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SUBHARMONICITY PROPERTIES OF THE BERGMAN
KERNEL AND SOME OTHER FUNCTIONS ASSOCIATED TO
PSEUDOCONVEX DOMAINS.

BO BERNDTSSON

ABSTRACT. Let D be a pseudoconvex domain @ x C? and letg

be a plurisubharmonic function iv. For eacht we consider the:-
dimensional slice oD, D, = {z;(t,z) € D}, let ' be the restriction

of ¢ to D; and denote by, (z, () the Bergman kernel aD; with the
weight functiong®. Generalizing a recent result of Maitani and Yam-
aguchi (corresponding to = 1 and¢ = 0) we prove thatog K,(z, z)

is a plurisubharmonic function iv. We also generalize an earlier re-
sults of Yamaguchi concerning the Robin function and discuss similar
results in the setting dk™.

1. INTRODUCTION

Let D be a pseudoconvex domain @ x C" and let¢ be a plurisub-
harmonic function inD. For eacht we consider the:-dimensional slice
of D, D, = {z;(t,z) € D} and the restrictiong’, of ¢ to D,. Denote
by A? = A%(D,,e*") the Bergman space of holomorphic functiongin

satisfying
/ Ih?e %" < co.
Dy

The Bergman kernek’;((, z) of A? for a pointz in D; is the unique holo-
morphic function of{ satisfying

/D WOTC 2)e 9 = h(z)

for all functionsh in A2. We shall prove the following theorem.

Theorem 1.1.With the notation above, the functiarg K(z, z) is plurisub-
harmonic, or identically equal te-cc in D.

In particularlog K is plurisubharmonic im for z fixed. Theorem 1.1 was
previously obtained in [15] in the case= 1 and¢ = 0.

Theorem 1.1 may be seen as a complex version of Prekopa’s theorem (
see [16]) from convex analysis. This theorem says tha(if y) is a convex
function inR}* x R} and we define the functiopin R” by

(1.1) 6—&@):/ e~ @) dy.
1
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then¢ is also convex. Equivalently, we may define

¢(x) = log k(x),

k(r) = ( / ] e_‘b(x’y)dy)_l :

For eachr fixed, k(z) can be seen as the “Bergman kernel” for the space
Ker (d) of constant functions ifiR"™, since the scalar product in

L2(R™, e~9(®)

where

of a function,u, with k(z) equals the mean value of i e the orthogonal
projection ofu on the space of constants. Thus Theorem 1.1 is what we get
by replacing the convexity hypothesis in Prekopa’s theorem by plurisub-
harmonicity, and the kernel of by the kernel ofd. (In the complex set-

ting we also need to pay attention to the domains involved, since a general
pseudoconvex domain cannot be defined by an inequality involving global
plurisubharmonic functions.)

One interesting case of the theorem , where the analogy to Prekopa’s
theorem is more evident, is whén 0) lies in D (for ¢ in some open set),
andD; and¢' are both for fixed invariant under rotationsy(z) = 2. It
then follows from the mean value property for holomorphic functions that
K,(¢,0) is for each fixed a constant independent Of

()"

The following theorem from [3] is therefore a corollary of Theorem 1.1.

Theorem 1.2. Assume that for each fixedD; and ¢! are invariant under
rotationsry(z) = €2, Define the functiow by

o3 _ / -
Dy

Theng is plurisubharmonic.

In particular, takingy = 0 it follows that under the hypothesis of Theo-
rem 1.2, the function

—log | Dy,

where|V| stands for the volume of a set, is plurisubharmonic. This has
recently been used by Cordero-Erausquin (see [7]) to give a proof of the
Santal6 inequality.

Still under the hypotheses of Theorem 1.2 we can also introduce a large
parameterp, and define a functioép by

o-Phn(t) _ / —)
Dy
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Thuse~%(®) is the LP-norm ofe~¢(=-), From the plurisubharmonicity af,
it is not hard to deduce that

is also plurisubharmonic. This is one version of Kiselmanisimum prin-
ciple for plurisubharmonic functions, [10].

One main application of Kiselman’s minimum principle, combined with
a use of the Legendre transform, was to give a procedure to “attenuate
the singularities” of a given plurisubharmonic function: Given an arbitrary
plurisubharmonic functiow, and a numbet > 0, Kiselman constructed
a new plurisubharmonic function which is finite at all points where the Le-
long number ofp is smaller that and still has a logarithmic singularity at
points where the Lelong number gfexceeds:. This was in turn used to
give an easy proof of Siu’'s theorem on the analyticity of sets defined by
Lelong numbers ( see [11]).

Itis a consequence of the Hormandérestimates for thé-equation that
if a is a point in a bounded domaihand¢ is plurisubharmonic inf2, then
there is some holomorphic function i (€2, e=¢) which does not vanish at
a, if and only if the functione=? is locally integrable in some neighbour-
hood ofa. Using this we can prove the following theorem, which can be
seen as an alternative way of attenuating the singularities of plurisubhar-
monic functions.

Theorem 1.3.Let(2 be a pseudoconvex domainGrt and let¢ be plurisub-
harmonic in€). Letvy be the plurisubharmonic function 2 x ) defined
by

P(a,z) =¢(z) + (n—1)log |z — al.
Put

x(a) =log K,(a,a),

where K, is the Bergman kernel fad?(2, e=2¥"). Theny is plurisubhar-
monic in{2, is finite at any point where the Lelong numbergok smaller
than 1 and has a logarithmic singularity at any point where the Lelong num-
ber of ¢ is larger than 1. The singularity set gf {a; x(a) = —oc} is equal
to (the analytic) set where the Lelong numbenas$ at least 1.

Theorem 1.3 suggests the introduction of a family of Lelong numbers,

Vs(¢, a)
by replacing the functior by
¢(z) + slog|z —

for 0 < s < n, and looking at points where the corresponding funcjias
singular. We would then get the so called integrability index (see e g [12])
for s = 0 and the classical Lelong numbers toe n — 1.

Theorem 1.1 is also intimately connected with another result concerning
curvature of vector bundles. We explain this in the simplest case, When
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is the product/ x Q of two domains inC¥ andC?” respectively. Let us also
here assume that is a bounded function, so that all the Bergman spaces
A%(Q,e~%") are equal as vector spaces, but the norm variestwiile can

then define a vector bundI&, overU by taking B, = A%(Q,e~?"). This

is then a trivial vector bundle, of infinite rank, with an hermitian metric
defined by the Hilbert space norm. Our claim is that this vector bundle
is positive in the sense of Nakano. This can be proved by methods very
similar to the proof of Theorem 1.1. Such a result however seems to be
more natural in the setting of complex fibrations with compact fibers (so
that the Bergman spaces are of finite dimension) and we will come back to
it in a future publication.

We shall give two proofs of Theorem 1.1. The first, and simplest, one is
modeled on one proof of Prekopa’s theorem given by Brascamp and Lieb,
[1]. Brascamp and Lieb used in their proof a version of Hormandets
estimates for thé-operator instead af. They also proved directly this?-
estimate by an inductive procedure, using a version of Prekopa’s theorem
in smaller dimensions. Our first proof adapts this proof to the complex case
but starts from Hormander’s theorem.

The second proof does not use Hormander’s theorem, but rather the a pri-
ori estimates behind it. (It is somewhat similar to a recent proof of Theorem
1.2 given by Cordero-Erausquin, [6], which is in turn inspired by [2].) Our
proof is based on a representation of the Bergman kernel as the pushfor-
ward of a subharmonic form. We have included that proof since it seems to
us that it will be useful in other similar situations. As an example of that
we give a generalization of a rather remarkable result of Yamaguchi on the
plurisubharmonicity of the Robin function, [19]. We finish the paper with
a short discussion of what a real variable version of a subharmonic form
should be and how this notion can be used to prove Prekopa’s theorem and
real variable versions of Yamaguchi’s result, [5].

| would like to thank Christer Borell for several interesting discussions
on the material of this paper.
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2. A SPECIAL CASE OFTHEOREM1.1

Let V' be a smoothly bounded strictly pseudoconvex domai@inwith
defining functiorp so thatV” = {(, p(¢) < 0}. LetU be a domain irC and
let ¢ be a smooth strictly plurisubharmonic function in a neighbourhood of
U x V. Fixapointz in V and letk,(-, z) be the Bergman kernel fér with
the weight functionp’.The main step in proving Theorem 1.1 is to prove
that in this situation/<;(z, z) is a subharmonic function af

For any square integrable holomorphic functioim V/

(2.1) h(z) = /V WORG 2)e

is independent of. We shall differentiate this relation with respect tand
will then have use for the following lemma.

Lemma 2.1. Let V be a smoothly bounded strictly pseudoconvex domain
in C*, and lety be a function inA x V" which is smooth up to the boundary.
Let K,((, z) be the Bergman kernel for the domdinwith weight function

¢t. Thenk, is for z fixed inV” smooth up to the boundary &fas a function

of ¢, and moreover depends smoothlyton

Proof. Letv, be a smooth function i supported in a small neighbourhood
of z, depending smoothly ofy and putf; = dv;. Leta, be the solution of
the 9-Neumann problem

DtOét = (55: —+ @*5)% = fta
whered; is the adjoint of) with resepect to the weighif. Sinceu, = 9; o,
is the minimal solution in.(V, e=*") to the equatiodu = f, we have

(€)= u(C) - / OKACe

Choosingy, appropriately (i e so thate ¢" is a radial function of integral
one in a small ball with centetf) we get that the last term on the right hand
side is equal taK,((, z). It is therefore enough to prove thathas the
smoothness properties stated. To see this, note théet diose ta)

Dt = DO - St7
with S; an operator of order 1 with smooth coefficients which vanishes for
t = 0. Hence
([ — Rt)Oét = ([ — DalSt)Oct = Dalft.

For ¢ sufficiently close to 0 we can invert the operator- R, and the
lemma follows from basic regularity properties of irdNeumann problem
in strictly pseudoconvex domains. 0

We now differentiate the relation 2.1 with respect taising the lemma.
Let us denote b@f the differential operator

b0 _, 0 00

“° T o o
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It follows that the function
u = 85)[(15

is for fixed ¢ orthogonal to the space of holomorphic functionsdih By
the reproducing property of the Bergman kernel we have

t

O(t) := Ki(z,2) = /VKt(C,Z)Kt(C,Z)e_d’ :

We shall use this formula to computg®/otot. We first get, using the
notationd;, = /0t

0P = —_— t PV t

—_— = / athKt€_¢ +/ KtafKte_d) .

Since K; is holomorphic and: is orthogonal to the space of holomorphic
functions, the second term vanishes. We next differentiate once more.

azq) = / léthP@i(bt -+ / 8¢5thK67¢t
- = t .
otor ~ Jy v

Using the commutation rule
(2.2) 070 = 0,0] + ¢ui
in the second term we get

82 = t t 3 T t
otot 7 \% \%4

Moreover, by differentiating the relation

0= / 0y Ky Kye '
\%4

we find that

/ 9,0 K Kye;® = —/ 0P K, [2e" = —/ luf?e=?".
v v v

All in all we therefore have that

62(p = t '3 t
2.3 —— = Ki|’e™? K2—¢—/ e 7.
(2.3) otor /V|at t’ € +/V¢tt| t| € V|U| €

To estimate the last term we note thagolves thed-equation

o9

Ea

(the last equation follows from a commutation rule similar to 2.2 siige
is holomorphic). Moreover, is the minimal solution to this equation, since

u 1S orthogonal to the space of holomorphic functions. By HOrmander’s
theorem ( see [8] for an appropriate formulation ) we therefore get that

/V [ufe™ < /VZ<¢t>j’ffjfke—¢i

ou = f = 00°K, = K,
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Where(gbt)ﬂ“ is the inverse of the complex Hessiangéf Inserting this into
2.3 and discarding the first (nonnegative) term we have

P ¢
—— > [ |Ki|*De?
ot 2 |, 1D,

D= thf - Z(qﬁzjik)ilgbtfj(ét_fk'

D equals precisely the determinant of the full complex Hessiandwided
by the determinant of the Hessian @f. Since¢ is strictly plurisubhar-
monic, this quantity is positive, and it follows thétis subharmonic.

To see that in fact evetvg K; is subharmonic we change the weight
function ¢ to ¢(t, ¢) + ¢ (t) wheret is an arbitrary smooth subharmonic
function. The Bergman kernel for the new weight- ¢ is e¥ K, wherekK,
is the Bergman kernel fas. Thereforec¥ K, is subharmonic for any choice
of subharmonic functiory. This implies thatog K is subharmonic.

where

3. THE GENERAL CASE OFTHEOREM1.1

In the previous section we have proved Theorem 1.1 when the domains
D, are smoothly bounded and do not depend,amder the extra assump-
tion that¢ is smooth up to the boundary. The general case is in principle a
rather straightforward consequence of this special case. There is however
one subtility, arising from the fact that some of the fiber domdmsnay
not be smoothly bounded. This happens at points where the topology of the
fiber changes, something which is not at all excluded by our hypotheses. (
The simplest such example is whén = {¢(z) < Ret} where is a sub-
harmonic function of one variable with two logarithmic poles.Wikert is
large negative]D; is a union of two disjoint islands around the poles. The
two islands come closer det increases and eventually touch in a figure
eight, after which they join to one single domain.)

Lemma 3.1. Let(), and(2; be bounded domains ii", with 2, compactly
included in(2,. Let¢; be a sequence of continuous weight functionQ;in
such that

¢;=¢
in  and thatg; increases and tends to to infinity almost everywhere in
01\ Q. Assume that the space of holomorphic functions?ff2,, e=%°) is
dense in the space of holomorphic functiong.#i2, e~%). Fix a pointz
in Qo and letK; be the Bergman kernel farin L?(2;, ¢;). Let K be the

Bergman kernel foe in L2(Q, ¢).
ThenK;(z, z) increases ta< (z, z).

Proof. The extremal characterisation of Bergman kernels,

K(z,2) = sup [h(2)]?,
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where the supremum is taken over all holomorphic functions®afiorm at
most 1 makes it clear thdt;(z, z) is an increasing sequence and that each
K;(z, z) is smaller tharf(z, z). Since

Kj(z,2) = [ |KPPem®
1951
it follows in particular that<; has uniformly bounded norm ib?(Q;, e=%7).
The sequencé’; therefore has a weakly convergent subsequenté(ify, e=¢).
Let & be the limit of some weakly convergent subsequenceh llés in
L2(921,e~%) we have that

[ nEee < / h2e | 112
Q1\Qo Q1\Qo !

tends to zero. It follows that any weak lintitsatisfies

h(z):/Q hke™®.

Since holomorphic functions if?(€2;, e~?°) are dense i.?(€2y, e =), the
same relation holds for anyin L*(Qq,e=%). Sincek is necessarily also
holomorphic,k = K and the limit is in fact uniform on compact subsets of
Qo. In particular

lim K;(z) = K(z).
U

The proofs of the next two lemmas is similar but simpler and is therefore
omitted.

Lemma 3.2. Let(2 be a bounded domain anga plurisubharmonic weight
function . Let2; be an increasing family of subdomains with union equal to
(. Letz be afixed point irf), and letk; and K be the Bergman kernels for
Q; and Q2 (with weight functiony) respectively. Thei;(z, ) decreases to
K(z,z).

Lemma 3.3. Let() be a bounded domain ang a decreasing sequence of
plurisubharmonic weight functions. Letbe a fixed point irf2 and let K
and K be the Bergman kernels for the weight functiensand ¢ respec-
tively. Thenk;(z, z) decreases td(z, z).

To verify one of the hypotheses in Lemma 4.1 we need an approximation
result.

Lemma 3.4. Let), and(2; be smoothly bounded pseudoconvex domains in
C™ with ©, compactly included if2;. Assume there is a smooth plurisub-
harmonic functionp in Q; such thatQ, = {z € Q;,p(z) < 0}. Then
holomorphic functions in.?(€2;) are dense in the space of holomorphic
functions inL?(€).
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Proof. Let h be a square integrable holomorphic functiofin The crux of

the proof is to approximatk by functions holomorphic in a neighbourhood
of the setX = {p < 0}. This can be done by standafd-theory if O

is a regular value op so that the boundary d2, is smooth. In the non-
smooth case, the possibility to approximate with function holomorphic near
X follows from a result by Bruna and Burgues, cf Theorem B in [4].

Next, we leth be holomorphic neakX and show how to approximate
with functions holomorphic irf2,. Let H be an arbitrary extension af
from a neighbourhood ok to a smooth function with compact support in
Q, and putf = 9H. Letk;(s) be a sequence of increasing convex functions
that vanish fors < 0 and tend to infinity fors > 0 and setp; = k; o p.

By Hormander's theorem, [9], we can solve the equation = f with
estimates in.?(Q2;, e~%). Sincef is supported in the complement Qf it
follows thatv, tends to zero ir.?(Qy). HenceH — v, is an approximating
sequence. O

The final lemma gives the semicontinuity &%.

Lemma 3.5. Let D = {(t, 2); p(t, z) < 0} wherep is smooth and strictly
plurisubharmonic near the closure @ and moreover has non-vanishing
gradient onoD. Assumey is smooth and plurisubharmonic near the clo-
sure of D. ThenK(z, z) is for fixedz upper semicontinuous as a function
of ¢.

Proof. Consider a point and lets be nearby points tending to We may
chooser > 0 so that all fibersD, are contained in the open sétwhere
p(t, z) < e. Note that the set-valued functien— D, is lower semicontin-
uous, in the sense that iy, contains a compact séf, the K is contained

in all D, for s sufficiently close ta. Let K((, z) be the Bergman kernel
of D, for a fixed pointz. Since the domain®, all contain a fixed open
neighbourhood of the L2-norms of K, are bounded. Any sequencesf
therefore has a subsequence weakly convergent on any compact subset of
D,. The L?-norm of any weak limit: can not exceed the liminf of the?-
norms of K, over D,. By the extremal characterization of Bergman kernels
it follows that

lim sup KS<Z> Z) < Kt(zv Z)a
So we are done. O
We can now complete the proof of Theorem 1.1, and start by proving
thatlog K is plurisubharmonic irt for z fixed. We first assume thd? is
smoothly bounded, defined as
D = {(t,2); p(t, z) < 0}

wherep is smooth and strictly plurisubharmonic near the closur® ofVe
also assume that is smooth and plurisubharmonic near the closur@of
Assume firstt = 1 and fix a pointt in C, sayt = 0. If U is a sufficiently
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small neighbourhood of 0 all the fibefs, are contained in a fixed pseu-
doconvex domairt” = {p(0,¢) < €}. In U x V we can compose with

an increasing sequence of smooth convex functigrthat tend to infinity
whenp is positive. We can now apply the result from section 3/t V'
with ¢ replaced byp; = ¢ + k; o p and letj tend to infinity. Since the set
where a smooth strictly subharmonic function equals zero has zero measure,
¢, tends to infinity a e inf2; \ 2, By Lemma 4.1 it follows thatog K can
be written as an increasing limit of functions subharmonic with respect to
Since, by the last lemmiyg K is also upper semicontinuous it follows that
it is subharmonic. Again by the upper semicontinuity we get liyaf<; is
plurisubharmonic ifc > 1 since its restriction to any line is subharmonic.

It is now easy to remove the extra hypothesisioande¢. If D is an ar-
bitrary pseudoconvex open set it has a smooth strictly plurisubharmonic ex-
haustion function, and so can be written as an increasing union of domains
of the type satisfying the extra hypotheses. Near each such domain we can
regularizep by convolution. From lemmas 4.2 and 4.3 we get tbhgtk;
is a decreasing limit of plurisubharmonic functions, and so is plurisubhar-
monic, or identically equal to minus infinity.

We have thus proved that, under the hypotheses of Theoreod A is
subharmonic as a function ofor z fixed. To see that it is plurisubharmonic
in ¢t andz jointly we use, as in [19], the Oka trick of variation of the domain.
We need to prove that, for any choicecwiin C", the function

log Ki(z + ta, z + ta)

is subharmonic irt. But, this is precisely the Bergman kernelzafor the
domain

Dt—ta

with the weight function translated similarily. Since the translated domains
are also pseudoconvex, and the translated weight function is still plurisub-
harmonic, it follows thatog K;(z + ta, z + ta) is subharmonic i and we

are done.

4. SUBHARMONIC CURRENTS

We shall next give an alternate proof of Theorem 1.1 which is based on a
representation of the Bergman kernel as the pushforward of a subharmonic
form. To prepare for this we give in this section some general facts on
subharmonic forms or currents.

Let 7" be a current of bidimensiofi, 1), i e of bidegredn,n) in U x C"
whereU is an open set ift. We say thafl" is subharmonic if

i00T > 0.

Let = be the projection front; x C? to C,. If T'is compactly supported in
the fiber direction, so that the supportBis included inU x K with K a
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compact subset df™ the pushforwardr.(7") of T' to U is the distribution
in U defined by

m(T).x =T.7"x

for any smooth compactly supportéd 1) form y in U. Similarily, if T'is
a current of bidegreén + 1,n + 1) we define the pushforward @f by the
same formula, but taking to be a function. Since

1007, (T) = m.(i00T)

it is clear thatr, (7') is subharmonic ifl" is a subharmonic current of bide-
gree(n, n).

If T is an (n,n)-differential form with, say, bounded coefficients, the
pushforward off” is a function whose value at a poinéquals

[ T
{t}xCz

Clearly, the pushforward only depends on the componeifit of bidegree
(n,n) in z. Conversely, lek be a form of bidegreé¢n,n) in z, with co-
efficients depending ot It follows from the above that to prove that the

function
/ K
{t}xCz

is subharmonic it suffices to find a subharmonic fofivof bidimension
(1,1) which is compactly supported in the fiber direction and whose com-
ponent of bidegreén, n) in z equalss.

In order for this argument to work it is crucial th&tbe globally defined
and compactly supported in the fiber direction (or at least satisfies inte-
grablility conditions). The currents that we will encounter later are however
only defined in some pseudoconvex domain. To get globally defined cur-
rents we extend by 0 in the complement of the pseudoconvex domain. This
of course introduces a discontinuity which gives an extra contribution to
take into account when computingdT in the sense of distributions. The
local calculations needed are summarized in the following lemma, which
is a variant of a by now standard method to prdveestimates for thé-
equation, see [9] p 103 .

Lemma 4.1. Let p be a smooth real valued function in an open Bein
C". Assume thatlp #£ 0on S = {z, p(z) = 0}, so thatS is a smooth real
hypersurface. Let” be a real differential form of bidimensidn, 1) defined
wherep < 0, with coefficients extending smoothly upstoAssume

OpNT

vanishes on S, and that
OpANOpNT
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vansihes to second order ¢ Extend? to a currentT in U by putting

T = 0 wherep > 0. Then
i00p N TdS
0p]
wheredS is surface measure afi and y is a characteristic function.

(4.1) i00T = Xpeo  100T +

In particular, even though it is not assumed that all'obut only certain
components of’, vanish onS, the contribution coming from the disconti-
nuity is a measure, and not, as might be expected, a current of order 1.

Proof. The hypotheses dfi mean that

(4.2) > 0Ty = pex,
where)  ¢,p; vanishes ort. Therefore, orb,
0 oT .+
0=>" a—zk(pck) => »; 82; +> 0Ty
o]
OT %
(4.3) — Z pjw_]: = Z PirT k-

Let w be a smooth function of compact supportlin Then, using the
divergence theorem and writirig; for the components df, we find that

/z'aéwAT:/ > wiTy =
p<0 p<0

ow 8T»,;
= § 2T % — E S L

<0
By equation (4.2) the boundary integral vanishes. Applying the divergence
theorem once more to the second integral we get

82ij€ / T,
w — w ; ds/|0op|.
/p<0 Zazjazk o >0 55, 15/19]

We then use (4.3) in the new boundary integral and find

/ i00w AT = / widdT + / Z pirLxdS/|0p].
p<0 <0 p=0

P
This completes the proof of the lemma. O

5. SECOND PROOF OFTHEOREM 1.1

Again, we first consider the situation described at the beginning of section
2. As before, our starting point is the fact that the function
u = 8?[(,5

is for fixed ¢ orthogonal to the space of holomorphic functionsdih We
now put
kt - thC1 A an,
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so thatk; is K, interpreted as afn, 0)-form and, slightly abusively, define
Ok = K, dCy A ...dG,,.

Sinced has closed range, the orthogonal complement of the kerrl of
equals the range @. Therefored’k, = d*« for some forma (in ¢) of
bidegregn, 1) which can also be taken to bBeclosed (and is then uniquely
determined). By an argument similar to Lemma 2xldepends smoothly
ont. Write « = Y a;d(; A d¢. Sincea lies in the domain 08*, o satisfies
the d-Neumann boundary condition, a;p; = 0 on the boundary of¥'.

Puty = 3 ;d(;, whered(; stands for the wedge product of aly:s
exceptd(;, with a sign so that

d¢; A dC; = déy A ...dC,.

For later reference we note that tieNeumann boundary condition an
translates tédp A v = 0 ondV. Putg = dt A v + k, and letd? = e?0e~?
be a twisted-operator. The equation

Ok, = 0
is equivalent to
9%g = 0.
We claim that the fornT’ defined as
T = chg A Ge™®,

wherec, is a constant of modulus 1 chosen so thas positive, for¢ in V/
andT = 0 for ¢ outside ofl” is a subharmonic form. Since the component
of T of bidegregn, n) in ¢ equals

Ry = ant N l;:t

Ki(z,2) = //{t

is a subharmonic function of B
To prove the subharmonicity af we first computedoT for ¢ inside of
V. We use the product rule

INaNbe ®)=0%Nbe?+ (—1)%e% A e ?,
and a similar rule for applying. Remembering that?g = 0 we get
(5.1) i00T = ¢,i0%°0g N e + c,idg A 5_ge_¢.
From the commutation rule
(0°0 + 00%)g = 006 A g,

together witho?g = 0 it follows that the first term on the right hand side
can be written

it then follows that

100 N T.
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This term is therefore nonnegative singés plurisubharmonic. To analyse
the second term we introduce the notatigrior ¢ anda, for — K;, so that
g can be written

— Z OZjdéj.
0
The second term equals
$ Oaj Doy
m Ik G

Here the indices run from O te. Consider first the part of the sum where
both indices are greater than 0. Since the farm 0-closed for fixed this

part equals
Z ’ 8%

multiplied by the volume formi/\. Ewdently, the part of the sum where

both indices are 0 equals

|8a0
9o

Finally, the terms in the sum when precisely one of the indices are 0 vanish

sinceay = K, is a holomorphic function of.

In conclusion,i00T > 0 for ¢ in V. It now remains to compute the
contribution toiddT which comes from cutting off” outside ofV/. We
apply Lemma 4.1 to our currefit = ¢,g A ge=¢ andp equal to the defining
function of V. Thenp is independent of = (,, SO

%d).

OpNg=0pNdtAy=0

onU x gV sincedp Ay = 0 ondV. Hence the hypotheses of Lemma
4.1 are fulfilled. Sincé/ is pseudoconvex it follows that,,00p A g A g is
non-negative oV so

i00T > 0.
In conclusion’ is a subharmonic current and it follows thi&t is a subhar-

monic function oft for z fixed. The rest of the proof of Theorem 1.1 runs
as before.

6. SNGULARITIES OF PLURISUBHARMONIC FUNCTIONS

We first recall the definitions and basic properties of Lelong numbers (
our basic reference for these matters is [12])¢ lis a plurisubharmonic
function in an open séf in C" anda is a point inU, theLelong numbeof
¢ atais

(6.1) Y, a) = lim (logr) ™" sup 4(2).

|z—al=r
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Equivalently (see [12] p 176) we may introduce the mean valug @fer
the sphere centered atvith radiusr, M (¢, a,r) and put

(6.2) v(¢,a) = lim (logr)~' M(¢,a,r).

The Lelong number measures the strength of the singularity aifa. If
v(¢,a) > T then
¢(z) < 7loglz —a
for z close toa.
In the one variable case we can decompose a subharmonic function lo-
cally as a sum of a harmonic part and a potential

plz) = / log |z — Cdu(C)

whereu = 1/(2m)A¢. Itis easy to verify that the Lelong number is then
equal tou({a}). Using the potential it is also easy to see that, in the one
variable case, the Lelong numberaas greater than or equal to one if and
only if e=2¢ is not integrable over any neighbourhooduof

In any dimension one define&p, a), theintegrability indexof ¢ ata, as
the infimum of all positive numbetssuch that

20/t

is locally integrable in some neighbourhood«wfBy a theorem of Skoda
([18]), the inequality

U@, a) < (9, a) < ni(e,a)

holds in any dimension. The left inequality here (which is the hard part)
says that if the Lelong number ofat a is strictly smaller than 1, theer2?
is locally integrable near.

Let 2 be a domain inC"™ and let¢ be a plurisubharmonic function in
Q. We consider the Bergman kernél(z, z) for A%(Q2,¢). It is clear
that if a is a pointQ) ande~¢ is not integrable in any neighbourhood of
a, then any holomorphic function id?(Q2, ¢) must vanish at, so in par-
ticular K(a,a) = 0. Conversely, ifQ is bounded and~ is integrable in
some neighbourhood afthen a standard application of Hormandei’s
estimates shows that there exists some functiofif, ¢) which does not
vanish atu. SinceK (a, a) equals the supremum of the modulus squared of
all functions inA?(£2, ¢) of norm 1, it follows thatK (a, a) > 0 in that case.
Thus, at least if2 is bounded, the set whekez K = —c is precisely equal
to the nonintegrability locus af .

For z in Q andw in C" we now consider the restriction ¢fto the com-
plex line through: determined byw

Gzw(A) = (2 + Aw).

For any fixedz in Q ¢, , is defined for) in the unit disk, ifw is small
enough. Lef<, ,,(0,0) be the Bergman kernel for the unit disk, with Lebesgue
measure normalized so that the total area is one, equipped with the weight
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function 2¢. ,,. By the above X, ,,(0,0) = 0 if and only if the Lelong
number of¢, ,, at the origin is at least 1. By Theorem 1lag K, ,, is a
plurisubharmonic function, so for fixedthe set ofw where it equals-co
is either pluripolar or contains a neighbourhood of the origin. Thus, if the
Lelong number at the origin of one single slice function is smaller than 1, it
must be smaller than 1 for all slices outside a pluripolar set.

It follows that the Lelong numbers of all slices outside a pluripolar set
are equal. This common value also equals the Lelong numbgabt. To
see this, first note that by the first definition of Lelong number in terms of
supremum over spheres, it follows that the Lelong number for the restriction
of ¢ to any line through: must be at least as big as thedimensional
Lelong number at. The converse inequality follows if we use the second
definition of Lelong numbers in terms of mean values over spheres, and
apply Fatou’s lemma. To avoid the consideration of exceptional lines we
now introduce the function

1
b(2) = 5 /w:E log K, ,(0,0)dS (w),

where the surface measu#é is normalized so that the sphere has total
measure equal to 1.

Theorem 6.1. The functiony, is well defined and plurisubharmonic in the
open sef), of points of(2 whose distance to the boundary is greater than
The sequence, decreases t@ ase decreases to 0. The singularity set
wherep., = —oo Is for anye > 0 equal to the analytic set where the Lelong
number ofp is at least 1. If the Lelong number ofat = equalsr > 1, the
Lelong number of, at z is at least equal to- — 1.

Proof. Sincelog K, ,, is subharmonic with respect to t is clear thaty,
decreases with to log K, ,. But K, is the Bergman kernel at the origin
for a normalized disk with a constant weight;>*(*), and so equalg*(*),
Hence the limit ofp. is equal top. If the Lelong number o at = is smaller
than 1 we have seen above thaf K, ,, (0, 0) is not identically equal te-oo
S0 its mean value over a sphetg,is not equal to—occ. On the other hand
we have also seen above that(f, ) > 1, thenlog K, ,, = —co forwina
full neighbourhod of 0, s@.(z) = —oco. HenceS is equal to the set where
(9, z) > 1, which by Siu’s analyticity theorem, [17], is analytic.

It remains only to prove the last statement of the theorem, so assume 0
lies in 2 and thaty(¢,0) = 7 > 1. Then, if7’ < T,

e 9 > 1/\z|7l
if |z] is small enough. Fow fixed andh(\) holomorphic we get

/ |h‘2€72¢(z+)\w)dm()\) > / ‘h‘2672¢>(z+)\w)dm<)\) >
[Al<1

[Aw|<]2|

- /A|<1 /(122 )dm(2) > ClR(0) /|22,
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Hence
K..(0,0) < Oy

where the constant can be taken uniform forialbf fixed modulus equal
toe > 0. It follows that the Lelong number af, at z is at least”’ — 1, and
therefore at least — 1 sincer’ is an arbitrary number smaller than [

The functiong, thus “attenuates the singularities” ©in much the same
way as Kiselman’s construction in [12]. ( Kiselman even gets that the Le-
long number of the constructed functiequalsT — 1.) In precisely the
same way as in Kiselman, [11], this construction can be used to prove the
Siu analyticity theorem. Let

Er ={z7(¢,2) > 7}.

First, it follows from the Hérmander-Bombieri theorem that the noninte-
grability locus of any plurisubharmonic function is always analytic. For a
given plurisubharmonic functior, andé > 0 we put, for some choice of
e>0

W = 3ne. /0.

By Theorem 6.1y is finite at any point where(¢, z) < 1, and therefore
(see [9])e~V is locally integrable near any such point. On the other hand
e? is not locally integrable near a point wheyép, z) > (1 + §) since the
Lelong number of) at such a point is at lea8t:. Therefore we have, i
denotes the nonintegrability locus ©f¥, that

E]__H; C Z C El-

Rescaling, we may of course for any> 0 andd > 0 in a similar way find
an analytic seZ, 5 such that

E.CZ.s CE .

HenceF; equals the intersection of the analytic s&ts for 6 > 0 and is
therefore analytic.

In a similar way we can consider, instead of restrictiong db lines,
the restriction ofp to k-dimensional subspaces. This will give us a scale
of “Lelong numbers” fork = 1,...n that starts with the classical Lelong
number and ends with the integrability index.

We close this section by sketching an alternative way of relating Lelong
numbers to Bergman kernels, leading up to Theorem 1.3 of the introduction.
In [18] itis proved that if the Lelong number ¢fata is strictly smaller than
1, thene=% is locally integrable in some neighbourhood of Actually,
Skoda’s proof of this fact gives a bit more, namely that

I(a) := / e 23 /12 — a|2dm(2)
|z—a|<d
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is also finite, ifd is small enough. ( The same argument as in section 7 of
[18] gives, withdo = A¢ that

/ 6—2¢(z)/|2|2n—2 < C/ |Z|_2n_2|2 _ a:|_2"+5da(:v)dm(Z),
|z|<r

|z]<r|z|<R
which is finite since
[ dot) a2

is finite.) On the other hand{a) is comparable to the average of

/ 672¢(a+)\w)dm()\>

over allw on a sphere, sf(a) must be infinite if the Lelong number gfat
a is larger than or equal to 1. In conclusion

{a;1(a) = oo} = {a,7(¢,a) = 1}.

We now introduce the plurisubharmonic function

U(z,0) = ¢(z) + (n — 1) log |z — af
and letK, be the Bergman kernel fé@ with weight2¢y?(z) = 2¢(z, a). It
then follows thaty (a) = log K,(a, a) is plurisubharmonic and equal toxo
precisely wherey(¢,-) > 1, so we have proved the first part of Theorem
1.3 from the introduction. The last part of Theorem 1.3 follows from an
argument similar to the last part of the proof of Theorem 6.1.

7. PLURISUBHARMONICITY OF POTENTIALS.

In this section we shall prove a generalization of an earlier result of Yam-
aguchi on the Robin function. Lé? be a smoothly bounded pseudoconvex
set inC} x C; and let as beforé), be then-dimensional slices ob. In
this section we assum@ has a smooth defining functigit, {) such that
dcp # 0 on the boundary of. In particular all the fiber domains are
smoothly bounded and have the same topology.

Theorem 7.1. Let K be a compact subset @f* that is contained inD; for
all t in an open set/. Lety be a positive measure with supporti Let
u(t) be the negative of the energy,oWith respect to the Green functi@r
of D,

ut) = [ Gule. Qaulz)du(o)
Dy
Thenu is plurisubharmonic ifJ.

Here we mean by the Green function the unique function vanishing on
the boundary and satisfying that G is a unit point mass at .
The Green functiodz of a domairt2 with pole atz can be written as the
Newton kernel plus a smooth term
Cn

G(2,¢) = o + (2, ()
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where is harmonic inz and in¢. The function

A(z) =1(z, 2)
is called the Robin function of the domdih Let the measurg in Theorem
7.1 be a uniform mass distribution on a small ball centered at the point
is then equal to (the negative of) the energy.afith respect to the Newton
kernel plus the Robin function atof the domainD;. Since the Newtonian
energy is independent oft follows thatA is plurisubharmonic as a function
of t. Just like in the case of Bergman kernels this implies that évwen
is subharmonic, i > 1. To see this, let. be some complex number and
consider the domai® (a) with fibers

D(a)t = eatDt,

which, being a biholomorphic imagei?, is still pseudoconvex. The Robin
function of D(a) equals:~?n=2)Re(at) A | 50 these functions are subharmonic
for any choice ofu. It follows thatlog A is subharmonic in — 2 # 0, i e

if n > 1. Finally, we can again apply the Oka technique of variation of the
domain (cf the end of section 3) to conclude that ifs the Robin function

of a fixed domair?, log A(z) is plurisubharmonic as a function ofin €.

Proof. We consider the Green functi@r, of D, and letg(t, z) = ¢,(z) be
the Green potential gf in D,. We may assume thatis given by a smooth
density and it is then not hard to see thas smooth up to the boundary in
D. Let 3 be the standard Euclidean Kéahler formGf and set

T =1i0g A Og A Bp_1
in D andT = 0 outside ofD. (Here we use the notatian, = w?/p! for
(1,1)-formsw.) Notice thatl’ is a nonnegative form and that(7") is given
by
w0 = [ 1ol =~ [ Ao =l
Dt Dt

where, as in Theorem 7.1, is the energy of.. Sinceg vanishes on the
boundary ofD, T satisfies the hypotheses of Lemma 4.1. By Lemma 4.1

(7.1) i00T > xpi00T

if D is pseudoconvex. D we get

(7.2) i00T = —(i00g)* A Bn_1.
Write

i00g = i0,0,q + 10,0,9 + 10,0, + 10.0,g.
Hence
(2859)2 N ﬁn—l =
= 2Re (i0,0,9 N 10,0.9) A Bn1 + 2Re (10,0.9 N i0.0,9) N o1 =

= 20gA.g -2 | P9 1
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We thus find
—id0u = ,(i00T) >

> 2 /—AgAng—Q/
([, otz ] 37

> 2(—At/ gedp)idt A dt = —2id0u.
Dy

g 2 n
- dt A dt >
52,07 ) ! =

(Notice that we may move the Laplacian with respect ¢aitside the inte-
gral sign sinceu is independent of and compactly supported inside;.)
Thusiddu > 0, sou is subharmonic and the proof of Theorem 7.1 is com-
plete. O

Notice that the statement in Theorem 7.1 may be generalized to Green
functions for other elliptic equations, besides the Euclidean Laplacian ( see
also Yamaguchi and Levenberg [13]). First, we may replace the Euclidean
metric by an arbitrary Kahler metric, with Kahler forlm on C", and con-
sider the Laplacian with respect to this metric. The same proof as above
applies if we only replace the Euclidean Kahler fosby w. We may even
go one step further and consider elliptic operators of the form

Lu = i00u A Q

where(2 is a closed positive form of bidegr¢e — 1,n — 1).

It is also worth pointing out that the assumption on pseudoconvexity in
Theorem 7.1 can be relaxed. In the proof, convexity properties of the bound-
ary of D only intervene in the application of Lemma 4.1, to conclude that
the form

F =i00p Nidg A Og A Bn_1

is nonnegative on the boundary BX. Therefore we may replace the hy-
pothesis of pseudoconvexity in Theorem 7.1 by the hypothd&sis>"0".
This is of course rather implicit, but to get an idea of how that condition
relates to pseudoconvexity we can consider domaims C x C" of a spe-
cial form. Let us assume e g that the slidésonly depend oRet and
form an increasing family with respect Re ¢, so that they are defined by
inequalities

Dy = {z;v(z) < Ret}.

When checking the positivity of the forfi above one may then replace
both p andg by » = v — Ret, sincep and g are positive multiples of

r. We then see that, whereas the pseudoconvexiy &f equivalent tow
beingplurisubharmoni¢ F' is positive if and only ifv is subharmonic In
particular this is a condition that also makes seng®’inin the next section

we shall briefly discuss analogs of the formalism of the last four sections in
R™,
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8. CONVEXITY PROPERTIES OF FIBER INTEGRALS INR"

We considefR™*! with the coordinates$x, ...x,,) . Whenx is a func-
tion with compact support or satisfying suitable integrability conditions, we
want to study convexity properties of the fiber integral

(1) :/ kdxy...dx, :/ K.
xo=t xo=t

Just like in section 4 we shall arrange things so that
k = Tpo
where(7};) is a matrix of functions. The basic fact of section 4, that the

operation of pushforward of a form commutes with th8-operator, is now
replaced by the following lemma.

Lemma 8.1. LetT = (T};) be a matrix ofL> functions inR"*!. Suppose
that for someR > 0, T' vanishes whef(zy, ...z,,)| > R. Put

@(t):/x:tToo.

"L 9T,
D (t) = / —=
wo=t ; Ox;j0xy,
If T is not smooth the same formula holds in the sense of distributions, if
the right hand side is interpreted as the distributi¢),whose action on a

test function is

If T'is smooth then

—~ 0Ty
S.a= 2 .
“ /Rn+1 ZO: c%j&xka(%)

Proof. If T"is smooth the first formula is clear since the integral of any term
involving a derivative with respect to a variable different fregwanishes.
Hence

—~ 0T, 2T
[ o= v
o=t 55 Ox 0z, 2o=t 0100

The non-smooth case follows from the definition of distributional deriva-
tives. O

It is clear that the lemma holds everi/ifdoes not necessarily have com-
pact support. It suffices that first and second order derivatives of the coeffi-
cients of]" are integrable. Later on we will also have use for a generalization
of Lemma 4.1

Lemma 8.2. LetT = (Tj;) be a matrix of functions that are smooth up to
the boundary in a smoothly bounded dom&ir= {p < 0} in RY. Assume

that
> " Tiwp; = O(p)
J
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and

E:kmm O((p)*)

at the boundary oD. Extend the definition &f to a matrixZ in all of RY
by puttingT” equal to 0 in the complement 6f. Then we have in the sense
of distributions

82Tjk 62Tgkz
2 0z 0z, P 2. 0z 00 2.7 kp]k|d K

The proof is essentially the same as the proof of lemma 4.1. Let us now
consider in particular matrices of the form

Tjr, = e ™.
To compute derivatives df;;, we use the notation
dj = 8/890]
and
df = e¢dje_¢
We get
(8.1)
Ty _ (dwd-’yk + ddy () + dSydi + 'y-d‘d%) e =
axjaxk e} J J J 117k J7I1%k

= (dwjdﬂk + did () + dividyve + vididin + %m%) e ?
(where in the last line we have used the commutation relation
didy = dpd] + 1)
It follows that if we assume

then

0

This identlty can be used exactly as in section 5 to prove the real Prekopa
theorem. Let be a convex function and put

k() = 7o(t) — ( / By e—¢) o
jCO:tq@(xo)e—¢ =1

[ die =0
xo=t

Since

it follows that
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for anyt. This implies that we can solve
dio ==
1

and

djve = dyy;
with ~ and its first derivatives going rapidly to zero at infinity (this is easiest
to see fom = 1, which is all that is needed for the Prekopa theorem). If we
then definel, = v;vxe~¢ as above it follows by Lemma 8.1 that

d? _ B
K'(t) = @/ k2 (wo)e™® = / <Z diidive + ¢jk7ﬂk> e ?.
o=t o=t

But, sincey, only depends ony, it follows just as in the complex case that
> " dividine = ldovol® + Y ldeys|* > 0.
1

Hencek(t) is convex and it follows just like in section 3 that evieg ¢ is
convex, since replacing by ¢ + ax, we see thak(t)e* is convex for any
choice ofa.

In the same way we can adapt the argument of section 7 to prove con-
vexity of Green potentials ( and hence the Robin function, see also [5] who
prove a stronger convexity property of the Robin function), but in that case
it is a little bit less evident what the choice bfshould be. To explain this
we shall first discuss a general notion of subharmonic foriR"in

Consider the space, of differential forms onR} x R]” whose coef-
ficients depend only om. The usual exterior derivativel, preserves this
space of forms. We introduce a new exterior derivatiifepn F' as

d# = Z dyj VAN 8/89@,
where the partial derivative acts on the coefficients of a form (this operator
and the spacé’ are not invariantly defined under changes of coordinates).
If we introduce the operataron £’ by letting it changelz; to dy; and vice
versa, thenl” = 7dr and it is clear thatd#)? = 0. We say that a form in
F'is of bidegredp, q) if its respective degrees i anddy arep andq. A
(p,p)-formn = > ny,;dx; A dy, is symmetric ify;; = 1,7, or equivalently
™ = (—1)Pn. Put
w= Z dz; N dy;.
A form of bidegree(NV, N) is positiveif it is a nonnegative multiple of
wy = w /N!, and a general symmetric form, of bidegre€p, p) is posi-
tive if
a1 NTay N\ ...aN_p NTAN_p AT
is positive for any choice of forms,; of bidegree(1,0). It is not hard to

check that a form
Z Cl,z'jdl’i VAN dyj
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is positive if and only if the matria;; ) is positively semidefinite. A smooth
function ¢ is therefore convex precisely whed” ¢ is a positive form. It
also follows that a positivél, 1)-form can be written as a sum of forms of
the type

alTa,
with a of type (1,0). Therefore the wedge product of a positive form with
a positive(1, 1)-form is again positive. Similarily if we definév;, as the
wedge product of all differentials excegpt,; anddy, ordered so thatz; A

dyi N dvjr, = wy, then
p=Y_ ajdv

is also positive exactly whefu;;,) is nonnegative as a matrix. A forifi =
> Tjrdvj, in F of bidegreg N — 1, N — 1) is subharmonigf

n

02Ty
H _ J
dd*T = ZO: BN

is positive.

With these definitions it is clear that to apply Lemma 8.1 to prove con-
vexity of fiber integrals, we must look for subharmonic forms of bidegree
(n,n) in R™*1, Let D be a smoothly bounded domainitt*! defined by
an inequalityD = {p < 0} where the gradient gf does not vanish on the
boundary ofD and letD; be then-dimensional slices. We say that such a
domain satisfies conditiofC') if

do Nd¥p ANddTp AW

n—1
is positive forx on the boundary ob. This condition is clearly satisfied if
D is convex and it also holds if the fibef$ are of the form

Dy = {2’ = (z1,..7);v(2") < x0}

wherev is subharmonic. As in the case of Theorem 7.1 we assume that the
gradient ofp with respect tar’ is never 0 forz, in an open set , so that

all the slices are smoothly bounded and have the same topologg, et

the Green function ob,. We then have.

Theorem 8.3. Assume thab satisfies conditioC'). Let K be a compact
subset ofR™ that is contained inD, for all ¢ in U. Letu be a positive
measure with support i. Letu(t) be the negative of the energyofvith
respect to the Green functid@gr, of D,

ut) = [ Gula.€)dula)dn(e)
Thenu is convex inlJ. |

The proof of Theorem 8.3 runs in much the same way as the proof of
Theorem 7.1. Let; be the Green potential gfin D, and put

9(1'07 :IZ'/) = Yz (CE’)
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Let .
W' = Zd$j A dy;,
and put 1
T=dgNd*gNW,_ | = z”: Tirdvjp,
0

for z in D, andT = 0 outside ofD. ThenTy, = |dg.,|?, so that

/x o=l

By Lemma 4.1 the contribution we get from the discontinuity at the bound-
ary of D when we computdd” T equals

dd*p N TdS/|dp|.

If D satisfies conditior{C'), this expression is nonnegative (sinégis a
positive multiple ofdp at the boundary oD). By Lemma 8.2 we therefore
have (usingiw’ = d*w' = 0) that

Z 0T Wny1 = dd?T > —(dd* g)* A w!
al’jal’k - n-t

Applying Lemma 8.1 we now get as in the complex case

w0z [ YT ),
81‘]‘81'0

$0:t 1

and it follows thatu is convex.

Let us finally consider the implications of Theorem 8.3 for the Robin
function. Again as in section 7 we taketo be a positive measure of total
mass 1 which is given by a constant density on a small ball centered at a
fixed pointx that we assume to be contained in all the fibBys for ¢ in
some open s€f. The energy integral(t) then equals\;(z) — ¢ whereA
is the Robin function foD, andc is a constant. It follows that the Robin
function is a convex function afif D satisfies conditiofC'). Moreover,A
is strictly convex at any pointsuch that the expression

dd*p AT

is strictly positive at some point of the boundaryof. Consider now the
situation when all the fibers are translates of one fixed dofamR"™

Dt:Q+ta

with « a fixed direction inR™. Thenp(zg,z) = r(x — zoa) Wherer is a
defining function for(2. It follows from the Hopf lemma thatg is a strictly
positive multiple ofdp at the boundary oD, so

dd*p AT
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is a strictly positive multiple of
v=dd*pANdp NdTp A

n—1-

To check the positivity of thign + 1, n + 1)-form, we pull it back under the
map(zo, x, Yo, y) — (To, T — xoa, Yo,y — Yoa). Itis then not hard to see

is positive for any choice af if p is convex and that moreoveris strictly
positive at any point where the Hessianrofestricted to the null space

of dr is strictly positive. IfQ2 is smoothly bounded and convex there will
always be at least some such point at the boundary and the Robin function
is therefore strictly convex. We have therefore proved a special case of a
result from [5]:

Theorem 8.4. Let 2 be a smoothly bounded convex domaifRihand let
A be the Robin function ¢2. ThenA is strictly convex.

In [5] a stronger convexity of the Robin function is proved (namely the
harmonic radius A~/(*=2) is strongly concave), but Theorem 8.4 is al-
ready sufficient to prove the unicity of tHearmonic centeiof (2, i e the
point whereA attains its minimum.
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