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ABSTRACT. In [8,9,10] a theory of rational solutions of the clas-
sical Yang-Baxter equation for a simple complex Lie algebra g
was presented. We discuss this theory for simple compact real Lie
algebras g. We prove that all rational solutions have the form
X(u,v) = % +t1 Aty + ... + tap_1 A tay,, where Q denotes the
quadratic Casimir element of g and {t;} are linearly independent
elements in a maximal torus t of g. The quantization of these
solutions is also emphasized.

1. INTRODUCTION

In their outstanding paper from 1982, A. A. Belavin and V. G. Drin-
feld obtained an almost complete classification of solutions of the classi-
cal Yang-Baxter equation with spectral parameter for a simple complex
Lic algebra g. These solutions are functions X (u, v) which depend only
on the difference u —v and satisfy the CYBE and some additional non-
degeneracy condition. It was proved in [1] that nondegenerate solutions
are of three types: rational, trigonometric and elliptic. The last two
kinds were fully classified in [1]. However, the similar question for ra-
tional solution remained open. This problem was solved in [8,9] by
classifying instead solutions of the form

(1.1) X (u,v) = %Jrr(u,v),

where 7(u, v) is a polynomial with coefficients in g ® g and © denotes
the quadratic Casimir element of g. This new type of solutions, which
will also be called rational, look somehow different from those in the
Belavin-Drinfeld approach. However, as it turned out in [2], any solu-

tion of this type can be transformed into one which depends only on
1
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u — v, by means of a change of variables and a holomorphic transfor-
mation.

In [8,9,10] a correspondence was established between rational solu-
tions of the form (1.1) and so-called orders in g((u~1)), i.e. subalgebras
W of g((u™1)) which satisfy the condition

(1.2) u Mgl € W S ugu]]

for some non-negative integers Ny and N,. The study of rational solu-
tions is esentially based on this correspondence and the description of
the maximal orders.

In the present paper, we follow the method developed in [8,9,10] to
study rational solutions of the CYBE for a simple compact Lie algebra
g over R. We establish a similar correspondence between solutions
and orders and we are interested in the description of the maximal
orders. We obtain that there is only one maximal order, the trivial
one. Therefore all rational solutions will have the form

(1.3) X(u,v) = ; L +r,

where r € g A g is a constant r-matrix.

On the other hand, any such r induces a subalgebra L of g together
with a nondegenerate 2-cocycle B € Z?(L,R). A subalgebra L for
which there exists a nondegenerate B is called quasi-Frobenius. Con-
versely, any pair (L, B) induces a skew-symmetric constant r-matrix.
We prove that any quasi-Frobenius subalgebra of a compact simple Lie
algebra is commutative. Consequently, up to gauge equivalence, any
rational solution has the form

Q
(14) X(u,,v) = m+t1/\t2+m+t2n—1/\t2n,

where t1,..., o, are linearly independent elements in a maximal torus
t of g.

Finally we discuss the quantization of the Lie bialgebra structures
corresponding to solutions of the form (1.4). The quantization is ob-
tained by twisting the real Yangian Yj(g).

2. RATIONAL SOLUTIONS AND ORDERS

Let g denote a simple compact Lie algebra over R and U(g) its
universal enveloping algebra. Let [, | be the usual Lie bracket on the
associative algebra U(g)®°.

We recall the following notation [1]: @12, ©13, @23, P11 ER & —
U(g)®? are the lincar maps respectively defined by ¢12(a®b) = a®b®1,
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P13(a®b) =a®1Qb, pa3(a®b) = 1®a®band 9 (a®b) =b®a®1,
for any a, b € g.

For a function X : R? — g ® g, we consider X¥: R? — U(g)®?
defined by X (u;,u;) = @i (X (s, uj)).

Definition 2.1. [1] A solution of the classical Yang-Baxter equation
(CYBE) is a function X : R*— g®g such that the following conditions
are satisfied:

(2.1) (X2 (u, ua), X1 (ug, us)] + [X2 (ur, ug), X (ug, us)]+
X3 (ug, uz), X (ug, uz)] = 0

(2.2) X2 (u,v) = =X (v,u).

Let us consider the Killing form K on g. Then (—K) is a positive
definite invariant bilinear form on g. Let {I,} be an orthonormal basis
in g with respect to (—K). We denote by Q the quadratic Casimir
element of g, i.e. Q= —> I, ® I,. Now we define rational solutions
as in the complex case [8,9,10]:

Definition 2.2. A solution of the CYBE is called rational if it is of
the form
(2.3) X (u,v) = L +r(u,v),

u—v

where 7(u, v) is a polynomial with coefficients in g ® g.

Remark 2.3. The simplest example of a rational solution is Yang’s r-
matrix: Xo(u,v) = —£. By adding to X,(u,v) any skew-symmetric
constant r-matrix, we also obtain a rational solution.

We will consider rational solutions up to a certain equivalence rela-

tion:

Definition 2.4. Two rational solutions X; and X5 are said to be gauge
equivalent if there exists o(u) € Aut(g[u]) such that

(2.4) Xi(u,v) = (o(u) @ 0(v)) Xa(u, v).

Remark 2.5. One can check that gauge transformations applied to ra-
tional solutions also give rational solutions.

Let R[[u™'] be the ring of formal power series in v~ and R((u™1)) its
field of quotients. Set glu] := g @r Ru], g[[u™']] := g@rR[[u"!]] and

4 IULIA POP, ALEXANDER STOLIN

g((u™)) := gorR((u™")). There exists a nondegencrate ad-invariant
bilinear form on g((u™')) given by

(2.5) (x(u),y(u)) = Resy—otr(adz(u) - ady(u)).

In [8, Th.1| a correspondence between rational solutions and a special
class of subalgebras of g((u~')) was presented. The same result holds
when g is real compact:

Theorem 2.6. Let g be a simple compact Lie algebra over R. There is
a natural one-to-one correspondence between rational solutions of the
CYBE and subalgebras W C g((u™")) such that

(1) W D uNg[[u™!]] for some N > 0;

(2) Weaglu=g((u));

(8) W is a Lagrangian subspace with respect to the bilinear form on
g((ut)) given by (2.5), i.e. W =W+,

Proof. We briefly sketch the proof which is similar to that in the com-
plex case. Let V := glu]. Then V* =u~'g[[u™!]. If fe V*andz € V
then f(z) := (f, ), where ( , ) is the bilinear form given by (2.5).
Denote by Homon:(V*, V') the set of all maps F' : V*— V such that
Ker(F) 2 u=V* for some N > 0.
There exists an isomorphism @ :V ® V—Hompn:(V*, V') defined by

(2.6) 2(z @ y)(f) = f(y)z,

for any x, y € V and f € V*. The inverse map is given by

(2.7) O HF) = — Zn: f: F(Lu™* Y ® Lu*,

i=1 k=0

for any F € Homeon:(V*, V). We make the remark that F(Lu="1) =0
for k> N so that the sum which appears in (2.7) is finite.

There is a natural bijection between Hom, e, (V*, V') and the set of
all subspaces W of g((u~!)) which are complementary to V and such
that W 2 uwNV* = u=N-1g[[u~!]] for some N > 0. Indeed, for any
F € Homeon(V*, V), we consider the following subspace of g((u™?))

(2.8) W(F):={f+F(f): feV}

which satisfies the required propertics.

The inverse mapping associates to any W the linear function Fy,
such that for any f € V*, Fw(f) = —z, uniquely defined by the
decomposition f =w + 2z with w € W and z € V.

One can easily see that W(®(r)) is Lagrangian with respect to the
bilinear form ( , ) if and only if r'*(u,v) = —r?'(v,u). Consequently,
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Q/(u — v) + r(u,v) satisfies the unitarity condition (2.2) if and only if
W (®(r)) is Lagrangian subspace.

Finally, if Q/(u — v) 4 7(u,v) is a solution of (

)

.1)-(2.2), then

2
(2.9) ([f +@()(f), g+ 2(r)(9)]. h + @(r)(h)) =0
for any elements f, g, h in V*. Because W(®(r)) is Lagrangian, (2.9)
implics that W (®(r)) is a subalgebra of g((u™1)). O

Remark 2.7. One can ecasily see that if W is contained in g[[u~1]] and
satisfies the above properties, then the corresponding rational solution
has the form X (u,v) = Q/(u—v)+r, where r is a constant polynomial.

Definition 2.8. An R-subalgebra W C g((u™!)) is called an order in
g((u1)) if there exist two non-negative integers Ny, N, such that

(2.10) uMglluT €W S ugllu]).
Obviously g[[u™']] is an order.

Remark 2.9. Let W satisfy conditions (1) and (3) of Theorem 2.6. Then
W is an order.

Concerning gauge equivalence, the result of Theorem 2 in [8] remains
true:

Theorem 2.10. Let g be simple compact Lie algebra over R. Let X,
and Xy be rational solutions of the CYBE and Wy, W5 the correspond-
ing orders in g((u™)). Let o(u) € Aut(g[u]). Then the following
conditions are equivalent:

(1) X1(u,v) = (0(u) ® o(v))Xa2(u, v);

(2) W1 = U(U)WQ.
Definition 2.11. Let V; and Vi be subalgebras of g((u™!)). We say

u)

that Vi and Vi are gauge equivalent if there exists o(u) € Aut(g[u])
such that V; = o(u)Va.

3. MAXIMAL ORDERS FOR COMPACT LIE ALGEBRAS
We will prove the following result:

Theorem 3.1. Let g be a simple compact Lie algebra over R. Then
any order W in g((u™')) is gauge equivalent to an order contained in
gllu]).

Proof. Let G be a connected compact Lie group whose Lie algebra is
g. Then G is embedded into SL(n,C) via any irreducible complex
representation. Without any loss of generality, we may suppose the
image of a maximal torus 7 of G is included into the diagonal torus H
of SL(n,C).

IULIA POP, ALEXANDER STOLIN

Let W denote an order of g((u™')). Since we have the following
sequence of embeddings

(31) W= WoC = (g8 C)@cC((u™)) = sl(n,C((u™))),

we may view any w € W as a matrix in sl(n, C((u™1))).
Let us prove that for each weW, the exponential exp(w) defined
formally by
p
(3.2) exp(w) := %

k>0

makes sense as an element of SL(n, C((u™1))).
Without any loss of generality, we may suppose that W is an R[[u~]}-
module of finite rank. We set O := C[[u"!]] and consider the O-module

(3.3) M:=0"+W0O" + ..+ WW..WO" + ...
Let us show that there exists some integer [ such that
(3.4) M C J'Q".
If x,..., o, is a basis of the R[[u~!]]-module W, then obviously
(3.5) M C Z:I;’fl...mf"@".
ki>0
It is well-known that the field K := C((u™!)) may be endowed with

the discrete valuation v(}", . y ayu™") = N. For any f €K, we consider
its norm:

(3.6) |f] =270,

On the other hand, one can define a norm on gl(n, K) which is com-
patible with the norm of K. Given a matrix A of gl(n,K), one sets
(3.7) 4] =27,
where g := inf k such that AQ" C v*O™.

This norm satisfies the properties: |[A;As| < |A1||Asf, |f(u) - Al =
Lf(u)][A], [A1 + As| < sup{| Ay, [Az]}.

We make the remark that, since W is an order, there exists NV > 0
such that |w| < 2V for all w € W.

In order to prove (3.4), it is enough to show that
(3.8) sup o't | < 0.

(k1. kr)
This means that for cach 1 < i < r there exists a positive integer M;
such that

(3.9) sup |f] < M;.
k
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It suffices to prove that the norms of the eigenvalues of x; for the
action of x; on K" are less or equal to 1. Indeed, if this happens, then
the coefficients of the characteristic polynomial of x; have norm less or
equal to 1. Because all powers =¥ are linear combinations of 1, z;,...,
2P~ ! (p; is the degree of the characteristic polynomial of x;), it follows
that
(3.10) |2¥] < sup{1, ||, ..., |27 '[}

and thus (3.9) will be fulfilled.

Let w be an arbitrary element of . Let €;(w),..., €,(w) be the
cigenvalues of w for the action of w on K™. We will show that |e;(w)| <
1 for all i. Without any loss of generality, we may suppose that w is
a diagonalizable clement. Consider the eigenvalues oy (w),..., g, (w)
for the action of w on (g ®r C) ®c C((u™')). Some of them are zero
and some behave as roots. For any o;(w) there exists a corresponding
cigenvector which belongs to W. Since W ®g C is an O-module of finite
type, it follows that |o;(w)| < 1 for all j. On the other hand, because
the weights of a representation are linear combinations of simple roots,
we have that e(w),..., €,(w) are linear combinations of some o;(w)
with rational coefficients. This implies that |e;(w)| < 1 for all 4.

Thus (3.9) holds and this implies (3.4). Since (3.4) holds for some
integer I, exp(w) belongs to SL(n,C((u™!))), for any w € W. We
denote by S the connected subgroup generated by exp(w) for all w €
W. Its Lie algebra is W.

Recall that G is embedded into SL(n,C) such that the image of a
maximal torus T of G is contained in a maximal torus H of SL(n,C).
Let 7 be the affine Bruhat-Tits building associated to G(R((u™!))) and
the valuation v. Let 7' be the affine Bruhat-Tits building associated
to SL(n,C((u™'))) and the valuation v. According to [4, p. 202-204]
there exists an embedding

(3.11) T—T

which is compatible with the preceding embedding G — SL(n,C).
Since W is contained in g((u™!)), one has that

(3.12) S5 C GR((u™))) — SL(n, C((u™)).

The module M given by (3.3) satisfies the property SM C M. Since
O™ C M C «'Qn, it follows that SO" C v!0". Therefore S must be a
bounded subgroup of SL(n,C((u'))), i.c. there is an upper bound on
the absolute values of the matrix entries of the elements of S.

According to [3, p. 161], S is bounded in the sense of Bruhat-Tits
bornology for the building 77 (see [3, p. 160]). Because the embedding
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T — 7' is compatible with the building metric, it follows that S
is a bounded subgroup of G(R((u™'))), in the sense of Bruhat-Tits
bornology corresponding to the building 7.

Now the Bruhat-Tits fixed point theorem (|3, p. 157, 161]) implies
that S fixes a point p of the building 7.

It was proved in [7] that the action of G(R[u]) on the Bruhat-
Tits building associated to G(R(u)) and the valuation w defined by
w(u/v) = deg(v) — deg(u), admits as simplicial fundamental domain a
so-called “sector”. This result remains true when we pass to our build-
ing 7 since, by taking the completion R((u~1)), the building does not
change, only the apartment system gets completed. Moreover, the ac-
tion of G(R[u]) is continuous. Let H denote the Cartan subalgebra
of si(n,C) corresponding to H and Hg its real part. The simplicial
fundamental domanin for the action of G(R[u]) on 7 is contained in
the standard apartment of the building 7’ which is identified with Hg.

Let h be the point of Hg which is equivalent to p via the action of
G(R[u]). There exists X € G(R[u]) such that Xp = h, which implies
that X.SX~! is contained in the stabilizer P, of h under the action of
G(R((u1))) on 7.

On the other hand, P, = P,NG(R((u™!))), where P is the stabilizer
of h under the action of SL(n,C((u"1))) on 7”. Tt follows that

(3.13) Ad(X)W C g ®r R((u™")) N Lie(P)).
The stabilizer P; was computed in [4, p. 238] and its Lie algebra is
(3.14) On = {(gi5) € sl(n,C((u™))) : v(gij) > vij(h)}.
Let us prove that
(3.15) gRrR((u™)NO, CgrR[[u]].
We know that
(3.16) g@r R((u ™)) N Oy, C su(n) @ R((u™1)) N Oy,
It is enough to show the following:
(3.17) su(n) @r R((u™1)) N Oy, C su(n) @ R[[u™"]].

If a matrix (g;;) belongs to su(n) ®r R((u™")) N Oy, then v(g;;) >
a;;(h) for all ¢, j and g;; + g;; = 0. We have v(g;;) = v(—75;) = v(g;:)-
On the other hand, v(g;;) > —ay;(h). We conclude that v(g;;) > 0 and
therefore (g;;) belongs to su(n) @ R{[u™']].

In conclusion, for some X € G(R[u]), one has that

(3.18) Ad(X)W C g @p R[[u™]]

which completes the proof.
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4. DESCRIPTION OF RATIONAL SOLUTIONS
Theorem 3.1 has an important consequence:

Corollary 4.1. Let g be a simple compact Lie algebra over R. Any
rational solution of the CYBE for g is gauge equivalent to a solution
of the form

4.1 X(u,v) = L .

(4.1) (uw)—uvarn

where v € g A g s a constant r-matriz .

Proof. We know that any order W of g((u~')) is gauge equivalent to an
order contained in g[[u~!]]. On the other hand, if a rational solution
X (u,v) corresponds to an order W C g[[u™']] then, by Remark 2.7,
X (u,v) = Q/(u—v) +r, where r is a constant polynomial. Because
X (u,v) is a solution of the CYBE, it results that r itself is a solution
of the CYBE. d

Let us recall a result which describes constant solutions in a different
way. This theorem was formulated for the complex case in [1], but the
proof obviously works for any simple compact Lie algebra g over R.

Theorem 4.2. Any rational solution of the CYBE of the form (4.1)
induces a pair (L, B), where L is a subalgebra of g and B is a nonde-
generate 2-cocycle on L. Conversely, any such pair provides a rational
solution of the form (4.1).

Remark 4.3. If L is a commutative subalgebra of g and B is a nonde-
generate skew-symmetric form on L, let r € L A L be the inverse with
respect to B. Then the corresponding rational solution is Q/(u—wv)+7.

Recall that a subalgebra L of g is called quasi-Frobenius if there
exists a non-degenerate 2-cocycle B € Z2(L,R).

Theorem 4.4. Let g be a simple compact Lie algebra over R. Any
quasi-Frobenius Lie subalgebra L of g is commutative.

Proof. Any subalgebra of a compact Lie algebra is compact. Therefore
L must be compact as well. Moreover (see for example [6, p. 97]), the
derived algebra L' of L is semisimple and if ((L) denotes the center of
L, then

(42) L=1La&((L).

Let us assume that L' # 0 and there exists a non-degenerate 2-
cocycle B on L. We have the following identity

(43) B([z,y},z)+B([y,z],x)+B([z,z],y):O,
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for any x, y €L’ and z € ((L). This implies B([z,y],z) = 0, for
arbitrary z, y €L’ and z € ((L). Since L’ is semisimple, its derived
algebra coincides with L'. We obtain

(4.4) B(w, z) =0,

for any we L' and z € ((L).

On the other hand, since L' is semisimple, the restriction of B to L’
is a coboundary, i.c. there exists a non-zero functional f on L’ such
that B(wy,ws) = f([w1,ws]), for all wy, wy in L'. Let ag be the element
of L' which corresponds to f via the isomorphism L' = (L')* defined
by the Killing form. Then for all w € L’ one has

(4.5) B(ag, w) = K(ay, [ag,w]) = 0.
Together with (4.2) and (4.4) this implies that
(4.6) Blag.1) =0,

for all elements [ of L. Thus B is degencrate on L, which is a contra-
diction. O

Corollary 4.5. Up to gauge equivalence, any rational solution of the
CYBE for a simple compact Lie algebra g over R has the form

Q
(47) X(Uﬂj) :m+tlAt2+---~+t2n—l/\t2m

where ty,..., ta, are linearly independent elements in a mazimal torus
t of g.

Proof. We have seen that rational solutions are determined by pairs
(L, B), where L is a quasi-Frobenius Lie subalgebra and B a non-
degenerate 2-cocycle on L. By the previous result, L is a commutative
subalgebra and B is a non-degenerate skew-symmetric form on L. Then
L is contained in a maximal commutative subalgebra t of g and the
dimension of L is even, say 2n.

Moreover, it is well-known that there exists a basis t1,..., t2, in L such
that B(t?i_17t2i) = —B(t2i7t2i_1) =1for 1 < 7 <n and B(tj,tk) =0
otherwise. The rational solution induced by the pair (L, B) is precisely
(4.7).

5. QUANTIZATION

Let g be a simple compact Lie algebra over R. Let us recall that the
rational solution Xo(u,v) = usz induces a Lie bialgebra structure on

v

g[u] via the 1-cocycle dy given by
(5.1) do(a(w)) = la(u) ® 1+ 1 ® a(v), Xo(u,v)],




RATIONAL SOLUTIONS OF CYBE FOR COMPACT LIE ALGEBRAS 11

for any a(u) € glu].

We have seen that, up to gauge equivalence, rational solutions have
the form (4.7). To any such solution one can associate a Lie bialgebra
structure on g[u] by defining the 1-cocycle

(5.2) ,(a(w)) = [a(w) ® 1+ 1® av), X (u,0)).
Here » = t1 Aty + ... + ton—1 A ta,. In other words, the Lie bialge-

bra (g[u],d,) is obtained from the Lie bialgebra (g[u],do) by so-called
twisting via r.

Remark 5.1. This notion was introduced by V. G. Drinfeld in a more
general setting for Lie quasi-bialgebras.

The purpose of this section is to give a quantization of the Lie bial-
gebra (g[u], d,).

Let us begin by pointing out that the Lie algebra (g[u], &) admits a
unique quantization which we will denote by Y(g) (here 7 is Planck’s
constant). The construction is analogous to that of the Yangian intro-
duced in [5]. We recall that if K denotes the Killing form of a simple
compact g, then (—K) is a positive definite invariant bilinear form.
Let {I,} be an orthonormal basis in g with respect to (—K). Then
Y5(g) is the topological Hopf algebra over R[[R]] generated by elements
I, and J, with defining relations

(53) [I/\’ [H} = CK;LIV
(5.4) [Dx; Jul = S

(55) [J>\7 [Ju7 IVH - []Av [JAH JVH = hZ(Laﬂ’y{Im [37 ]’Y}

Apv
6) [[‘]/\’ Ju]ﬂ [['l'v JbH + [[']rv JSL [Ix\v Ju“ =
R+ a2 T T I,

TSV

aBy._ 1 ko k N e
where ay,) := 5:¢3,0),5¢0,¢5; and {z1, 9, 73} == Bz .752 5. The co-

multiplication, the co-unit and the antipode are given by the following:
(5.7) AL)=0L®1+111,

h
A()=L@1+1®Jy — 5%1” ®1,

() =¢e(J)=0,e(1)=1
S() =—1Ix

h
S(h) = —Ia+ 7 I
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Clearly Y;(g) contains U(g)[[A]] as a Hopf subalgebra.

Since the generators of Y;(g) are simultancously generators for the
complex Yangian and all the structure constants are real, it follows im-
mediately from [5, Th.3] that Y;(g) is a pseudotriangular Hopf algebra.
More precisely, for any real number «a, define an automorphism 7T, of
Y:(g) by the formulae

(5.12) T(Iy) = I

(5.13) TG(J,\) = Jy +al,.

Then there exists an element R(u) = 1+ > 2, Ryu~", where R; =
and Ry, € Yy(g)®? such that the following conditions are satisfied:

(5.14) (T, ® Ty)R(u) = R(u +a —b)
5.15 (Tu ® 1)A(2) = R(u)(T, @ 1)A(x)) R(u) ™

7 R2w)R* (—u)=1®1

(5.15)
(5.16) (A ®1)R(u) = R (u) R (u)
(5.17)
(5.18)

5.18 R%2(uy — ug) R™(uy — ug) R (ug — ug) =
= R23(U2 - )\3)R13(U1 — U3)R12(U1 — UZ)A
Here A° denotes the opposite comultiplication.
In order to give a quantization of (g[u],d,), we introduce a deforma-
tion of the Yangian Y(g) by a so-called quantum twist. The approach

is based on [11, Th.5] that we recall below:

Theorem 5.2. Let I € (U(g)[[h]])®* such that

(5.19) F = 1(modh)

(5.20) co)F=(1®F =181

(5.21) (ARNF-F2?=(1RA)F. F®

Denote by fﬁi(g) the associative unital algebra which has the same mul-
tiplication m as Yx(g) but the comultiplication is

(5.22) A= F'AF.

Then the following statements hold:
1) Yi(g) is a Hopf algebra with antipode

(5.23) S = Q1sQ,
where Q = m(S ® 1)(F)).
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2) Let R(u) = (F?Y)"'R(u)F. Then the equations (5.14)-(5.18) hold
for R(u) and A(u).

Remark 5.3. In literature, an clement F' satisfying (5.19)-(5.21) is called
a quantum twist of Yj(g). The Hopf algebra Yj(g) is the twisted (or
deformed) Yangian by the tensor F.

We can casily construct a quantum twist in the following way:

Proposition 5.4. Suppose that tq,..., ts, are linearly independent ele-
ments in a mazimal torus t of g. Then the two-tensor

(524) F= CXp(ﬁ(tl &® tz + ...+ t2n—1 ® t2n))
is a quantum twist of Yr(g)-

Proof. Conditions (5.19)-(5.21) can be checked by straightforward com-
putations. O

Theorem 5.2 implies the following

Corollary 5.5. The deformed Hopf algebra ?h(g), obtained by applying
the quantum twist F given by (5.24), is a quantization of (g, 4,), where
r= tl A tz + ...+ tznfl A tgn.

Proof. For any a € ?h(g), we have to check the following:
(5.25) B (A(a) — A%(a)) mod ki = 6,(a mod ).

Since A = F~AF, we obtain

(5.26) Aa) = A%(a) = F'A(a)F — (F?) ' A%(a) F?'.

On the other hand, since Yj(g) is a quantization of (g, dp), we have
that

(5.27) A(a) — A% (a) = hdp(a mod k) + O(h?).
Using (5.26), (5.27) and (F?')"'F = exp(hr), we obtain
(5.28) Ala) — A%(a) = h([A(a), 7] + do(a mod h)) + O(h?)
= hé,(a mod h) + O(h?).
O

Finally, we give the explicit formulae for the comultiplication and
antipode of the twisted Yangian Y;(g). Let us recall the root system of
g with respect to a torus, according to [6, p. 98-99]. We denote by h a
Cartan subalgebra of g ®@g C and let A be the root system with respect
to h, together with a lexicographic ordering of A. We choose the root
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vectors e,, corresponding to cach root «, such that K(e,,e_o) = —1.
Let hg = {h € h: a(h) € R for all a}. We put

(5.29) C, = %(ea +e_y)

(5.30)

It is well-known that
(5.31) g=ihz &) (RC, ®RS,).
a>0

An orthonormal basis in g, with respect to the bilinear form(—K),
is formed by the elements C,, S, and p; := ik;, where {k;} is an
orthonormal basis in hg. We choose this basis as our {I,}. The role
of {J,} is played correspondingly by some elements denoted by U,, V,
and P;. For any h € hg we have the following:

(5.32) [ih, Ca] = a(h)Sa
(5.33) [ih, Sa] = —a(h)Cla
(5.34) [ih, Us] = a(h)Va
(

5.35) [ih, Vo] = —a(h)U,.
Let us consider now a quantum twist £ as in (5.24). Since F'is a a
product of exponents, it is enough to perform computations for
(5.36) F = exp(h(t: ® t2)),
where ¢; and ty are two linearly independent elements in the torus

t = thg. Let t; = ihy and ty = ihy, where h; and hy are elements of
hg.

Lemma 5.6. Let Ty, := tha(hy)hy and Ta, = iha(he)hy. The follow-
ing identities hold:

5.37) Co @ 1)F = C, ® cos(Th1a) — Sa @ sin(T1a)

5.38 '1®C,)F = c08(Taa) ® Cy — sin(Tha) @ So

(

(5.38)
(5.39)
(5.40) M1 ® Sa)F = c08(Tha) @ So + sin(Tha) @ C.
(5.41)
(5.42)

1

1 Q@ 1)F =U, ® cos(T1a) — Vo @ sin(T1qa)

1

N
1e
HSa®@1)F = S, ® cos(Tha) + Co @ sin(Ti,)
(
(Ua
(1

F-
-
-
F~
F~

5.42 U,)F = cos(Ta) ® Uy — sin(Taa) @ Vi,
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.43) FYVa@1)F =V, ® cos(Tia) + Uy @ sin(T1a)

(5.44) FA®@V,)F = cos(Ta) ® Vi + sin(Tha) @ U,.

Proof. To prove the first identity, we use relations (5.32)-(5.33) and the
formula

(5.45) exp(A)pexp(=A) = exp(ad(A)p = p+ [, p] + %[/\7 A pl] =+

for X := —h(ih; ® thy) and p:=C, ® 1.
Identities (5.38)-(5.44) can be proved in a similar way. O

Consequently we obtain the following result:

Proposition 5.7. The comultiplication A of the twisted Yangian ?h(g)
is given on its generators by the following:

A(Ca) = Ca®c08(T1a) — Sa ®@sin(T1q) + cos(Tra) @ Co — sin(Trq) @ S

A(Sy) = Sa ®c08(Tia) + Co @ sin(Tia) + c08(Tha) ® So + sin(Tha) ® C

A(Uy) = Uy @ c08(T1a) — Vi @ 8in(Tha) + 08(Tae) @ Uy — sin(The) © Vi
_Z[C” ® co8(Tha) — Sa @ sin(Tha), O

A(V,) = Vo ®c08(Tia) + Us @ sin(Tig) + c08(Tha) @ Vi +sin(The) @ Uy

—g[sa ® cos(Tia) 4+ Ca ® sin(Tia), Q]

A(pj):pj®l+1®pj

~ I ~
A(P)=P@1+10 P - lp; @ 1,0
where

Q=" (Cocos(Tra) + Sasin(Tha)) @ (cos(Tia)Ca + sin(Tia)Sa)+

a>0

+(Cq sin(Toy) — Sq c08(Toe) ® (sin(Tha)Co — c08(T14)Sa) + ij ® pj.
J

_ We conclude by expliciting the antipode S of the twisted Yangian
Yi(g). It is given by S = Q7'5Q, where Q = exp(hhyhs).
Similarly to Lemma 5.6, one can prove
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Lemma 5.8. Let T, := il(a(he)hi+a(hi)hse). The following identities
hold:

(5.46) Q7'C,Q = exp(fia(hy)ar(hy)) (cos(Ty)Cy + sin(Ty)Sa)
(5.47) Q715,Q = exp(ha(hy)a(hsy))(cos(T,) Sy — sin(T,)Cy)
(5.48) Q7'ULQ = exp(hia(hy)a(hy))(cos(To) Uy + sin(T,)Va)

(5.49) Q™ W,Q = exp(fia(hy)a(hy)) (cos(Ty) Va — sin(Ty)Us).

Proposition 5.9. The antipode S of the deformed Yangian ?ﬁ(g) is
given on its generators by

(5.50) 5(Cy) = —exp(ha(hy)a(hy))(cos(Th)Cy + sin(T)S,)

(5.51) 5(Sa) = — exp(hav(hy)a(hy))(cos(Th)Sa — sin(Ty)Cy)

(5.52) §(Ua) = exp(ha(hi)a(hs))(cos(T) (—=Us + ZCL!)—O—

+sin(T,) (Vo + ZSQ))

S(V) = exp(hc(hy)a(ha)) (cos(Ta)(— Vi + ﬁsa)+

1
h
1
(5.54) S(p;) = —p;

+5in(T,) (Us — —Ch)).

~ h
(5.55) S(P) =~y + 705
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