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INTEGRAL FORMULAS AND THE OHSAWA-TAKEGOSHI
EXTENSION THEOREM.

BO BERNDTSSON

ABSTRACT. We construct a semiexplicit integral representation of
the canonical solution to thed-equation with respect to a plurisub-
harmonic weight function in a pseudoconvex domain. The construc-
tion is based on a construction related to the Ohsawa-Takegoshi ex-
tension theorem combined with a method to construct weighted in-
tegral representations due to M Andersson.

1. INTRODUCTION

There are basically two different methods to solvedreguation in com-
plex analysis: ByL2-methods or by explicit integral kernels. In this paper
we will show how one can construct a class of semiexplicit kernels using
L?-methods. Moreover, the kernels that we find give the canonical solu-
tion to thed-equation inL2-spaces defined by arbitrary plurisubharmonic
weight functions.

The prototype for complex analytic integral representations is the one-
dimensional Cauchy-Green formula.

1 d¢ 1 ov(¢) AdC
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The first term on the right hand side represents the values of holomorphic
functions, whereas the second term can be used to find explicit solutions
to the inhomogenous-equation. The proof follows from the distributional
equation for the Cauchy kernel

5 d¢ ‘

ac — = 27,
wherey, is a Dirac delta-function at the point

An analogous formula in higher dimensions is based on the Cauchy-

Fantappié kernel,see e g [9],[13] or [4], which generalizes (and reduces to)
the Cauchy kernel in one variabel. Given a dom@im C” this kernel is
obtained by first chosing a form

s =Y s;(¢,2)d¢

with coefficients of clas€' in QC x €1,. The forms must satisfy the fun-
damental condition

<37’2_C>#0
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for ¢ # z. The Cauchy-Fantappie kernel associategligthen
EAN (5(8)”71
(s,z—=Q) "

Again the kernel satisfies a distributional equation

Unn—1 =

éun,nfl = (27Ti>n,uz;

which leads to a multidimensional Cauchy formula

1 1 =
v(z) = G /89U<C)Un,7z—1 G /Qﬁv A Up 1.
(Similar reprsentation formulas hold for forms of higher degree, but in this
paper we shall discuss only the case of functions and 1-forms.)

Of special interest is the case wheocan be chosen in such a way that the
coefficientss;((, z) are holomorphic ir for ¢ fixed on the boundary d®.

In this case we obtain a representation formula for holomorphic functions
with a holomorphic kernel, and we also obtain a formula for solving the in-
homogenou#$-equation. The crucial property of the kernel that implies that
we get a solution formula fa? is thatu,, ,,_, then depends holomorphically
on the variablee when( is on the boundary df.

In [1], Mats Andersson and the author introduced a generalization of
the Cauchy-Fantappie kernel that allow certaight factors To define
such a weighted kernel we need two additional building blocks; one more
differential formq = > ¢;(¢, 2)d¢; and a holomorphic function of one
complex variable=, satisfyingGG(0) = 1. The weighted Cauchy-Fantappié
kernel is then

1 A (Ds)"F A (Dg)*
K:;HG(M“%Z_O)S <S(, CS>_ Z>n—lg+lq) )

One also defines an associated projection kernel

P = G(q,¢ ~ 2))(0a)"

ThendK = c,u. — P and, again, one obtains Cauchy formulas of the
type above. The boundary integral in the representation formula now gets

replaced by
/ vK—f—/v/\P.
o Q

Again, one is particularily interested in the case when the kernels in this
representation formula depend holomorphicallyzosince in this case we
still get solution formulas for thé-equation. One way to obtain such holo-
morphic dependence is to choaSeandq in a way so that< vanishes for

¢ on the boundary and the coefficientsdepend holomorphically on.

An important model case is whéh = C”, so that the boundary is empty,
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G = exp, andg = 9|¢|?, so thatg is even independent af We then get the
representation formula for holomorphic functions

02) = o [ Q) Far)
classical in the theory of Bargmann or Fock space.

Here, the kerneP gives the orthogonal projection of a functionfit(C", e*K'Q)
on the subspace of holomorphic functions. It follows that the corresponding
solution formula ford gives us the canonical solution in thig-space, i e
the solution of minimal norm. The principal aim of this paper is to show
how one can obtain weighted kernels that furnish the canonical solution to
the d-equation inL?($2, e~?), where() is a general pseudoconvex domain
in C", andg is a plurisubharmonic function if?. Clearly, in this generality
one cannot hope for a kernel which is as explicit as in the example above,
but we still feel that the construction is sufficiently explicit to be interest-
ing. We define the weight factors starting from the Bergman kernel. In this
respect the procedure is somewhat similar to [7], but there the construction
does not lead up to the canonical solution.

We find the kernels by combining a recent approach to weighted inte-
gral formulas by M Andersson, [2], with an argument that comes from a
new proof of the Ohsawa-Takegoshi extension theorem. The plan of the
paper is as follows. In section 2 we review Andersson’s new construction
of weighted integral formulas. In section 3 we give a proof of the Ohsawa-
Takegoshi extension theorem for submanifolds of codimension 1. In section
4 we sketch how the argument from section 3 can be modified to treat sub-
manifolds of arbitrary codimension, and in the final section we show how
integral kernels can be constructed as a biproduct of that proof.

In section 2 we have also included a sketch of the proof of the Duistermaat-
Heckman formula; in particular the complex version of this theorem is in-
timately related to weighted integral formulas. We stress that this proof is
essentially well known (see [10] and [15] for very similar arguments) but
we have included it here since it may not be so well known among complex
analysts. The reader who is mainly interested in the Ohsawa-Takegoshi the-
orem can safely go directly to section 3, which can be read independently
from the other sections.

I would like to thank Mats Andersson and Robert Berman for valuable
discussions.

2. ANDERSSONS CONSTRUCTION OF INTEGRAL KERNELS
The construction is based on properties of a pertutbegerator
V =0 — 6y,
whered x denotes contraction with the holomorphic vector field

X = (G —2)0/0¢.
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Such perturbed@-operators, and their real analags- dx, have a long his-
tory, in particular in connection with equivariant conomology. We refer to
[15] for background and further references. The - easily verified - proper-
ties of theV-operator that we will use here is that it is an antiderivation
that sends a form of bidegrég, ¢) to a sum of forms of bidegre@, ¢ + 1)
and(p — 1,¢), and thatv? = 0. The last property follows sincé@ and
dx (anti)commute, and evidently depends &nbeing holomorphic. It is
not satisfied by the real analdgr = d — dx, for which the corresponding
equation isV% = Ly, the Lie derivative with respect t&.

With s defined as in the introduction we next consider the full Cauchy-

Fantappié kernel
n—1
u= Z Ujt1,j
0

5N (0s)!
The coupling between andV lies in the equation
(2.1) Vu= (2mi)"u, — 1.

ThatVu = —1 outside of the singular poirgt= z, can be verified by brute
computation, or by a slicker argument from [2], that we will come back
to shortly. The contribution from the singular point, must be precisely the
same as that cﬁun,n_l since all the other terms are of lower order.

Consider next an arbitrary differential form in thevariable, whose co-
efficients depend on as a parameter,

9= Z 9k.k
0

with g, ;. of bidegree(k, k), and which satisfies

where

Vg=0
and
Goo(z) = 1.
The weighted kernel associatedii@ndg is now simply
K=uAg.

As V is an antiderivationy,o(z) = 1 andVg = 0 it is immediately clear
that

VK = ((QWi)an - 1) Ng = (27T/i)n/'bz -9
which in particular means that the component0bf bidegreg(n, n — 1),
K, 1, satisfies
(2.2) OKpn_1 = (270)" 112 — Gnon-

We could of course have obtained kernels with similar properties just by
multiplying u,, ,—1 by a0-closed form, but the point is that the possibility
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of using V-closed forms offers a much greater flexibility, as we shall soon
see. First, however, we note that equation (2.2) immediately gives general
Cauchy formulas

23) () = s | 0(OKr+ [

whereP = g,, .
Let us denote by the space of formg = > gxx, Wheregy . is of
bidegreg(k, k), which satisfy

Vg =0.

It is clear thatlV is an algebra ( sinc&® is an antiderivation), which is
commutative since all the forms v are of even degree. A form inis
invertible at a point if and only ifjy o # 0. It is clear that this condition is
necessary since otherwige\ h would always be a form of positive degree.
It is also sufficient since, i, o # 0, an inverse to

n,n—1,

g= 90,0(1 - (90,0 - g)/go,o)

can be found by summing a geometric series. If we consider the gorm
all of Q it follows that the spectrum of the form is equal to the imagé&of
under the map, o. By the one-dimensional Cauchy formula, functions that
are holomorphic in a neighbourhood of the spectrum operate on elements
of the algebra. In other words: If is in W, andG is holomorphic in a
neighbourhood ofi,(92), thenG(g) is also intV.

In the same vein we also give the proof from [2] tRat = —1 outside
the singular point. First note that

—Vs = (s,( —2) — 0s,

so that by the previous discussion and the hypothesis ®f3 is invertible
for ¢ # 2. Expanding the inverse in a geometric series we see that

u=—sA(Vs)!,

from where it immediately follows that, indeeWu = —1 for ¢ # =.

In the sequel aveightwill be an element iV such thatg,((0) = 1.
We next discuss a few ways to find weights. The first way, see [2], starts
by noting that ifq is a(1, 0)-form (as always a form ig with coefficients
depending on as a parameter), then, sinté = 0,

Vg={q,z—¢)+0q

is aV-closed form. IfG is a function of one complex variable, holomorphic

in a neighbourhood of the image ©f x Q under the magdq, z — ¢) and
satisfyingG(0) = 1, theng = G(Vq) is a weight. Expanding+ in a
Taylor series around the poify, z — () , (the definition ofG(V¢q) by the
one-dimensional Cauchy formula shows that this is legitimate), we see that

Q—ZG {a,2 = ))(9q)" /K,
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so thatK = u A g is just the weighted kernel from [1].

Another class of examples is connected with the circle of ideas around
the Duistermaat-Heckman formula, see [8] and [15]. Ldbe a Kahler
form and suppose we can find a functigrsuch thatbp = dyw. In case
¢ is real valued this is equivalent t@p = oz, xw. Thinking of w as a
symplectic form it means thatis a Hamiltonian function for the real vector
field corresponding toX. Then¢ + w is an element it} and if G is a
function of one complex variable such tl@fo(z)) = 1 (G may depend in
an arbitrary way on the parametey, theng = G(¢ + w) is a weight. The
basic example here is= |z — ¢|* andw the Euclidean metric, which again
leads to the representation formula in Bargmann-Fock space.

At this point it is useful to realize that the previous discussion generalizes
almost directly to an arbitrary holomorphic vector field, on a complex
manifold having a discrete set of simple zeros (and even, with more work,
to more general zero sets). One can then always find a corresponding form,
s, such that

(s, X)#0

for z # z. The form dual taX under some Hermitian metric will do. Then,

withu = —s A (Vs)™!
Vu= Z a,ft, — 1,
X(2)=0

wherey., is a unit point mass at, anda, a number depending on the local
behaviour ofX nearz. Now consider the form iV’

g = exp(6+w).

The associated projection kerrfel= g, ,, is in this case equal texp(¢)w™ /n!.
Suppose the manifol@ is compact without boundary, and apply what cor-
responds to the representation formula (2.3) to the holomorphic function
v = 1. The resultis

[ espoprni= 3 elo:)a

Q X(2)=0
This is a (nonprecise) version of the Duistermaat-Heckman formula in the
complex case.

The real case of the Duistermaat-Heckman formula can be proved in
precisely the same way (cf [15]). Th€é-operator is then replaced by
Vg = d — §x whereX is a real vector field, and is a symplectic form.

The main difference between the complex and the real case is that now
V% = Ly, with Lx being the Lie derivative alond . In order to have

Viu = VR(—S A (VRS)_I) =—1

outside the zeros ok, one needs to choosein such a way tha¥%s =
Lxs = 0. If we lets be the form dual toX under some metric, this follows
from Lx X = [X, X] = 0, if the metric is invariant under the flow of,
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i e if X is a Killing field. If the field X generates a circle action of the
manifold, such an invariant metric can always be found by averaging over
the circle. This is the usual setting of the Duistermaat Heckman formula.

So far we have shown two different ways of constructing weights; one
starting from a&v-exact form and another which works for Hamiltonian vec-
tor fields and involves the Hamiltonian function. In the last section we will
give yet another construction of weights, related to the Ohsawa-Takegoshi
extension theorem (see [12]. It is then natural to generalize the previous
set-up a little bit.

Up to now we have been dealing with holomorphic vector fields in the
sense of sections to the holomorphic tangent bundleC(9f but the for-
malism we have described works just as well for sections to an arbitrary
holomorphic bundleE over (2, with rankr not necessarily equal to the di-
mension of the base space. Instead of differential forms of biddgreé¢
in ¢ we then consider sections to the exterior algebra bundle

NE T,

which are of degree in £*, 0 in d¢ andq in d¢. Given a holomorphic
sectionX = >  X,e; the V-operator is defined just as before By =
0 — 6x. With s a section taE* such that(s, X') # 0 outside the zero-set of
X we again put

(2.4) u=—sA(Vs) = Zuj“’j’
0

wherem = min(n,r) — 1. ComputingVu in the sense of distributions we
find that

VUIRx—l

whereRy is a certain residue term associatedktoln case the zero-sef,,
of X is a complete intersection, i e codim) = r, and moreoverX van-
ishes to first order o¥ Ry can be written in terms of local trivializations
of £ andE* as

Rx =el A ...e A 8}% A 8)%
Similar formulas also hold in more general situations, see [3] and the refer-
ences given there.

3. THE OHSAWA-TAKEGOSHI THEOREM IN CODIMENSION1

Let (2 be a pseudoconvex domain@¥ and letV be a smooth hypersur-
face in(2 defined byV = {h = 0} whereh is holomorphic in2 and such
thatoh # 0onV. Let¢ be plurisubharmonic if. The celebrated Ohsawa-
Takegoshi extension theorem, see [12], asserts that functions holomorphic
on V' can be extended holomorphically to all @fwith good estimates in
L*(Q,e7?).
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Theorem 3.1. ( Ohsawa-Takegoshi) Assunig < 11in Q. Let f be a
holomorphic function orv’. Then there is a holomorphic functianin Q
such that" = f onV and

[ireee <c [ 1geeepone,
Q |4

whereC' is a universal constant.

The main point of the theorem is tHe-estimate with a constant that is
independent of the domain and of the plurisubharmonic function. In the
original proof one first constructs a local extensionfofo a very small
neighbourhood of” and then gets a global solution by solving an appropri-
ated-equation. What makes the proof tricky is that the standard Hormander
estimate is not quite enough to obtain a good estimate for the extension.
Therefore Ohsawa and Takegoshi use a refined version of the Hérmander
technique inspired by a result of Donnelly and Fefferman. Many variants
of the proof and of thé-theorem has been developed later. In [5] a proof
is given which avoids the local extension and instead deriv@sh®orem
where the right hand side is not ii¥ (€2), but in L?(V).

We shall now sketch a proof of the theorem which avoidsHegjuation
altogether, although the estimate in the end comes from an inequality that
arises in the proof of thé-theorem.

In the proof we will assume that the domdmis bounded with smooth
boundary , that, and hencé’ extend to a neighbourhood of the closure
of {2 and that the weight function is smooth and also extends to a neigh-
bourhood of(). We also assume thgtextends holomorphically if¥ to a
neighbourhood of” N Q. Such a situation can be obtained by restricting
the whole problem to a relatively compact subdomain. Afterwards one can
easily pass to the limit using normal families, as long as the constant we
obtain in the estimate for the extension only depends on the sup-ndrm of

Given all this itis clear that there existsmeextension off in A2(£2, e~?),
the space of holomorphic functions it (2, e~?) . Let F be the extension
of minimal norm. Then? is orthogonal inL?((2, e~?) to the space of holo-
morphic functions that vanish oW, and in particular to the spade4?.
Equivalently,hF is orthogonal to all ofA2. Since the domain is pseudo-
convex the orthogonal complementf is precisely the range &f, so we
can solve

0*a = hF,

and by taking the minimal solution of this equation we alsodget= 0. We
can now estimate th&2-norm of £ as follows.

(3.1) /|F|2€_¢ = / Eé*_ae_qs = / Fél-de_¢.
Q ah o h
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The expressio(1/h) is a residue current with support dhand it can be
computed as
1 oh
= 9r—_—
O = anp
wheredV is surface measure dn.
( To see this, first note that by the Poincaré-Lelong formula

i00log |h|* = 27[V],
where[V] is the current of integration o¥i. The left hand side equals

dv,

~ ~0h -1
. 2 _;/z -
id0log |h|* = —i0 . zah/\ah,
and the right hand side is
i0h A Oh
2 2 =2r—————dV.
(3.2) 7[V] T EIE dv.

The claimed formula follows by contracting with:.)
Therefore the right hand side in (3.1) equals
— _dV
A —¢
/Vfﬁh a|8h|26 ,
which by Cauchy’s inequality is dominated by the square root of

dv dv
2e=? Oh - al?e™? :
/v'f'e |ah|2/v' o anp

To find an estimate foF’ in terms of f we therefore need to estimate

dVv
col2e®
/v'ah SR

in terms of . We will obtain such an estimate from @R-inequality which

is based on Siu’s so callg?h-Bochner-Kodaira technique (see [14]). The
explicit form of the inequality for0, 1)-forms in C" that we need here is
taken from [6], where a proof can also be found. In the proposition below
p is a defining function foK2, i e a function which is smooth up to the
boundary which is negative inside Qf vanishes on the boundary Qfand

has non-vanishing gradient on the boundary.

Proposition 3.2. Assumex is a (0, 1)-form, smooth irf2, in the domain of
0*, such thaa anddo*« are in L? . Then

/Z(bﬂ;aj@ke¢w+/’5*a|2e¢w—/zwjl_cajdk€¢+
+/Z|5ko¢j|2e¢w+/w2pjkaj5zke‘f’dS/]8p| =
i)

= 2Re/ 00" a - ae™%w + / |0al?e™%w.
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_ We apply Proposition 3.2 to thiclosed form which solves)*a = hF,
Jda = 0. Asw we take

w = log 7 + (1= [A[*),

1
I
with § slightly smaller than 1. 1% is plurisubharmonic ands? is pseudo-
convex all the terms on the right hand side in Proposition 3.2 are nonnega-
tive. Keeping only the fourth term, we get by the Poincaré-Lelong formula
and (3.2) that

av _
27T/ |Oh-af?e™? 2+52/ |8h-a|2|h|25_26_¢§2Re/FOh-awe‘¢
v |0l o

A simple application of Cauchy’s inequality to the right hand side now gives

2—6 2,-¢
/Vyah of2e |ah|2_c/yF|

and the proof is complete.

4., THE EXTENSION THEOREM FOR HIGHER CODIMENSION

The Ohsawa-Takegoshi theorem was generalized to submanifolds of higher
codimension in certain complex manifolds by Manivel, see [11]. We shall
now see how the proof of the codimension 1 case in the previous section
can be generalized, but we still discuss only the case when the ambient
manifold is a pseudoconvex domdnin C". Let V' be a submanifold of?
of codimensionr, defined by an equatiolh = 0 whereh is a section to a
vector bundle of rank, writtenh = > h;e; with respect to a local trivial-
ization.We assume tha&f is smooth and thabh,; A ...0h, # 0 onV. Let
f be holomorphic orV/. After preliminary reductions, as in section 3, we
may assume that some holomorphic extensiorf of L? exists, and then
estimate the extensioh of minimal norm. If £ is a trivial bundle (which
is by no means necessary, but will be the main case for us), the minimal
extensionF is orthogonal inL?(2,e~?) to any holomorphic function di-
visible by any of theh;:s. In other words'h; is ortogonal toA%(€2, e=9).
Hence we can solve

with «; ad-closed(0, 1)-form.
This can be expressed somewhat more elegantly if we choose a hermitian
metric onE and introduce the space

L}, (Q,e” ?)

of L?-sections to the bundlg (E* @ T*) of bidegreep in £*, 0 in d¢ and
q in d¢. Note that the)-operator extends to a well defined antiderivation on
these spaces. We denote}m& the subspace a@i-closed sections, so that

in partlcularA2 consists of holomorphlc sectionspd (E*). Contraction
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. - ) ) )
v/\1/|2th the holomorphic fieldh , 6, , now mapsL(p’q) to L(p_l,q) andA(pyq) to

(-1 If (¢;) is an orthonormal frame, then the adjointifis

=" hiel A
The previous discussion can now be summarized by saying thatSince
is orthogonal t), A7, , , 9 F" is orthogonal tad; o) SO, we can solve

(4.1) 0pF =Y Fhje; = 0%ai,

with a4 7 in A%M). Next we observe that sinags, + 6,0 = 0, we get
0*8 + 650" = 0, and since)? = 0, we also haveé;? = 0. Applying J; to
(4.1) we thus find that

5*5ZCY171 =0.
Sincef? is pseudoconvex this implies that we can solve
5;2041,1 = 5*042,2
with a5 In Aé 9)- Continuing in this way, we obtain a sequence of forms
aj; in A, ) such that
0hayy = 0"y .
Clearly the process stops so that; = 0 if j > min(r,n). If we put
apo=F,a=> «a;;andV* = 9* — ¢; we find that
V*a = 0.

We could now defingg = xae~? to obtain an element ifil’ (see section
2), but it will actually be more convenient to stay with the fosnitself. As
at the end of section 2 we letbhe some arbitrary section @* such that
(s,h) #0whenh # 0 ;e gs = 0*1 willdo. Put

u:_i:ZS/\(gs)j_l,

Vs (s, h)i
Then
Vu= Rh —1
whereR;, is a residue term that can be written as
oh
Ry, = (27)" dVe*

wheredh = 0hy A ...0h, ande* = e} A ...e}.
With these computations in place we can estimate/th@orm of F.
First note that

4.2) /Q<V(Fu), a)e ™ =0
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sinceV*a = 0. (Note that there are no boundary terms sinckes in
the domain ofV*.) SinceV is an antiderivation an& F' = 0 we have
V(Fu) = fRy, — F. Sinceayy = F, (4.2) implies that

/|F|2e¢:/f<Rh,am>e¢.
Q 1%

(For bidegree reasong’, o) = (F,apo) and (R, o) = (Ry, o,).) The
estimate ofF' in terms of f can be achieved by estimating

av
Oh - o, |?e™? .
ook

The integral on the left hand side is first estimated in terms of an integral
involving o,._; .1 roughly the same way as in section 3, using a variant of
Proposition 3.2 for forms of higher degree. One then applies the same pro-
cedure tax,_; ,_; and proceeds in the same way uniil, = F'is reached.

We will not give the details here. Quite probably the proof can be better
organized so that one only has to use one single step by using some version
of the Proposition 3.2 for th&-operator.

5. INTEGRAL REPRESENTATIONS AGAIN

Let us now consider the case of the extension problem whem and
V' is the subvariety of2 consisting of one single point, We choose as
our bundleF the holomorphic tangent bundle @f and ash we takeX =
> (¢; — 27)0/0¢; . Of coursel™ is then the bundle oft, 0)-forms and the
elements oﬂ(?pyq) are just(p, ¢) forms in the usual sense. Moreov#y, is a
point mass of siz&)" atz. The functionf to extend froml/ is a constant.
Call the minimal extensiot’,, and construct the form, according to the
recipe in the previous section, withv.)oo = F,. Thena,,, is a form of
maximal degree which can be written

Onn = X(C)d)‘

whered)\ is the volume element o€”. We now choose the constayit

so thaty(z) = e?®). If we putg = *ae?, thenVg = 0, and the last
normalization means that the functigy, = x equals 1 at. In other words,

g is a “weight” in the terminology of section 2. The next theorem says
that this weight defines a weighted integral kernel that gives the canonical
solution to thed-equation inL2($2, e~?).

Theorem 5.1. Let~ be ad-closed(0, 1)-form in C>(Q). Let

K(7)(z) = —# / (7 A e,

Theno = K (~) is the solution to
ov =~
which is of minimal norm irl2(£2, e=?).
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Proof. Let v be an arbitrary function if2 smooth up to the boundary. Now
consider the formula (4.2) with’ replaced byw. Then

V(vu) = 0v Au+v(Ry — 1),
On the other hand
(Rp,,a)e™
is, by the normalization we have made, a point mass at size (27)".
Hence

(5.1) v(z) = (27r)_”/QUFZe_¢ —(2m)™ /9(82; Au, e

Applying (5.1) to a holomorphic function, we see that’, /(27)™ is a holo-
morphic reproducing kernel for holomorphic functions, and therefore must
be equal to the Bergman kernel. (In particular, the first integral on the right
hand side of (5.1) depends holomorphically-ofor any choice ofy). Now
takev to be an arbitrary solution t@v = +. Since the first term on the right
hand side of (5.1) is the orthogonal projectionwobn the holomorphic
subspaced?(, e=?) it follows that the second term gives the canonical so-
lution to thed-equation. O

Notice that in the kernel that we have found, the weight factds per-
fectly smooth (at least if we assume tkhis smoothly bounded and strictly
pseudoconvex). All the singularities of the kernel come from the kernel
which can be chosen in many different ways and be made completely ex-
plicit. A natural question is of course if the weight factor can be estimated
in any reasonable way. This remains to be studied. For the moment we
can only make a few remarks. Let us first point out that the estimates of
that one can hope for are, like in the Ohsawa-Takegoshi theorem in terms
of the L?-norm of F,. This equals (a constant timeB),(z, z), the Bergman
kernel forA2(£2, e~?) on the diagonal, which is a fairly explicit object. The
Ohsawa-Takegoshi theorem (fgrequal to a point) amounts to an estimate

é By(z, 2)
e? < C H]?
wherek is any holomorphic map frorf2 to C" of sup-norm smaller than
1, such that(0) = 0. ( When(2 is the ball, an optimal choice df is an
automorphism that takesto the origin, giving|0k|> = (1 — |z[?)~(+1))
This is equivalent to an optimal estimate|af, ,,|>e~¢ at the point.

As a final remark we note that the kernetan be chosen in many ways,
all giving rise to the canonical solution operatordfThe kernels that one
obtains by changing are certainly in general different, but they always give
the same result when applieddeclosed forms. One interesting choice of
u is when() is the unit ball and we let the pointtend to a boundary point.
Chosings as in [1] we get in the limit, whent is on the boundary that
s =z-d¢ and

zedC
u_l—z-c'
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Therefore, for reasons of bidegree, the boundary valuds(of) are given
by a formula that only involves; ;.
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