kernel theorem we 
an write(4.21) eK [	℄ = Z 1�1 �(�)	0(�) d�;where �(�) = eK [H� ℄, j�j � 1 and H� is the Heaviside fun
tion(4.22) H�(�) := � 0; � < �;1; � � �:It follows that(4.23) �(�) = 1� � � X�k>�Ak = X�k<�Ak � � � 1:By the Chebyshev-Markov-Stieltjes (
f. [17℄ p. 50) inequality we have(4.24) 1 + �k � kXi=1 Ai � 1 + �k+1; k = 1; : : : ;K:Thus with �1 = �0 < �1 < : : : < �K < �K+1 = 1 we get for k = 1; : : : ;K that(4.25) �k�1 � �k � �(�k�) � 0 � �(�k+) � �k+1 � �k:Sin
e � vanishes on ea
h interval [�k�1; �k℄ and has the slope one almost every-where, we have(4.26) maxfj�(�)j : � 2 [�k�1; �k℄g � �k � �k�1; k = 1; : : : ;K:To bound �k � �k�1, we de�ne Ik := [�k�1; �k℄, then�k � �k�1 = 
os�k�1 � 
os�k = Z �k�k�1 sin�d�� (�k � �k�1)max�2Ikfsin�g � 3�2K max�2Ikfsin�g:(4.27)Now sin
e (sin�)=� is de
reasing in [0; �℄, using (4.19) we get(4.28) sin� � � ��k�1 � sin�k�1 � � �k�k�1 � sin�k�1 � 4 sin�k�1; � 2 Ik;for k = 2; : : : ;K. By the symmetry properties of �j (
f. [17℄) we also get(4.29) sin� � 4 sin�k; � 2 Ik; k = 2; : : : ;K:Thus for k = 2; : : : ;K,(4.30) max�2Ikfsin�g � 4 min�2Ikfsin�g � 4 min�2Ikfp1� 
os2 �g:



14 M. ASADZADEH1 AND A. KADEM2Hen
e, 
ombining (4.27) and (4.30), and using (4.19) we have for k = 2; : : : ;K,(4.31) �k � �k�1 = 6�K min�2Ikfp1� 
os2 �g = 6�K min�2Ikfp1� �2g:Thus, by (4.26), for � 2 [�1; �N ℄,(4.32) j�(�)j � 6�p1� �2K :The 
orresponding estimate for � 2 [�1; �1℄ and � 2 [�N ; 1℄ is (see [8℄):(4.33) j�(�)j � �p1� �2p2K :Summing up we have shown(4.34) jeK [	℄j � 6�K Z 1�1 ����	�� ��� �p1� �2 d�:This proves (4.8) for s = 1. For further details we refer to [1℄ and [8℄.Referen
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CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 155. Appendix I: Elementary properties of Chebyshev PolynomialsChebyshev polynomials are weighted orthogonal polynomials de�ned by(5.1) Tn(x) = 
os(n ar

os(x));with the weight fun
tion w(x) = 1p1�x2 . Thus Chebeshev polynomials are a sub-
lass of Ja
obi polynomials, where the Ja
obi weights wJ = (1 + x)a(1 � x)b,a; b > �1 are restri
ted to a = b = �1=2. It follows that(5.2) Z 1�1 Ti(x)Tj(x)w(x) dx =8<: 0 i 6= j�=2 i = j 6= 0� i = j = 0:Hen
e(5.3) kTikw = �2� Æi;0 ; i = 0; 1; : : : :Tn(x) is a polynomial of degree n, orthogonal to all polynomials of degree � n� 1:On di�erentiating Tn(x) = 
osn� with respe
t to x(= 
os�) we obtain a polynomialof degree n� 1 
alled the Chebyshev polynomials of se
ond kind:(5.4) Un�1 = 1nT 0n(x) = sinn�sin� ; x = 
os�:Further we 
an easily verify the following properties (see [15℄ for the details):For even (odd) n only even (odd) powers of x o

ur in Tn(x).(5.5) Tn(�x) = (�1)nTn(x):(5.6) 12 + T2(x) + T4(x) + : : :+ T2k(x) = U2k(x)2 ; k = 0; 1; : : : ;(5.7) T1(x) + T3(x) + : : :+ T2k+1(x) = U2k+1(x)2 ; k = 0; 1; : : : ; :Below we formulate and prove the property that has been essential in deriving thebasi
 estimate in se
tion 3 (Proposition 3.4.):Proposition 5.1. Let(5.8) 
j(l) := Z 1�1 ddyTl(y) � Tj(y)p1� y2 dy;we have that(5.9) 
j(l) = 0; for j � l;and for j < l,(5.10) 
j(l) = � 0; j + l evenl�; j + l odd.



16 M. ASADZADEH1 AND A. KADEM2Proof. The �rst assertion is a trivial 
onsequen
e of the fa
t that Tj is orthogonalto all polynomials of degree � j � 1. As for the se
ond assertion we note thatT 0l (x) = lUl�1(x):Thus if l is odd then l � 1 is even, say l� 1 = 2k, hen
e using (5.6)
j(l) = 2l Z 1�1 h12 + T2(x) + T4(x) + : : :+ Tl�1(x)i � Tj(y)p1� y2 dy= � 0; j odd, i.e., j + l even2l �2�Æj;0 ; j even, i.e., j + l odd:(5.11)The 
ase l is even is treated similarly and using (5.7) and the proof is 
omplete. �6. Appendix II: The three-dimensional spe
tral solutionWe extend now the approa
h presented in Se
tion 2 to the transport pro
ess inthree dimensions,� ��x	(x; �; �) +p1� �2�
os � ��y	(x; �; �) + sin � ��z	(x; �; �)�+ �t	(x; �; �) = Z 1�1 Z 2�0 �s(�0; �0 ! �; �)	(x; �0; �0)d�0d�0 + S(x; �; �);(6.1)where we assume that the spatial variable x := (x; y; z) varies in the 
ubi
 domain
 := f(x; y; z) : �1 � x; y; z � 1g; and 	(x; �; �) := 	(x; y; z; �; �) is the angular
ux in the dire
tions de�ned by � 2 [�1; 1℄ and � 2 [0; 2�℄.We seek for a solution of (6.1) satisfying the following boundary 
onditions:For the boundary terms in x; for 0 � � � 2�,(6.2) 	(x = �1; y; z; �; �) = � f1(y; z; �; �); x = �1; 0 < � � 1;0; x = 1; �1 � � < 0;For the boundary terms in y and for �1 < � < 1,(6.3) 	(x; y = �1; z; �; �) = � f2(x; z; �; �); y = �1; 0 < 
os � � 1;0; y = 1; �1 � 
os � < 0:Finally, for the boundary terms in z; for �1 < � < 1,(6.4) 	(x; y; z = �1; �; �) = � f3(x; y; �; �); z = �1; 0 � � < �;0; z = 1; � < � � 2�:Here we assume that f1(y; z; �; �), f2(x; z; �; �) and f3(x; y; �; �) are given fun
tions.Expanding the angular 
ux 	(x; y; z; �; �) in a trun
ated series of Chebyshevpolynomials Ti(y)and Rj(z) leads to(6.5) 	(x; y; z; �; �) = IXi=0 JXj=0	i;j(x; �; �)Ti(y)Rj(z):We repeat the pro
edure in Se
tion 2 and insert 	(x; y; z; �; �) given by (6.5) intothe boundary 
onditions in (6.3), for y = �1. Multiplying the resulting expressionsby Rj(z)p1�z2 and integrating over z, we get the 
omponents 	0;j(x; �; �), j = 0; : : : ; J :(6.6) 	0;j(x; �; �) = f j2 (x; �; �) � IXi=1(�1)i	i;j(x; �; �); 0 < 
os � � 1;



CHEBYSHEV SPECTRAL-SN METHOD FOR THE NEUTRON TRANSPORT 17and(6.7) 	0;j(x; �; �) = � IXi=1 	i;j(x; �; �); �1 � 
os � < 0:Similarly, we substitute 	(x; y; z; �; �) from (6.5) into the boundary 
onditions forz = �1, multiply the resulting expressions by Ti(y)p1�y2 , i = 1; : : : ; I and integrate overy, to de�ne the 
omponents 	i;0(x; �; �), i = 0; : : : ; I : For�1 � x � 1; �1 < � < 1;(6.8) 	i;0(x; �; �) = f i3(x; �; �) � JXj=1(�1)j	i;j(x; �; �); 0 � � < �;(6.9) 	i;0(x; �; �) = � JXj=1	i;j(x; �; �); � < � � 2�;where(6.10) f j2 (x; �; �) = 2� Æ0;j� Z 1�1 f2(x; z; �; �) Rj(z)p1� z2 dzand(6.11) f i3(x; �; �) = 2� Æi;0� Z 1�1 f3(x; y; �; �) Ti(y)p1� y2 dy:To determine the 
omponents 	i;j(x; �; �), i = 1; : : : ; I , and j = 1; : : : ; J , wesubstitute 	(x; �; �), from (6.5) into (6.1) and the boundary 
onditions for x = �1.Multiplying the resulting expressions by Ti(y)p1�y2 � Rj(z)p1�z2 ; and integrating over yand z we obtain I � J one-dimensional transport problems, viz��	i;j�x (x; �; �) + �t	i;j(x; �; �) = Gi;j (x;�; �)+ Z 1�1 Z 1�1 �s(�0 ; �0 ! �; �)	i;j(x; �0 ; �0)d�0d�0 ;(6.12)with the boundary 
onditions(6.13) 	i;j(�1; �; �) = f i;j1 (�; �);where(6.14) f i;j1 (�; �) = 4�2 Z 1�1 Z 1�1 Ti(y)Rj(z)p(1� y2)(1� z2)f1(y; z; �; �)dzdy;and(6.15) 	i;j(1;��; �) = 0;for 0 < � � 1; and 0 � � � 2�. FinallyGi;j (x; �; �) = Si;j (x; �; �)�p1� �2 � 24
os � IXk=i+1Aki	k;j(x; �; �) + sin � JXl=j+1Blj	i;l(x; �; �)35 ;(6.16)



18 M. ASADZADEH1 AND A. KADEM2with(6.17) Si;j (x; �; �) = 4�2 Z 1�1 Z 1�1 Ti(y)Rj(z)p(1� y2)(1� z2)S(x; �; �)dzdy;(6.18) Aki = 2� Z 1�1 ddy (Tk(y)) Ti(y)p1� y2 dy(6.19) Blj = 2� Z 1�1 ddz (Rl(z)) Rj(z)p1� z2 dz:Now, starting from the solution of the problem given by equations (6.12){(6.19)for 	I;J(x; �; �), we then solve the problems for the other 
omponents, in the de-
reasing order in i and j. Re
all thatPIi=I+1 : : : =PJj=J+1 : : : � 0: Hen
e, solvingI � J one-dimensional problems, the angular 
ux 	(x; �; �), is now 
ompletelydetermined through (6.5).Remark: If we have to deal with a di�erent type of boundary 
onditions, we have tokeep in mind that the �rst 
omponents 	i;0(x; �; �) and 	0;j(x; �; �) are determinedfrom the boundary 
onditions for z and y and the other ones, 	i;j(x; �; �) for i =1; : : : ; I and j = 1; : : : ; J will satisfy one-dimensional transport problems subje
tto the same type of boundary 
onditions of the original problem in the variable x.A
knowledgments: The resear
h of the �rst author is supported by the INTASgrant Ref. Nr 04-77-6902.1 Department of Mathemati
s, Chalmers University of Te
hnology, SE-412 96 Gothen-burg, Sweden.E-mail address: mohammad�math.
halmers.se2Department of Mathemati
s, Fa
ulty of S
ien
e, University of Setif 19000, Algeria.E-mail address: abdelouahabk�yahoo.fr


