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EXPLICIT VERSIONS OF THE BRIANÇON-SKODA
THEOREM WITH VARIATIONS

MATS ANDERSSON

Abstract. We give new a proof of the general Briançon-Skoda
theorem about ideals of holomorphic functions by means of mul-
tivariable residue calculus. The method gives new variants of this
theorem for products of ideals. Moreover, we obtain a related
result for the ideal generated by the the subdeterminants of a
matrix-valued generically surjective holomorphic function, general-
izing the duality theorem for a complete intersection. We also pro-
vide explicit versions of the various results, including the general
Briançon-Skoda theorem, with integral representation formulas.

1. Introduction

Let φ, f1, . . . , fm be holomorphic functions in a neighborhood of the
origin in Cn. The Briançon-Skoda theorem, [8], states that φmin(n,m)

belongs to the ideal (f) generated by fj if |φ| ≤ C|f |. This condition is
equivalent to that φ belongs to the integral closure of the ideal (f). The
original proof is based on Skoda’s L2-estimates in [16], see Remark 1
below, and actually gives the stronger statement that φ ∈ (f) if |φ| ≤
C|f |min(n,m). There are generalizations to more arbitrary rings, see,
e.g., [13].

In general this result cannot be improved but for certain tuples fj a
much weaker size condition on φ is enough to guarantee that φ belongs
to (f). For instance, the ideal (f)2 is generated by the m(m + 1)/2
functions gjk = fjfk, and |f |2 ∼ |g|, so if we apply the previous result
we get that φ ∈ (f)2 if |φ| ≤ C|f |min(2n,m(m+1)). However, in this case
actually the power min(n,m) + 1 is enough. In general we have

Theorem 1.1 (Briançon-Skoda). If f = (f1, . . . , fm) and φ are holo-
morphic at 0 in Cn and |φ| ≤ C|f |min(m,n)+r−1, then φ ∈ (f)r.

In [2] we gave a new proof of the case r = 1 by means of multivariable
residue calculus. In this note we extend this method to cover the
general case of Theorem 1.1, and as a by-product we get various related
results. In the first one we consider several possibly different tuples.
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2 MATS ANDERSSON

Theorem 1.2. Let fj, j = 1, . . . , r, be mj-tuples of holomorphic func-
tions at 0 ∈ Cn and assume that

|φ| ≤ C|f1|s1 · · · |fr|sr

for all s such that s1 + · · · + sr ≤ n + r − 1 and 1 ≤ sj ≤ mj. Then
φ ∈ (f1) · · · (fr).

Notice that this immediately implies Theorem 1.1 in the case m ≥ n
by just choosing all fj = f . In certain cases Theorem 1.2 can be
improved, as one can see by taking fj = f and m < n and compare
with Theorem 1.1. Another case is when all the functions in the various
tuples fj together form a regular sequence.

Theorem 1.3. Let fj, j = 1, . . . ,m, be mj-tuples of holomorphic func-
tions at 0 ∈ Cn and assume that the codimension of {f1 = · · · fr = 0}
is m1 + · · ·+mr. If

|φ| ≤ Cmin(|f1|m1 , . . . , |fr|mr),

then φ ∈ (f1) · · · (fr).

Remark 1. As was mentioned above the Briançon-Skoda theorem fol-
lows by direct applications of Skoda’s L2-estimate if m ≤ n. In fact,
if ψ is any plurisubharmonic function, the L2-estimate guarantees a
holomorphic solution to f · u = φ such that∫

X\Z

|u|2

|f |2(min(m,n+1)−1+ε)
e−ψdV <∞

provided that ∫
X\Z

|φ|2

|f |2(min(m,n+1)+ε)
e−ψdV <∞.

If |φ| ≤ C|f |m, the second integral is finite (taking ψ = 0) if ε is small
enough, and thus Skoda’s theorem provides the desired solution. The
case when r > 1 is obtained by iteration. If m > n a direct use of the
L2-estimate will not give the desired result. However, see [10], in this

case one can find an n-tuple f̃ such that (f̃) ⊂ (f) and |f̃ | ∼ |f |, and
the theorem then follows by applying the L2-estimate to the tuple f ′.

In the same way, Theorem 1.2 can easily be proved from the L2-
estimate if m1 + · · ·+mr ≤ n+r−1. To see this, assume for simplicity
that r = 2, and that |φ| ≤ C|f1|m1|f2|m2 . Choosing ψ = 2(m1 +
ε) log |f1|, Skoda’s theorem give a solution to f2 · u = φ such that∫

X\Z

|u|2

|f1|2(m1+ε)
dV <∞.

Another application then gives vj such that f1·vj = uj. This means that
φ belongs to (f1)(f2). However, we do not know whether one can derive
Theorem 1.3 from the L2-estimate when m1 + · · ·+mr > n+ r−1. �
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Now consider a r ×m matrix fkj of holomorphic functions, r ≤ m,
with rows f1, . . . , fr. We let F be the m!/(m− r)!r! tuple of functions
det(f Ikj ) for increasing multiindices I of length r. We will refer to F as
the determinant of f . If fj are the rows of the matrix, considered as
sections of the trivial bundle E∗, then F is just the section fr∧ . . . f1 of
the bundle ΛrE∗. Our next result is a Briançon-Skoda type result for
the tuple F . It turns out that it is enough with a much less power than
m!/(m− r)!r!. Let Z be the zero set of F and notice that codimZ ≤
m− r + 1; this is easily seen by Gauss elimination.

Theorem 1.4. Let F be the determinant of the holomorphic matrix f
as above. If

|φ| ≤ C|F |min(n,m−r+1),

then φ ∈ (F ).

Remark 2. This result is closely related to the following statement
which was proved in [3]. Suppose that φ is an r-tuple of holomorphic
functions and let ‖φ‖ be the pointwise norm induced by f , i.e., ‖φ‖ =
det(ff ∗)〈(ff ∗)−1φ, φ〉. If

‖φ‖ . |F |min(n,m−r+1),

then fψ = φ has a local holomorphic solution. �

Remark 3. Another related situation is when f is a section of a bundle
E∗, φ takes values in Λ`E, and we ask for a holomorphic section ψ of
Λ`+1E such that δfψ = φ, provided that the necessary compatibility
condition δfφ = 0 is fulfilled. Let p = codim {f = 0}. Then a sufficient
condition is that

|φ| ≤ C|f |min(n,m−`)

if ` ≤ m − p, whereas there is no condition at all if ` > m − p, see
Theorems 1.2 and 1.4 and Corollary 1.5 in [2]. �

Theorem 1.4 is proved by constructing a certain residue current R
with support on the analytic set Z, such that Rφ = 0 implies that φ
belongs to the ideal (F ) locally. The size conditions of φ then implies
that Rφ = 0 by brutal force, see Theorem 2.3 below. There may be
more subtle reasons for annihilation. For instance, in the generic case,
i.e., when codimZ = m− r + 1, even the converse statement holds; if
φ is in the ideal (F ) then actually Rφ = 0, see Theorem 2.3 (iv). The
analogous statement also holds for the equation fψ = φ in Remark 2,
see [3]. These results are therefore extensions of the well-known duality
theorem of Dickenstein-Sessa and Passare, [11] and [14], stating that
if f is a tuple that defines a complete intersection, i.e., codim {f =
0} = m, then φ ∈ (f) if and only if φ annihilates the Coleff-Herrera
current defined by f . Theorems 1.2 and 1.3 (as well as Theorem 1.1)
are obtained along the same lines, by an appropriate choice of matrix
f .
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It has been discussed for several years, see, e.g., [6] and [19], whether
one can prove the Briançon-Skoda theorem with an explicit integral
formula. In [2] we discovered such a formula for the case r = 1 of The-
orem 1.1. In the second part of this paper we construct new completely
explicit integral representations of holomorphic functions that provide
effective proofs of Theorems 1.1 to 1.4. In fact, for any holomorphic
function φ we construct a holomorphic decomposition

(1.1) φ = Tφ+ Sφ,

such that Tφ belongs to the ideal in question and Sφ vanishes as soon
as φ annihilates the residue current R.

2. The ideal generated by the determinant section

Although we are mainly interested in the local results in this paper
it is convenient to adopt an invariant perspective. We therefore as-
sume that we have Hermitian vector bundles E and Q of ranks m and
r ≤ m, respectively, over a complex n-dimensional manifold X, and a
holomorphic morphism f : E → Q. We also assume that f is generi-
cally surjective, i.e., that the analytic set Z where f is not surjective
has at least codimension 1. If εj is a local holomorphic frame for Q,
then f = f1⊗ ε1 + · · ·+fr⊗ εr, where fj are sections of the dual bundle
E∗. Moreover, F = fr∧ . . .∧f1 ⊗ ε1∧ . . .∧εr is an invariantly defined
section of ΛrE∗⊗detQ∗ that we will call the determinant section asso-
ciated with f . Notice that if ej is a local frame for E with dual frame
e∗j for E∗, then fj =

∑m
1 f

k
j e

∗
k, and

F =
′∑

|I|=r

FIe
∗
I1
∧ . . .∧e∗Ir ,

where the sum runs over increasing multiindices I and FI = det(F Ik
j ).

Let S`Q∗ be the subbundle of (Q∗)⊗` consisting of symmetric tensors.
We introduce the complex

(2.1) · · ·
δf→ Λr+k−1E ⊗ Sk−1Q∗ ⊗ detQ∗ δf→ · · ·

δf→ Λr+1E ⊗Q∗ ⊗ detQ∗ δf→ ΛrE ⊗ detQ∗ δF→ C → 0,

where

δf =
∑
j

δfj
⊗ δεj ,

δfj
and δεj denote interior multiplication on ΛE and from the left on

SQ∗ ⊗ detQ∗, respectively, and

δF = δrf/r! = δfr · · · δf1 ⊗ δε1 · · · δεr .
It is readily checked that (2.1) actually is a complex. Notice that if
r = 1, then (2.1) is the usual Koszul complex and therefore exact
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whenever f is pointwise surjective. This is, however, not true when
r > 1.

In X \ Z we let σj be the sections of E with minimal norms such
that fkσj = δjk. Then σ = σ1 ⊗ ε∗1 + . . . + σr ⊗ ε∗r is the section of
Hom (Q,E) such that, for each section φ of Q, v = σφ is the solution
to fv = φ with pointwise minimal norm. We also have the invariantly
defined section

σ = σ1∧ . . .∧σr ⊗ ε∗r∧ . . .∧ε∗1
of ΛE⊗ = detQ∗, and it is in fact the section with minimal norm such
that Fσ = 1, see, e.g., [3].

Example 1. Assume that E and Q are trivial and let εj be an ON-
frame for Q and ej an ON-frame for E, with dual frame e∗j . If F =∑′

|I|=r FIe
∗
I1
∧ . . .∧e∗Ir as above, then

σ =
′∑

|I|=r

F̄I
|F |2

eI1∧ . . .∧eIr .

�

We will consider (0, q)-forms with values in Λr+k−1E ⊗ Sk−1Q∗ ⊗
detQ∗, and it is convenient to consider them as sections of Λr+k+q−1(E⊕
T ∗

0,1(X)) ⊗ Sk−1Q∗ ⊗ detQ∗, so that δf anti-commutes with ∂̄, and

δF ∂̄ = (−1)rδF ∂̄. In what follows we let ⊗ denote usual tensor product
all Q∗-factors, and wedge product of Λ(E ⊕ T ∗

0,1(X))-factors. Thus for
instance

σ ⊗σ = (
r∑
1

σj ⊗ ε∗j)⊗ (σ1∧ . . .∧σr ⊗ ε∗1∧ . . .∧ε∗r) = 0.

Moreover, for each k ≥ 1, (∂̄σ)⊗(k−1) is a symmetric tensor; more
precisely,

(2.2) (∂̄σ)⊗(k−1) =
∑

|α|=k−1

(∂̄σ1)
α1∧ . . .∧(∂̄σr)

αr ⊗ ε∗α,

where

ε∗α =
(ε∗1)

α1⊗̇ · · · ⊗̇(ε∗r)
αr

α1! · · ·αr!
,

and ⊗̇ denotes symmetric tensor product. For each k ≥ 1 we define in
X \ Z the (0, k − 1)-forms

(2.3) uk = (∂̄σ)⊗(k−1) ⊗σ = σ1∧ . . .∧σr∧(∂̄σ)⊗(k−1) ⊗ ε∗

(where ε∗ = ε∗r∧ . . .∧ε∗1), with values in Λr+k−1E ⊗ Sk−1Q∗ ⊗ detQ∗.

Proposition 2.1. In X \ Z we have that

(2.4) δFu1 = 1, δfuk+1 = ∂̄uk, k ≥ 1.
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Proof. Since δεj act from the left, and δfj
∂̄σ` = 0 for all `, we have that

δfuk+1 = δf
[
σ1∧ . . .∧σr∧(∂̄σ)⊗k ⊗ ε∗

]
=

δf
[
σ1∧ . . .∧σr∧∂̄σ

]
⊗ (∂̄σ)⊗(k−1) ⊗ ε∗ =

r∑
j=1

δfj
(σ1∧ . . .∧σr)∧∂̄σj ⊗ (∂̄σ)⊗(k−1) ⊗ ε∗ =

∂̄(σ1∧ . . .∧σr)∧(∂̄σ)⊗(k−1) ⊗ ε∗ = ∂̄uk.

Since δFu1 = Fσ = 1, the proposition is proved. �

If we let u = u1 + u2 + · · · , and let δ denote either δf or δF , then
(2.4) can be written as (δ − ∂̄)u = 1. To analyze the singularities of u
at Z we will use the following lemma (Lemma 4.1) from [3].

Lemma 2.2. If F = F0F
′ for some holomorphic function F0 and non-

vanishing holomorphic section F ′, then

s′ = F0σ, S ′ = F0σ
are smooth across Z.

Notice that |F |2λu and ∂̄|F |2λ∧u are well-defined forms in X for
Reλ >> 0.

Theorem 2.3. (i) The forms |F |2λu and ∂̄|F |2λ∧u have analytic con-
tinuations as currents in X to Reλ > −ε. If U = |F |2λu|λ=0 and
R = ∂̄|F |2λ∧u|λ=0, then

(δ − ∂̄)U = 1−R.

(ii) The current R has support on Z and R = Rp + · · · + Rµ, where
p = codimZ and µ = min(n,m− r + 1).

(iii) If φ is a holomorphic function and Rφ = 0, then locally FΨ = φ
has holomorphic solutions.

(iv) If codimZ = m− r + 1 and FΨ = φ has a holomorphic solution,
then Rφ = Rm−r+1φ = 0.

(v) If |φ| ≤ C|F |µ, then Rφ = 0.

Here, of course, Rk = ∂̄|F |2λ∧uk|λ=0 is the component of R which is
a (0, k)-current with values in Λr+k−1E ⊗ Sk−1Q∗ ⊗ detQ∗.

Proof. In the case r = 1, this theorem is contained in Theorems 1.1
to 1.4 in [2], and most parts of the proof are completely analogous.
Therefore we just point out the necessary modifications. By Hiron-
aka’s theorem and a further toric resolution, following the technique
developed in [5] and [15], we may assume that locally F = F0F

′ as in
Lemma 2.2. Since moreover σ ⊗ σ = 0, we have then that locally in
the resolution

uk =
(∂̄s′)⊗(k−1) ⊗ S ′

F k
0

.
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It is then easy to see that the proposed analytic extensions exist and
we have that

(2.5) Uk =
[ 1

F k
0

]
(∂̄s′)⊗(k−1) ⊗ S ′,

and

(2.6) Rk = ∂̄
[ 1

F k
0

]
∧(∂̄s′)⊗(k−1) ⊗ S ′,

where [1/F k
0 ] is the usual principal value current. If Rφ = 0, then

(δ − ∂̄)Uφ = φ, and hence by successively solving the ∂̄-equations

∂̄wk = Ukφ+ δwk+1,

we finally get the holomorphic solution Ψ = U1φ + δw2. All parts but
(iv) now follow in a similar way as in [2]. Notice in particular, that
k ≤ min(n,m − r + 1) in (2.6) for degree reasons, so that Rφ = 0 if
the hypothesis in (v) is satisfied. As for (iv), let us assume that we
have a holomorphic section Ψ of ΛrE ⊗ detQ∗ such that FΨ = φ. If
Ψ = ψ ⊗ ε∗, then FΨ = δfr · · · δf1ψ. Since um−r+1 has full degree in ej
we have that

um−r+1φ = φσ1∧ . . .∧σr∧(∂̄σ)⊗(m−r) ⊗ ε∗ =

(δfr · · · δf1ψ)σ1∧ . . .∧σr∧(∂̄σ)⊗(m−r) ⊗ ε∗ =

ψ∧(∂̄σ)⊗(m−r) ⊗ ε∗|λ=0 =

(∂̄σ)⊗(m−r) ⊗Ψ = ∂̄
(
σ ⊗ (∂̄σ)⊗(m−r+1)

)
⊗Ψ = ∂̄u′m−r ⊗Ψ.

Since codimZ = m − r + 1 we have that R = Rm−r+1 according to
part (ii), so

Rφ = Rm−r+1φ = ∂̄|F |2λ∧um−r+1φ|λ=0 = −∂̄
(
∂̄|F |2λ∧u′m−r ⊗Ψ|λ=0

)
.

However,
∂̄|F |2λ∧u′m−r ⊗Ψ|λ=0

vanishes for degree reasons, precisely in the same way as Rk vanishes
for k ≤ m− r. �

Proof of Theorem 1.4. If we consider the matrix f as a morphism E : Q,
for trivial bundles E andQ, the theorem immediately follows from parts
(v) and (iii) of Theorem 2.3. �

Remark 4. As we have seen, the reason for the power m − r + 1 in
Theorem 1.4 (and in part (v) of Theorem 2.3) when n is large, is that
the complex (2.1) terminates at k = m− r + 1. If one tries to analyse
the section F by means of the usual Koszul complex with respect to
the basis (eI)

′
|I|=r, then one could hope that for some miraculous reason

the corresponding forms uk would vanish when k > m−r+1, although
one has m!/(m − r)!r! dimensions (basis elements). However, this is
not the case in general. Take for instance the simplest non-trivial case,
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m = 3 and r = 2, and choose f1 = (1, 0, ξ1), f2 = (0, 1, ξ2) and choose
the trivial metric. Then

F12 = 1, F13 = ξ2, F23 = ξ1,

and σ = F̄ /|F |2, so that

σ12 =
1

1 + |ξ1|2 + |ξ2|2
,σ13 =

ξ̄2
1 + |ξ1|2 + |ξ2|2

, σ23 =
ξ̄1

1 + |ξ1|2 + |ξ2|2
.

Now m− r+ 1 = 2, but if we form the usual Koszul complex, with say
that basis ε1, ε2, ε3, so that

σ = σ12ε1 +σ13ε2 +σ23ε3 =
1

|F |2
(ε1 + ξ̄2ε2 + ξ̄1ε3),

we have

σ∧(∂̄σ)2 =
2

|F |6
dξ̄1∧dξ̄2∧ε1∧ε2∧ε3,

and this form is not zero. To get an example where Z is non-empty,
one can multiply f with a function f0. �

3. Products of ideals

For j = 1, . . . , r, let Ej → X be a Hermitian vector bundle of rank
mj and let fj be a section of E∗

j . Moreover, let E = ⊕r
1Ej and let

Q ' Cr with ON -basis ε1, . . . , εr. If we consider fj as sections of E,
then f =

∑r
1 fj ⊗ εj is a morphism E → Q. Moreover, FΨ = φ with

Ψ = ψ ⊗ ε∗ as before, means that δfr · · · δf1ψ = φ, and hence that φ
belongs to the product ideal (f1) · · · (fr). To obtain such a solution
Ψ we proceed as in the previous section. Notice that now σj can be
identified with the section of Ej with minimal norm such that fjσj = 1.
Moreover, |F | = |f1| · · · |fr|. In this case we therefore have

Rk = ∂̄|F |2λ∧uk = ∂̄(|f1|2λ · · · |fr|2λ)∧σ1∧ . . .∧σr∧∑
|α|=k−1

(∂̄σ1)
α1∧ . . .∧(∂̄σr)

αr ⊗ ε∗α ⊗ ε∗|λ=0.

For degree reasons Rk will vanish unless

(3.1) 0 ≤ αj ≤ mj − 1 and α1 + · · ·+ αr ≤ n− 1.

Proof of Theorem 1.2. Consider the tuples fj as sections of Ej. For
each j, let eji, i = 1, . . . ,mj, be a local frame for Ej so that fj =∑mj

i=1 f
i
je

∗
ji. After a suitable resolution we may assume that for each j,

fj = f 0
j f

′
j, where f 0

j is holomorphic, and f ′j is a non-vanishing section
of E∗

j . Therefore, Rk is a sum of terms like

∂̄(|f 0
1 |2λ · · · |f 0

r |2λvλ)∧
β

(f 0
1 )α1+1 · · · (f 0

r )
αr+1

∣∣∣
λ=0

,

where v is smooth and non-vanishing. By the same argument as before
this current is annihilated by φ if |φ| ≤ C|f1|α1+1 · · · |fr|αr+1, and in
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view of (3.1) and the hypothesis in the theorem, taking sj = αj + 1,
therefore φ annihilates R. It now follows from Theorem 2.3 (iii) that
FΨ = φ has a holomorphic solution, and thus ψ ∈ (f1) · · · (fr). �

We can also easily obtain the Briançon-Skoda theorem.

Proof of Theorem 1.1. Assume that the tuple f = (f 1, . . . , fm) is given.
Choose disjoint isomorphic bundles Ej ' Cm with isomorphic bases eji,
and let fj =

∑m
i=1 f

ie∗ji. Outside Z = {f = 0} we have σj =
∑m

1 σ
ieji.

Now ∂̄σi are linearly dependent, since
∑m

1 f
i∂̄σi = ∂̄

∑m
1 f

iσi = ∂̄1 =
0. Thus the form uk must vanish if k−1 > m−1, and therefore Rk van-
ishes unless k ≤ min(n,m). Since |fj| = |f |, locally in the resolution,
we have

Rk = ∂̄|f |2rλ∧ β

(f 0)k+r−1

∣∣∣
λ=0

,

and hence it is annihilated by φ if |φ| ≤ C|f |min(m,n)+r−1. �

It remains to consider the case when the fj together define a complete
intersection. The proof is very much inspired by similar proofs in [20].

Proof of Theorem 1.4. We now assume that codim {f1 = · · · = fr =
0} = m1 + · · · + mr. In particular, m1 + · · · + mr ≤ n. Let ξ be a
test form times φ. If the support is small enough, after a resolution of
singularities and further localization, R.ξ becomes a sum of terms, the
worst of which are like∫

∂̄
(
|f 0

1 |2λ · · · |f 0
r |2λ

)
∧s

′
1∧ . . .∧s′r∧(∂̄s′1)

m1−1∧ . . .∧(∂̄s′r)
mr−1∧ξ̃ρ

(f 0
1 )m1 · · · (f 0

r )
mr

∣∣∣
λ=0

,

where ξ̃ is the pull-back of ξ and ρ is a cut-off function in the resolution.
We may assume that each f 0

j is a monomial times a non-vanishing
factor in a local coordinate system τk. Let τ be one of the coordinate
factors in, say, f1 (with order `), and consider the integral that appears
when ∂̄ falls on |τ `|2λ. If τ does not occur in any other f 0

j , then the

assumption |φ| ≤ C|f1|m1 implies that φ̃ is divisible by τ `m1 . Hence φ̃

and therefore also ξ̃ annihilates the singularity as before, so that the
integral vanishes. We now claim that if, on the other hand, τ occurs
in some of the other factors, then the integral vanishes because of the
complete intersection assumption. Thus let us assume that τ occurs in
f 0

2 , . . . , f
0
k but not in f 0

k+1, . . . , f
0
r . The forms sj = |fj|2σj are smooth

and, moreover,

γ̃ =
s′k+1∧ . . .∧s′r∧(∂̄s′k+1)

mk+1−1∧ . . .∧(∂̄s′r)
mr−1∧ξ̃

(f 0
k+1)

mk+1 · · · (f 0
r )
mr

is the pull-back of

γ =
sk+1∧ . . .∧sr∧(∂̄sk+1)

mk+1−1∧ . . .∧(∂̄sr)
mr−1∧ξ

|fk+1|2mk+1 · · · |f 0
r |2mr

.
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Since the form γ has codegree 1+(m1−1)+ · · ·+(mk−1) in dz̄, which
is strictly less than m1 + · · · + mk = codim {f1 = · · · = fk = 0}, the
anti-holomorphic factor of the denominator vanishes on {f1 = · · · =
fk = 0}. Therefore, each term of its pull-back vanishes where τ = 0,
so it must contain either a factor τ̄ or dτ̄ . However, because of the
assumption, the (pull-back) of the denominator contains no factor τ̄ ,
so each term of γ̃ will contain τ̄ or dτ̄ . Therefore, the integral that
appears when ∂̄ falls on |τ |2λ` will vanish when λ = 0. �

4. Explicit integral representation

We are now going to supply explicit proofs of Theorems 1.1 to 1.4.
Since all of them are local, we assume that the functions f and φ are
defined in a convex neighborhood X of the closure of the unit ball
B in Cn. We first recall the construction of weighted representation
formulas for holomorphic functions from [1]. For fixed z ∈ X, let δη
denote interior multiplication with the vector field

2πi
∑

(ζj − zj)
∂

∂ζj
,

and let ∇η = δη− ∂̄. Then we have (lower indices denote bidegree), see
[1],

Proposition 4.1. Assume that z is a fixed point in X and g = g0,0 +
. . .+gn,n is a smooth form in X with compact support such that ∇ηg = 0
and g0,0(z) = 1. Then

(4.1) φ(z) =

∫
gφ =

∫
gn,nφ

for each holomorphic function φ in X.

For further reference we also notice, see [4], that:

(i) if g1 and g2 satisfy the assumptions in the proposition (it is enough
that one of them has compact support), then also g = g1∧g2 does.

(ii) it is enough that g us smooth in a neighborhood of the point z.

Example 2. Let χ be a cutoff function in X that is identically 1 in a
neighborhood of B. Moreover, let

s(ζ, z) =
1

2πi

∂|ζ|2

|ζ|2 − ζ̄ · z
.

Then for each z ∈ B,

g = χ− ∂̄χ∧ s

∇ηs
= χ− ∂̄χ∧[s+s∧∂̄s+s∧(∂̄s)2 + · · ·+s∧(∂̄s)n−1] =

χ− ∂̄χ∧
n∑
k=1

1

(2πi)k
∂|ζ|2∧(∂̄∂|ζ|2)k−1

(|ζ|2 − ζ̄ · z)k
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a compactly supported form such that∇η-closed and g0,0(z) = 1. More-
over, g depends holomorphically on z. �

Example 3. Another possible choice is

(4.2) g =
(
1 +∇ζ−z

ζ̄ · dζ
2πi(1− |ζ|2)

)−ν
=

(1− ζ̄ · z
1− |ζ|2

− ω
)−ν

for positive ν, where ω = (i/2π)∂∂̄ log(1/(1−|ζ|2)). It is O((1−|ζ|2)ν)
near the boundary and therefore at least of class Cν−1. �

Now assume that f is a holomorphic r×m-matrix, that we consider
as a holomorphic morphism f : E → Q with respect to some fixed ON-
bases for the trivial bundles E ' Cm andQ ' Cr. We will construct the
decomposition (1.1) from the currents U and R in Section 2, following
an idea in [4]. First we choose holomorphic (1, 0)-forms hj in X, Hefer
forms, such that

δηhj = fj(ζ)− fj(z),

and let h =
∑m

1 hj ⊗ ε∗j . We may also assume that hj, and hence h,
depend holomorphically on the parameter z. Now δh : Ek+1 → Ek, for
k ≥ 1, and hence

(δh)k : Ek+1 → E1, k ≥ 0,

if (δh)` = δ`h/`!. It is easily seen that

(4.3) δη(δh)k = (δh)k−1δf − δf(z)(δh)k−1.

So far δF has only acted on (0, 0)-forms with values in ΛrE. We now
extend it to general (p, q)-forms, with the convention that one insert a
minus sign when p+ q is odd. Thus we let

δFα = (−1)(r+1)(degα+1)δfr · · · δf1 ⊗ δε1 · · · δεr ,

where degα is the degree of α in Λ(E ⊗ T ∗(X)). With this convention
δF , as well as δf , will anti-commute with ∂̄ and δη.

It is possible to find (1, 0)-form-valued mappings H0
k : Ek → C, such

that

(4.4) δηH
0
1 = δF (ζ)− δF (z), δηH

0
k = H0

k−1δf(ζ)− δF (z)(δh)k−1, k ≥ 2.

The form H0
1 is a usual Hefer form. The right hand side of the second

equation for k = 2 is now holomorphic and δη-closed, and it is well-
known then that there exists a holomorphic solution H0

2 . We may as
well assume that it depends holomorphically on the parameter z in
X. The existence of H0

k in general follows by induction. For explicit
choices of solutions in X, see [4]. We now define

H1U =

min(n+1,m−r+1)∑
k=1

(δh)k−1Uk,
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and

H0R =

min(n,m−r+1)∑
k=1

H0
kRk.

Theorem 4.2. If φ is holomorphic in X and g is the smooth form in
Example 2, then we have the holomorphic decomposition

(4.5) φ(z) = δF (z)

∫
H1U∧gφ+

∫
H0R∧gφ, z ∈ B.

Proof. First we assume that z ∈ B \ Z, and consider the form

g′ = δF (z)H
1U +H0R.

We have that g0,0 = δFU1, and hence g0,0(z) = 1. Moreover, using (4.3)
and (4.4) it is readily verified that ∇ηg

′ = 0. Since g′∧g is smooth in a
neighborhood of z it follows form Proposition 4.1 and the subsequent
remarks that (4.5) holds for this z. However, since both sides of (4.5)
are holomorphic in B the theorem is proved. �

In particular, Ψ(z) =
∫
H1U∧gφ is an explicit solution to δF (z)Ψ = φ

if Rφ = 0. We now consider this solution in more detail. In view of
(2.2) and (2.3) we have, outside Z, that

(δh)k−1uk =∑
|α|=k−1

(δh1)α1 · · · (δhr)αr

[
σ1∧ . . .∧σr∧(∂̄σ1)

α1∧ . . .∧(∂̄σr)
αr

]
⊗ ε∗.

Moreover, since we have the trivial metric,

σj =
m∑
i=1

σijej, j = 1, . . . , r,

are just the columns in the matrix f ∗(ff ∗)−1. Suppressing the non-
vanishing section ε∗, we have

Corollary 4.3. Let f be a generically surjective holomorphic r ×m-
matrix in X with rows fj, considered as sections of the trivial bundle
E∗, and assume that the hypothesis of Theorem 1.4 is fulfilled. Then

ψ(z) =

∫
H1U∧gφ

is an explicit solution to δF (z)ψ(z) = δf1(z) · · · δfr(z)ψ(z) = φ(z) in B,
where H1Uφ is the value at λ = 0 of (the analytic continuation of)

(4.6) |f |2λ
min(n+1,m−r+1)∑

k=1∑
|α|=k−1

(δh1)α1 · · · (δhr)αr

[
σ1∧ . . .∧σr∧(∂̄σ1)

α1∧ . . .∧(∂̄σr)
αr

]
φ
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and g is the form in Example 2. If m−r+1 ≤ n, then H1Uφ is locally
integrable, and the value at λ = 0 exists in the ordinary sense.

Proof. It remains to verify the claim about the local integrability. In
fact, after a resolution of singularities, cf., (2.5), it follows that Ukφ
is locally integrable if |φ| . |F |k. If m − r + 1 ≤ n, then the sum
terminates at k = m − r + 1, and therefore the current is locally in-
tegrable; otherwise the worst term is like Un+1φ, and it will not we
locally integrable in general. �

If all the fj takes values in different bundles E∗
j and E = ⊕Ej,

then we can simplify the expression for H1U further. In this case, cf.,
Section 3,

σj =

mj∑
i=1

f̄ ij
|fj|2

eij, j = 1, . . . , r.

Moreover, with natural choices of Hefer forms hj, δhj
will vanish on

forms with values in Ek for k 6= j, and hence we get

Corollary 4.4. Let fj be mj-tuples of functions, considered as sections
of the trivial bundles E∗

j over X. If the conditions of Theorem 1.2 or
1.3 are fulfilled, or if all fj are equal to some fixed m-tuple f , and the
condition in Theorem 1.1 is fulfilled, then

ψ(z) =

∫
H1Uφ∧g

is an explicit solution to δf1(z) · · · δfr(z)ψ(z) = φ(z) in B, where H1Uφ
is the value at λ = 0 of (the analytic continuation of)

(4.7) |f |2λ
n+1∑
k=1

∑
|α|=k−1

(δh1)α1 [σ1∧(∂̄σ1)
α1 ]∧ . . .∧(δhr)αr [σr∧(∂̄σr)

αr ]φ.

N = min(n+ 1,m− r + 1), and g is the form in Example 2.

In the case of Theorems 1.2 and 1.3, only terms such that αj ≤ mj

actually occur. In the case of Theorem 1.1 we have only terms such
that k ≤ m.

We conclude this paper with some brief comments on Berndtsson’s
classical division formula from [7]. As mentioned in the introduction,
the first known explicit formula for the Briançon-Skoda theorem (r =
1) was in Theorem 9.5 in [4]; in fact, it is identical to the formula
above in the case r = 1, and it is different from Berndtsson’s formula.
Surprisingly enough it was recently discovered, [12], that the general
case of the Briançon-Skoda theorem, i.e., Theorem 1.1, actually can
be obtained from Berndtsson’s classical formula, and we will sketch
the proof below; for more details, see [12]. However, we see no way
of proving any of the variations discussed in this paper by Berndtsson
type formulas.
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As before we consider the given m-tuple f as a section of the trivial
bundle E∗ over X. Let s be the section of E with minimal norm such
that fs = |f |. Then s = |f |2σ in the previous notation. If the metric
is trivial and f =

∑
fje

∗
j , then s =

∑
f̄jej. For ε > 0, let

σε =
s

|f |2 + ε
,

let h = hje
∗
j be a Hefer form as before, and let

g′ = 1−∇ηh · σε =
ε

|f |2 + ε
+ f(z) · σε + h · ∂̄σε.

By Proposition 4.1 we have the representation formula

(4.8) φ(z) =

∫ ( ε

|f |2 + ε
+ f(z) · σε + h · ∂̄σε

)min(n+1,m)+r−1

φ∧g.

At least if the form g from Example 3 is used, the resulting formula is
precisely of the type in [7] though derived in a somewhat different way.

Proposition 4.5. Assume that f, φ are holomorphic in X and that

(4.9) |φ| . |f |min(n,m)+r−1,

holds. When ε → 0 the formula (4.8) converges to an explicit repre-
sentation of φ in B as an element in the ideal (f)r.

Sketch of proof. To begin with we assume that m > n. Then the power
of g′ is n+ r, and expanding we get that

(g′)n+rφ =
r∑
`=1

c`

( ε

|f |2 + ε
+ h · ∂̄σε

)n+`

(f(z) · σε)r−`φ+ · · · ,

where · · · denote terms in (f)r. Taking for granted that these latter
terms actually converge to currents with values in (f)r when ε → 0,
we have to prove that the first terms tend to zero. When expanding
further, for degree reasons, the worst term that appears is

ε

|f |2 + ε
(h · ∂̄σε)n(f(z) · σε)r−1φ.

Using the technique in Section 2 we may assume that f = f0f
′ where

f ′ 6= 0, and then this term is dominated by

(4.10) ε
|df0||f0|

(|f0|2|f ′|2 + ε)2
.

Assuming furthermore, as we may, that f0 is a monomial, it is readily
checked that the expression (4.10) tends to 0 in L1

loc when ε → 0. We
then consider the case when m ≤ n. When expanding (g′)m+r−1φ,
besides terms in (f)r, the worst term that appears is

(4.11) (h · ∂̄σε)m(f(z) · σε)r−1φ.
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Using that(
h · ∂̄ s

|f |2 + ε

)m
= h1∧ . . .∧hm∧ε

∂̄sm∧ . . .∧∂̄s1

(|f |2 + ε)m+1
,

it follows that also (4.11) is dominated by (4.10), and so the proposition
is proved. �
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E-mail address: matsa@math.chalmers.se


	PREPRINT 2005:20
	MATS ANDERSSON
	Department of Mathematical Sciences
	Division of Mathematics
	Preprint 2005:20
	Department of Mathematical Sciences
	Division of Mathematics
	Chalmers University of Technology and Göteborg University
	ISSN 1652-9715





