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CURVATURE OF VECTOR BUNDLES AND SUBHARMONICITY
OF BERGMAN KERNELS.

BO BERNDTSSON

ABSTRACT. Ina previous paper, [1], we have studied a property of sub-
harmonic dependence on a parameter of Bergman kernels for a family of
weighted L2-spaces of holomorphic functions. Here we prove a result
on the curvature of a vector bundle defined by this family.éfspaces
itself, which has the earlier results on Bergman kernels as a corollary.
Applying the same arguments to spaces of holomorphic sections to line
bundles over a locally trivial fibration we also prove that if a holomor-
phic vector bundle}’, over a complex manifold is ample in the sense
of Hartshorne, thelv” ® det V' has an Hermitian metric with curvature
strictly positive in the sense of Nakano.

1. INTRODUCTION

Let us consider a domaih = U x 2 and a functionp plurisubharmonic
in D. For the moment we also assume for simplicity thas smooth up
to the boundary and strictly plurisubharmoniclin Then, for eaclt in U,
®'(-) := ¢(t,-) is plurisubharmonic if2 and we denote byl? the Bergman
spaces of holomorphic functions §hwith norm

1A = 12 = / hPe .
Q

The spaces!? are then all equal as vector spaces but have norms that vary
with ¢. The - infinite rank - vector bundI& over U with fiber £, = A? is
therefore trivial as a bundle but is equipped with a nontrivial metric. The
main result of this paper is the following theorem.

Theorem 1.1. The hermitian bundI€E || - ||;) is strictly positive in the
sense of Nakano.

Of the two main differential geometric notions of positivity (see section
2, where these matters will be reviewed in the slightly non standard setting
of bundles of infinite rank), positivity in the sense of Nakano is the stronger
one and implies the weaker property of positivity in the sense of Griffiths.
On the other hand the Griffiths notion of positivity has nicer functorial prop-
erties and implies in particular that the dual bundle is negative (in the sense
of Griffiths). This latter property is in turn equivalent to the condition that
if £ is any nonvanishing local holomorphic section to the dual bundle, then
the function

log [|€]I*
1
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is strictly plurisubharmonic. In our case, we can obtain such holomorphic
sections to the dual bundle from point evaluations. More precisely, et

a holomorphic map frony to 2 and defin€; by is action on a local section

to &

<ft, ht> = ht(f(t))-

Since the right hand side here is a holomorphic functioty 6fis indeed a
holomorphic section t&’*. The norm of at a point is given by

I&:1* = sup |h(f (1)) = Ke(£(2), £(1)),

[[he[<1

whereK;(z, z) is the Bergman kernel function fot?. It therefore follows
from Theorem 1.1 thak(z, z) is plurisubharmonic inD, which is essen-
tially the main result of [1].

The proof of Theorem 1.1 is based on a formula of Griffiths, see e g [7],
for the curvature of a subbundl&, of a holomorphic bundle;'. If ©F and
©f denote the respective curvature operators we have, for any seations
andv of the subbundlé” that

(@fku, v) = (@ﬁu, v) + (WELDJFU, L DEv).

In this formula, the last term equals tisecond fundamental forof £
acting onu andv , and is here expressed by the Chern connectiof' of
acting on sections of’, projected on the orthogonal complement/in
F.

We shall apply this formula witl’ being the bundle introduced above
and F the bundle of allL? functions on(2 equipped with the same norm.
The curvature ofF’ is easily seen to be the operator of multiplication with
the Hessian ofp) with respect tat. This is therefore a positive operator,
and to prove Theorem 1.1, we must control the second fundamental form
with this operator. For this we note that the second fundamental form is, by
definition, given by elements in the orthogonal complementihf These
elements are th&2-minimal solutions of certaid-equations. An estimate
for theseL2-minimal solutions is furnished by Hérmanderg-estimate
for the 9-equation. The basic idea behind the proof comes from a proof of
Prekopa’s theorerhy Brascamp and Lieb, and is explained more closely in
[1].

There is also a natural analog of Theorem 1.1 for locally trivial fibra-
tions. We consider a complex manifod which is fibered over another
complex manifoldY”. We then have a holomorphic map,from X to Y
with surjetive differential, and all the fibers; = p~'(t) are diffeomorphic.

We shall even assume that the fibration is locally trivial holomorphically,
so that every point in the base has a neighbourhégdsuch thaty = (U)

is biholomorphic toU x Z, whereZ is a fixed complex manifold. More-
over, under this biholomorphism, the projectipgoes over into the natural
projection fromU x Z to U. Let L be a positive line bundle ovex and
assume that under the local trivializations discussed abvestricted to
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p~}(U) is isomorphic to the pullback of a line bundle grunder the natural
projection fromU x Z to Z. For eacht in Y we can now consider the space

E, =TD(X,, L|X;)

of global holomorphic sections tb over X;. By the local triviality of the
fibration, and the assumption dh the vector spacek, define a holomor-

phic vector bundle oveY. We would now like to define a hermitian norm

on the bundleE by taking theL2-norm over each fiber, but we can not do
so directly since we have no canonically defined measure on the fibers to
integrate against. We therefore consider instead the bundigh fibers

Et — F(Xt, L|Xt ® KXt)7

where K, is the canonical bundle of each fiber. Elementgpfcan be
naturally integrated over the fiber and we obtain in this way a meitrjcon

E'in complete analogy with the plane case. We then get the same conclusion
as before:

Theorem 1.2. (E, || - ||) is positive in the sense of Nakano.

One example of this situation that arises naturally is obtained if we start
with a (finite rank) holomorphic vector bundi€overY and letP(V) be the
associated bundle of projective spacéshe dual bundld’*. This is then
clearly a locally trivial holomorphic fibration as before and a line buridle
satisfying the conditions we have discussed is obtained by taking

L = Opq(1),

the hyperplane section bundle over each fiber. The global holomorphic sec-
tions of this bundle over each fiber are now the linear form&oni e the
elements of/. In other words £ is isomorphic tol”. As explained above,
we are not able to produce a metric Brby integrating over the fibers, so
instead we take ab

L= Opgyy(r+1)
(with r being the rank o) and defineF as before

E=T(X,,LIX,® Ky,).

One can then verify that is isomorphic td/ ®det V. The condition thaL

is positive is now equivalent tOp1/)(1) being positive which is the same as
saying thatl” is amplein the sense of Hartshorne, [8]. We therefore obtain
the following result as a corollary of Theorem 1.2.

Theorem 1.3. Let V' be a (finite rank) holomorphic vector bundle over a
complex manifold which is ample in the sense of Hartshorne. Then

det V' has a smooth hermitian metric which is strictly positive in the sense
of Nakano.

Itis a well known conjecture of Griffiths, [6], that an ample vector bundle
is positive in the sense of Griffiths. Theorem 1.3 would follow from this
conjecture, since by a a theorem of Demailly, [B],® det V' is Nakano
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positive if V' itself is Griffiths positive. It seems however that not so much
is known about Griffiths’ conjecture in general, except that it does hold
whenY is a compact curve (see [10], [3]).

Finally, | would like to thank Sebastien Boucksom for pointing out the
relation between Theorem 1.1 and the Griffiths conjecture.

2. CURVATURE OF FINITE AND INFINITE RANK BUNDLES

Let £ be a holomorphic vector bundle with a hermitian metric over a
complex manifoldy”. By definition this means that there is a holomorphic
projection map from £ to Y and that every pointil” has a neighbourhood
U such thatp~!(U) is isomorphic to/ x W, wherelV is a vector space
equipped with a smoothly varying hermitian metric. In our applications it is
important to be able to allow this vector space to have infinite dimension, in
which case we assume that the metrics are also complete, so that the fibers
are Hilbert spaces.

Lett = (¢4,...t,,) be a system of local coordinates & The Chern
connection,D;; is now given by a collection of differential operators acting
on smooth sections 0 x W and satisfying

9y, (u,v) = (Dyyu,v) + (1, By,v),

with 9,, = 9/0,, andétj = 0/0t;. The curvature of the Chern connection
isa(1,1)-form of operators

O = Odt; A diy,

where the coefficient®;;, are densily defined operators din. By defini-
tion these coefficients are the commutators

@jk = [Dtj7 5tk]

The vector bundle is said to be positive in the sense of Griffiths if for any
sectionu to W and any vector in C™

> (Ogu, u)v;vx = 6ulllof?

for som positive). E is said to be positive in the sense of Nakano if for any
m-tuple (uy, ...u,,) of sections tdV’

> (Ojkujun) =6 |l

Taking u; = uv; we see that Nakano positivity implies positivity in the
sense of Griffiths.

The dual bundle of2 is the vector bundlégZ* whose fiber at a point
in Y is the Hilbert space dual df;. There is therefore a natural antilinear
isometry betweerf and E*, which we will denote byJ. If « is a local
section toF, ¢ is a local section td’*, and(-, -) denotes the pairing between
E* andE we have

(€ u) = (u, JE).



Under the natural holomorphic structure Bh we then have
O, & =J Dy, JE,
and the Chern connection @ is given by
Dy &= J7'0y,J¢.
It follows that
O (& u) = (0,€, u) + (&, Ou),
and
O, (&, u) = (D &, u) + (& Dyjuy,
and hence

0= [0, 0] (€, u) = (©j€,u) + (€, Ojpu),

if we let ©* be the curvature of™. If {; is anr-tuple of sections t&’*, and
u; = J¢&;, we thus see that

Z(G;kfj, §r) = — Z(@ijk, uj).

Notice that the order between andw; in the right hand side is opposite to
the order between thgs in the left hand side. Thereforg" is negative in
the sense of Griffiths iff’ is positive in the sense of Griffiths, but we can
not draw the same conclusion in the the case of Nakano positivity.

If v is a holomorphic section t&' we also find that

02
8@-8&
and it follows after a short computation thatis (strictly) negative in the
sense of Griffiths if and only ifog ||u||? is (strictly) plurisubharmonic for
any nonvanishing holomorphic section
We next briefly recapitulate the Griffiths formula for the curvature of a
subbundle. Assumé’ is a holomorphic subbundle of the bundig and
let = be the fiberwise orthogonal projection fromto £. We also letr

be the orthogonal projection on the orthogonal complemeri.oBy the
definition of Chern connection we have

DY = xDF.

(u,u) = (Dy,u, Dy,u) — (0,u, u)

Let 0,7 be defined by
(2.1) Oy, (mu) = (O, m)u + (0, u).

Computing the commutators occuring in the definition of curvature we see
that

(2.2) O%u = —(0y,m) D} u+ 7O u,
if u is a section ta. By (2.1) (O7)v = 0 if v is a section ta¥, so
(2.3) (0n)D*u = (0r)7 . DFu.
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Sincerm; = 0 it also follows that
(Om)m, D¥u = —7d(7 DFw),
so if v is also a section td,
(((ikw)Df;u, v) = —(5tk(7rLDtI;u),v) =

= ((WLiju),DtFkv) = (WL(DIS’LL),WL(DQU)).

Combining with (2.2) we finally get that if andv are both sections t&
then

(2.4) (O, v) = (mL(D}u), 7L (Djv)) + (Ou, v),

which is the starting point for the proof in the next section.

3. THE PROOF OFTHEOREM1.1

We consider the set up described before the statement of Theorem 1.1
in the introduction. Thus is the vector bundle ovey whose fibers are
the Bergman space$’ equipped with the weightefl* metrics induced by
L2(Q,e?"). We also letF be the vector bundle with fibel?(Q2, e=*"), so
that E is a trivial subbundle of the trivial bundlg with a metric induced
from a nontrivial metric or¥’. From the definition of the Chern connection
we see that

Df; = atj - ¢j7

where the last term in the right hand side should be interpreted as the opera-
tor of multiplication by the (smooth) function¢; = —d;,¢". (In the sequel
we use the letterg, k£ for indices of thet-variables,and the letters u for
indices of thez-variables.) For the curvature éf we therefore get

F

the operator of multiplication with the Hessian @fwith respect to the-
variables. We shall now apply formula (2.4), sodgtbe smooth sections
to £. This means that; are functions that depend smoothly and holo-
morphically onz. To verify the positivity of £/ in the sense of Nakano we
need to estimate from below the curvaturetbcting on the:-tuplew,

Z(@ﬁuj, ).
By (2.4) this means that we need to estimate from above
> (wi(bug), wo(dwu) = I (> dyu)l*.
Putw = 7, (Y ¢;u;). For fixedt, w solves the),-equation
ow = Zuj@)\di,\,

since theu;s are holomorphic in. Moreover, sincev lies in the orthogonal
complement of4?, w is the minimal solution to this equation.
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We shall next apply Hérmander’s weighted-estimates for th@-equation.
The precise form of these estimates that we need says tlfatsifa 0-
closed form in a psedudoconvex domélnand if 1) is a smooth strictly
plurisubharmonic weight function, then the minimal solutioto the equa-
tion Ov = f satisfies

Lok < [ S ge,

where()**) is the inverse of the complex Hessiano{see [4]).
In our case this means that

/’w’%(ﬁt §/2¢Au¢j)\uj¢kuuke¢t-
Q Q

Inserting this estimate in formula (2.4) together with the formula for the
curvature ofF’ we find

(3.1) Z(@ﬁ;uj,uk) > /QZ <¢jk - Zéﬁw%wku) ujtige™?"
Jjk Ap

We claim that the expression

Djp=: ) <¢jk > ¢)\'u¢j)\¢k,u> :
jk Ap

in the integrand is a positive definite matrix at any fixed point . By a linear

change of variables inwe may of course assume that the veetahat D

acts on equal$l,0...0). Let® = i0d¢ where thedd-operator acts om,

and thez-variables, the remainingvariables being fixed. Then

O =& +ia Adty +idty Na+ P

where®,; is of bidegregq1, 1) in t;, « is of bidegreg1,0) in z, and®’ is
of bidegree(1, 1) in z. Then

D1 = " (M1 =B AP, —ia AaAD, | Aidt Adi.

Both sides of this equation are forms of maximal degree that can be written
as certain coefficients multiplied by the Euclidean volume fornCof .
The coefficient of the left hand side is the hessian wfith respect ta; and
z together. Similarily, the coefficient of the first term on the right hand side
is ¢1; times the hessian af with respect to the-variables only. Finally,
the coefficient of the last term on the right hand side is the norm afxhe
formin z

0,0y, ¢

measured in the metric defined ¥, multiplied by the volume form of the
same metric. Dividing by the coefficient @, we thus see that the matrix
D acting on a vector, as above equals the hessianpolvith respect ta
andz divided by the hessian af with respect to the-variables only. This
expression is therefore positive so the proof of Theorem 1.1 is complete.



4. LOCALLY TRIVIAL FIBRATIONS

The proof of Theorem 1.2 is essentially the same as the proof in the pre-
ceeding paragraph. As the statement is local we may assume that the total
spaceX is a productX = U x Z whereU is open inC* andZ is a compact
complex manifold of dimensiom. Over X we have a holomorphic line
bundle L. which is the pull back of a bundle oA. The line bundleL is
given a metric with strictly positive curvature on. Slightly abusively, we
will denote by K ; the pull back of the canonical bundle (i e the bundle of
(m, 0)-forms) onZ to X and also the restriction of this bundle to each fiber
X; = {t} x Z. On each fiber there is a natural pairing of sections toK
with values in the space of forms of maximal degree on the fiber. Locally,
for a decomposable section= s ® dz it is given by

[u, u] = ci|s|?dz A dz,

wherec;, is a constant of modulus 1 chosen so that the expression is always
nonnegative angk| is the norm given by the metric ob. For each in U
this induces a metric on the space of smooth sectidh&oK , over X,

i = /. )

We let I be the (infinite rank) vector bundle ovér whose fiber over a
point ¢ in U is the L2?-space defined by this metric. Similarily is the
(finite rank) vector bundle of holomorphic sections. Note that, wihile
naturally extends as a bundle over all}6f there seems to be no canonical
way of extending the definition of’ globally. Since our computation are
local, this is however not needed. Leetbe the connection form of the Chern
connection orl. over X . Locally, in terms of a local trivialisation where the
metric is given by a weight function, § = —0d¢. The Chern connection on
the bundleF' is now

Df;_ =0y, + 0y,
whered, ; is the coefficient ofiz; in 6. For the curvature of' we get

@ﬁ = Cjk,

the operator of multiplication with the-part of the curvature of.. The
proof of Theorem 1.2 now follows the same lines as the proof of Theorem
1.1, using the Kodaira-Nakano-Hormander estimate for line bundles over
compact manifolds, see [4].

5. BUNDLES OF PROJECTIVE SPACES

Let V' be a holomorphic line bundle of finite ramlover a complex man-
ifold Y, and letV* be its dual bundle. We |&(1") be the fiber bundle over
Y whose fiber at each pointof the base is the projective space of lines in
Vi, P(V¥). ThenP(V) is a holomorphically locally trivial fibration. There
is a naturally defined line bund@p(,/)(1) overP(V') whose restriction to
any fiberP(V;*) is the hyperplane section bundle. One way to define this



9

bundle is to first consider the tautological line bun@ig,)(—1). The total

s pace of this line bundle is just the total spacé’6fwith the zero section
removed, and the projection R(V') is the map that sends a nonzero point
in V;* to its image inP(V;*). The bundleOp((1) is then defined as the
dual of Op(yy(—1). The global holomorphic sections of this bundle over
any fiber are in one to one correspondence with the linear formg om

e the elements of’. More generally()p(v)(l)l = Op(v)(l) has as global
holomorphic sections over each fiber the homogenuous polynomidls on
of degred, i e the elemets of thketh symmetric power o¥. We shall apply
Theorem 1.2 to the line bundles

Let £ (1) be the vector bundle whose fiber over a paiimt Y is the space
of global holomorphic sections df(l) @ Kp(y+. If I < r there is only the
zero section, so we assume from now on thatgreater than or equal to

We claim that

E(r) =detV,

the determinant bundle df. To see this, note thdt(r) ® Ky is trivial

on each fiber, since the canonical bundlérof- 1)-dimensional projective
space ig)(—r). The space of global sections is therefore one dimensional.
A convenient basis element is

1
if z; are coordinates ov{*. Herecfz\j is the wedge product of all differentials

dz;, excepldz; with a sign chosen so thdtj/\cfz\j = dzA...dz,. Ifwe make

a linear change of coordinates &fr, this basis element gets multiplied
with the determinant of the matrix giving the change of coordinates, so the
bundle of sections must transform as the determinait.dince

L(r +1) ® Kp+) = Opy(1) @ L(r) @ Kpyy,
it also follows that
E(r+1)=V®detV.
In the same way
E(r+m)=5"V)®detV,

whereS™ (V) is themth symmetric power o¥/.

Let us now assume th&t is ample in the sense of Hartshorne, see [8].
By a theorem of Hartshorne, [8}; is ample if and only ifL(1) is ample, i e
has a metric with strictly positive curvature. Theorem 1.2 then implies that
the L?-metric on each of the bundlgs(r + m) for m > 0 has curvature
which is strictly positive in the sense of Nakano, so we obtain:
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Theorem 5.1. Let V be a vector bundle (of finite rank) over a complex
manifold. Assumé’ is ample in the sense of Hartshorne. Then for any
m > 0 the bundle

S™V)®detV

has an hermitian metric with curvature which is (strictly) positive in the
sense of Nakano.

(1]
(2]

(3]

[4]

(5]

(6]

(7]
(8]
9]

(10]
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