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SUBHARMONICITY PROPERTIES OF THE BERGMAN
KERNEL AND SOME OTHER FUNCTIONS ASSOCIATED TO

PSEUDOCONVEX DOMAINS.

BO BERNDTSSON

ABSTRACT. Let D be a pseudoconvex domain inCk
t × Cn

z and letφ
be a plurisubharmonic function inD. For eacht we consider then-
dimensional slice ofD, Dt = {z; (t, z) ∈ D}, let φt be the restriction
of φ to Dt and denote byKt(z, ζ) the Bergman kernel ofDt with the
weight functionφt. Generalizing a recent result of Maitani and Yam-
aguchi (corresponding ton = 1 andφ = 0) we prove thatlog Kt(z, z)
is a plurisubharmonic function inD. We also generalize an earlier re-
sults of Yamaguchi concerning the Robin function and discuss similar
results in the setting ofRn.

1. INTRODUCTION

Let D be a pseudoconvex domain inCk
t × Cn

z and letφ be a plurisub-
harmonic function inD. For eacht we consider then-dimensional slice
of D, Dt = {z; (t, z) ∈ D} and the restriction,φt, of φ to Dt. Denote
by A2

t = A2(Dt, e
−φt

) the Bergman space of holomorphic functions inDt

satisfying ∫
Dt

|h|2e−φt

<∞.

The Bergman kernelKt(ζ, z) of A2
t for a pointz in Dt is the unique holo-

morphic function ofζ satisfying∫
Dt

h(ζ)Kt(ζ, z)e
−φ(t,ζ) = h(z)

for all functionsh in A2
t . We shall prove the following theorem.

Theorem 1.1.With the notation above, the functionlogKt(z, z) is plurisub-
harmonic, or identically equal to−∞ in D.

In particularlogKt is plurisubharmonic int for z fixed. Theorem 1.1 was
previously obtained in [15] in the casen = 1 andφ = 0.

Theorem 1.1 may be seen as a complex version of Prekopa’s theorem (
see [16]) from convex analysis. This theorem says that ifφ(x, y) is a convex
function inRm

x × Rn
y and we define the functioñφ in Rm

x by

(1.1) e−φ̃(x) =

∫
Rn

e−φ(x,y)dy,

1
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thenφ̃ is also convex. Equivalently, we may define

φ̃(x) = log k(x),

where

k(x) =

(∫
Rn

e−φ(x,y)dy

)−1

.

For eachx fixed, k(x) can be seen as the “Bergman kernel” for the space
Ker (d) of constant functions inRn, since the scalar product in

L2(Rn, e−φ(x,·))

of a function,u, with k(x) equals the mean value ofu, i e the orthogonal
projection ofu on the space of constants. Thus Theorem 1.1 is what we get
by replacing the convexity hypothesis in Prekopa’s theorem by plurisub-
harmonicity, and the kernel ofd by the kernel of∂̄. (In the complex set-
ting we also need to pay attention to the domains involved, since a general
pseudoconvex domain cannot be defined by an inequality involving global
plurisubharmonic functions.)

One interesting case of the theorem , where the analogy to Prekopa’s
theorem is more evident, is when(t, 0) lies inD (for t in some open set),
andDt andφt are both for fixedt invariant under rotationsrθ(z) = eiθz. It
then follows from the mean value property for holomorphic functions that
Kt(ζ, 0) is for each fixedt a constant independent ofζ,

Kt =

(∫
Dt

e−φ
t

)−1

.

The following theorem from [3] is therefore a corollary of Theorem 1.1.

Theorem 1.2. Assume that for each fixedt, Dt andφt are invariant under
rotationsrθ(z) = eiθz. Define the functioñφ by

e−φ̃(t) =

∫
Dt

e−φ(t,ξ).

Thenφ̃ is plurisubharmonic.

In particular, takingφ = 0 it follows that under the hypothesis of Theo-
rem 1.2, the function

− log |Dt|,
where|V | stands for the volume of a set, is plurisubharmonic. This has
recently been used by Cordero-Erausquin (see [7]) to give a proof of the
Santaló inequality.

Still under the hypotheses of Theorem 1.2 we can also introduce a large
parameter,p, and define a functioñφp by

e−pφ̃p(t) =

∫
Dt

e−pφ(t,ξ).
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Thuse−φ̃p(x) is theLp-norm ofe−φ(x,·). From the plurisubharmonicity of̃φp
it is not hard to deduce that

φ̃∞ = inf
ξ
φ

is also plurisubharmonic. This is one version of Kiselman’sminimum prin-
ciple for plurisubharmonic functions, [10].

One main application of Kiselman’s minimum principle, combined with
a use of the Legendre transform, was to give a procedure to “attenuate
the singularities” of a given plurisubharmonic function: Given an arbitrary
plurisubharmonic functionφ, and a numberc > 0, Kiselman constructed
a new plurisubharmonic function which is finite at all points where the Le-
long number ofφ is smaller thatc and still has a logarithmic singularity at
points where the Lelong number ofφ exceedsc. This was in turn used to
give an easy proof of Siu’s theorem on the analyticity of sets defined by
Lelong numbers ( see [11] ).

It is a consequence of the HörmanderL2-estimates for thē∂-equation that
if a is a point in a bounded domainΩ andφ is plurisubharmonic inΩ, then
there is some holomorphic function inL2(Ω, e−φ) which does not vanish at
a, if and only if the functione−φ is locally integrable in some neighbour-
hood ofa. Using this we can prove the following theorem, which can be
seen as an alternative way of attenuating the singularities of plurisubhar-
monic functions.

Theorem 1.3.LetΩ be a pseudoconvex domain inCn and letφ be plurisub-
harmonic inΩ. Letψ be the plurisubharmonic function inΩ × Ω defined
by

ψ(a, z) = φ(z) + (n− 1) log |z − a|.
Put

χ(a) = logKa(a, a),

whereKa is the Bergman kernel forA2(Ω, e−2ψa
). Thenχ is plurisubhar-

monic inΩ, is finite at any point where the Lelong number ofφ is smaller
than 1 and has a logarithmic singularity at any point where the Lelong num-
ber ofφ is larger than 1. The singularity set ofχ, {a;χ(a) = −∞} is equal
to (the analytic) set where the Lelong number ofφ is at least 1.

Theorem 1.3 suggests the introduction of a family of Lelong numbers,

γs(φ, a)

by replacing the functionψ by

φ(z) + s log |z − a|
for 0 ≤ s < n, and looking at points where the corresponding functionχ is
singular. We would then get the so called integrability index (see e g [12])
for s = 0 and the classical Lelong numbers fors = n− 1.

Theorem 1.1 is also intimately connected with another result concerning
curvature of vector bundles. We explain this in the simplest case, whenD
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is the productU ×Ω of two domains inCk
t andCn

z respectively. Let us also
here assume thatφ is a bounded function, so that all the Bergman spaces
A2(Ω, e−φ

t
) are equal as vector spaces, but the norm varies witht. We can

then define a vector bundle,E, overU by takingEt = A2(Ω, e−φ
t
). This

is then a trivial vector bundle, of infinite rank, with an hermitian metric
defined by the Hilbert space norm. Our claim is that this vector bundle
is positive in the sense of Nakano. This can be proved by methods very
similar to the proof of Theorem 1.1. Such a result however seems to be
more natural in the setting of complex fibrations with compact fibers (so
that the Bergman spaces are of finite dimension) and we will come back to
it in a future publication.

We shall give two proofs of Theorem 1.1. The first, and simplest, one is
modeled on one proof of Prekopa’s theorem given by Brascamp and Lieb,
[1]. Brascamp and Lieb used in their proof a version of Hörmander’sL2-
estimates for thed-operator instead of̄∂. They also proved directly thisL2-
estimate by an inductive procedure, using a version of Prekopa’s theorem
in smaller dimensions. Our first proof adapts this proof to the complex case
but starts from Hörmander’s theorem.

The second proof does not use Hörmander’s theorem, but rather the a pri-
ori estimates behind it. (It is somewhat similar to a recent proof of Theorem
1.2 given by Cordero-Erausquin, [6], which is in turn inspired by [2].) Our
proof is based on a representation of the Bergman kernel as the pushfor-
ward of a subharmonic form. We have included that proof since it seems to
us that it will be useful in other similar situations. As an example of that
we give a generalization of a rather remarkable result of Yamaguchi on the
plurisubharmonicity of the Robin function, [19]. We finish the paper with
a short discussion of what a real variable version of a subharmonic form
should be and how this notion can be used to prove Prekopa’s theorem and
real variable versions of Yamaguchi’s result, [5].

I would like to thank Christer Borell for several interesting discussions
on the material of this paper.
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2. A SPECIAL CASE OFTHEOREM 1.1

Let V be a smoothly bounded strictly pseudoconvex domain inCn, with
defining functionρ so thatV = {ζ, ρ(ζ) < 0}. LetU be a domain inC and
let φ be a smooth strictly plurisubharmonic function in a neighbourhood of
U×V . Fix a pointz in V and letKt(·, z) be the Bergman kernel forV with
the weight functionφt.The main step in proving Theorem 1.1 is to prove
that in this situation,Kt(z, z) is a subharmonic function oft.

For any square integrable holomorphic functionh in V

(2.1) h(z) =

∫
V

h(ζ)Kt(ζ, z)e
−φt

is independent oft. We shall differentiate this relation with respect tot and
will then have use for the following lemma.

Lemma 2.1. Let V be a smoothly bounded strictly pseudoconvex domain
in Cn, and letφ be a function in∆×V which is smooth up to the boundary.
LetKt(ζ, z) be the Bergman kernel for the domainV with weight function
φt. ThenKt is for z fixed inV smooth up to the boundary ofV as a function
of ζ, and moreover depends smoothly ont.

Proof. Let vt be a smooth function inV supported in a small neighbourhood
of z, depending smoothly ont, and putft = ∂̄vt. Let αt be the solution of
the ∂̄-Neumann problem

�tαt = (∂̄∂̄∗t + ∂̄∗t ∂̄)αt = ft,

where∂̄∗t is the adjoint of∂̄ with resepect to the weightφt. Sinceut = ∂̄∗t αt
is the minimal solution inL2(V, e−φ

t
) to the equation̄∂u = ft we have

ut(ζ) = vt(ζ)−
∫
χ∈V

vt(ξ)Kt(ζ, ξ)e
−φt

.

Choosingvt appropriately ( i e so thatvte−φ
t

is a radial function of integral
one in a small ball with centerz) we get that the last term on the right hand
side is equal toKt(ζ, z). It is therefore enough to prove thatα has the
smoothness properties stated. To see this, note that ift is close to0

�t = �0 − St,

with St an operator of order 1 with smooth coefficients which vanishes for
t = 0. Hence

(I −Rt)αt := (I −�−1
0 St)αt = �−1

0 ft.

For t sufficiently close to 0 we can invert the operatorI − Rt and the
lemma follows from basic regularity properties of the∂̄-Neumann problem
in strictly pseudoconvex domains. �

We now differentiate the relation 2.1 with respect tot̄, using the lemma.
Let us denote by∂φt the differential operator

eφ
∂

∂t
e−φ =

∂

∂t
− ∂φ

∂t
.
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It follows that the function
u = ∂φt Kt

is for fixed t orthogonal to the space of holomorphic functions inA2
t . By

the reproducing property of the Bergman kernel we have

Φ(t) := Kt(z, z) =

∫
V

Kt(ζ, z)Kt(ζ, z)e
−φt

.

We shall use this formula to compute∂2Φ/∂t∂t̄. We first get, using the
notation∂̄t = ∂/∂t̄

∂Φ

∂t̄
=

∫
V

∂̄tKtKte
−φt

+

∫
V

Kt∂
φ
t Kte

−φt

.

SinceKt is holomorphic andu is orthogonal to the space of holomorphic
functions, the second term vanishes. We next differentiate once more.

∂2Φ

∂t∂t̄
=

∫
V

|∂̄tKt|2e−φ
t

+

∫
V

∂φt ∂̄tKtKte
−φt

.

Using the commutation rule

(2.2) ∂φt ∂̄t = ∂̄t∂
φ
t + φtt̄

in the second term we get

∂2

∂t∂t̄
Φ =

∫
V

|∂̄tKt|2e−φ
t

+

∫
V

φtt̄|Kt|2e−φ
t

+

∫
V

∂̄t∂
φ
t KtKte

−φt

.

Moreover, by differentiating the relation

0 =

∫
V

∂φt KtKte
−φt

we find that∫
V

∂̄t∂
φ
t KtKte

−φ
t = −

∫
V

|∂φt Kt|2e−φ
t

= −
∫
V

|u|2e−φt

.

All in all we therefore have that

(2.3)
∂2Φ

∂t∂t̄
=

∫
V

|∂̄tKt|2e−φ
t

+

∫
V

φtt̄|Kt|2e−φ
t −

∫
V

|u|2e−φt

.

To estimate the last term we note thatu solves thē∂-equation

∂̄u := f = ∂̄∂φt Kt = Kt∂̄
∂φ

∂t
,

(the last equation follows from a commutation rule similar to 2.2 sinceKt

is holomorphic). Moreover,u is the minimal solution to this equation, since
u is orthogonal to the space of holomorphic functions. By Hörmander’s
theorem ( see [8] for an appropriate formulation ) we therefore get that∫

V

|u|2e−φt ≤
∫
V

∑
(φt)jk̄fj f̄ke

−φt

,
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where(φt)jk̄ is the inverse of the complex Hessian ofφt. Inserting this into
2.3 and discarding the first (nonnegative) term we have

∂2Φ

∂t∂t̄
≥

∫
V

|Kt|2De−φ
t

,

where

D = φtt̄ −
∑

(φzj z̄k
)−1φtz̄j

φtz̄k
.

D equals precisely the determinant of the full complex Hessian ofφ divided
by the determinant of the Hessian ofφt. Sinceφ is strictly plurisubhar-
monic, this quantity is positive, and it follows thatΦ is subharmonic.

To see that in fact evenlogKt is subharmonic we change the weight
functionφ to φ(t, ζ) + ψ(t) whereψ is an arbitrary smooth subharmonic
function. The Bergman kernel for the new weightφ+ ψ is eψKt, whereKt

is the Bergman kernel forφ. ThereforeeψKt is subharmonic for any choice
of subharmonic functionψ. This implies thatlogKt is subharmonic.

3. THE GENERAL CASE OFTHEOREM 1.1

In the previous section we have proved Theorem 1.1 when the domains
Dt are smoothly bounded and do not depend ont, under the extra assump-
tion thatφ is smooth up to the boundary. The general case is in principle a
rather straightforward consequence of this special case. There is however
one subtility, arising from the fact that some of the fiber domainsDt may
not be smoothly bounded. This happens at points where the topology of the
fiber changes, something which is not at all excluded by our hypotheses. (
The simplest such example is whenDt = {ψ(z) < Re t} whereψ is a sub-
harmonic function of one variable with two logarithmic poles.WhenRe t is
large negative,Dt is a union of two disjoint islands around the poles. The
two islands come closer asRe t increases and eventually touch in a figure
eight, after which they join to one single domain.)

Lemma 3.1. LetΩ0 andΩ1 be bounded domains inCn, with Ω0 compactly
included inΩ1. Letφj be a sequence of continuous weight functions inΩ1

such that

φj = φ

in Ω̄0 and thatφj increases and tends to to infinity almost everywhere in
Ω1 \Ω0. Assume that the space of holomorphic functions inL2(Ω1, e

−φ0) is
dense in the space of holomorphic functions inL2(Ω0, e

−φ0). Fix a pointz
in Ω0 and letKj be the Bergman kernel forz in L2(Ω1, φj). LetK be the
Bergman kernel forz in L2(Ω0, φ).

ThenKj(z, z) increases toK(z, z).

Proof. The extremal characterisation of Bergman kernels,

K(z, z) = sup |h(z)|2,
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where the supremum is taken over all holomorphic functions ofL2-norm at
most 1 makes it clear thatKj(z, z) is an increasing sequence and that each
Kj(z, z) is smaller thanK(z, z). Since

Kj(z, z) =

∫
Ω1

|Kj|2e−φj

it follows in particular thatKj has uniformly bounded norm inL2(Ω1, e
−φj).

The sequenceKj therefore has a weakly convergent subsequence inL2(Ω0, e
−φ).

Let k be the limit of some weakly convergent subsequence. Ifh lies in
L2(Ω1, e

−φ0) we have that

|
∫

Ω1\Ω0

hKje
−φj |2 ≤

∫
Ω1\Ω0

|h|2e−φj‖Kj‖2
φj

tends to zero. It follows that any weak limitk satisfies

h(z) =

∫
Ω0

hk̄e−φ.

Since holomorphic functions inL2(Ω1, e
−φ0) are dense inL2(Ω0, e

−φ0), the
same relation holds for anyh in L2(Ω0, e

−φ0). Sincek is necessarily also
holomorphic,k = K and the limit is in fact uniform on compact subsets of
Ω0. In particular

limKj(z) = K(z).

�

The proofs of the next two lemmas is similar but simpler and is therefore
omitted.

Lemma 3.2. LetΩ be a bounded domain andφ a plurisubharmonic weight
function . LetΩj be an increasing family of subdomains with union equal to
Ω. Letz be a fixed point inΩ0 and letKj andK be the Bergman kernels for
Ωj andΩ (with weight functionφ) respectively. ThenKj(z, z) decreases to
K(z, z).

Lemma 3.3. Let Ω be a bounded domain andφj a decreasing sequence of
plurisubharmonic weight functions. Letz be a fixed point inΩ and letKj

andK be the Bergman kernels for the weight functionsφj andφ respec-
tively. ThenKj(z, z) decreases toK(z, z).

To verify one of the hypotheses in Lemma 4.1 we need an approximation
result.

Lemma 3.4. LetΩ0 andΩ1 be smoothly bounded pseudoconvex domains in
Cn with Ω0 compactly included inΩ1. Assume there is a smooth plurisub-
harmonic functionρ in Ω̄1 such thatΩ0 = {z ∈ Ω1, ρ(z) < 0}. Then
holomorphic functions inL2(Ω1) are dense in the space of holomorphic
functions inL2(Ω0).
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Proof. Leth be a square integrable holomorphic function inΩ0. The crux of
the proof is to approximateh by functions holomorphic in a neighbourhood
of the setX = {ρ ≤ 0}. This can be done by standardL2-theory if 0
is a regular value ofρ so that the boundary ofΩ0 is smooth. In the non-
smooth case, the possibility to approximate with function holomorphic near
X follows from a result by Bruna and Burgues, cf Theorem B in [4].

Next, we leth be holomorphic nearX and show how to approximateh
with functions holomorphic inΩ1. Let H be an arbitrary extension ofh
from a neighbourhood ofX to a smooth function with compact support in
Ω1 and putf = ∂̄H. Letkj(s) be a sequence of increasing convex functions
that vanish fors < 0 and tend to infinity fors > 0 and setφj = kj ◦ ρ.
By Hörmander’s theorem, [9], we can solve the equation∂̄vj = f with
estimates inL2(Ω1, e

−φj). Sincef is supported in the complement ofΩ0 it
follows thatvj tends to zero inL2(Ω0). HenceH − vj is an approximating
sequence. �

The final lemma gives the semicontinuity ofKt.

Lemma 3.5. LetD = {(t, z); ρ(t, z) < 0} whereρ is smooth and strictly
plurisubharmonic near the closure ofD and moreover has non-vanishing
gradient on∂D. Assumeφ is smooth and plurisubharmonic near the clo-
sure ofD. ThenKt(z, z) is for fixedz upper semicontinuous as a function
of t.

Proof. Consider a pointt and lets be nearby points tending tot. We may
chooseε > 0 so that all fibersDs are contained in the open setV where
ρ(t, z) < ε. Note that the set-valued functiont → Dt is lower semicontin-
uous, in the sense that ifDt contains a compact setK, theK is contained
in all Ds for s sufficiently close tot. LetKs(ζ, z) be the Bergman kernel
of Ds for a fixed pointz. Since the domainsDs all contain a fixed open
neighbourhood ofz theL2-norms ofKs are bounded. Any sequence ofKs

therefore has a subsequence weakly convergent on any compact subset of
Dt. TheL2-norm of any weak limitk can not exceed the liminf of theL2-
norms ofKs overDs. By the extremal characterization of Bergman kernels
it follows that

lim supKs(z, z) ≤ Kt(z, z),

so we are done. �

We can now complete the proof of Theorem 1.1, and start by proving
that logKt is plurisubharmonic int for z fixed. We first assume thatD is
smoothly bounded, defined as

D = {(t, z); ρ(t, z) < 0}

whereρ is smooth and strictly plurisubharmonic near the closure ofD. We
also assume thatφ is smooth and plurisubharmonic near the closure ofD.
Assume firstk = 1 and fix a pointt in C, sayt = 0. If U is a sufficiently
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small neighbourhood of 0 all the fibersDt are contained in a fixed pseu-
doconvex domainV = {ρ(0, ζ) < ε}. In U × V we can composeρ with
an increasing sequence of smooth convex functionskj that tend to infinity
whenρ is positive. We can now apply the result from section 3 toU × V
with φ replaced byφj = φ + kj ◦ ρ and letj tend to infinity. Since the set
where a smooth strictly subharmonic function equals zero has zero measure,
φj tends to infinity a e inΩ1 \ Ω0 By Lemma 4.1 it follows thatlogKt can
be written as an increasing limit of functions subharmonic with respect tot.
Since, by the last lemma,logKt is also upper semicontinuous it follows that
it is subharmonic. Again by the upper semicontinuity we get thatlogKt is
plurisubharmonic ifk ≥ 1 since its restriction to any line is subharmonic.

It is now easy to remove the extra hypothesis onD andφ. If D is an ar-
bitrary pseudoconvex open set it has a smooth strictly plurisubharmonic ex-
haustion function, and so can be written as an increasing union of domains
of the type satisfying the extra hypotheses. Near each such domain we can
regularizeφ by convolution. From lemmas 4.2 and 4.3 we get thatlogKt

is a decreasing limit of plurisubharmonic functions, and so is plurisubhar-
monic, or identically equal to minus infinity.

We have thus proved that, under the hypotheses of Theorem 1.1,logKt is
subharmonic as a function oft for z fixed. To see that it is plurisubharmonic
in t andz jointly we use, as in [19], the Oka trick of variation of the domain.
We need to prove that, for any choice ofa in Cn, the function

logKt(z + ta, z + ta)

is subharmonic int. But, this is precisely the Bergman kernel atz for the
domain

Dt − ta

with the weight function translated similarily. Since the translated domains
are also pseudoconvex, and the translated weight function is still plurisub-
harmonic, it follows thatlogKt(z + ta, z + ta) is subharmonic int and we
are done.

4. SUBHARMONIC CURRENTS

We shall next give an alternate proof of Theorem 1.1 which is based on a
representation of the Bergman kernel as the pushforward of a subharmonic
form. To prepare for this we give in this section some general facts on
subharmonic forms or currents.

Let T be a current of bidimension(1, 1), i e of bidegree(n, n) in U ×Cn

whereU is an open set inC. We say thatT is subharmonic if

i∂∂̄T ≥ 0.

Let π be the projection fromCt ×Cn
z to Ct. If T is compactly supported in

the fiber direction, so that the support ofT is included inU ×K with K a



11

compact subset ofCn the pushforwardπ∗(T ) of T to U is the distribution
in U defined by

π∗(T ).χ = T.π∗χ

for any smooth compactly supported(1, 1) form χ in U . Similarily, if T is
a current of bidegree(n+ 1, n+ 1) we define the pushforward ofT by the
same formula, but takingχ to be a function. Since

i∂∂̄π∗(T ) = π∗(i∂∂̄T )

it is clear thatπ∗(T ) is subharmonic ifT is a subharmonic current of bide-
gree(n, n).

If T is an (n, n)-differential form with, say, bounded coefficients, the
pushforward ofT is a function whose value at a pointt equals∫

{t}×Cn
z

T.

Clearly, the pushforward only depends on the component ofT of bidegree
(n, n) in z. Conversely, letκ be a form of bidegree(n, n) in z, with co-
efficients depending ont. It follows from the above that to prove that the
function ∫

{t}×Cn
z

κ

is subharmonic it suffices to find a subharmonic formT of bidimension
(1, 1) which is compactly supported in the fiber direction and whose com-
ponent of bidegree(n, n) in z equalsκ.

In order for this argument to work it is crucial thatT be globally defined
and compactly supported in the fiber direction (or at least satisfies inte-
grablility conditions). The currents that we will encounter later are however
only defined in some pseudoconvex domain. To get globally defined cur-
rents we extend by 0 in the complement of the pseudoconvex domain. This
of course introduces a discontinuity which gives an extra contribution to
take into account when computingi∂∂̄T in the sense of distributions. The
local calculations needed are summarized in the following lemma, which
is a variant of a by now standard method to proveL2-estimates for thē∂-
equation, see [9] p 103 .

Lemma 4.1. Let ρ be a smooth real valued function in an open setU in
Cn. Assume that∂ρ 6= 0 onS = {z, ρ(z) = 0}, so thatS is a smooth real
hypersurface. LetT be a real differential form of bidimension(1, 1) defined
whereρ < 0, with coefficients extending smoothly up toS. Assume

∂ρ ∧ T

vanishes on S, and that

∂ρ ∧ ∂̄ρ ∧ T
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vansihes to second order onS. ExtendT to a currentT̃ in U by putting
T̃ = 0 whereρ > 0. Then

(4.1) i∂∂̄T̃ = χρ<0 i∂∂̄T +
i∂∂̄ρ ∧ TdS

|∂ρ|
,

wheredS is surface measure onS andχ is a characteristic function.

In particular, even though it is not assumed that all ofT , but only certain
components ofT , vanish onS, the contribution coming from the disconti-
nuity is a measure, and not, as might be expected, a current of order 1.

Proof. The hypotheses onT mean that

(4.2)
∑

ρjTjk̄ = ρck,

where
∑
ckρk̄ vanishes onS. Therefore, onS,

0 =
∑ ∂

∂z̄k
(ρck) =

∑
ρj
∂Tjk̄
∂z̄k

+
∑

ρjk̄Tjk̄

so

(4.3) −
∑

ρj
∂Tjk̄
∂z̄k

=
∑

ρjk̄Tjk̄.

Let w be a smooth function of compact support inU . Then, using the
divergence theorem and writingTjk̄ for the components ofT , we find that∫

ρ<0

i∂∂̄w ∧ T =

∫
ρ<0

∑
wjk̄Tjk̄ =

=

∫
ρ=0

∑
ρjwk̄Tjk̄dS/|∂ρ| −

∫
ρ<0

∑ ∂w

∂zj

∂Tjk̄
∂z̄k

.

By equation (4.2) the boundary integral vanishes. Applying the divergence
theorem once more to the second integral we get∫

ρ<0

w
∑ ∂2Tjk̄

∂zj∂z̄k
−

∫
ρ=0

w
∑

ρj
∂Tjk̄
∂z̄k

dS/|∂ρ|.

We then use (4.3) in the new boundary integral and find∫
ρ<0

i∂∂̄w ∧ T =

∫
ρ<0

wi∂∂̄T +

∫
ρ=0

∑
ρjk̄Tjk̄dS/|∂ρ|.

This completes the proof of the lemma. �

5. SECOND PROOF OFTHEOREM 1.1

Again, we first consider the situation described at the beginning of section
2. As before, our starting point is the fact that the function

u = ∂φt Kt

is for fixed t orthogonal to the space of holomorphic functions inA2
t . We

now put
kt = Ktdζ1 ∧ ...dζn,
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so thatkt isKt interpreted as an(n, 0)-form and, slightly abusively, define

∂φt kt = ∂φt Kt dζ1 ∧ ...dζn.
Since∂̄ has closed range, the orthogonal complement of the kernel of∂̄

equals the range of̄∂∗. Therefore∂φt kt = ∂̄∗α for some formα ( in ζ) of
bidegree(n, 1) which can also be taken to bē∂-closed (and is then uniquely
determined). By an argument similar to Lemma 2.1,α depends smoothly
on t. Writeα =

∑
αjdζ̄j ∧ dζ. Sinceα lies in the domain of̄∂∗, α satisfies

the ∂̄-Neumann boundary condition
∑
αjρj = 0 on the boundary ofV .

Put γ =
∑
αjdζ̂j, wheredζ̂j stands for the wedge product of alldζk:s

exceptdζj, with a sign so that

dζj ∧ dζ̂j = dζ1 ∧ ...dζn.

For later reference we note that the∂̄-Neumann boundary condition onα
translates to∂ρ ∧ γ = 0 on ∂V . Putg = dt ∧ γ + kt and let∂φ = eφ∂e−φ

be a twisted∂-operator. The equation

∂φt kt = ∂̄∗α

is equivalent to
∂φg = 0.

We claim that the formT defined as

T = cng ∧ ḡe−φ,
wherecn is a constant of modulus 1 chosen so thatT is positive, forζ in V
andT = 0 for ζ outside ofV is a subharmonic form. Since the component
of T of bidegree(n, n) in ζ equals

κt = cnkt ∧ k̄t
it then follows that

Kt(z, z) =

∫
κt

is a subharmonic function oft.
To prove the subharmonicity ofT we first computei∂∂̄T for ζ inside of

V . We use the product rule

∂(a ∧ b̄ e−φ) = ∂φa ∧ b̄ e−φ + (−1)deg aa ∧ ∂̄b e−φ,
and a similar rule for applyinḡ∂. Remembering that∂φg = 0 we get

(5.1) i∂∂̄T = cni∂
φ∂̄g ∧ ḡ e−φ + cni∂̄g ∧ ∂̄g e−φ.

From the commutation rule

(∂φ∂̄ + ∂̄∂φ)g = ∂∂̄φ ∧ g,
together with∂φg = 0 it follows that the first term on the right hand side
can be written

i∂∂̄φ ∧ T.
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This term is therefore nonnegative sinceφ is plurisubharmonic. To analyse
the second term we introduce the notationζ0 for t andα0 for −Kt, so that
g can be written

−
n∑
0

αjdζ̂j.

The second term equals ∑
jk

∂αj
∂ζ̄k

∂αk
∂ζ̄j

.

Here the indices run from 0 ton. Consider first the part of the sum where
both indices are greater than 0. Since the formα is ∂̄-closed for fixedt this
part equals

n∑
1

|∂αj
∂ζ̄k

|2

multiplied by the volume formdλ. Evidently, the part of the sum where
both indices are 0 equals

|∂α0

∂ζ̄0
|2dλ.

Finally, the terms in the sum when precisely one of the indices are 0 vanish
sinceα0 = Kt is a holomorphic function ofζ.

In conclusion,i∂∂̄T ≥ 0 for ζ in V . It now remains to compute the
contribution toi∂∂̄T which comes from cutting offT outside ofV . We
apply Lemma 4.1 to our currentT = cng∧ ḡe−φ andρ equal to the defining
function ofV . Thenρ is independent oft = ζ0, so

∂ρ ∧ g = ∂ρ ∧ dt ∧ γ = 0

on U × ∂V since∂ρ ∧ γ = 0 on ∂V . Hence the hypotheses of Lemma
4.1 are fulfilled. SinceV is pseudoconvex it follows thaticn∂∂̄ρ ∧ g ∧ ḡ is
non-negative on∂V so

i∂∂̄T ≥ 0.

In conclusion,T is a subharmonic current and it follows thatKt is a subhar-
monic function oft for z fixed. The rest of the proof of Theorem 1.1 runs
as before.

6. SINGULARITIES OF PLURISUBHARMONIC FUNCTIONS

We first recall the definitions and basic properties of Lelong numbers (
our basic reference for these matters is [12]). Ifφ is a plurisubharmonic
function in an open setU in Cn anda is a point inU , theLelong numberof
φ ata is

(6.1) γ(φ, a) = lim
r→0

(log r)−1 sup
|z−a|=r

φ(z).
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Equivalently (see [12] p 176) we may introduce the mean value ofφ over
the sphere centered ata with radiusr,M(φ, a, r) and put

(6.2) γ(φ, a) = lim
r→0

(log r)−1M(φ, a, r).

The Lelong number measures the strength of the singularity ofφ at a. If
γ(φ, a) > τ then

φ(z) ≤ τ log |z − a|
for z close toa.

In the one variable case we can decompose a subharmonic function lo-
cally as a sum of a harmonic part and a potential

p(z) =

∫
log |z − ζ|dµ(ζ)

whereµ = 1/(2π)∆φ. It is easy to verify that the Lelong number is then
equal toµ({a}). Using the potential it is also easy to see that, in the one
variable case, the Lelong number ata is greater than or equal to one if and
only if e−2φ is not integrable over any neighbourhood ofa.

In any dimension one definesι(φ, a), theintegrability indexof φ ata, as
the infimum of all positive numberst such that

e−2φ/t

is locally integrable in some neighbourhood ofa. By a theorem of Skoda
([18]), the inequality

ι(φ, a) ≤ γ(φ, a) ≤ nι(φ, a)

holds in any dimension. The left inequality here (which is the hard part)
says that if the Lelong number ofφ ata is strictly smaller than 1, thene−2φ

is locally integrable neara.
Let Ω be a domain inCn and letφ be a plurisubharmonic function in

Ω. We consider the Bergman kernelK(z, z) for A2(Ω, φ). It is clear
that if a is a pointΩ and e−φ is not integrable in any neighbourhood of
a, then any holomorphic function inA2(Ω, φ) must vanish ata, so in par-
ticularK(a, a) = 0. Conversely, ifΩ is bounded ande−φ is integrable in
some neighbourhood ofa then a standard application of Hörmander’sL2-
estimates shows that there exists some function inA2(Ω, φ) which does not
vanish ata. SinceK(a, a) equals the supremum of the modulus squared of
all functions inA2(Ω, φ) of norm 1, it follows thatK(a, a) > 0 in that case.
Thus, at least ifΩ is bounded, the set wherelogK = −∞ is precisely equal
to the nonintegrability locus ofe−φ.

For z in Ω andw in Cn we now consider the restriction ofφ to the com-
plex line throughz determined byw

φz,w(λ) = φ(z + λw).

For any fixedz in Ω φz,w is defined forλ in the unit disk, ifw is small
enough. LetKz,w(0, 0) be the Bergman kernel for the unit disk, with Lebesgue
measure normalized so that the total area is one, equipped with the weight
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function 2φz,w. By the above,Kz,w(0, 0) = 0 if and only if the Lelong
number ofφz,w at the origin is at least 1. By Theorem 1.1,logKz,w is a
plurisubharmonic function, so for fixedz the set ofw where it equals−∞
is either pluripolar or contains a neighbourhood of the origin. Thus, if the
Lelong number at the origin of one single slice function is smaller than 1, it
must be smaller than 1 for all slices outside a pluripolar set.

It follows that the Lelong numbers of all slices outside a pluripolar set
are equal. This common value also equals the Lelong number ofφ at z. To
see this, first note that by the first definition of Lelong number in terms of
supremum over spheres, it follows that the Lelong number for the restriction
of φ to any line throughz must be at least as big as then-dimensional
Lelong number atz. The converse inequality follows if we use the second
definition of Lelong numbers in terms of mean values over spheres, and
apply Fatou’s lemma. To avoid the consideration of exceptional lines we
now introduce the function

φε(z) =
1

2

∫
|w|=ε

logKz,w(0, 0)dS(w),

where the surface measuredS is normalized so that the sphere has total
measure equal to 1.

Theorem 6.1. The functionφε is well defined and plurisubharmonic in the
open setΩε of points ofΩ whose distance to the boundary is greater thanε.
The sequenceφε decreases toφ as ε decreases to 0. The singularity setS
whereφε = −∞ is for anyε > 0 equal to the analytic set where the Lelong
number ofφ is at least 1. If the Lelong number ofφ at z equalsτ > 1, the
Lelong number ofφε at z is at least equal toτ − 1.

Proof. SincelogKz,w is subharmonic with respect tow t is clear thatφε
decreases withε to logKz,0. ButKz,0 is the Bergman kernel at the origin
for a normalized disk with a constant weight,e−2φ(z), and so equalse2φ(z).
Hence the limit ofφε is equal toφ. If the Lelong number ofφ atz is smaller
than 1 we have seen above thatlogKz,w(0, 0) is not identically equal to−∞
so its mean value over a sphere,φε is not equal to−∞. On the other hand
we have also seen above that ifγ(φ, z) ≥ 1, thenlogKz,w = −∞ for w in a
full neighbourhod of 0, soφε(z) = −∞. HenceS is equal to the set where
γ(φ, z) ≥ 1, which by Siu’s analyticity theorem, [17], is analytic.

It remains only to prove the last statement of the theorem, so assume 0
lies inΩ and thatγ(φ, 0) = τ > 1. Then, ifτ ′ < τ ,

e−φ(z) ≥ 1/|z|τ ′

if |z| is small enough. Forw fixed andh(λ) holomorphic we get∫
|λ|<1

|h|2e−2φ(z+λw)dm(λ) ≥
∫
|λw|<|z|

|h|2e−2φ(z+λw)dm(λ) ≥

≥
∫
|λ|<1

|h|2/(|2z|2τ ′
)dm(λ) ≥ C|h(0)|2/|z|2(τ ′−1).
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Hence

Kz,w(0, 0) ≤ C1|z|2(τ
′−1)

where the constant can be taken uniform for allw of fixed modulus equal
to ε > 0. It follows that the Lelong number ofφε at z is at leastτ ′ − 1, and
therefore at leastτ − 1 sinceτ ′ is an arbitrary number smaller thanτ . �

The functionφε thus “attenuates the singularities” ofφ in much the same
way as Kiselman’s construction in [12]. ( Kiselman even gets that the Le-
long number of the constructed functionequalsτ − 1.) In precisely the
same way as in Kiselman, [11], this construction can be used to prove the
Siu analyticity theorem. Let

Eτ = {z; γ(φ, z) ≥ τ}.

First, it follows from the Hörmander-Bombieri theorem that the noninte-
grability locus of any plurisubharmonic function is always analytic. For a
given plurisubharmonic function,φ, andδ > 0 we put, for some choice of
ε > 0

ψ = 3nφε/δ.

By Theorem 6.1,ψ is finite at any point whereγ(φ, z) < 1, and therefore
(see [9])e−ψ is locally integrable near any such point. On the other hand
eψ is not locally integrable near a point whereγ(φ, z) ≥ (1 + δ) since the
Lelong number ofψ at such a point is at least3n. Therefore we have, ifZ
denotes the nonintegrability locus ofe−ψ, that

E1+δ ⊂ Z ⊂ E1.

Rescaling, we may of course for anyτ > 0 andδ > 0 in a similar way find
an analytic setZτ,δ such that

Eτ ⊂ Zτ,δ ⊂ Eτ−δ.

HenceEτ equals the intersection of the analytic setsZτ,δ for δ > 0 and is
therefore analytic.

In a similar way we can consider, instead of restrictions ofφ to lines,
the restriction ofφ to k-dimensional subspaces. This will give us a scale
of “Lelong numbers” fork = 1, ...n that starts with the classical Lelong
number and ends with the integrability index.

We close this section by sketching an alternative way of relating Lelong
numbers to Bergman kernels, leading up to Theorem 1.3 of the introduction.
In [18] it is proved that if the Lelong number ofφ ata is strictly smaller than
1, thene−2φ is locally integrable in some neighbourhood ofa. Actually,
Skoda’s proof of this fact gives a bit more, namely that

I(a) :=

∫
|z−a|<δ

e−2φ(z)/|z − a|2n−2dm(z)
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is also finite, ifδ is small enough. ( The same argument as in section 7 of
[18] gives, withdσ = ∆φ that∫

|z|<r
e−2φ(z)/|z|2n−2 ≤ C

∫
|z|<r,|x|<R

|z|−2n−2|z − x|−2n+εdσ(x)dm(z),

which is finite since ∫
dσ(x)/|x|2n−2−ε

is finite.) On the other hand,I(a) is comparable to the average of∫
e−2φ(a+λw)dm(λ)

over allw on a sphere, soI(a) must be infinite if the Lelong number ofφ at
a is larger than or equal to 1. In conclusion

{a; I(a) = ∞} = {a, γ(φ, a) ≥ 1}.
We now introduce the plurisubharmonic function

ψ(z, a) = φ(z) + (n− 1) log |z − a|
and letKa be the Bergman kernel forΩ with weight2ψa(z) = 2ψ(z, a). It
then follows thatχ(a) = logKa(a, a) is plurisubharmonic and equal to−∞
precisely whereγ(φ, ·) ≥ 1, so we have proved the first part of Theorem
1.3 from the introduction. The last part of Theorem 1.3 follows from an
argument similar to the last part of the proof of Theorem 6.1.

7. PLURISUBHARMONICITY OF POTENTIALS.

In this section we shall prove a generalization of an earlier result of Yam-
aguchi on the Robin function. LetD be a smoothly bounded pseudoconvex
set inCk

t × Cn
ζ and let as beforeDt be then-dimensional slices ofD. In

this section we assumeD has a smooth defining functionρ(t, ζ) such that
∂ζρ 6= 0 on the boundary ofD. In particular all the fiber domains are
smoothly bounded and have the same topology.

Theorem 7.1.LetK be a compact subset ofCn that is contained inDt for
all t in an open setU . Letµ be a positive measure with support inK. Let
u(t) be the negative of the energy ofµ with respect to the Green functionGt

ofDt

u(t) =

∫
Dt

Gt(z, ζ)dµ(z)dµ(ζ).

Thenu is plurisubharmonic inU .

Here we mean by the Green function the unique function vanishing on
the boundary and satisfying that∆ζG is a unit point mass atz .

The Green functionG of a domainΩ with pole atz can be written as the
Newton kernel plus a smooth term

G(z, ζ) = − cn
|z − ζ|2n−2

+ ψ(z, ζ)
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whereψ is harmonic inz and inζ. The function

Λ(z) = ψ(z, z)

is called the Robin function of the domainΩ. Let the measureµ in Theorem
7.1 be a uniform mass distribution on a small ball centered at the pointz. u
is then equal to (the negative of) the energy ofµ with respect to the Newton
kernel plus the Robin function atz of the domainDt. Since the Newtonian
energy is independent oft it follows thatΛ is plurisubharmonic as a function
of t. Just like in the case of Bergman kernels this implies that evenlog Λ
is subharmonic, ifn > 1. To see this, leta be some complex number and
consider the domainD(a) with fibers

D(a)t = eatDt,

which, being a biholomorphic image ifD, is still pseudoconvex. The Robin
function ofD(a) equalse−(2n−2)Re (at)Λ, so these functions are subharmonic
for any choice ofa. It follows thatlog Λ is subharmonic if2n − 2 6= 0, i e
if n > 1. Finally, we can again apply the Oka technique of variation of the
domain (cf the end of section 3) to conclude that ifΛ is the Robin function
of a fixed domainΩ, log Λ(z) is plurisubharmonic as a function ofz in Ω.

Proof. We consider the Green functionGt of Dt and letg(t, z) = gt(z) be
the Green potential ofµ in Dt. We may assume thatµ is given by a smooth
density and it is then not hard to see thatg is smooth up to the boundary in
D. Letβ be the standard Euclidean Kähler form inCn and set

T = i∂g ∧ ∂̄g ∧ βn−1

in D andT = 0 outside ofD. (Here we use the notationωp = ωp/p! for
(1, 1)-formsω.) Notice thatT is a nonnegative form and thatπ∗(T ) is given
by

π∗(T )(t) =

∫
Dt

|∂gt|2 = −
∫
Dt

∆gt gt = −u(t),

where, as in Theorem 7.1,u is the energy ofµ. Sinceg vanishes on the
boundary ofD, T satisfies the hypotheses of Lemma 4.1. By Lemma 4.1

(7.1) i∂∂̄T ≥ χDi∂∂̄T

if D is pseudoconvex. InD we get

(7.2) i∂∂̄T = −(i∂∂̄g)2 ∧ βn−1.

Write
i∂∂̄g = i∂z∂̄zg + i∂t∂̄tg + i∂t∂̄zg + i∂z∂̄tg.

Hence
(i∂∂̄g)2 ∧ βn−1 =

= 2Re (i∂t∂̄tg ∧ i∂z∂̄zg) ∧ βn−1 + 2Re (i∂t∂̄zg ∧ i∂z∂̄tg) ∧ βn−1 =

= (2∆tg∆zg − 2
∑

| ∂
2g

∂zj∂t̄
|2)dλ.
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We thus find

−i∂∂̄u = π∗(i∂∂̄T ) ≥

≥ 2

(∫
Dt

−∆tg∆zg + 2

∫
Dt

∑
| ∂

2g

∂zj∂t̄
|2

)
idt ∧ dt̄ ≥

≥ 2(−∆t

∫
Dt

gtdµ)idt ∧ dt̄ = −2i∂∂̄u.

(Notice that we may move the Laplacian with respect tot outside the inte-
gral sign sinceµ is independent oft and compactly supported insideDt.)
Thusi∂∂̄u ≥ 0, sou is subharmonic and the proof of Theorem 7.1 is com-
plete. �

Notice that the statement in Theorem 7.1 may be generalized to Green
functions for other elliptic equations, besides the Euclidean Laplacian ( see
also Yamaguchi and Levenberg [13]). First, we may replace the Euclidean
metric by an arbitrary Kähler metric, with Kähler formω, onCn, and con-
sider the Laplacian with respect to this metric. The same proof as above
applies if we only replace the Euclidean Kähler formβ by ω. We may even
go one step further and consider elliptic operators of the form

Lu = i∂∂̄u ∧ Ω

whereΩ is a closed positive form of bidegree(n− 1, n− 1).
It is also worth pointing out that the assumption on pseudoconvexity in

Theorem 7.1 can be relaxed. In the proof, convexity properties of the bound-
ary ofD only intervene in the application of Lemma 4.1, to conclude that
the form

F = i∂∂̄ρ ∧ i∂g ∧ ∂̄g ∧ βn−1

is nonnegative on the boundary ofD. Therefore we may replace the hy-
pothesis of pseudoconvexity in Theorem 7.1 by the hypothesis “F ≥ 0”.
This is of course rather implicit, but to get an idea of how that condition
relates to pseudoconvexity we can consider domainsD in C×Cn of a spe-
cial form. Let us assume e g that the slicesDt only depend onRe t and
form an increasing family with respect toRe t, so that they are defined by
inequalities

Dt = {z; v(z) < Re t}.

When checking the positivity of the formF above one may then replace
both ρ and g by r = v − Re t, sinceρ and g are positive multiples of
r. We then see that, whereas the pseudoconvexity ofD is equivalent tov
beingplurisubharmonic, F is positive if and only ifv is subharmonic. In
particular this is a condition that also makes sense inRn. In the next section
we shall briefly discuss analogs of the formalism of the last four sections in
Rn.
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8. CONVEXITY PROPERTIES OF FIBER INTEGRALS INRn

We considerRn+1 with the coordinates(x0, ...xn) . Whenκ is a func-
tion with compact support or satisfying suitable integrability conditions, we
want to study convexity properties of the fiber integral

Φ(t) =

∫
x0=t

κdx1...dxn =

∫
x0=t

κ.

Just like in section 4 we shall arrange things so that

κ = T00

where(Tjk) is a matrix of functions. The basic fact of section 4, that the
operation of pushforward of a form commutes with thei∂∂̄-operator, is now
replaced by the following lemma.

Lemma 8.1. LetT = (Tjk) be a matrix ofL∞ functions inRn+1. Suppose
that for someR > 0, T vanishes when|(x1, ...xn)| > R. Put

Φ(t) =

∫
x0=t

T00.

If T is smooth then

Φ′′(t) =

∫
x0=t

n∑
0

∂2Tjk
∂xj∂xk

.

If T is not smooth the same formula holds in the sense of distributions, if
the right hand side is interpreted as the distribution,S, whose action on a
test functionα is

S.α =

∫
Rn+1

n∑
0

∂2Tjk
∂xj∂xk

α(x0).

Proof. If T is smooth the first formula is clear since the integral of any term
involving a derivative with respect to a variable different fromx0 vanishes.
Hence ∫

x0=t

n∑
0

∂2Tjk
∂xj∂xk

=

∫
x0=t

∂2T00

∂x0∂x0

= Φ′′(t).

The non-smooth case follows from the definition of distributional deriva-
tives. �

It is clear that the lemma holds even ifT does not necessarily have com-
pact support. It suffices that first and second order derivatives of the coeffi-
cients ofT are integrable. Later on we will also have use for a generalization
of Lemma 4.1

Lemma 8.2. LetT = (Tjk) be a matrix of functions that are smooth up to
the boundary in a smoothly bounded domainΩ = {ρ < 0} in RN . Assume
that ∑

j

Tjkρj = O(ρ)
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and ∑
j

Tjkρjρk = O((ρ)2)

at the boundary ofD. Extend the definition ofT to a matrixT̃ in all of RN

by puttingT̃ equal to 0 in the complement ofD. Then we have in the sense
of distributions∑ ∂2T̃jk

∂xj∂xk
= χD

∑ ∂2Tjk
∂xj∂xk

+
∑

Tjkρjk
dS

|dρ|
.

The proof is essentially the same as the proof of lemma 4.1. Let us now
consider in particular matrices of the form

Tjk = γjγke
−φ.

To compute derivatives ofTjk we use the notation

dj = ∂/∂xj

and
dφj = eφdje

−φ.

We get
(8.1)

∂2Tjk
∂xj∂xk

=
(
dkγjdjγk + dφj dk(γj)γk + dφj γjd

φ
kγk + γjdjd

φ
kγk

)
e−φ =

=
(
dkγjdjγk + dkd

φ
j (γj)γk + dφj γjd

φ
kγk + γjdjd

φ
kγk + φjkγjγk

)
e−φ

(where in the last line we have used the commutation relation

dφj dk = dkd
φ
j + φjk.)

It follows that if we assume ∑
dφkγk = 0

then
n∑
0

∂2Tjk
∂xj∂xk

=
(∑

dkγjdjγk + |
∑

dφkγk|
2 + φjkγjγk

)
e−φ.

This identity can be used exactly as in section 5 to prove the real Prekopa
theorem. Letφ be a convex function and put

k(t) = γ0(t) =

(∫
x0=t

e−φ
)−1

.

Since ∫
x0=t

γ0(x0)e
−φ = 1

it follows that ∫
x0=t

dφ0(γ0)e
−φ = 0
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for anyt. This implies that we can solve

dφ0γ0 = −
n∑
1

dφj γje
−φ

and
djγk = dkγj

with γ and its first derivatives going rapidly to zero at infinity (this is easiest
to see forn = 1, which is all that is needed for the Prekopa theorem). If we
then defineTjk = γjγke

−φ as above it follows by Lemma 8.1 that

k′′(t) =
d2

dt2

∫
x0=t

k2(x0)e
−φ =

∫
x0=t

(∑
dkγjdjγk + φjkγjγk

)
e−φ.

But, sinceγ0 only depends onx0, it follows just as in the complex case that∑
dkγjdjγk = |d0γ0|2 +

n∑
1

|dkγj|2 ≥ 0.

Hencek(t) is convex and it follows just like in section 3 that evenlog c is
convex, since replacingφ by φ + ax0 we see thatk(t)eat is convex for any
choice ofa.

In the same way we can adapt the argument of section 7 to prove con-
vexity of Green potentials ( and hence the Robin function, see also [5] who
prove a stronger convexity property of the Robin function), but in that case
it is a little bit less evident what the choice ofT should be. To explain this
we shall first discuss a general notion of subharmonic form inRn.

Consider the space,F , of differential forms onRN
x × RN

y whose coef-
ficients depend only onx. The usual exterior derivative,d, preserves this
space of forms. We introduce a new exterior derivative,d# onF as

d# =
∑

dyj ∧ ∂/∂xj,

where the partial derivative acts on the coefficients of a form (this operator
and the spaceF are not invariantly defined under changes of coordinates).
If we introduce the operatorτ onF by letting it changedxj to dyj and vice
versa, thend# = τdτ and it is clear that(d#)2 = 0. We say that a form in
F is of bidegree(p, q) if its respective degrees indx anddy arep andq. A
(p, p)-form η =

∑
ηIJdxI ∧ dyJ is symmetric ifηIJ = ηJI , or equivalently

τη = (−1)pη. Put

ω =
∑

dxj ∧ dyj.
A form of bidegree(N,N) is positive if it is a nonnegative multiple of
ωN := ωN/N !, and a general symmetric form,η, of bidegree(p, p) is posi-
tive if

a1 ∧ τa1 ∧ ...aN−p ∧ τaN−p ∧ η
is positive for any choice of formsaj of bidegree(1, 0). It is not hard to
check that a form ∑

aijdxi ∧ dyj
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is positive if and only if the matrix(aij) is positively semidefinite. A smooth
functionφ is therefore convex precisely whendd#φ is a positive form. It
also follows that a positive(1, 1)-form can be written as a sum of forms of
the type

a ∧ τa,
with a of type(1, 0). Therefore the wedge product of a positive form with
a positive(1, 1)-form is again positive. Similarily if we definedvjk as the
wedge product of all differentials exceptdxj anddyk, ordered so thatdxj ∧
dyk ∧ dvjk = ωN , then

µ =
∑

ajkdvjk

is also positive exactly when(ajk) is nonnegative as a matrix. A formT =∑
Tjkdvjk in F of bidegree(N − 1, N − 1) is subharmonicif

dd#T =
n∑
0

∂2Tjk
∂xj∂xk

ωN

is positive.
With these definitions it is clear that to apply Lemma 8.1 to prove con-

vexity of fiber integrals, we must look for subharmonic forms of bidegree
(n, n) in Rn+1. LetD be a smoothly bounded domain inRn+1 defined by
an inequalityD = {ρ < 0} where the gradient ofρ does not vanish on the
boundary ofD and letDt be then-dimensional slices. We say that such a
domain satisfies condition(C) if

dρ ∧ d#ρ ∧ dd#ρ ∧ ω′n−1

is positive forx on the boundary ofD. This condition is clearly satisfied if
D is convex and it also holds if the fibersDt are of the form

Dt = {x′ = (x1, ...xn); v(x
′) < x0}

wherev is subharmonic. As in the case of Theorem 7.1 we assume that the
gradient ofρ with respect tox′ is never 0 forx0 in an open setU , so that
all the slices are smoothly bounded and have the same topology. LetGt be
the Green function ofDt. We then have.

Theorem 8.3. Assume thatD satisfies condition(C). LetK be a compact
subset ofRn that is contained inDt for all t in U . Let µ be a positive
measure with support inK. Letu(t) be the negative of the energy ofµ with
respect to the Green functionGt ofDt

u(t) =

∫
Dt

Gt(x, ξ)dµ(x)dµ(ξ).

Thenu is convex inU .

The proof of Theorem 8.3 runs in much the same way as the proof of
Theorem 7.1. Letgt be the Green potential ofµ in Dt and put

g(x0, x
′) = gx0(x

′).
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Let

ω′ =
n∑
1

dxj ∧ dyj,

and put

T = dg ∧ d#g ∧ ω′n−1 =
n∑
0

Tjkdvjk,

for x in D, andT = 0 outside ofD. ThenT00 = |dgx0|2, so that∫
x0=t

T00 = −u(t).

By Lemma 4.1 the contribution we get from the discontinuity at the bound-
ary ofD when we computedd#T equals

dd#ρ ∧ TdS/|dρ|.

If D satisfies condition(C), this expression is nonnegative (sincedg is a
positive multiple ofdρ at the boundary ofD). By Lemma 8.2 we therefore
have (usingdω′ = d#ω′ = 0) that∑ ∂2Tjk

∂xj∂xk
ωn+1 = dd#T ≥ −(dd#g)2 ∧ ω′n−1.

Applying Lemma 8.1 we now get as in the complex case

−u′′(t) ≥
∫
x0=t

n∑
1

| ∂2g

∂xj∂x0

|2 − 2u′′(t),

and it follows thatu is convex.
Let us finally consider the implications of Theorem 8.3 for the Robin

function. Again as in section 7 we takeµ to be a positive measure of total
mass 1 which is given by a constant density on a small ball centered at a
fixed pointx that we assume to be contained in all the fibersDt, for t in
some open setU . The energy integralu(t) then equalsΛt(x) − c whereΛ
is the Robin function forDt andc is a constant. It follows that the Robin
function is a convex function oft if D satisfies condition(C). Moreover,Λ
is strictly convex at any pointt such that the expression

dd#ρ ∧ T

is strictly positive at some point of the boundary ofDt. Consider now the
situation when all the fibers are translates of one fixed domainΩ in Rn

Dt = Ω + ta

with a a fixed direction inRn. Thenρ(x0, x) = r(x − x0a) wherer is a
defining function forΩ. It follows from the Hopf lemma thatdg is a strictly
positive multiple ofdρ at the boundary ofD, so

dd#ρ ∧ T
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is a strictly positive multiple of

ν = dd#ρ ∧ dρ ∧ d#ρ ∧ ω′n−1.

To check the positivity of this(n+1, n+1)-form, we pull it back under the
map(x0, x, y0, y) → (x0, x− x0a, y0, y − y0a). It is then not hard to seeν
is positive for any choice ofa if ρ is convex and that moreoverν is strictly
positive at any point where the Hessian ofr restricted to the null space
of dr is strictly positive. IfΩ is smoothly bounded and convex there will
always be at least some such point at the boundary and the Robin function
is therefore strictly convex. We have therefore proved a special case of a
result from [5]:

Theorem 8.4. Let Ω be a smoothly bounded convex domain inRn and let
Λ be the Robin function ofΩ. ThenΛ is strictly convex.

In [5] a stronger convexity of the Robin function is proved (namely the
harmonic radius, Λ−1/(n−2), is strongly concave), but Theorem 8.4 is al-
ready sufficient to prove the unicity of theharmonic centerof Ω, i e the
point whereΛ attains its minimum.
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