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INTEGRAL FORMULAS AND THE OHSAWA-TAKEGOSHI
EXTENSION THEOREM.

BO BERNDTSSON

ABSTRACT. We construct a semiexplicit integral representation of
the canonical solution to the∂̄-equation with respect to a plurisub-
harmonic weight function in a pseudoconvex domain. The construc-
tion is based on a construction related to the Ohsawa-Takegoshi ex-
tension theorem combined with a method to construct weighted in-
tegral representations due to M Andersson.

1. INTRODUCTION

There are basically two different methods to solve the∂̄-equation in com-
plex analysis: ByL2-methods or by explicit integral kernels. In this paper
we will show how one can construct a class of semiexplicit kernels using
L2-methods. Moreover, the kernels that we find give the canonical solu-
tion to the∂̄-equation inL2-spaces defined by arbitrary plurisubharmonic
weight functions.

The prototype for complex analytic integral representations is the one-
dimensional Cauchy-Green formula.

v(z) =
1

2πi

∫
∂Ω

v(ζ)
dζ

ζ − z
− 1

2πi

∫
Ω

∂̄v(ζ) ∧ dζ

ζ − z
.

The first term on the right hand side represents the values of holomorphic
functions, whereas the second term can be used to find explicit solutions
to the inhomogenous̄∂-equation. The proof follows from the distributional
equation for the Cauchy kernel

∂̄
dζ

ζ − z
= 2πiµz,

whereµz is a Dirac delta-function at the pointz.
An analogous formula in higher dimensions is based on the Cauchy-

Fantappié kernel,see e g [9],[13] or [4], which generalizes (and reduces to)
the Cauchy kernel in one variabel. Given a domainΩ in Cn this kernel is
obtained by first chosing a form

s =
∑

sj(ζ, z)dζj

with coefficients of classC1 in Ω̄ζ × Ω̄z. The forms must satisfy the fun-
damental condition

〈s, z − ζ〉 6= 0
1
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for ζ 6= z. The Cauchy-Fantappie kernel associated tos is then

un,n−1 =
s ∧ (∂̄ζs)

n−1

〈s, z − ζ〉n
.

Again the kernel satisfies a distributional equation

∂̄un,n−1 = (2πi)nµz,

which leads to a multidimensional Cauchy formula

v(z) =
1

(2πi)n

∫
∂Ω

v(ζ)un,n−1 −
1

(2πi)n

∫
Ω

∂̄v ∧ un,n−1.

(Similar reprsentation formulas hold for forms of higher degree, but in this
paper we shall discuss only the case of functions and 1-forms.)

Of special interest is the case whens can be chosen in such a way that the
coefficientssj(ζ, z) are holomorphic inz for ζ fixed on the boundary ofΩ.
In this case we obtain a representation formula for holomorphic functions
with a holomorphic kernel, and we also obtain a formula for solving the in-
homogenous̄∂-equation. The crucial property of the kernel that implies that
we get a solution formula for̄∂ is thatun,n−1 then depends holomorphically
on the variablez whenζ is on the boundary ofΩ.

In [1], Mats Andersson and the author introduced a generalization of
the Cauchy-Fantappie kernel that allow certainweight factors. To define
such a weighted kernel we need two additional building blocks; one more
differential form q =

∑
qj(ζ, z)dζj and a holomorphic function of one

complex variableG, satisfyingG(0) = 1. The weighted Cauchy-Fantappié
kernel is then

K =
n−1∑

0

1

k!
G(k)(〈q, z − ζ〉)s ∧ (∂̄s)n−k ∧ (∂̄q)k

〈s, ζ − z〉n−k+1
,

One also defines an associated projection kernel

P =
1

n!
G(n)(〈q, ζ − z〉)(∂̄q)n.

Then ∂̄K = cnµz − P and, again, one obtains Cauchy formulas of the
type above. The boundary integral in the representation formula now gets
replaced by ∫

∂Ω

vK +

∫
Ω

v ∧ P.

Again, one is particularily interested in the case when the kernels in this
representation formula depend holomorphically onz since in this case we
still get solution formulas for thē∂-equation. One way to obtain such holo-
morphic dependence is to chooseG andq in a way so thatK vanishes for
ζ on the boundary and the coefficientsqj depend holomorphically onz.
An important model case is whenΩ = Cn, so that the boundary is empty,
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G = exp, andq = ∂|ζ|2, so thatq is even independent ofz. We then get the
representation formula for holomorphic functions

v(z) =
1

πn

∫
Cn

v(ζ) ez·ζ̄−|ζ|2dλ(ζ),

classical in the theory of Bargmann or Fock space.
Here, the kernelP gives the orthogonal projection of a function inL2(Cn, e−|ζ|

2
)

on the subspace of holomorphic functions. It follows that the corresponding
solution formula for∂̄ gives us the canonical solution in thisL2-space, i e
the solution of minimal norm. The principal aim of this paper is to show
how one can obtain weighted kernels that furnish the canonical solution to
the ∂̄-equation inL2(Ω, e−φ), whereΩ is a general pseudoconvex domain
in Cn, andφ is a plurisubharmonic function inΩ. Clearly, in this generality
one cannot hope for a kernel which is as explicit as in the example above,
but we still feel that the construction is sufficiently explicit to be interest-
ing. We define the weight factors starting from the Bergman kernel. In this
respect the procedure is somewhat similar to [7], but there the construction
does not lead up to the canonical solution.

We find the kernels by combining a recent approach to weighted inte-
gral formulas by M Andersson, [2], with an argument that comes from a
new proof of the Ohsawa-Takegoshi extension theorem. The plan of the
paper is as follows. In section 2 we review Andersson’s new construction
of weighted integral formulas. In section 3 we give a proof of the Ohsawa-
Takegoshi extension theorem for submanifolds of codimension 1. In section
4 we sketch how the argument from section 3 can be modified to treat sub-
manifolds of arbitrary codimension, and in the final section we show how
integral kernels can be constructed as a biproduct of that proof.

In section 2 we have also included a sketch of the proof of the Duistermaat-
Heckman formula; in particular the complex version of this theorem is in-
timately related to weighted integral formulas. We stress that this proof is
essentially well known (see [10] and [15] for very similar arguments) but
we have included it here since it may not be so well known among complex
analysts. The reader who is mainly interested in the Ohsawa-Takegoshi the-
orem can safely go directly to section 3, which can be read independently
from the other sections.

I would like to thank Mats Andersson and Robert Berman for valuable
discussions.

2. ANDERSSON’ S CONSTRUCTION OF INTEGRAL KERNELS.

The construction is based on properties of a perturbed∂̄-operator

∇ = ∂̄ − δX ,

whereδX denotes contraction with the holomorphic vector field

X =
∑

(ζj − zj)∂/∂ζj.
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Such perturbed̄∂-operators, and their real analogsd− δX , have a long his-
tory, in particular in connection with equivariant cohomology. We refer to
[15] for background and further references. The - easily verified - proper-
ties of the∇-operator that we will use here is that it is an antiderivation
that sends a form of bidegree(p, q) to a sum of forms of bidegree(p, q + 1)
and (p − 1, q), and that∇2 = 0. The last property follows sincē∂ and
δX (anti)commute, and evidently depends onX being holomorphic. It is
not satisfied by the real analog∇R = d − δX , for which the corresponding
equation is∇2

R = LX , the Lie derivative with respect toX.
With s defined as in the introduction we next consider the full Cauchy-

Fantappié kernel

u =
n−1∑

0

uj+1,j

where

uj+1,j =
s ∧ (∂̄s)j

〈s, ζ − z〉j+1
.

The coupling betweenu and∇ lies in the equation

(2.1) ∇u = (2πi)nµz − 1.

That∇u = −1 outside of the singular pointζ = z, can be verified by brute
computation, or by a slicker argument from [2], that we will come back
to shortly. The contribution from the singular point, must be precisely the
same as that of̄∂un,n−1 since all the other terms are of lower order.

Consider next an arbitrary differential form in theζ-variable, whose co-
efficients depend onz as a parameter,

g =
n∑
0

gk,k

with gk,k of bidegree(k, k), and which satisfies

∇g = 0

and
g0,0(z) = 1.

The weighted kernel associated tou andg is now simply

K = u ∧ g.

As ∇ is an antiderivationg0,0(z) = 1 and∇g = 0 it is immediately clear
that

∇K = ((2πi)nµz − 1) ∧ g = (2πi)nµz − g,

which in particular means that the component ofK of bidegree(n, n − 1),
Kn,n−1, satisfies

(2.2) ∂̄Kn,n−1 = (2πi)nµz − gn,n.

We could of course have obtained kernels with similar properties just by
multiplying un,n−1 by a ∂̄-closed form, but the point is that the possibility
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of using∇-closed forms offers a much greater flexibility, as we shall soon
see. First, however, we note that equation (2.2) immediately gives general
Cauchy formulas

(2.3) v(z) =
1

(2πi)n

∫
∂Ω

v(ζ)Kn,n−1 +

∫
Ω

vP − 1

(2πi)n

∫
Ω

∂̄v ∧Kn,n−1,

whereP = gn,n.
Let us denote byW the space of formsg =

∑
gk,k, wheregk,k is of

bidegree(k, k), which satisfy

∇g = 0.

It is clear thatW is an algebra ( since∇ is an antiderivation), which is
commutative since all the forms inW are of even degree. A form ing is
invertible at a point if and only ifg0,0 6= 0. It is clear that this condition is
necessary since otherwiseg ∧ h would always be a form of positive degree.
It is also sufficient since, ifg0,0 6= 0, an inverse to

g = g0,0(1− (g0,0 − g)/g0,0)

can be found by summing a geometric series. If we consider the formg in
all of Ω it follows that the spectrum of the form is equal to the image ofΩ̄
under the mapg0,0. By the one-dimensional Cauchy formula, functions that
are holomorphic in a neighbourhood of the spectrum operate on elements
of the algebra. In other words: Ifg is in W , andG is holomorphic in a
neighbourhood ofg0,0(Ω̄), thenG(g) is also inW .

In the same vein we also give the proof from [2] that∇u = −1 outside
the singular point. First note that

−∇s = 〈s, ζ − z〉 − ∂̄s,

so that by the previous discussion and the hypothesis ons, ∇s is invertible
for ζ 6= z. Expanding the inverse in a geometric series we see that

u = −s ∧ (∇s)−1,

from where it immediately follows that, indeed,∇u = −1 for ζ 6= z.
In the sequel aweightwill be an element inW such thatg0,0(0) = 1.

We next discuss a few ways to find weights. The first way, see [2], starts
by noting that ifq is a (1, 0)-form (as always a form inζ with coefficients
depending onz as a parameter), then, since∇2 = 0,

∇q = 〈q, z − ζ〉+ ∂̄q

is a∇-closed form. IfG is a function of one complex variable, holomorphic
in a neighbourhood of the image ofΩ̄ × Ω̄ under the map〈q, z − ζ〉 and
satisfyingG(0) = 1, theng = G(∇q) is a weight. ExpandingG in a
Taylor series around the point〈q, z − ζ〉 , (the definition ofG(∇q) by the
one-dimensional Cauchy formula shows that this is legitimate), we see that

g =
n∑
0

G(k)(〈q, z − ζ〉)(∂̄q)k/k!,
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so thatK = u ∧ g is just the weighted kernel from [1].
Another class of examples is connected with the circle of ideas around

the Duistermaat-Heckman formula, see [8] and [15]. Letω be a Kähler
form and suppose we can find a functionφ such that∂̄φ = δXω. In case
φ is real valued this is equivalent todφ = δ2Re Xω. Thinking of ω as a
symplectic form it means thatφ is a Hamiltonian function for the real vector
field corresponding toX. Thenφ + ω is an element inW and if G is a
function of one complex variable such thatG(φ(z)) = 1 (G may depend in
an arbitrary way on the parameterz), theng = G(φ + ω) is a weight. The
basic example here isφ = |z− ζ|2 andω the Euclidean metric, which again
leads to the representation formula in Bargmann-Fock space.

At this point it is useful to realize that the previous discussion generalizes
almost directly to an arbitrary holomorphic vector field,X, on a complex
manifold having a discrete set of simple zeros (and even, with more work,
to more general zero sets). One can then always find a corresponding form,
s, such that

〈s, X〉 6= 0

for z 6= z. The form dual toX under some Hermitian metric will do. Then,
with u = −s ∧ (∇s)−1

∇u =
∑

X(z)=0

azµz − 1,

whereµz is a unit point mass atz, andaz a number depending on the local
behaviour ofX nearz. Now consider the form inW

g = exp(φ + ω).

The associated projection kernelP = gn,n is in this case equal toexp(φ)ωn/n!.
Suppose the manifoldΩ is compact without boundary, and apply what cor-
responds to the representation formula (2.3) to the holomorphic function
v = 1. The result is∫

Ω

exp(φ)ωn/n! =
∑

X(z)=0

exp(φ(z))az.

This is a (nonprecise) version of the Duistermaat-Heckman formula in the
complex case.

The real case of the Duistermaat-Heckman formula can be proved in
precisely the same way (cf [15]). The∇-operator is then replaced by
∇R = d − δX whereX is a real vector field, andω is a symplectic form.
The main difference between the complex and the real case is that now
∇2

R = LX , with LX being the Lie derivative alongX. In order to have

∇Ru = ∇R(−s ∧ (∇Rs)−1) = −1

outside the zeros ofX, one needs to chooses in such a way that∇2
Rs =

LXs = 0. If we let s be the form dual toX under some metric, this follows
from LXX = [X, X] = 0, if the metric is invariant under the flow ofX,
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i e if X is a Killing field. If the field X generates a circle action of the
manifold, such an invariant metric can always be found by averaging over
the circle. This is the usual setting of the Duistermaat Heckman formula.

So far we have shown two different ways of constructing weights; one
starting from a∇-exact form and another which works for Hamiltonian vec-
tor fields and involves the Hamiltonian function. In the last section we will
give yet another construction of weights, related to the Ohsawa-Takegoshi
extension theorem (see [12]. It is then natural to generalize the previous
set-up a little bit.

Up to now we have been dealing with holomorphic vector fields in the
sense of sections to the holomorphic tangent bundle (ofCn), but the for-
malism we have described works just as well for sections to an arbitrary
holomorphic bundle,E overΩ, with rankr not necessarily equal to the di-
mension of the base space. Instead of differential forms of bidegree(p, q)
in ζ we then consider sections to the exterior algebra bundle∧

(E∗ ⊕ T ∗),

which are of degreep in E∗, 0 in dζ andq in dζ̄. Given a holomorphic
sectionX =

∑
Xjej the ∇-operator is defined just as before by∇ =

∂̄ − δX . With s a section toE∗ such that〈s, X〉 6= 0 outside the zero-set of
X we again put

(2.4) u = −s ∧ (∇s)−1 =
m∑
0

uj+1,j,

wherem = min(n, r) − 1. Computing∇u in the sense of distributions we
find that

∇u = RX − 1

whereRX is a certain residue term associated toX. In case the zero-set,Z,
of X is a complete intersection, i e codim(Z) = r, and moreoverX van-
ishes to first order onZ RX can be written in terms of local trivializations
of E andE∗ as

RX = e∗1 ∧ ...e∗r ∧ ∂̄
1

X1

∧ ...∂̄
1

Xr

.

Similar formulas also hold in more general situations, see [3] and the refer-
ences given there.

3. THE OHSAWA-TAKEGOSHI THEOREM IN CODIMENSION1

Let Ω be a pseudoconvex domain inCn and letV be a smooth hypersur-
face inΩ defined byV = {h = 0} whereh is holomorphic inΩ and such
that∂h 6= 0 onV . Letφ be plurisubharmonic inΩ. The celebrated Ohsawa-
Takegoshi extension theorem, see [12], asserts that functions holomorphic
on V can be extended holomorphically to all ofΩ with good estimates in
L2(Ω, e−φ).
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Theorem 3.1. ( Ohsawa-Takegoshi) Assume|h| ≤ 1 in Ω. Let f be a
holomorphic function onV . Then there is a holomorphic functionF in Ω
such thatF = f onV and∫

Ω

|F |2e−φ ≤ C

∫
V

|f |2e−φ/|∂h|2,

whereC is a universal constant.

The main point of the theorem is theL2-estimate with a constant that is
independent of the domain and of the plurisubharmonic function. In the
original proof one first constructs a local extension off to a very small
neighbourhood ofV and then gets a global solution by solving an appropri-
ate∂̄-equation. What makes the proof tricky is that the standard Hörmander
estimate is not quite enough to obtain a good estimate for the extension.
Therefore Ohsawa and Takegoshi use a refined version of the Hörmander
technique inspired by a result of Donnelly and Fefferman. Many variants
of the proof and of thē∂-theorem has been developed later. In [5] a proof
is given which avoids the local extension and instead derives a∂̄-theorem
where the right hand side is not inL2(Ω), but inL2(V ).

We shall now sketch a proof of the theorem which avoids the∂̄-equation
altogether, although the estimate in the end comes from an inequality that
arises in the proof of thē∂-theorem.

In the proof we will assume that the domainΩ is bounded with smooth
boundary , thath and henceV extend to a neighbourhood of the closure
of Ω and that the weight functionφ is smooth and also extends to a neigh-
bourhood ofΩ̄. We also assume thatf extends holomorphically inV to a
neighbourhood ofV ∩ Ω̄. Such a situation can be obtained by restricting
the whole problem to a relatively compact subdomain. Afterwards one can
easily pass to the limit using normal families, as long as the constant we
obtain in the estimate for the extension only depends on the sup-norm ofh.

Given all this it is clear that there existssomeextension off in A2(Ω, e−φ),
the space of holomorphic functions inL2(Ω, e−φ) . Let F be the extension
of minimal norm. ThenF is orthogonal inL2(Ω, e−φ) to the space of holo-
morphic functions that vanish onV , and in particular to the spacehA2.
Equivalently,h̄F is orthogonal to all ofA2. Since the domain is pseudo-
convex the orthogonal complement ofA2 is precisely the range of̄∂∗, so we
can solve

∂̄∗α = h̄F,

and by taking the minimal solution of this equation we also get∂̄α = 0. We
can now estimate theL2-norm ofF as follows.

(3.1)
∫

Ω

|F |2e−φ =

∫
Ω

F

h
∂̄∗αe−φ =

∫
Ω

F ∂̄
1

h
· ᾱe−φ.
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The expression̄∂(1/h) is a residue current with support onV and it can be
computed as

∂̄
1

h
= 2π

∂h

|∂h|2
dV,

wheredV is surface measure onV .
( To see this, first note that by the Poincaré-Lelong formula

i∂∂̄ log |h|2 = 2π[V ],

where[V ] is the current of integration onV . The left hand side equals

i∂∂̄ log |h|2 = −i∂̄
∂h

h
= i∂h ∧ ∂̄

1

h
,

and the right hand side is

(3.2) 2π[V ] = 2π
i∂h ∧ ∂h

|∂h|2
dV.

The claimed formula follows by contracting with∂h.)
Therefore the right hand side in (3.1) equals∫

V

f ∂h · ᾱ dV

|∂h|2
e−φ,

which by Cauchy’s inequality is dominated by the square root of∫
V

|f |2e−φ dV

|∂h|2

∫
V

|∂h · α|2e−φ dV

|∂h|2
.

To find an estimate forF in terms off we therefore need to estimate∫
V

|∂h · α|2e−φ dV

|∂h|2

in terms ofF . We will obtain such an estimate from anL2-inequality which
is based on Siu’s so called∂∂̄-Bochner-Kodaira technique (see [14]). The
explicit form of the inequality for(0, 1)-forms in Cn that we need here is
taken from [6], where a proof can also be found. In the proposition below
ρ is a defining function forΩ, i e a function which is smooth up to the
boundary which is negative inside ofΩ, vanishes on the boundary ofΩ and
has non-vanishing gradient on the boundary.

Proposition 3.2. Assumeα is a (0, 1)-form, smooth inΩ, in the domain of
∂̄∗, such that̄∂α and ∂̄∂̄∗α are inL2 . Then∫ ∑

φjk̄αjᾱke
−φw +

∫
|∂̄∗α|2e−φw −

∫ ∑
wjk̄αjᾱke

−φ+

+

∫ ∑
|∂̄kαj|2e−φw +

∫
∂

w
∑

ρjk̄αjᾱke
−φdS/|∂ρ| =

= 2Re
∫

∂̄∂̄∗α · ᾱe−φw +

∫
|∂̄α|2e−φw.
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We apply Proposition 3.2 to thē∂-closed formα which solves̄∂∗α = h̄F ,
∂̄α = 0. As w we take

w = log
1

|h|2
+ (1− |h|2δ),

with δ slightly smaller than 1. Ifφ is plurisubharmonic and∂Ω is pseudo-
convex all the terms on the right hand side in Proposition 3.2 are nonnega-
tive. Keeping only the fourth term, we get by the Poincaré-Lelong formula
and (3.2) that

2π

∫
V

|∂h·α|2e−φ dV

|∂h|2
+δ2

∫
Ω

|∂h·α|2|h|2δ−2e−φ ≤ 2Re

∫
Ω

F∂h·ᾱwe−φ.

A simple application of Cauchy’s inequality to the right hand side now gives∫
V

|∂h · α|2e−φ dV

|∂h|2
≤ C

∫
Ω

|F |2e−φ,

and the proof is complete.

4. THE EXTENSION THEOREM FOR HIGHER CODIMENSION.

The Ohsawa-Takegoshi theorem was generalized to submanifolds of higher
codimension in certain complex manifolds by Manivel, see [11]. We shall
now see how the proof of the codimension 1 case in the previous section
can be generalized, but we still discuss only the case when the ambient
manifold is a pseudoconvex domainΩ in Cn. Let V be a submanifold ofΩ
of codimensionr, defined by an equationh = 0 whereh is a section to a
vector bundle of rankr, writtenh =

∑
hjej with respect to a local trivial-

ization.We assume thatV is smooth and that∂h1 ∧ ...∂hr 6= 0 on V . Let
f be holomorphic onV . After preliminary reductions, as in section 3, we
may assume that some holomorphic extension off in L2 exists, and then
estimate the extensionF of minimal norm. IfE is a trivial bundle (which
is by no means necessary, but will be the main case for us), the minimal
extensionF is orthogonal inL2(Ω, e−φ) to any holomorphic function di-
visible by any of thehj:s. In other wordsFh̄j is ortogonal toA2(Ω, e−φ).
Hence we can solve

Fh̄j = ∂̄∗αj

with αj a ∂̄-closed(0, 1)-form.
This can be expressed somewhat more elegantly if we choose a hermitian

metric onE and introduce the space

L2
(p,q)(Ω, e−φ)

of L2-sections to the bundle
∧

(E∗ ⊕ T ∗) of bidegreep in E∗, 0 in dζ and
q in dζ̄. Note that thē∂-operator extends to a well defined antiderivation on
these spaces. We denote byA2

(p,q) the subspace of̄∂-closed sections, so that
in particularA2

(p,0) consists of holomorphic sections to
∧p(E∗). Contraction
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with the holomorphic fieldh , δh , now mapsL2
(p,q) to L2

(p−1,q) andA2
(p,q) to

A2
(p−1,q). If (ej) is an orthonormal frame, then the adjoint ofδh is

δ∗h =
∑

h̄je
∗
j ∧ .

The previous discussion can now be summarized by saying that sinceF
is orthogonal toδhA

2
(1,0) , δ∗hF is orthogonal toA(1,0) so, we can solve

(4.1) δ∗hF =
∑

Fh̄je
∗
j = ∂̄∗α1,1

with α1,1 in A2
(1,1). Next we observe that sincē∂δh + δh∂̄ = 0, we get

∂̄∗δ∗h + δ∗h∂̄
∗ = 0 , and sinceδ2

h = 0, we also haveδ∗2h = 0. Applying δ∗h to
(4.1) we thus find that

∂̄∗δ∗hα1,1 = 0.

SinceΩ is pseudoconvex this implies that we can solve

δ∗hα1,1 = ∂̄∗α2,2

with α2,2 in A2
(2,2). Continuing in this way, we obtain a sequence of forms

αj,j in A2
(j,j) such that

δ∗hαj,j = ∂̄∗αj+1,j+1.

Clearly the process stops so thatαj,j = 0 if j > min(r, n). If we put
α0,0 = F , α =

∑
αj,j and∇∗ = ∂̄∗ − δ∗h we find that

∇∗α = 0.

We could now defineg = ∗αe−φ to obtain an element inW (see section
2), but it will actually be more convenient to stay with the formα itself. As
at the end of section 2 we lets be some arbitrary section ofE∗ such that
〈s, h〉 6= 0 whenh 6= 0 ; e gs = δ∗1 will do. Put

u = − s

∇s
=

∑ s ∧ (∂̄s)j−1

〈s, h〉j
.

Then

∇u = Rh − 1

whereRh is a residue term that can be written as

Rh = (2π)r ∂h

|∂h|2
dV e∗,

where∂h = ∂h1 ∧ ...∂hr ande∗ = e∗1 ∧ ...e∗r.
With these computations in place we can estimate theL2-norm of F .

First note that

(4.2)
∫

Ω

〈∇(Fu), α〉e−φ = 0
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since∇∗α = 0. (Note that there are no boundary terms sinceα lies in
the domain of∇∗.) Since∇ is an antiderivation and∇F = 0 we have
∇(Fu) = fRh − F . Sinceα0,0 = F , (4.2) implies that∫

Ω

|F |2e−φ =

∫
V

f〈Rh, αr,r〉e−φ.

(For bidegree reasons〈F, α〉 = 〈F, α0,0〉 and〈Rh, α〉 = 〈Rh, αr,r〉.) The
estimate ofF in terms off can be achieved by estimating∫

V

|∂h · αr,r|2e−φ dV

|∂h|2
.

The integral on the left hand side is first estimated in terms of an integral
involving αr−1,r−1 roughly the same way as in section 3, using a variant of
Proposition 3.2 for forms of higher degree. One then applies the same pro-
cedure toαr−1,r−1 and proceeds in the same way untilα0,0 = F is reached.
We will not give the details here. Quite probably the proof can be better
organized so that one only has to use one single step by using some version
of the Proposition 3.2 for the∇-operator.

5. INTEGRAL REPRESENTATIONS AGAIN.

Let us now consider the case of the extension problem whenr = n and
V is the subvariety ofΩ consisting of one single point,z. We choose as
our bundleE the holomorphic tangent bundle ofCn and ash we takeX =∑

(ζj − zj)∂/∂ζj . Of courseE∗ is then the bundle of(1, 0)-forms and the
elements ofL2

(p,q) are just(p, q) forms in the usual sense. Moreover,Rh is a
point mass of size(2π)n atz. The functionf to extend fromV is a constant.
Call the minimal extensionFz, and construct the formαz according to the
recipe in the previous section, with(αz)0,0 = Fz. Thenαn,n is a form of
maximal degree which can be written

αn,n = χ(ζ)dλ

wheredλ is the volume element onCn. We now choose the constantf
so thatχ(z) = eφ(z). If we put g = ∗αe−φ, then∇g = 0, and the last
normalization means that the functiong0,0 = χ equals 1 atz. In other words,
g is a “weight” in the terminology of section 2. The next theorem says
that this weight defines a weighted integral kernel that gives the canonical
solution to the∂̄-equation inL2(Ω, e−φ).

Theorem 5.1.Letγ be a∂̄-closed(0, 1)-form inC∞(Ω̄). Let

K(γ)(z) = − 1

(2π)n

∫
Ω

〈γ ∧ u, αz〉e−φ.

Thenṽ = K(γ) is the solution to

∂̄v = γ

which is of minimal norm inL2(Ω, e−φ).
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Proof. Let v be an arbitrary function inΩ smooth up to the boundary. Now
consider the formula (4.2) withF replaced byv. Then

∇(vu) = ∂̄v ∧ u + v(Rh − 1).

On the other hand
〈Rh, α〉e−φ

is, by the normalization we have made, a point mass atz of size (2π)n.
Hence

(5.1) v(z) = (2π)−n

∫
Ω

vF̄ze
−φ − (2π)−n

∫
Ω

〈∂̄v ∧ u, α〉e−φ.

Applying (5.1) to a holomorphic functionv, we see thatFz/(2π)n is a holo-
morphic reproducing kernel for holomorphic functions, and therefore must
be equal to the Bergman kernel. (In particular, the first integral on the right
hand side of (5.1) depends holomorphically onz for any choice ofv). Now
takev to be an arbitrary solution tō∂v = γ. Since the first term on the right
hand side of (5.1) is the orthogonal projection ofv on the holomorphic
subspaceA2(Ω, e−φ) it follows that the second term gives the canonical so-
lution to the∂̄-equation. �

Notice that in the kernel that we have found, the weight factorα is per-
fectly smooth (at least if we assume thatΩ is smoothly bounded and strictly
pseudoconvex). All the singularities of the kernel come from the kernelu
which can be chosen in many different ways and be made completely ex-
plicit. A natural question is of course if the weight factor can be estimated
in any reasonable way. This remains to be studied. For the moment we
can only make a few remarks. Let us first point out that the estimates ofα
that one can hope for are, like in the Ohsawa-Takegoshi theorem in terms
of theL2-norm ofFz. This equals (a constant times)Bφ(z, z), the Bergman
kernel forA2(Ω, e−φ) on the diagonal, which is a fairly explicit object. The
Ohsawa-Takegoshi theorem (forV equal to a point) amounts to an estimate

eφ ≤ C
Bφ(z, z)

|∂k|2

wherek is any holomorphic map fromΩ to Cn of sup-norm smaller than
1, such thatk(0) = 0. ( WhenΩ is the ball, an optimal choice ofk is an
automorphism that takesz to the origin, giving|∂k|2 = (1 − |z|2)−(n+1).)
This is equivalent to an optimal estimate of|αn,n|2e−φ at the pointz.

As a final remark we note that the kernelu can be chosen in many ways,
all giving rise to the canonical solution operator of∂̄. The kernels that one
obtains by changingu are certainly in general different, but they always give
the same result when applied tō∂-closed forms. One interesting choice of
u is whenΩ is the unit ball and we let the pointz tend to a boundary point.
Chosings as in [1] we get in the limit, whenz is on the boundary that
s = z̄ · dζ and

u =
z̄ · dζ

1− z̄ · ζ
.
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Therefore, for reasons of bidegree, the boundary values ofK(γ) are given
by a formula that only involvesα1,1.
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